1
|
Chen Y, Vats A, Xi Y, Wolf-Johnston A, Clinger O, Arbuckle R, Dermond C, Li J, Stolze D, Sahel JA, Jackson E, Birder L. Oral 8-aminoguanine against age-related retinal degeneration. RESEARCH SQUARE 2024:rs.3.rs-4022389. [PMID: 38765984 PMCID: PMC11100887 DOI: 10.21203/rs.3.rs-4022389/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Visual decline in the elderly is often attributed to retinal aging, which predisposes the tissue to pathologies such as age-related macular degeneration. Currently, effective oral pharmacological interventions for retinal degeneration are limited. We present a novel oral intervention, 8-aminoguanine (8-AG), targeting age-related retinal degeneration, utilizing the aged Fischer 344 rat model. A low-dose 8-AG regimen (5 mg/kg body weight) via drinking water, beginning at 22 months for 8 weeks, demonstrated significant retinal preservation. This was evidenced by increased retinal thickness, improved photoreceptor integrity, and enhanced electroretinogram responses. 8-AG effectively reduced apoptosis, oxidative damage, and microglial/macrophage activation associated with aging retinae. Age-induced alterations in the retinal purine metabolome, characterized by elevated levels of inosine, hypoxanthine, and xanthine, were partially mitigated by 8-AG. Transcriptomics highlighted 8-AG's anti-inflammatory effects on innate and adaptive immune responses. Extended treatment to 17 weeks further amplified the retinal protective effects. Moreover, 8-AG showed temporary protective effects in the RhoP23H/+ mouse model of retinitis pigmentosa, reducing active microglia/macrophages. Our study positions 8-AG as a promising oral agent against retinal aging. Coupled with previous findings in diverse disease models, 8-AG emerges as a promising anti-aging compound with the capability to reverse common aging hallmarks.
Collapse
|
2
|
Álvarez-Barrios A, Álvarez L, Pereiro R, González-Iglesias H. Elemental mass spectrometry to study metallo-transcriptomic changes during the in vitro degeneration of the retinal pigment epithelium. Anal Bioanal Chem 2024; 416:2699-2710. [PMID: 37507467 PMCID: PMC11009741 DOI: 10.1007/s00216-023-04880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Trace elements play crucial roles in cellular biology. Their improper homeostasis may contribute to the progress of eye diseases, exacerbated during ageing. The retinal pigment epithelium (RPE) is progressively deteriorated during age-related neurodegeneration and metal homeostasis may be compromised. In this study, elemental mass spectrometry (MS) was combined with cellular and molecular biology techniques to identify changes in trace elements during the in vitro degeneration of human RPE cells. Cells were collected at 21, 91, and 133 days and processed for RNA sequencing; Ca, Na, P, Mg, and Cu quantification by flow injection analysis and inductively coupled plasma-MS; and protein analysis by immunocytochemistry. Four-month-old RPE cultures showed depigmentation, impaired barrier function, and antioxidant protection, manifesting signs of epithelial-to-mesenchymal transition. Na and P significantly increased in the cytosol of degenerated RPE cells (from 15 ± 20 to 13495 ± 638 ng·µg-1 and from 30.6 ± 9.5 to 116.8 ± 16.8 ng·µg-1, respectively). Mg decreased in both the cytosol and insoluble fraction of cells (from 2.83 ± 0.40 to 1.58 ± 0.56 ng·µg-1 and from 247.57 ± 11.06 to 30 ± 8 ng·g-1, respectively), while P and Cu decreased in the insoluble fraction after 133 days in culture (from 9471 ± 1249 to 4555 ± 985 ng·µg-1 and from 2251 ± 79 to 1054 ± 235 ng·g-1, respectively), along with changes in metal-dependent antioxidant enzymes and Cu transporters. This RPE model reflected metal homeostatic changes, providing additional perspectives on effects of metal regulation during ageing.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Fundación de Investigación Oftalmológica, Avda. Dres. Fernández-Vega. 34, 33012, Oviedo, Spain
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Lydia Álvarez
- Fundación de Investigación Oftalmológica, Avda. Dres. Fernández-Vega. 34, 33012, Oviedo, Spain.
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012, Oviedo, Spain.
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.
| |
Collapse
|
3
|
Zhang Y, Chu B, Fan Q, Song X, Xu Q, Qu Y. M2-type macrophage-targeted delivery of IKKβ siRNA induces M2-to-M1 repolarization for CNV gene therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 57:102740. [PMID: 38458368 DOI: 10.1016/j.nano.2024.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
Choroidal Neovascularization (CNV) is capable of inciting recurrent hemorrhage in the macular region, severely impairing patients' visual acuity. During the onset of CNV, infiltrating M2 macrophages play a crucial role in promoting angiogenesis. To control this disease, our study utilizes the RNA interference (RNAi)-based gene therapy to reprogram M2 macrophages to the M1 phenotype in CNV lesions. We synthesize the mannose-modified siRNA-loaded liposome specifically targeting M2 macrophages to inhibit the inhibitory kappa B kinase β (IKKβ) gene involved in the polarization of macrophages, consequently modulating macrophage polarization state. In vitro and in vivo, the mannose-modified IKKβ siRNA-loaded liposome (siIKKβ-ML) has been proven to effectively target M2 macrophages to repolarize them to M1 phenotype, and inhibit the progression of CNV. Collectively, our findings elucidate that siIKKβ-ML holds the potential to control CNV by reprogramming the macrophage phenotype, indicating a promising therapeutic avenue for CNV management.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Baorui Chu
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qian Fan
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xian Song
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qian Xu
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yi Qu
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan 250012, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan 250012, China.
| |
Collapse
|
4
|
Yang G, Mack H, Harraka P, Colville D, Savige J. Ocular manifestations of the genetic renal tubulopathies. Ophthalmic Genet 2023; 44:515-529. [PMID: 37702059 DOI: 10.1080/13816810.2023.2253901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The genetic tubulopathies are rare and heterogenous disorders that are often difficult to identify. This study examined the tubulopathy-causing genes for ocular associations that suggested their genetic basis and, in some cases, the affected gene. METHODS Sixty-seven genes from the Genomics England renal tubulopathy panel were reviewed for ocular features, and for retinal expression in the Human Protein Atlas and an ocular phenotype in mouse models in the Mouse Genome Informatics database. The genes resulted in disease affecting the proximal tubules (n = 24); the thick ascending limb of the loop of Henle (n = 10); the distal convoluted tubule (n = 15); or the collecting duct (n = 18). RESULTS Twenty-five of the tubulopathy-associated genes (37%) had ocular features reported in human disease, 49 (73%) were expressed in the retina, although often at low levels, and 16 (24%) of the corresponding mouse models had an ocular phenotype. Ocular abnormalities were more common in genes affected in the proximal tubulopathies (17/24, 71%) than elsewhere (7/43, 16%). They included structural features (coloboma, microphthalmia); refractive errors (myopia, astigmatism); crystal deposition (in oxalosis, cystinosis) and sclerochoroidal calcification (in Bartter, Gitelman syndromes). Retinal atrophy was common in the mitochondrial-associated tubulopathies. Structural abnormalities and crystal deposition were present from childhood, but sclerochoroidal calcification typically occurred after middle age. CONCLUSIONS Ocular abnormalities are uncommon in the genetic tubulopathies but may be helpful in recognizing the underlying genetic disease. The retinal expression and mouse phenotype data suggest that further ocular associations may become apparent with additional reports. Early identification may be necessary to monitor and treat visual complications.
Collapse
Affiliation(s)
- GeFei Yang
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Heather Mack
- Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Philip Harraka
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Deb Colville
- Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
5
|
Chang YH, Hsing CH, Chiu CJ, Wu YR, Hsu SM, Hsu YH. Protective role of IL-17-producing γδ T cells in a laser-induced choroidal neovascularization mouse model. J Neuroinflammation 2023; 20:279. [PMID: 38007487 PMCID: PMC10676594 DOI: 10.1186/s12974-023-02952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Vision loss in patients with wet/exudative age-related macular degeneration (AMD) is associated with choroidal neovascularization (CNV), and AMD is the leading cause of irreversible vision impairment in older adults. Interleukin-17A (IL-17A) is a component of the microenvironment associated with some autoimmune diseases. Previous studies have indicated that wet AMD patients have elevated serum IL-17A levels. However, the effect of IL-17A on AMD progression needs to be better understood. We aimed to investigate the role of IL-17A in a laser-induced CNV mouse model. METHODS We established a laser-induced CNV mouse model in wild-type (WT) and IL-17A-deficient mice and then evaluated the disease severity of these mice by using fluorescence angiography. We performed enzyme-linked immunosorbent assay (ELISA) and fluorescence-activated cell sorting (FACS) to analyze the levels of IL-17A and to investigate the immune cell populations in the eyes of WT and IL-17A-deficient mice. We used ARPE-19 cells to clarify the effect of IL-17A under oxidative stress. RESULTS In the laser-induced CNV model, the CNV lesions were larger in IL-17A-deficient mice than in WT mice. The numbers of γδ T cells, CD3+CD4+RORγt+ T cells, Treg cells, and neutrophils were decreased and the number of macrophages was increased in the eyes of IL-17A-deficient mice compared with WT mice. In WT mice, IL-17A-producing γδ T-cell numbers increased in a time-dependent manner from day 7 to 28 after laser injury. IL-6 levels increased and IL-10, IL-24, IL-17F, and GM-CSF levels decreased in the eyes of IL-17A-deficient mice after laser injury. In vitro, IL-17A inhibited apoptosis and induced the expression of the antioxidant protein HO-1 in ARPE-19 cells under oxidative stress conditions. IL-17A facilitated the repair of oxidative stress-induced barrier dysfunction in ARPE-19 cells. CONCLUSIONS Our findings provide new insight into the protective effect of IL-17A in a laser-induced CNV model and reveal a novel regulatory role of IL-17A-producing γδ T cells in the ocular microenvironment in wet AMD.
Collapse
Affiliation(s)
- Yu-Hsien Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chiao-Juno Chiu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Rou Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Antibody New Drug Research Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Du Y, Yan B. Ocular immune privilege and retinal pigment epithelial cells. J Leukoc Biol 2023; 113:288-304. [PMID: 36805720 DOI: 10.1093/jleuko/qiac016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 02/04/2023] Open
Abstract
The ocular tissue microenvironment is immune-privileged and uses multiple immunosuppressive mechanisms to prevent the induction of inflammation. The retinal pigment epithelium plays an essential role in ocular immune privilege. In addition to serving as a blood barrier separating the fenestrated choriocapillaris from the retina, the retinal pigment epithelium is a source of immunosuppressive cytokines and membrane-bound negative regulators that modulate the activity of immune cells within the retina. This article reviews the current understanding of how retinal pigment epithelium cells mediate immune regulation, focusing on the changes under pathologic conditions.
Collapse
Affiliation(s)
- Yuxiang Du
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| | - Bo Yan
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| |
Collapse
|
7
|
Lu F, Leach LL, Gross JM. A CRISPR-Cas9-mediated F0 screen to identify pro-regenerative genes in the zebrafish retinal pigment epithelium. Sci Rep 2023; 13:3142. [PMID: 36823429 PMCID: PMC9950062 DOI: 10.1038/s41598-023-29046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Ocular diseases resulting in death of the retinal pigment epithelium (RPE) lead to vision loss and blindness. There are currently no FDA-approved strategies to restore damaged RPE cells. Stimulating intrinsic regenerative responses within damaged tissues has gained traction as a possible mechanism for tissue repair. Zebrafish possess remarkable regenerative abilities, including within the RPE; however, our understanding of the underlying mechanisms remains limited. Here, we conducted an F0 in vivo CRISPR-Cas9-mediated screen of 27 candidate RPE regeneration genes. The screen involved injection of a ribonucleoprotein complex containing three highly mutagenic guide RNAs per target gene followed by PCR-based genotyping to identify large intragenic deletions and MATLAB-based automated quantification of RPE regeneration. Through this F0 screening pipeline, eight positive and seven negative regulators of RPE regeneration were identified. Further characterization of one candidate, cldn7b, revealed novel roles in regulating macrophage/microglia infiltration after RPE injury and in clearing RPE/pigment debris during late-phase RPE regeneration. Taken together, these data support the utility of targeted F0 screens for validating pro-regenerative factors and reveal novel factors that could regulate regenerative responses within the zebrafish RPE.
Collapse
Affiliation(s)
- Fangfang Lu
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.452708.c0000 0004 1803 0208Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Lyndsay L. Leach
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.89336.370000 0004 1936 9924Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jeffrey M. Gross
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.89336.370000 0004 1936 9924Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
8
|
O'Leary F, Campbell M. The blood-retina barrier in health and disease. FEBS J 2023; 290:878-891. [PMID: 34923749 DOI: 10.1111/febs.16330] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/05/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022]
Abstract
The blood-retina barrier (BRB) is the term used to define the properties of the retinal capillaries and the retinal pigment epithelium (RPE), which separate the systemic circulation from the retina. More specifically, the inner blood-retina barrier (iBRB) is used to describe the properties of the endothelial cells that line the microvasculature of the inner retina, while the outer blood-retina barrier (oBRB) refers to the properties of the RPE cells that separate the fenestrated choriocapillaris from the retina. The BRB is not a fixed structure; rather, it is dynamic, with its components making unique contributions to its function and structural integrity, and therefore the retina. For example, while tight junction (TJ) proteins between retinal endothelial cells are the key molecular structures in the maintenance of the iBRB, other cell types surrounding endothelial cells are also important. In fact, this overall structure is termed the neurovascular unit (NVU). The integrity of the BRB is crucial in the maintenance of a 'dry', tightly regulated retinal microenvironment through the regulation of transcellular and paracellular transport. Specifically, breakdown of TJs can result in oedema formation, a hallmark feature of many retinal diseases. Here, we will describe the oBRB briefly, with a more in-depth focus on the structure and function of the iBRB in health and diseased states. Finally, the contribution of the BRB to the pathophysiology of age-related macular degeneration (AMD), diabetic retinopathy (DR) and other rarer retinal diseases will be discussed.
Collapse
Affiliation(s)
- Fionn O'Leary
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
9
|
Haydinger CD, Ferreira LB, Williams KA, Smith JR. Mechanisms of macular edema. Front Med (Lausanne) 2023; 10:1128811. [PMID: 36960343 PMCID: PMC10027768 DOI: 10.3389/fmed.2023.1128811] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Macular edema is the pathological accumulation of fluid in the central retina. It is a complication of many retinal diseases, including diabetic retinopathy, retinal vascular occlusions and uveitis, among others. Macular edema causes decreased visual acuity and, when chronic or refractory, can cause severe and permanent visual impairment and blindness. In most instances, it develops due to dysregulation of the blood-retinal barrier which permits infiltration of the retinal tissue by proteins and other solutes that are normally retained in the blood. The increase in osmotic pressure in the tissue drives fluid accumulation. Current treatments include vascular endothelial growth factor blockers, corticosteroids, and non-steroidal anti-inflammatory drugs. These treatments target vasoactive and inflammatory mediators that cause disruption to the blood-retinal barrier. In this review, a clinical overview of macular edema is provided, mechanisms of disease are discussed, highlighting processes targeted by current treatments, and areas of opportunity for future research are identified.
Collapse
|
10
|
Álvarez-Barrios A, Álvarez L, Artime E, García M, Lengyel I, Pereiro R, González-Iglesias H. Altered zinc homeostasis in a primary cell culture model of the retinal pigment epithelium. Front Nutr 2023; 10:1124987. [PMID: 37139441 PMCID: PMC10149808 DOI: 10.3389/fnut.2023.1124987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
The retinal pigment epithelium (RPE) is progressively degenerated during age-related macular degeneration (AMD), one of the leading causes of irreversible blindness, which clinical hallmark is the buildup of sub-RPE extracellular material. Clinical observations indicate that Zn dyshomeostasis can initiate detrimental intracellular events in the RPE. In this study, we used a primary human fetal RPE cell culture model producing sub-RPE deposits accumulation that recapitulates features of early AMD to study Zn homeostasis and metalloproteins changes. RPE cell derived samples were collected at 10, 21 and 59 days in culture and processed for RNA sequencing, elemental mass spectrometry and the abundance and cellular localization of specific proteins. RPE cells developed processes normal to RPE, including intercellular unions formation and expression of RPE proteins. Punctate deposition of apolipoprotein E, marker of sub-RPE material accumulation, was observed from 3 weeks with profusion after 2 months in culture. Zn cytoplasmic concentrations significantly decreased 0.2 times at 59 days, from 0.264 ± 0.119 ng·μg-1 at 10 days to 0.062 ± 0.043 ng·μg-1 at 59 days (p < 0.05). Conversely, increased levels of Cu (1.5-fold in cytoplasm, 5.0-fold in cell nuclei and membranes), Na (3.5-fold in cytoplasm, 14.0-fold in cell nuclei and membranes) and K (6.8-fold in cytoplasm) were detected after 59-days long culture. The Zn-regulating proteins metallothioneins showed significant changes in gene expression over time, with a potent down-regulation at RNA and protein level of the most abundant isoform in primary RPE cells, from 0.141 ± 0.016 ng·mL-1 at 10 days to 0.056 ± 0.023 ng·mL-1 at 59 days (0.4-fold change, p < 0.05). Zn influx and efflux transporters were also deregulated, along with an increase in oxidative stress and alterations in the expression of antioxidant enzymes, including superoxide dismutase, catalase and glutathione peroxidase. The RPE cell model producing early accumulation of extracellular deposits provided evidences on an altered Zn homeostasis, exacerbated by changes in cytosolic Zn-binding proteins and Zn transporters, along with variations in other metals and metalloproteins, suggesting a potential role of altered Zn homeostasis during AMD development.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Fundación de Investigación Oftalmológica, Oviedo, Spain
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, Oviedo, Spain
| | - Lydia Álvarez
- Fundación de Investigación Oftalmológica, Oviedo, Spain
- Lydia Álvarez,
| | - Enol Artime
- Fundación de Investigación Oftalmológica, Oviedo, Spain
| | | | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- *Correspondence: Héctor González-Iglesias,
| |
Collapse
|
11
|
Epithelial phenotype restoring drugs suppress macular degeneration phenotypes in an iPSC model. Nat Commun 2021; 12:7293. [PMID: 34911940 PMCID: PMC8674335 DOI: 10.1038/s41467-021-27488-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 11/16/2021] [Indexed: 01/14/2023] Open
Abstract
Age-related Macular Degeneration (AMD), a blinding eye disease, is characterized by pathological protein- and lipid-rich drusen deposits underneath the retinal pigment epithelium (RPE) and atrophy of the RPE monolayer in advanced disease stages - leading to photoreceptor cell death and vision loss. Currently, there are no drugs that stop drusen formation or RPE atrophy in AMD. Here we provide an iPSC-RPE AMD model that recapitulates drusen and RPE atrophy. Drusen deposition is dependent on AMD-risk-allele CFH(H/H) and anaphylatoxin triggered alternate complement signaling via the activation of NF-κB and downregulation of autophagy pathways. Through high-throughput screening we identify two drugs, L-745,870, a dopamine receptor antagonist, and aminocaproic acid, a protease inhibitor that reduce drusen deposits and restore RPE epithelial phenotype in anaphylatoxin challenged iPSC-RPE with or without the CFH(H/H) genotype. This comprehensive iPSC-RPE model replicates key AMD phenotypes, provides molecular insight into the role of CFH(H/H) risk-allele in AMD, and discovers two candidate drugs to treat AMD.
Collapse
|
12
|
Cai M, Shao J, Wang Y, Yung B, Li JN, Zhang HH, Li YT, Yao DB. Claudin 14/15 play important roles in early wallerian degeneration after rat sciatic nerve injury. Chin J Traumatol 2021; 24:374-382. [PMID: 33903003 PMCID: PMC8606600 DOI: 10.1016/j.cjtee.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Wallerian degeneration (WD) is an antegrade degenerative process distal to peripheral nerve injury. Numerous genes are differentially regulated in response to the process. However, the underlying mechanism is unclear, especially the early response. We aimed at investigating the effects of sciatic nerve injury on WD via CLDN 14/15 interactions in vivo and in vitro. METHODS Using the methods of molecular biology and bioinformatics analysis, we investigated the molecular mechanism by which claudin 14/15 participate in WD. Our previous study showed that claudins 14 and 15 trigger the early signal flow and pathway in damaged sciatic nerves. Here, we report the effects of the interaction between claudin 14 and claudin 15 on nerve degeneration and regeneration during early WD. RESULTS It was found that claudin 14/15 were upregulated in the sciatic nerve in WD. Claudin 14/15 promoted Schwann cell proliferation, migration and anti-apoptosis in vitro. PKCα, NT3, NF2, and bFGF were significantly upregulated in transfected Schwann cells. Moreover, the expression levels of the β-catenin, p-AKT/AKT, p-c-jun/c-jun, and p-ERK/ERK signaling pathways were also significantly altered. CONCLUSION Claudin 14/15 affect Schwann cell proliferation, migration, and anti-apoptosis via the β-catenin, p-AKT/AKT, p-c-jun/c-jun, and p-ERK/ERK pathways in vitro and in vivo. The results of this study may help elucidate the molecular mechanisms of the tight junction signaling pathway underlying peripheral nerve degeneration.
Collapse
Affiliation(s)
- Min Cai
- School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, Jiangsu Province, China; Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jian Shao
- School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, Jiangsu Province, China
| | - Yi Wang
- School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, Jiangsu Province, China
| | - Bryant Yung
- School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, Jiangsu Province, China
| | - Jian-Nan Li
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Huan-Huan Zhang
- School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, Jiangsu Province, China
| | - Yu-Ting Li
- School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, Jiangsu Province, China
| | - Deng-Bing Yao
- School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, Jiangsu Province, China.
| |
Collapse
|
13
|
Paniagua AE, Segurado A, Dolón JF, Esteve-Rudd J, Velasco A, Williams DS, Lillo C. Key Role for CRB2 in the Maintenance of Apicobasal Polarity in Retinal Pigment Epithelial Cells. Front Cell Dev Biol 2021; 9:701853. [PMID: 34262913 PMCID: PMC8273544 DOI: 10.3389/fcell.2021.701853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Apicobasal polarity is essential for epithelial cell function, yet the roles of different proteins in its completion is not fully understood. Here, we have studied the role of the polarity protein, CRB2, in human retinal pigment epithelial (RPE) cells during polarization in vitro, and in mature murine RPE cells in vivo. After establishing a simplified protocol for the culture of human fetal RPE cells, we studied the temporal sequence of the expression and localization of polarity and cell junction proteins during polarization in these epithelial cells. We found that CRB2 plays a key role in tight junction maintenance as well as in cell cycle arrest. In addition, our studies in vivo show that the knockdown of CRB2 in the RPE affects to the distribution of different apical polarity proteins and results in perturbed retinal homeostasis, manifested by the invasion of activated microglial cells into the subretinal space. Together our results demonstrate that CRB2 is a key protein for the development and maintenance of a polarized epithelium.
Collapse
Affiliation(s)
- Antonio E. Paniagua
- Institute of Neurosciences of Castilla y León, IBSAL, Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Alicia Segurado
- Institute of Neurosciences of Castilla y León, IBSAL, Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Jorge F. Dolón
- Institute of Neurosciences of Castilla y León, IBSAL, Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Julián Esteve-Rudd
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Almudena Velasco
- Institute of Neurosciences of Castilla y León, IBSAL, Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - David S. Williams
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Concepción Lillo
- Institute of Neurosciences of Castilla y León, IBSAL, Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| |
Collapse
|
14
|
Tagawa M, Ikeda HO, Inoue Y, Iwai S, Iida Y, Hata M, Asaka I, Tsujikawa A. Deterioration of phagocytosis in induced pluripotent stem cell-derived retinal pigment epithelial cells established from patients with retinitis pigmentosa carrying Mer tyrosine kinase mutations. Exp Eye Res 2021; 205:108503. [PMID: 33609509 DOI: 10.1016/j.exer.2021.108503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Retinitis pigmentosa (RP) is an incurable retinal degenerative disease with an unknown mechanism of disease progression. Mer tyrosine kinase (MERTK), which encodes a receptor of the Tyro3/Axl/Mer family of tyrosine kinases, is one of the causal genes of RP. MERTK is reportedly expressed in the retinal pigment epithelium (RPE) and is essential for phagocytosis of the photoreceptor outer segment. Here, we established induced pluripotent stem cells (iPSC) from patients with RP having homozygous or compound heterozygous mutations in MERTK, and from healthy subjects; the RP patient- and healthy control-derived iPSCs were differentiated into RPE cells. Although cytoskeleton staining suggested that polarity may have been disturbed mildly, there were no apparent morphological differences between the diseased and normal RPE cells. The internalization of photoreceptor outer segments in diseased iPSC-RPE cells was significantly lower than that in normal iPSC-RPE cells. This in vitro disease model may be useful for elucidating the mechanisms of disease progression and screening treatments for the disease.
Collapse
Affiliation(s)
- Miho Tagawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan.
| | - Yumi Inoue
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Sachiko Iwai
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Yuto Iida
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Masayuki Hata
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Isao Asaka
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 6068507, Japan
| | - Akitaka Tsujikawa
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 6068507, Japan
| |
Collapse
|
15
|
Liu F, Peng S, Adelman RA, Rizzolo LJ. Knockdown of Claudin-19 in the Retinal Pigment Epithelium Is Accompanied by Slowed Phagocytosis and Increased Expression of SQSTM1. Invest Ophthalmol Vis Sci 2021; 62:14. [PMID: 33591357 PMCID: PMC7900869 DOI: 10.1167/iovs.62.2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/22/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Besides regulating paracellular diffusion, claudin-19 modulates the expression of proteins essential for the retinal pigment epithelium (RPE). This study asks how RPE responds when the expression of claudin-19 is reduced. Methods In stem cell-derived RPE, claudin-19 and sequestosome-1/p62 (SQSTM1) were knocked down with siRNAs. Expression was monitored by quantitative RT-PCR and western blotting. Morphology and function were monitored by immunocytochemistry and transepithelial electrical resistance (TER). Phagocytosis of photoreceptor outer segments (POSs) was followed by fluorescence-activated cell sorting and western blotting. Pharmacology was used to assess the effects of AMP-activated protein kinase (AMPK) and SQSTM1 on phagocytosis. Enzymatic activity was measured using commercial assay kits. Results Knockdown of claudin-19 reduced the TER without affecting the integrity of the apical junctional complex, as assessed by the distribution of zonula occludens-1 and filamentous actin. AMPK was activated without apparent effect on autophagy. Activation of AMPK alone had little effect on phagocytosis. Without affecting ingestion, knockdown reduced the rate of POS degradation and increased the steady-state levels of LC3B and SQSTM1. Proteasome inhibitors also retarded degradation, as did knockdown of SQSTM1. The expression of metallothioneins and the activity of superoxide dismutase increased. Conclusions Knockdown of claudin-19 slowed the degradation of internalized POSs. The study questions the role of activated AMPK in phagocytosis and suggests a role for SQSTM1. Further, knockdown was associated with a partial oxidative stress response. The study opens new avenues of experimentation to explore these essential RPE functions.
Collapse
Affiliation(s)
- Fanfei Liu
- Aier School of Ophthalmology, Central South University, Changsha, China
- Department of Surgery, Yale University, New Haven, Connecticut, United States
- Deparment of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut, United States
| | - Shaomin Peng
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Ron A. Adelman
- Deparment of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut, United States
| | - Lawrence J. Rizzolo
- Department of Surgery, Yale University, New Haven, Connecticut, United States
- Deparment of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
16
|
Viheriälä T, Sorvari J, Ihalainen TO, Mörö A, Grönroos P, Schlie-Wolter S, Chichkov B, Skottman H, Nymark S, Ilmarinen T. Culture surface protein coatings affect the barrier properties and calcium signalling of hESC-RPE. Sci Rep 2021; 11:933. [PMID: 33441679 PMCID: PMC7806758 DOI: 10.1038/s41598-020-79638-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Human pluripotent stem cell-derived retinal pigment epithelium (RPE) transplantation is currently under evaluation as treatment for macular degeneration. For therapeutic applications, cryostorage during cell production is typically needed with potential consequences to cell functionality. We have previously shown that the culture substrate affects human embryonic stem cell-derived RPE (hESC-RPE) properties in fresh cultures. Here, we aimed to further identify the role of RPE basement membrane proteins type IV collagen (Col-IV), laminin (LN), and nidogen-1 in the maturation and functionality of hESC-RPE after cryopreservation. In addition to cell attachment and morphology, transepithelial electrical resistance, expression of key RPE proteins, phagocytosis capacity and Ca2+ signalling were analysed. After cryostorage, attachment of hESC-RPE on culture surfaces coated with Col-IV alone was poor. Combining Col-IV and LN with or without nidogen-1 significantly improved cell attachment and barrier properties of the epithelium. Furthermore, functional homogeneity of the hESC-RPE monolayer was enhanced in the presence of nidogen-1. Our results suggest that the choice of coating proteins for the cell culture may have implications to the functional properties of these cells after cryostorage cell banking.
Collapse
Affiliation(s)
- Taina Viheriälä
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Juhana Sorvari
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Teemu O Ihalainen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Anni Mörö
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Pyry Grönroos
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Sabrina Schlie-Wolter
- Institute for Multiphase Processes, Leibniz University of Hannover, Hannover, Germany
| | - Boris Chichkov
- Institute of Quantum Optics, Leibniz University of Hannover, Hannover, Germany
| | - Heli Skottman
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Soile Nymark
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Tanja Ilmarinen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland.
| |
Collapse
|
17
|
Rudraraju M, Narayanan SP, Somanath PR. Regulation of blood-retinal barrier cell-junctions in diabetic retinopathy. Pharmacol Res 2020; 161:105115. [PMID: 32750417 PMCID: PMC7755666 DOI: 10.1016/j.phrs.2020.105115] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Loss of the blood-retinal barrier (BRB) integrity and subsequent damage to the neurovascular unit in the retina are the underlying reasons for diabetic retinopathy (DR). Damage to BRB eventually leads to severe visual impairment in the absence of prompt intervention. Diabetic macular edema and proliferative DR are the advanced stages of the disease where BRB integrity is altered. Primary mechanisms contributing to BRB dysfunction include loss of cell-cell barrier junctions, vascular endothelial growth factor, advanced glycation end products-induced damage, and oxidative stress. Although much is known about the involvement of adherens and tight-junction proteins in the regulation of vascular permeability in various diseases, there is a significant gap in our knowledge on the junctional proteins expressed in the BRB and how BRB function is modulated in the diabetic retina. In this review article, we present our current understanding of the molecular composition of BRB, the changes in the BRB junctional protein turnover in DR, and how BRB functional modulation affects vascular permeability and macular edema in the diabetic retina.
Collapse
Affiliation(s)
- Madhuri Rudraraju
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, United States
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
18
|
García-Castaño A, Perdomo-Ramirez A, Vall-Palomar M, Ramos-Trujillo E, Madariaga L, Ariceta G, Claverie-Martin F. Novel compound heterozygous mutations of CLDN16 in a patient with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Mol Genet Genomic Med 2020; 8:e1475. [PMID: 32869508 PMCID: PMC7667358 DOI: 10.1002/mgg3.1475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022] Open
Abstract
Background Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an autosomal recessive tubulopathy characterized by excessive urinary wasting of magnesium and calcium, bilateral nephrocalcinosis, and progressive chronic renal failure in childhood or adolescence. FHHNC is caused by mutations in CLDN16 and CLDN19, which encode the tight‐junction proteins claudin‐16 and claudin‐19, respectively. Most of these mutations are missense mutations and large deletions are rare. Methods We examined the clinical and biochemical features of a Spanish boy with early onset of FHHNC symptoms. Exons and flanking intronic segments of CLDN16 and CLDN19 were analyzed by direct sequencing. We developed a new assay based on Quantitative Multiplex PCR of Short Fluorescent Fragments (QMPSF) to investigate large CLDN16 deletions. Results Genetic analysis revealed two novel compound heterozygous mutations of CLDN16, comprising a missense mutation, c.277G>A; p.(Ala93Thr), in one allele, and a gross deletion that lacked exons 4 and 5,c.(840+25_?)del, in the other allele. The patient inherited these variants from his mother and father, respectively. Conclusions Using direct sequencing and our QMPSF assay, we identified the genetic cause of FHHNC in our patient. This QMPSF assay should facilitate the genetic diagnosis of FHHNC. Our study provided additional data on the genotypic spectrum of the CLDN16 gene.
Collapse
Affiliation(s)
| | - Ana Perdomo-Ramirez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Mònica Vall-Palomar
- Fisiopatologia Renal, Centro de Investigaciones en Bioquímica y Biología Molecular (CIBBIM), Vall d'Hebron Institut de Recerca (VHIR, Barcelona, Spain
| | - Elena Ramos-Trujillo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Leire Madariaga
- Biocruces Bizkaia Research Institute, Barakaldo, Bizkaia, Spain.,Pediatric Nephrology Department, Cruces University Hospital, UPV/EHU, Barakaldo, Spain
| | - Gema Ariceta
- Fisiopatologia Renal, Centro de Investigaciones en Bioquímica y Biología Molecular (CIBBIM), Vall d'Hebron Institut de Recerca (VHIR, Barcelona, Spain.,Servicio de Nefrología Pediátrica, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Departamento de Pediatría, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Felix Claverie-Martin
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| |
Collapse
|
19
|
Liu F, Xu T, Peng S, Adelman RA, Rizzolo LJ. Claudins regulate gene and protein expression of the retinal pigment epithelium independent of their association with tight junctions. Exp Eye Res 2020; 198:108157. [PMID: 32712183 DOI: 10.1016/j.exer.2020.108157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 01/14/2023]
Abstract
Claudin-19 is the major claudin in the tight junctions of the retinal pigment epithelium (RPE). Claudin-3 is also uniformly expressed albeit in lesser amounts. Besides modulating transepithelial diffusion, claudins modulate gene expression. The absence of claudin-19 and claudin-3 in the RPE cell lines, ARPE-19 and hTERT-RPE-1, provide an opportunity to examine whether exogenous claudins regulate gene expression in the absence of tight junctions. Quantitative RT-PCR was used to compare gene expression in ARPE-19 and hTERT-RPE-1 with that of highly differentiated, human fetal RPE. Claudin-19 and claudin-3 were exogenously expressed using an adenoviral vector. The transepithelial electrical resistance (TER) was measured using Endohm electrodes, and the effects of claudin on the actin cytoskeleton were determined by immunocytochemistry. The effect of claudin on gene expression was examined by quantitative RT-PCR and western blotting. Aside from claudin-19 and claudin-3, ARPE-19 and hTERT-RPE-1 expressed most junction-associated mRNAs in amounts comparable to human fetal RPE, but some RPE signature and maturation genes were under-expressed. Unlike ARPE-19, hTERT-RPE-1 failed to form tight junctions or develop a TER. Claudins exogenously expressed in hTERT-RPE-1 failed to crystalize an apical junctional complex. Actin filaments were not redistributed from stress fibers to cortical bands, and a TER was not established. In hTERT-RPE-1, claudins were found only in internal vesicular-like structures. Nonetheless, claudins increased the expression of the mRNAs for a collection of RPE-enriched proteins. Claudin-19 and claudin-3 had different effects on gene and protein expression indicating activation of overlapping, but distinct, signaling pathways. A major difference was the ability of claudin-19 to affect steady-state levels of ADAM9 and tyrosinase in ARPE-19. In conclusion, claudins can increase the barrier function of a pre-existing apical junctional complex, but on its own it cannot recruit tight junction proteins to form a complex de novo. Many effects of claudin on gene expression did not require an association with the apical junctional complex. Although claudin-19 shared many effects with claudin-3, claudin-19 exerted unique effects on the maturation of RPE.
Collapse
Affiliation(s)
- Fanfei Liu
- Aier School of Ophthalmology, Central South University, Changsha, China; Department of Surgery, Yale University, New Haven, USA; Department of Ophthalmology and Visual Science, Yale University, New Haven, USA
| | - Tao Xu
- Aier School of Ophthalmology, Central South University, Changsha, China; Department of Surgery, Yale University, New Haven, USA; Department of Ophthalmology and Visual Science, Yale University, New Haven, USA
| | - Shaomin Peng
- Aier School of Ophthalmology, Central South University, Changsha, China.
| | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale University, New Haven, USA
| | - Lawrence J Rizzolo
- Department of Surgery, Yale University, New Haven, USA; Department of Ophthalmology and Visual Science, Yale University, New Haven, USA.
| |
Collapse
|
20
|
Carlsson E, Supharattanasitthi W, Jackson M, Paraoan L. Increased Rate of Retinal Pigment Epithelial Cell Migration and Pro-Angiogenic Potential Ensuing From Reduced Cystatin C Expression. Invest Ophthalmol Vis Sci 2020; 61:9. [PMID: 32049341 PMCID: PMC7324439 DOI: 10.1167/iovs.61.2.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Variant B precursor cysteine protease inhibitor cystatin C, a known recessive risk factor for developing exudative age-related macular degeneration (AMD), presents altered intracellular trafficking and reduced secretion from retinal pigment epithelial (RPE) cells. Because cystatin C inhibits multiple extracellular matrix (ECM)-degrading cathepsins, this study evaluated the role of this mutation in inducing ECM-related functional changes in RPE cellular behavior. Methods Induced pluripotent stem cells gene-edited bi-allelically by CRISPR/Cas9 to express the AMD-linked cystatin C variant were differentiated to RPE cells and assayed for their ability to degrade fluorescently labeled ECM proteins. Cellular migration and adhesion on multiple ECM proteins, differences in transepithelial resistance and polarized protein secretion were tested. Vessel formation induced by gene edited cells-conditioned media was quantified using primary human dermal microvascular epithelial cells. Results Variant B cystatin C-expressing induced pluripotent stem cells-derived RPE cells displayed a significantly higher rate of laminin and fibronectin degradation 3 days after seeding on fluorescently labeled ECM (P < 0.05). Migration on matrigel, collagen IV and fibronectin was significantly faster for edited cells compared with wild-type (WT) cells. Both edited and WT cells displayed polarized secretion of cystatin C, but transepithelial resistance was lower in gene-edited cells after 6 weeks culture, with significantly lower expression of tight junction protein claudin-3. Media conditioned by gene-edited cells stimulated formation of significantly longer microvascular tubes (P < 0.05) compared with WT-conditioned media. Conclusions Reduced levels of cystatin C lead to changes in the RPE ability to degrade, adhere, and migrate supporting increased invasiveness and angiogenesis relevant for AMD pathology.
Collapse
|
21
|
Louer EM, Günzel D, Rosenthal R, Carmone C, Yi G, Stunnenberg HG, den Hollander AI, Deen PM. Differential day-night expression of tight junction components in murine retinal pigment epithelium. Exp Eye Res 2020; 193:107985. [DOI: 10.1016/j.exer.2020.107985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/30/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
|
22
|
Prot-Bertoye C, Houillier P. Claudins in Renal Physiology and Pathology. Genes (Basel) 2020; 11:genes11030290. [PMID: 32164158 PMCID: PMC7140793 DOI: 10.3390/genes11030290] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Claudins are integral proteins expressed at the tight junctions of epithelial and endothelial cells. In the mammalian kidney, every tubular segment express a specific set of claudins that give to that segment unique properties regarding permeability and selectivity of the paracellular pathway. So far, 3 claudins (10b, 16 and 19) have been causally traced to rare human syndromes: variants of CLDN10b cause HELIX syndrome and variants of CLDN16 or CLDN19 cause familial hypomagnesemia with hypercalciuria and nephrocalcinosis. The review summarizes our current knowledge on the physiology of mammalian tight junctions and paracellular ion transport, as well as on the role of the 3 above-mentioned claudins in health and disease. Claudin 14, although not having been causally linked to any rare renal disease, is also considered, because available evidence suggests that it may interact with claudin 16. Some single-nucleotide polymorphisms of CLDN14 are associated with urinary calcium excretion and/or kidney stones. For each claudin considered, the pattern of expression, the function and the human syndrome caused by pathogenic variants are described.
Collapse
Affiliation(s)
- Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Service de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Service de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
23
|
Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ, Boesze-Battaglia K, Williams DS. The cell biology of the retinal pigment epithelium. Prog Retin Eye Res 2020; 78:100846. [PMID: 32105772 PMCID: PMC8941496 DOI: 10.1016/j.preteyeres.2020.100846] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Ankita Umapathy
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Xuan Tan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Daniele
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Zhang Q, Presswalla F, Calton M, Charniga C, Stern J, Temple S, Vollrath D, Zacks DN, Ali RR, Thompson DA, Miller JML. Highly Differentiated Human Fetal RPE Cultures Are Resistant to the Accumulation and Toxicity of Lipofuscin-Like Material. Invest Ophthalmol Vis Sci 2019; 60:3468-3479. [PMID: 31408109 PMCID: PMC6692057 DOI: 10.1167/iovs.19-26690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose The accumulation of undigestible autofluorescent material (UAM), termed lipofuscin in vivo, is a hallmark of aged RPE. Lipofuscin derives, in part, from the incomplete degradation of phagocytized photoreceptor outer segments (OS). Whether this accumulated waste is toxic is unclear. We therefore investigated the effects of UAM in highly differentiated human fetal RPE (hfRPE) cultures. Methods Unmodified and photo-oxidized OS were fed daily to confluent cultures of ARPE-19 RPE or hfRPE. The emission spectrum, composition, and morphology of resulting UAM were measured and compared to in vivo lipofuscin. Effects of UAM on multiple RPE phenotypes were assessed. Results Compared to ARPE-19, hfRPE were markedly less susceptible to UAM buildup. Accumulated UAM in hfRPE initially resembled the morphology of lipofuscin from AMD eyes, but compacted and shifted spectrum over time to resemble lipofuscin from healthy aged human RPE. UAM accumulation mildly reduced transepithelial electrical resistance, ketogenesis, certain RPE differentiation markers, and phagocytosis efficiency, while inducing senescence and rare, focal pockets of epithelial-mesenchymal transition. However, it had no effects on mitochondrial oxygen consumption rate, certain other RPE differentiation markers, secretion of drusen components or polarity markers, nor cell death. Conclusions hfRPE demonstrates a remarkable resistance to UAM accumulation, suggesting mechanisms for efficient OS processing that may be lost in other RPE culture models. Furthermore, while UAM alters hfRPE phenotype, the effects are modest, consistent with conflicting reports in the literature on the toxicity of lipofuscin. Our results suggest that healthy RPE may adequately adapt to and tolerate lipofuscin accumulation.
Collapse
Affiliation(s)
- Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Feriel Presswalla
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Melissa Calton
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States
| | - Carol Charniga
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Jeffrey Stern
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States
| | - David N Zacks
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Robin R Ali
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States.,UCL Institute of Ophthalmology, London, United Kingdom
| | - Debra A Thompson
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Jason M L Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
25
|
Naylor A, Hopkins A, Hudson N, Campbell M. Tight Junctions of the Outer Blood Retina Barrier. Int J Mol Sci 2019; 21:ijms21010211. [PMID: 31892251 PMCID: PMC6981689 DOI: 10.3390/ijms21010211] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023] Open
Abstract
The outer blood retina barrier (oBRB) formed by the retinal pigment epithelium (RPE) is critical for maintaining retinal homeostasis. Critical to this modified neuro-epithelial barrier is the presence of the tight junction structure that is formed at the apical periphery of contacting cells. This tight junction complex mediates size-selective passive diffusion of solutes to and from the outer segments of the retina. Unlike other epithelial cells, the apical surface of the RPE is in direct contact with neural tissue and it is centrally involved in the daily phagocytosis of the effete tips of photoreceptor cells. While much is known about the intracellular trafficking of material within the RPE, less is known about the role of the tight junction complexes in health and diseased states. Here, we provide a succinct overview of the molecular composition of the RPE tight junction complex in addition to highlighting some of the most common retinopathies that involve a dysregulation of RPE integrity
Collapse
|
26
|
Fields MA, Del Priore LV, Adelman RA, Rizzolo LJ. Interactions of the choroid, Bruch's membrane, retinal pigment epithelium, and neurosensory retina collaborate to form the outer blood-retinal-barrier. Prog Retin Eye Res 2019; 76:100803. [PMID: 31704339 DOI: 10.1016/j.preteyeres.2019.100803] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
The three interacting components of the outer blood-retinal barrier are the retinal pigment epithelium (RPE), choriocapillaris, and Bruch's membrane, the extracellular matrix that lies between them. Although previously reviewed independently, this review integrates these components into a more wholistic view of the barrier and discusses reconstitution models to explore the interactions among them. After updating our understanding of each component's contribution to barrier function, we discuss recent efforts to examine how the components interact. Recent studies demonstrate that claudin-19 regulates multiple aspects of RPE's barrier function and identifies a barrier function whereby mutations of claudin-19 affect retinal development. Co-culture approaches to reconstitute components of the outer blood-retinal barrier are beginning to reveal two-way interactions between the RPE and choriocapillaris. These interactions affect barrier function and the composition of the intervening Bruch's membrane. Normal or disease models of Bruch's membrane, reconstituted with healthy or diseased RPE, demonstrate adverse effects of diseased matrix on RPE metabolism. A stumbling block for reconstitution studies is the substrates typically used to culture cells are inadequate substitutes for Bruch's membrane. Together with human stem cells, the alternative substrates that have been designed offer an opportunity to engineer second-generation culture models of the outer blood-retinal barrier.
Collapse
Affiliation(s)
- Mark A Fields
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Lucian V Del Priore
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Lawrence J Rizzolo
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA; Department of Surgery, Yale University School of Medicine, PO Box 208062, New Haven, CT, 06520-8062, USA.
| |
Collapse
|
27
|
Ji Cho M, Yoon SJ, Kim W, Park J, Lee J, Park JG, Cho YL, Hun Kim J, Jang H, Park YJ, Lee SH, Min JK. Oxidative stress-mediated TXNIP loss causes RPE dysfunction. Exp Mol Med 2019; 51:1-13. [PMID: 31615975 PMCID: PMC6802648 DOI: 10.1038/s12276-019-0327-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023] Open
Abstract
The disruption of the retinal pigment epithelium (RPE), for example, through oxidative damage, is a common factor underlying age-related macular degeneration (AMD). Aberrant autophagy also contributes to AMD pathology, as autophagy maintains RPE homeostasis to ensure blood–retinal barrier (BRB) integrity and protect photoreceptors. Thioredoxin-interacting protein (TXNIP) promotes cellular oxidative stress by inhibiting thioredoxin reducing capacity and is in turn inversely regulated by reactive oxygen species levels; however, its role in oxidative stress-induced RPE cell dysfunction and the mechanistic link between TXNIP and autophagy are largely unknown. Here, we observed that TXNIP expression was rapidly downregulated in RPE cells under oxidative stress and that RPE cell proliferation was decreased. TXNIP knockdown demonstrated that the suppression of proliferation resulted from TXNIP depletion-induced autophagic flux, causing increased p53 activation via nuclear localization, which in turn enhanced AMPK phosphorylation and activation. Moreover, TXNIP downregulation further negatively impacted BRB integrity by disrupting RPE cell tight junctions and enhancing cell motility by phosphorylating, and thereby activating, Src kinase. Finally, we also revealed that TXNIP knockdown upregulated HIF-1α, leading to the enhanced secretion of VEGF from RPE cells and the stimulation of angiogenesis in cocultured human retinal microvascular endothelial cells. This suggests that the exposure of RPE cells to sustained oxidative stress may promote choroidal neovascularization, another AMD pathology. Together, these findings reveal three distinct mechanisms by which TXNIP downregulation disrupts RPE cell function and thereby exacerbates AMD pathogenesis. Accordingly, reinforcing or restoring BRB integrity by targeting TXNIP may serve as an effective therapeutic strategy for preventing or attenuating photoreceptor damage in AMD. A protein found in retinal cells promotes the development of age-related macular degeneration and may provide a therapeutic target. Sight loss through macular degeneration is triggered by disruption to the retinal pigment epithelium (RPE), a layer of cells that carries nutrients to the eye. RPE cells can be disrupted under oxidative stress conditions, but how this influences macular degeneration is unclear. Jeong-Ki Min and Sang-Hyun Lee at the Korea Research Institute of Bioscience and Biotechnology in Daejeon, South Korea, and co-workers found that oxidative stress reduces levels of the thioredoxin-interacting protein (TXNIP) in human RPE cell cultures. This interrupts cellular communication and disturbs the balance between cell proliferation and cell recycling. It also increases the levels of proteins that promote excess blood vessel formation, a key process contributing to macular degeneration.
Collapse
Affiliation(s)
- Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sung-Jin Yoon
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Wooil Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jongjin Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Lai Cho
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, 101 Daehak-ro, jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyejin Jang
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Jun Park
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang-Hyun Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
28
|
Wang SB, Xu T, Peng S, Singh D, Ghiassi-Nejad M, Adelman RA, Rizzolo LJ. Disease-associated mutations of claudin-19 disrupt retinal neurogenesis and visual function. Commun Biol 2019; 2:113. [PMID: 30937396 PMCID: PMC6433901 DOI: 10.1038/s42003-019-0355-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations of claudin-19 cause Familial Hypomagnesaemia and Hypercalciuria, Nephrocalcinosis with Ocular Involvement. To study the ocular disease without the complications of the kidney disease, naturally occurring point mutations of human CLDN19 were recreated in human induced pluripotent cells or overexpressed in the retinae of newborn mice. In human induced pluripotent cells, we show that the mutation affects retinal neurogenesis and maturation of retinal pigment epithelium (RPE). In mice, the mutations diminish the P1 wave of the electroretinogram, activate apoptosis in the outer nuclear layer, and alter the morphology of bipolar cells. If mice are given 9-cis-retinal to counter the loss of retinal isomerase, the P1 wave is partially restored. The ARPE19 cell line fails to express claudin-19. Exogenous expression of wild type, but not mutant claudin-19, increases the expression of RPE signature genes. Mutated claudin-19 affects multiple stages of RPE and retinal differentiation through its effects on multiple functions of the RPE.
Collapse
Affiliation(s)
- Shao-Bin Wang
- Department of Surgery, Yale University, PO Box 208062, New Haven, CT USA
- Department of Ophthalmology, Yale University, 40 Temple Street, New Haven, CT USA
- Present Address: Center for Advanced Vision Science, Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| | - Tao Xu
- Department of Surgery, Yale University, PO Box 208062, New Haven, CT USA
- Department of Ophthalmology, Yale University, 40 Temple Street, New Haven, CT USA
- Aier School of Ophthalmology, Central South University, 198 Furong Middle Ave Section 2, Tianxin District, Changsha, China
| | - Shaomin Peng
- Aier School of Ophthalmology, Central South University, 198 Furong Middle Ave Section 2, Tianxin District, Changsha, China
| | - Deepti Singh
- Department of Surgery, Yale University, PO Box 208062, New Haven, CT USA
- Department of Ophthalmology, Yale University, 40 Temple Street, New Haven, CT USA
- Present Address: Department of Ophthalmology, The Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford St., Boston, MA 02114 USA
| | - Maryam Ghiassi-Nejad
- Department of Surgery, Yale University, PO Box 208062, New Haven, CT USA
- Department of Ophthalmology, Yale University, 40 Temple Street, New Haven, CT USA
| | - Ron A. Adelman
- Department of Ophthalmology, Yale University, 40 Temple Street, New Haven, CT USA
| | - Lawrence J. Rizzolo
- Department of Surgery, Yale University, PO Box 208062, New Haven, CT USA
- Department of Ophthalmology, Yale University, 40 Temple Street, New Haven, CT USA
| |
Collapse
|
29
|
Matsumoto E, Koide N, Hanzawa H, Kiyama M, Ohta M, Kuwabara J, Takeda S, Takahashi M. Fabricating retinal pigment epithelial cell sheets derived from human induced pluripotent stem cells in an automated closed culture system for regenerative medicine. PLoS One 2019; 14:e0212369. [PMID: 30865653 PMCID: PMC6415881 DOI: 10.1371/journal.pone.0212369] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
Regenerative medicine has received a lot of attention as a novel strategy for injuries and diseases that are difficult to cure using current techniques. Cell production, which is vital for regenerative medicine, has undergone remarkable progress via breakthroughs in developmental biology and tissue engineering; currently, cell production requires numerous experimental operators performing manual, small-scale cell cultures. Other major obstacles for cell production and regenerative medicine include the variable quality of products based on the experimental procedure, the skills of operators, the level of labor required for production, and costs. Technological developments are required to overcome this, including automation instead of manual culture. Age-related macular regeneration (AMD) is a refractory ocular disease that causes severe deterioration in central vision due to senescence in the retinal pigment epithelium (RPE). Recently, we performed an autologous transplantation of induced pluripotent stem (iPS) cell-derived RPE cell sheets and started clinical research on allografts from RPE cell suspensions differentiated from iPS cells. The use of regenerative therapies for AMD using iPS cell-derived RPE is expected to become more widespread. In the present study, human iPS cell-derived RPE cells were cultured to form RPE cell sheets using equipment with a closed culture module. The quality of the automated cultured RPE cell sheets was confirmed by comparing their morphological and biological properties with those of manually generated RPE cell sheets. As a result, machine-cultured RPE sheets displayed the same quality as manually cultured RPE sheets, showing that iPS cell-derived RPE cell sheets were successfully cultured by an automated process.
Collapse
Affiliation(s)
- Erino Matsumoto
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Kobe, Hyogo, Japan
| | - Naoshi Koide
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Hiroko Hanzawa
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Kobe, Hyogo, Japan
| | - Masaharu Kiyama
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Kobe, Hyogo, Japan
| | - Mari Ohta
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Kobe, Hyogo, Japan
| | - Junichi Kuwabara
- Planning and Development Division, Sanplatec Co., Ltd., Osaka, Japan
| | - Shizu Takeda
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Kobe, Hyogo, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| |
Collapse
|
30
|
Mei X, Zhang T, Ouyang H, Lu B, Wang Z, Ji L. Scutellarin alleviates blood-retina-barrier oxidative stress injury initiated by activated microglia cells during the development of diabetic retinopathy. Biochem Pharmacol 2019; 159:82-95. [DOI: 10.1016/j.bcp.2018.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/13/2018] [Indexed: 12/27/2022]
|
31
|
Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine‐based solutions for ocular diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1548. [DOI: 10.1002/wnan.1548] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/21/2018] [Accepted: 10/28/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Dadi A. Srinivasarao
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| | - Garima Lohiya
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| | - Dhirendra S. Katti
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| |
Collapse
|
32
|
Curcio CA. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Invest Ophthalmol Vis Sci 2018; 59:AMD160-AMD181. [PMID: 30357336 PMCID: PMC6733535 DOI: 10.1167/iovs.18-24882] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AMD is a major cause of legal blindness in older adults approachable through multidisciplinary research involving human tissues and patients. AMD is a vascular-metabolic-inflammatory disease, in which two sets of extracellular deposits, soft drusen/basal linear deposit (BLinD) and subretinal drusenoid deposit (SDD), confer risk for end-stages of atrophy and neovascularization. Understanding how deposits form can lead to insights for new preventions and therapy. The topographic correspondence of BLinD and SDD with cones and rods, respectively, suggest newly realized exchange pathways among outer retinal cells and across Bruch's membrane and the subretinal space, in service of highly evolved, eye-specific physiology. This review focuses on soft drusen/BLinD, summarizing evidence that a major ultrastructural component is large apolipoprotein B,E-containing, cholesterol-rich lipoproteins secreted by the retinal pigment epithelium (RPE) that offload unneeded lipids of dietary and outer segment origin to create an atherosclerosis-like progression in the subRPE-basal lamina space. Clinical observations and an RPE cell culture system combine to suggest that soft drusen/BLinD form when secretions of functional RPE back up in the subRPE-basal lamina space by impaired egress across aged Bruch's membrane-choriocapillary endothelium. The soft drusen lifecycle includes growth, anterior migration of RPE atop drusen, then collapse, and atrophy. Proof-of-concept studies in humans and animal models suggest that targeting the “Oil Spill in Bruch's membrane” offers promise of treating a process in early AMD that underlies progression to both end-stages. A companion article addresses the antecedents of soft drusen within the biology of the macula.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
33
|
Fernandes M, McArdle B, Schiff L, Blenkinsop TA. Stem Cell-Derived Retinal Pigment Epithelial Layer Model from Adult Human Globes Donated for Corneal Transplants. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2018; 45:e53. [PMID: 30040247 DOI: 10.1002/cpsc.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An adult human retinal pigment epithelial layer (ahRPE) model derived from stem cells isolated from native RPE monolayers (ahRPE-SCs) exhibits key physiological characteristics of native tissue and therefore provides the means to create a human "disease in a dish" model to study RPE diseases. Traditionally, RPE lines are established from whole globes dedicated to research. Here we describe a new technique for establishing primary RPE lines from the posterior poles of globes used for corneal transplants. Since tissues from corneal transplants are derived from younger and healthier donors than those used for research, we have hypothesized that RPE cells isolated from corneal transplantation globes will result in improved primary RPE line establishment. Our new procedure increases the rate of establishing successful RPE cultures and improves the total cell number yield. Use of this advanced methodology can provide a new source of high-quality primary RPE line cultures. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marie Fernandes
- Icahn School of Medicine at Mount Sinai, Cell, Development, and Regenerative Biology, Black Family Stem Cell Institute, New York
| | | | - Lauren Schiff
- Icahn School of Medicine at Mount Sinai, Cell, Development, and Regenerative Biology, Black Family Stem Cell Institute, New York
| | - Timothy A Blenkinsop
- Icahn School of Medicine at Mount Sinai, Cell, Development, and Regenerative Biology, Black Family Stem Cell Institute, New York
| |
Collapse
|
34
|
Surrao DC, Greferath U, Chau YQ, Skabo SJ, Huynh M, Shelat KJ, Limnios IJ, Fletcher EL, Liu Q. Design, development and characterization of synthetic Bruch's membranes. Acta Biomater 2017; 64:357-376. [PMID: 28951331 DOI: 10.1016/j.actbio.2017.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 12/30/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness, and dry AMD has no effective treatment. Retinal constructs comprising retinal pigment epithelium (RPE) cells supported by electrospun scaffolds have been investigated to treat dry AMD. However, electrospun scaffolds studied to-date do not mimic the structural microenvironment of human Bruch's membrane (BM), essential for native-like RPE monolayers. The aim of this study was to develop a structurally biomimetic scaffold designed to support a functional RPE monolayer, comprising porous, electrospun nanofibrous membranes (ENMs), coated with laminin, mimicking the inner collagenous layer (ICL) and basal RPE lamina respectively, the cell supporting layers of the BM. In vitro evaluation showed 70nm PLLA ENMs adsorbed high amounts of laminin and supported functional RPE monolayers, exhibiting 3D polygonal-cobblestone morphology, apical microvilli, basal infoldings, high transepithelial resistance (TER), phagocytic activity and expression of signature RPE markers. 70nm PLLA ENMs were successfully implanted into the subretinal space of RCS-rdy+p+/LAV rats, also commonly know as rdy rats. At week 4, in the absence of immunosuppressants, implanted PLLA ENMs were surrounded by a significantly low number of activated microglial cells, compared to week 1, indicating no adverse long-term immune response. In conclusion, we successfully designed and tested ENMs emulating the RPE cell supporting layers of the BM, and found 70nm PLLA ENMs to be best suited as scaffolds for fabricating retinal constructs. STATEMENT OF SIGNIFICANCE Age related macular degeneration (AMD) is a leading cause of vision loss in the developed world, with an increasing number of people suffering from blindness or severe visual impairment. Transplantation of retinal pigment epithelium (RPE) cells supported on a synthetic, biomimetic-like Bruch's membrane (BM) is considered a promising treatment. However, the synthetic scaffolds used do not mimic the microenvironment of the RPE cell supporting layers, required for the development of a functional RPE monolayer. This study indicated that porous, laminin coated, 70nm PLLA ENMs supported functional RPE monolayers, exhibiting 3D polygonal-cobblestone morphology, apical microvilli, basal infoldings, high transepithelial resistance (TER), phagocytic activity and expression of signature RPE markers. These findings indicate the potential clinical use of porous, laminin coated, 70nm PLLA ENMs in fabricating retinal constructs aimed at treating dry AMD.
Collapse
Affiliation(s)
- Denver C Surrao
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4229, Australia.
| | - Ursula Greferath
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yu-Qian Chau
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Stuart J Skabo
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Mario Huynh
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kinnari J Shelat
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; Australian National Fabrication Facility (ANFF), Queensland Node, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ioannis J Limnios
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Qin Liu
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4229, Australia
| |
Collapse
|
35
|
Mechanisms of macular edema: Beyond the surface. Prog Retin Eye Res 2017; 63:20-68. [PMID: 29126927 DOI: 10.1016/j.preteyeres.2017.10.006] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Macular edema consists of intra- or subretinal fluid accumulation in the macular region. It occurs during the course of numerous retinal disorders and can cause severe impairment of central vision. Major causes of macular edema include diabetes, branch and central retinal vein occlusion, choroidal neovascularization, posterior uveitis, postoperative inflammation and central serous chorioretinopathy. The healthy retina is maintained in a relatively dehydrated, transparent state compatible with optimal light transmission by multiple active and passive systems. Fluid accumulation results from an imbalance between processes governing fluid entry and exit, and is driven by Starling equation when inner or outer blood-retinal barriers are disrupted. The multiple and intricate mechanisms involved in retinal hydro-ionic homeostasis, their molecular and cellular basis, and how their deregulation lead to retinal edema, are addressed in this review. Analyzing the distribution of junction proteins and water channels in the human macula, several hypotheses are raised to explain why edema forms specifically in the macular region. "Pure" clinical phenotypes of macular edema, that result presumably from a single causative mechanism, are detailed. Finally, diabetic macular edema is investigated, as a complex multifactorial pathogenic example. This comprehensive review on the current understanding of macular edema and its mechanisms opens perspectives to identify new preventive and therapeutic strategies for this sight-threatening condition.
Collapse
|
36
|
Hazim RA, Karumbayaram S, Jiang M, Dimashkie A, Lopes VS, Li D, Burgess BL, Vijayaraj P, Alva-Ornelas JA, Zack JA, Kohn DB, Gomperts BN, Pyle AD, Lowry WE, Williams DS. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. Stem Cell Res Ther 2017; 8:217. [PMID: 28969679 PMCID: PMC5625837 DOI: 10.1186/s13287-017-0652-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/16/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023] Open
Abstract
Background Dysfunction of the retinal pigment epithelium (RPE) is implicated in numerous forms of retinal degeneration. The readily accessible environment of the eye makes it particularly suitable for the transplantation of RPE cells, which can now be derived from autologous induced pluripotent stem cells (iPSCs), to treat retinal degeneration. For RPE transplantation to become feasible in the clinic, patient-specific somatic cells should be reprogrammed to iPSCs without the introduction of reprogramming genes into the genome of the host cell, and then subsequently differentiated into RPE cells that are well characterized for safety and functionality prior to transplantation. Methods We have reprogrammed human dermal fibroblasts to iPSCs using nonintegrating RNA, and differentiated the iPSCs toward an RPE fate (iPSC-RPE), under Good Manufacturing Practice (GMP)-compatible conditions. Results Using highly sensitive assays for cell polarity, structure, organelle trafficking, and function, we found that iPSC-RPE cells in culture exhibited key characteristics of native RPE. Importantly, we demonstrate for the first time with any stem cell-derived RPE cell that live cells are able to support dynamic organelle transport. This highly sensitive test is critical for RPE cells intended for transplantation, since defects in intracellular motility have been shown to promote RPE pathogenesis akin to that found in macular degeneration. To test their capabilities for in-vivo transplantation, we injected the iPSC-RPE cells into the subretinal space of a mouse model of retinal degeneration, and demonstrated that the transplanted cells are capable of rescuing lost RPE function. Conclusions This report documents the successful generation, under GMP-compatible conditions, of human iPSC-RPE cells that possess specific characteristics of healthy RPE. The report adds to a growing literature on the utility of human iPSC-RPE cells for cell culture investigations on pathogenicity and for therapeutic transplantation, by corroborating findings of others, and providing important new information on essential RPE cell biological properties. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0652-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roni A Hazim
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, 100 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Saravanan Karumbayaram
- Department of Microbiology Immunology and Molecular Genetics, Los Angeles, CA, USA. .,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| | - Mei Jiang
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, 100 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Anupama Dimashkie
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, USA
| | - Vanda S Lopes
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, 100 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Douran Li
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, 100 Stein Plaza, Los Angeles, CA, 90095, USA.,Department of Molecular Cell and Developmental Biology, Los Angeles, CA, USA
| | - Barry L Burgess
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, 100 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Preethi Vijayaraj
- Department of Pediatrics, David Geffen School of Medicine, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Jerome A Zack
- Department of Microbiology Immunology and Molecular Genetics, Los Angeles, CA, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Donald B Kohn
- Department of Microbiology Immunology and Molecular Genetics, Los Angeles, CA, USA.,Department of Pediatrics, David Geffen School of Medicine, Los Angeles, CA, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Brigitte N Gomperts
- Department of Pediatrics, David Geffen School of Medicine, Los Angeles, CA, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - April D Pyle
- Department of Microbiology Immunology and Molecular Genetics, Los Angeles, CA, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - William E Lowry
- Department of Molecular Cell and Developmental Biology, Los Angeles, CA, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - David S Williams
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, 100 Stein Plaza, Los Angeles, CA, 90095, USA. .,Department of Neurobiology, David Geffen School of Medicine, Los Angeles, CA, USA. .,Molecular Biology Institute, Los Angeles, CA, USA. .,Brain Research Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Muñoz de Escalona Rojas JE, Quereda Castañeda A, García García O. Utility of optical coherence tomography in a case of bilateral congenital macular coloboma. Indian J Ophthalmol 2017; 64:683-685. [PMID: 27853022 PMCID: PMC5151164 DOI: 10.4103/0301-4738.194331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Macular coloboma is a congenital defect of the retina and choroid in the macular region. It may appear due to an intrauterine inflammation or a developmental abnormality. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is a result of malformation of the renal tubule. Its combination with ocular manifestations may be genetic, specifically in case of claudin-19 (CLDN-19) gene mutations. The combination of FHHNC and ocular manifestations is not always present in these patients. Optical coherence tomography (OCT) helps us diagnose this condition by allowing us to evaluate and confirm the absence of retina layers without histological examination. Although genetic testing is necessary to diagnose mutational alterations of the CLDN-19 gene, in our case, it was not necessary to diagnose the FHHNC patient with macular coloboma, since the diagnosis of ocular damage had been already accurately established by the OCT.
Collapse
Affiliation(s)
| | - Aurora Quereda Castañeda
- Department of Ophthalmology, Public Health Agency Hospital de Poniente, El Ejido, Almería, Spain
| | | |
Collapse
|
38
|
Pilgrim MG, Lengyel I, Lanzirotti A, Newville M, Fearn S, Emri E, Knowles JC, Messinger JD, Read RW, Guidry C, Curcio CA. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model. Invest Ophthalmol Vis Sci 2017; 58:708-719. [PMID: 28146236 PMCID: PMC5295770 DOI: 10.1167/iovs.16-21060] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.
Collapse
Affiliation(s)
- Matthew G Pilgrim
- UCL Institute of Ophthalmology, University College London, London, United Kingdom 2Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Imre Lengyel
- UCL Institute of Ophthalmology, University College London, London, United Kingdom 3Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Antonio Lanzirotti
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois, United States
| | - Matt Newville
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois, United States
| | - Sarah Fearn
- Department of Materials, Imperial College London, London, United Kingdom
| | - Eszter Emri
- UCL Institute of Ophthalmology, University College London, London, United Kingdom 3Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Jeffrey D Messinger
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, Alabama, United States
| | - Russell W Read
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, Alabama, United States
| | - Clyde Guidry
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, Alabama, United States
| | - Christine A Curcio
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, Alabama, United States
| |
Collapse
|
39
|
Benedicto I, Lehmann GL, Ginsberg M, Nolan DJ, Bareja R, Elemento O, Salfati Z, Alam NM, Prusky GT, Llanos P, Rabbany SY, Maminishkis A, Miller SS, Rafii S, Rodriguez-Boulan E. Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors. Nat Commun 2017; 8:15374. [PMID: 28524846 PMCID: PMC5454459 DOI: 10.1038/ncomms15374] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch's membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Transcriptome analyses show that expression of extracellular matrix-related genes changes dramatically over this period. Co-culture experiments support the existence of a novel regulatory pathway: ECs secrete factors that remodel RPE basement membrane, and integrin receptors sense these changes triggering Rho GTPase signals that modulate RPE tight junctions and enhance RPE barrier function. We anticipate our results will spawn a search for additional roles of choroid ECs in RPE physiology and disease.
Collapse
Affiliation(s)
- Ignacio Benedicto
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, USA
| | - Guillermo L Lehmann
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, USA
| | - Michael Ginsberg
- Angiocrine Bioscience, Inc., 11575 Sorrento Valley Road, Suite 217, San Diego, California 92121, USA
| | - Daniel J Nolan
- Angiocrine Bioscience, Inc., 11575 Sorrento Valley Road, Suite 217, San Diego, California 92121, USA
| | - Rohan Bareja
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, USA
| | - Zelda Salfati
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, USA
| | - Nazia M Alam
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York 10605, USA
| | - Glen T Prusky
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, USA.,Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York 10605, USA
| | - Pierre Llanos
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, 1000 Fulton Avenue, Hempstead, New York 11549, USA
| | - Sina Y Rabbany
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, 1000 Fulton Avenue, Hempstead, New York 11549, USA.,Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, USA
| | - Arvydas Maminishkis
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, 31 Center Drive MSC 2510, Bethesda, Maryland 20892-2510, USA
| | - Sheldon S Miller
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, 31 Center Drive MSC 2510, Bethesda, Maryland 20892-2510, USA
| | - Shahin Rafii
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, USA
| | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, USA
| |
Collapse
|
40
|
Xia T, Rizzolo LJ. Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Vision Res 2017; 139:72-81. [PMID: 28347688 DOI: 10.1016/j.visres.2017.02.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy is a debilitating microvascular complication of diabetes mellitus. A rich literature describes the breakdown of retinal endothelial cells and the inner blood-retinal barrier, but the effects of diabetes on the retinal pigment epithelium (RPE) has received much less attention. RPE lies between the choroid and neurosensory retina to form the outer blood-retinal barrier. RPE's specialized and dynamic barrier functions are crucial for maintaining retinal health. RPE barrier functions include a collection of interrelated structures and activities that regulate the transepithelial movement of solutes, including: diffusion through the paracellular spaces, facilitated diffusion through the cells, active transport, receptor-mediated and bulk phase transcytosis, and metabolic processing of solutes in transit. In the later stages of diabetic retinopathy, the tight junctions that regulate the paracellular space begin to disassemble, but there are earlier effects on the other aspects of RPE barrier function, particularly active transport and metabolic processing. With advanced understanding of RPE-specific barrier functions, and more in vivo-like culture models, the time is ripe for revisiting experiments in the literature to resolve controversies and extend our understanding of how diabetes affects the outer blood-retinal barrier.
Collapse
Affiliation(s)
- Tina Xia
- Departments of Surgery and Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208062, New Haven, CT 06520-8062, USA.
| | - Lawrence J Rizzolo
- Departments of Surgery and Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208062, New Haven, CT 06520-8062, USA.
| |
Collapse
|
41
|
Nguyen CTO, Hui F, Charng J, Velaedan S, van Koeverden AK, Lim JKH, He Z, Wong VHY, Vingrys AJ, Bui BV, Ivarsson M. Retinal biomarkers provide "insight" into cortical pharmacology and disease. Pharmacol Ther 2017; 175:151-177. [PMID: 28174096 DOI: 10.1016/j.pharmthera.2017.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The retina is an easily accessible out-pouching of the central nervous system (CNS) and thus lends itself to being a biomarker of the brain. More specifically, the presence of neuronal, vascular and blood-neural barrier parallels in the eye and brain coupled with fast and inexpensive methods to quantify retinal changes make ocular biomarkers an attractive option. This includes its utility as a biomarker for a number of cerebrovascular diseases as well as a drug pharmacology and safety biomarker for the CNS. It is a rapidly emerging field, with some areas well established, such as stroke risk and multiple sclerosis, whereas others are still in development (Alzheimer's, Parkinson's, psychological disease and cortical diabetic dysfunction). The current applications and future potential of retinal biomarkers, including potential ways to improve their sensitivity and specificity are discussed. This review summarises the existing literature and provides a perspective on the strength of current retinal biomarkers and their future potential.
Collapse
Affiliation(s)
- Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia.
| | - Flora Hui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Jason Charng
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Shajan Velaedan
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Anna K van Koeverden
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Jeremiah K H Lim
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Zheng He
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Algis J Vingrys
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Magnus Ivarsson
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| |
Collapse
|
42
|
Targeting the tight junction protein, zonula occludens-1, with the connexin43 mimetic peptide, αCT1, reduces VEGF-dependent RPE pathophysiology. J Mol Med (Berl) 2017; 95:535-552. [PMID: 28132078 DOI: 10.1007/s00109-017-1506-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/08/2016] [Accepted: 01/04/2017] [Indexed: 01/17/2023]
Abstract
A critical target tissue in age-related macular degeneration (AMD) is the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier (BRB). RPE-barrier dysfunction might result from attenuation/disruption of intercellular tight junctions. Zonula occludens-1 (ZO-1) is a major structural protein of intercellular junctions. A connexin43-based peptide mimetic, αCT1, was developed to competitively block interactions at the PDZ2 domain of ZO-1, thereby inhibiting ligands that selectively bind to this domain. We hypothesized that targeting ZO-1 signaling using αCT1 would maintain BRB integrity and reduce RPE pathophysiology by stabilizing gap- and/or tight-junctions. RPE-cell barrier dysfunction was generated in mice using laser photocoagulation triggering choroidal neovascularization (CNV) or bright light exposure leading to morphological damage. αCT1 was delivered via eye drops. αCT1 treatment reduced CNV development and fluid leakage as determined by optical coherence tomography, and damage was correlated with disruption in cellular integrity of surrounding RPE cells. Light damage significantly disrupted RPE cell morphology as determined by ZO-1 and occludin staining and tiling pattern analysis, which was prevented by αCT1 pre-treatment. In vitro experiments using RPE and MDCK monolayers indicated that αCT1 stabilizes tight junctions, independent of its effects on Cx43. Taken together, stabilization of intercellular junctions by αCT1 was effective in ameliorating RPE dysfunction in models of AMD-like pathology. KEY MESSAGE The connexin43 mimetic αCT1 accumulates in the mouse retinal pigment epithelium following topical delivery via eye drops. αCT1 eye drops prevented RPE-cell barrier dysfunction in two mouse models. αCT1 stabilizes intercellular tight junctions. Stabilization of cellular junctions via αCT1 may serve as a novel therapeutic approach for both wet and dry age-related macular degeneration.
Collapse
|
43
|
Claudin-3 and claudin-19 partially restore native phenotype to ARPE-19 cells via effects on tight junctions and gene expression. Exp Eye Res 2016; 151:179-89. [DOI: 10.1016/j.exer.2016.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 12/31/2022]
|
44
|
Blenkinsop TA, Saini JS, Maminishkis A, Bharti K, Wan Q, Banzon T, Lotfi M, Davis J, Singh D, Rizzolo LJ, Miller S, Temple S, Stern JH. Human Adult Retinal Pigment Epithelial Stem Cell-Derived RPE Monolayers Exhibit Key Physiological Characteristics of Native Tissue. Invest Ophthalmol Vis Sci 2016; 56:7085-99. [PMID: 26540654 DOI: 10.1167/iovs.14-16246] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE We tested what native features have been preserved with a new culture protocol for adult human RPE. METHODS We cultured RPE from adult human eyes. Standard protocols for immunohistochemistry, electron microscopy, electrophysiology, fluid transport, and ELISA were used. RESULTS Confluent monolayers of adult human RPE cultures exhibit characteristics of native RPE. Immunohistochemistry demonstrated polarized expression of RPE markers. Electron microscopy illustrated characteristics of native RPE. The mean transepithelial potential (TEP) was 1.19 ± 0.24 mV (mean ± SEM, n = 31), apical positive, and the mean transepithelial resistance (RT) was 178.7 ± 9.9 Ω·cm2 (mean ± SEM, n = 31). Application of 100 μM adenosine triphosphate (ATP) apically increased net fluid absorption (Jv) by 6.11 ± 0.53 μL·cm2·h-1 (mean ± SEM, n = 6) and TEP by 0.33 ± 0.048 mV (mean ± SEM, n = 25). Gene expression of cultured RPE was comparable to native adult RPE (n = 5); however, native RPE RNA was harvested between 24 and 40 hours after death and, therefore, may not accurately reflect healthy native RPE. Vascular endothelial growth factor secreted preferentially basally 2582 ± 146 pg/mL/d, compared to an apical secretion of 1548 ± 162 pg/mL/d (n = 14, P < 0.01), while PEDF preferentially secreted apically 1487 ± 280 ng/mL/d compared to a basolateral secretion of 864 ± 132 ng/mL/d (n = 14, P < 0.01). CONCLUSIONS The new culture model preserves native RPE morphology, electrophysiology, and gene and protein expression patterns, and may be a useful model to study RPE physiology, disease, and transplantation.
Collapse
Affiliation(s)
| | - Janmeet S Saini
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Arvydas Maminishkis
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Qin Wan
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tina Banzon
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mostafa Lotfi
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Janine Davis
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Deepti Singh
- Yale University, New Haven, Connecticut, United States
| | | | - Sheldon Miller
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Jeffrey H Stern
- Neural Stem Cell Institute, Rensselaer, New York, United States
| |
Collapse
|
45
|
Ilmarinen T, Hiidenmaa H, Kööbi P, Nymark S, Sorkio A, Wang JH, Stanzel BV, Thieltges F, Alajuuma P, Oksala O, Kataja M, Uusitalo H, Skottman H. Ultrathin Polyimide Membrane as Cell Carrier for Subretinal Transplantation of Human Embryonic Stem Cell Derived Retinal Pigment Epithelium. PLoS One 2015; 10:e0143669. [PMID: 26606532 PMCID: PMC4659637 DOI: 10.1371/journal.pone.0143669] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/06/2015] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated the suitability of ultrathin and porous polyimide (PI) membrane as a carrier for subretinal transplantation of human embryonic stem cell (hESC) -derived retinal pigment epithelial (RPE) cells in rabbits. The in vivo effects of hESC-RPE cells were analyzed by subretinal suspension injection into Royal College of Surgeons (RCS) rats. Rat eyes were analyzed with electroretinography (ERG) and histology. After analyzing the surface and permeability properties of PI, subretinal PI membrane transplantations with and without hESC-RPE were performed in rabbits. The rabbits were followed for three months and eyes analyzed with fundus photography, ERG, optical coherence tomography (OCT), and histology. Animals were immunosuppressed with cyclosporine the entire follow-up time. In dystrophic RCS rats, ERG and outer nuclear layer (ONL) thickness showed some rescue after hESC-RPE injection. Cells positive for human antigen were found in clusters under the retina 41 days post-injection but not anymore after 105 days. In rabbits, OCT showed good placement of the PI. However, there was loss of pigmentation on the hESC-RPE-PI over time. In the eyes with PI alone, no obvious signs of inflammation or retinal atrophy were observed. In the presence of hESC-RPE, mononuclear cell infiltration and retinal atrophy were observed around the membranes. The porous ultrathin PI membrane was well-tolerated in the subretinal space and is a promising scaffold for RPE transplantation. However, the rejection of the transplanted cells seems to be a major problem and the given immunosuppression was insufficient for reduction of xenograft induced inflammation.
Collapse
Affiliation(s)
- Tanja Ilmarinen
- BioMediTech, University of Tampere, Tampere, Finland
- * E-mail:
| | | | - Peeter Kööbi
- Department of Ophthalmology, SILK, University of Tampere and Tays Eye Center, Tampere, Finland
| | - Soile Nymark
- Department of Electronics and Communications Engineering and BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Anni Sorkio
- BioMediTech, University of Tampere, Tampere, Finland
| | - Jing-Huan Wang
- Department of Ophthalmology, SILK, University of Tampere and Tays Eye Center, Tampere, Finland
| | | | | | | | | | | | - Hannu Uusitalo
- Department of Ophthalmology, SILK, University of Tampere and Tays Eye Center, Tampere, Finland
| | - Heli Skottman
- BioMediTech, University of Tampere, Tampere, Finland
| |
Collapse
|
46
|
Claverie-Martin F. Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis: clinical and molecular characteristics. Clin Kidney J 2015; 8:656-64. [PMID: 26613020 PMCID: PMC4655790 DOI: 10.1093/ckj/sfv081] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/04/2015] [Indexed: 01/19/2023] Open
Abstract
Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC) is an autosomal-recessive renal tubular disorder characterized by excessive urinary losses of magnesium and calcium, bilateral nephrocalcinosis and progressive chronic renal failure. Presentation with FHHNC symptoms generally occurs early in childhood or before adolescence. At present, the only therapeutic option is supportive and consists of oral magnesium supplementation and thiazide diuretics. However, neither treatment seems to have a significant effect on the levels of serum magnesium or urine calcium or on the decline of renal function. In end-stage renal disease patients, renal transplantation is the only effective approach. This rare disease is caused by mutations in the CLDN16 or CLDN19 genes. Patients with mutations in CLDN19 also present severe ocular abnormalities such as myopia, nystagmus and macular colobamata. CLDN16 and CLDN19 encode the tight-junction proteins claudin-16 and claudin-19, respectively, which are expressed in the thick ascending limb of Henle's loop and form an essential complex for the paracellular reabsorption of magnesium and calcium. Claudin-19 is also expressed in retinal epithelium and peripheral neurons. Research studies using mouse and cell models have generated significant advances on the understanding of the pathophysiology of FHHNC. A recent finding has established that another member of the claudin family, claudin-14, plays a key regulatory role in paracellular cation reabsorption by inhibiting the claudin-16-claudin-19 complex. Furthermore, several studies on the molecular and cellular consequences of disease-causing CLDN16 and CLDN19 mutations have provided critical information for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Felix Claverie-Martin
- Unidad de Investigación, Hospital Nuestra Señora de Candelaria , Santa Cruz de Tenerife , Spain
| |
Collapse
|
47
|
Zhao PY, Gan G, Peng S, Wang SB, Chen B, Adelman RA, Rizzolo LJ. TRP Channels Localize to Subdomains of the Apical Plasma Membrane in Human Fetal Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2015; 56:1916-23. [PMID: 25736794 DOI: 10.1167/iovs.14-15738] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Calcium regulates many functions of the RPE. Its concentration in the subretinal space and RPE cytoplasm is closely regulated. Transient receptor potential (TRP) channels are a superfamily of ion channels that are moderately calcium-selective. This study investigates the subcellular localization and potential functions of TRP channels in a first-passage culture model of human fetal RPE (hfRPE). METHODS The RPE isolated from 15- to 16-week gestation fetuses were maintained in serum-free media. Cultures were treated with barium chloride (BaCl2) in the absence and presence of TRP channel inhibitors and monitored by the transepithelial electrical resistance (TER). The expression of TRP channels was determined using quantitative RT-PCR, immunoblotting, and immunofluorescence confocal microscopy. RESULTS Barium chloride substantially decreased TER and disrupted cell-cell contacts when added to the apical surface of RPE, but not when added to the basolateral surface. The effect could be partially blocked by the general TRP inhibitor, lanthanum chloride (LaCl3, ~75%), or an inhibitor of calpain (~25%). Family member-specific inhibitors, ML204 (TRPC4) and HC-067047 (TRPV4), had no effect on basal channel activity. Expression of TRPC4, TRPM1, TRPM3, TRPM7, and TRPV4 was detected by RT-PCR and immunoblotting. The TRPM3 localized to the base of the primary cilium, and TRPC4 and TRPM3 localized to apical tight junctions. The TRPV4 localized to apical microvilli in a small subset of cells. CONCLUSIONS The TRP channels localized to subdomains of the apical membrane, and BaCl2 was only able to dissociate tight junctions when presented to the apical membrane. The data suggest a potential role for TRP channels as sensors of [Ca(2+)] in the subretinal space.
Collapse
Affiliation(s)
- Peter Y Zhao
- Department of Surgery, Yale University, New Haven, Connecticut, United States
| | - Geliang Gan
- Department of Surgery, Yale University, New Haven, Connecticut, United States
| | - Shaomin Peng
- Department of Surgery, Yale University, New Haven, Connecticut, United States
| | - Shao-Bin Wang
- Department of Surgery, Yale University, New Haven, Connecticut, United States Department of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut, United States
| | - Bo Chen
- Department of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut, United States
| | - Ron A Adelman
- Department of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut, United States
| | - Lawrence J Rizzolo
- Department of Surgery, Yale University, New Haven, Connecticut, United States Department of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
48
|
Boatright JH, Dalal N, Chrenek MA, Gardner C, Ziesel A, Jiang Y, Grossniklaus HE, Nickerson JM. Methodologies for analysis of patterning in the mouse RPE sheet. Mol Vis 2015; 21:40-60. [PMID: 25593512 PMCID: PMC4301600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/12/2015] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Our goal was to optimize procedures for assessing shapes, sizes, and other quantitative metrics of retinal pigment epithelium (RPE) cells and contact- and noncontact-mediated cell-to-cell interactions across a large series of flatmount RPE images. METHODS The two principal methodological advances of this study were optimization of a mouse RPE flatmount preparation and refinement of open-access software to rapidly analyze large numbers of flatmount images. Mouse eyes were harvested, and extra-orbital fat and muscles were removed. Eyes were fixed for 10 min, and dissected by puncturing the cornea with a sharp needle or a stab knife. Four radial cuts were made with iridectomy scissors from the puncture to near the optic nerve head. The lens, iris, and the neural retina were removed, leaving the RPE sheet exposed. The dissection and outcomes were monitored and evaluated by video recording. The RPE sheet was imaged under fluorescence confocal microscopy after staining for ZO-1 to identify RPE cell boundaries. Photoshop, Java, Perl, and Matlab scripts, as well as CellProfiler, were used to quantify selected parameters. Data were exported into Excel spreadsheets for further analysis. RESULTS A simplified dissection procedure afforded a consistent source of images that could be processed by computer. The dissection and flatmounting techniques were illustrated in a video recording. Almost all of the sheet could be routinely imaged, and substantial fractions of the RPE sheet (usually 20-50% of the sheet) could be analyzed. Several common technical problems were noted and workarounds developed. The software-based analysis merged 25 to 36 images into one and adjusted settings to record an image suitable for large-scale identification of cell-to-cell boundaries, and then obtained quantitative descriptors of the shape of each cell, its neighbors, and interactions beyond direct cell-cell contact in the sheet. To validate the software, human- and computer-analyzed results were compared. Whether tallied manually or automatically with software, the resulting cell measurements were in close agreement. We compared normal with diseased RPE cells during aging with quantitative cell size and shape metrics. Subtle differences between the RPE sheet characteristics of young and old mice were identified. The IRBP(-/-) mouse RPE sheet did not differ from C57BL/6J (wild type, WT), suggesting that IRBP does not play a direct role in maintaining the health of the RPE cell, while the slow loss of photoreceptor (PhR) cells previously established in this knockout does support a role in the maintenance of PhR cells. Rd8 mice exhibited several measurable changes in patterns of RPE cells compared to WT, suggesting a slow degeneration of the RPE sheet that had not been previously noticed in rd8. CONCLUSIONS An optimized dissection method and a series of programs were used to establish a rapid and hands-off analysis. The software-aided, high-sampling-size approach performed as well as trained human scorers, but was considerably faster and easier. This method allows tens to hundreds of thousands of cells to be analyzed, each with 23 metrics. With this combination of dissection and image analysis of the RPE sheet, we can now analyze cell-to-cell interactions of immediate neighbors. In the future, we may be able to observe interactions of second, third, or higher ring neighbors and analyze tension in sheets, which might be expected to deviate from normal near large bumps in the RPE sheet caused by druse or when large frank holes in the RPE sheet are observed in geographic atrophy. This method and software can be readily applied to other aspects of vision science, neuroscience, and epithelial biology where patterns may exist in a sheet or surface of cells.
Collapse
Affiliation(s)
| | - Nupur Dalal
- Department of Ophthalmology, Emory University, Atlanta, GA
| | | | | | - Alison Ziesel
- Department of Ophthalmology, Emory University, Atlanta, GA
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA
| | | | | |
Collapse
|
49
|
Krug SM, Schulzke JD, Fromm M. Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol 2014; 36:166-76. [DOI: 10.1016/j.semcdb.2014.09.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 02/09/2023]
|
50
|
Sauer RS, Krug SM, Hackel D, Staat C, Konasin N, Yang S, Niedermirtl B, Bosten J, Günther R, Dabrowski S, Doppler K, Sommer C, Blasig IE, Brack A, Rittner HL. Safety, efficacy, and molecular mechanism of claudin-1-specific peptides to enhance blood–nerve–barrier permeability. J Control Release 2014; 185:88-98. [DOI: 10.1016/j.jconrel.2014.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022]
|