1
|
Weiwei X, Jingxi L, Erti G, Xinrun Z, Yifei H. Inhibition of lens-induced myopia in guinea pigs using a far-induced infrared ray material. Front Med (Lausanne) 2025; 12:1545099. [PMID: 40231076 PMCID: PMC11994589 DOI: 10.3389/fmed.2025.1545099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Purpose Numerous studies have demonstrated a close relationship between choroidal thickness (ChT), sclera/choroidal hypoxia, and the onset and progression of myopia. Far-infrared (FIR) therapy is a traditional method used to enhance microcirculation. In this study, we estimated the effectiveness of FIR in myopia control and explored its underlying mechanisms. Furthermore, we compared the efficacy of FIR from two different sources in controlling myopia. Methods Guinea pigs were divided into three groups, all of which underwent minus lens induction for 4 weeks. Two of the groups received simultaneous FIR intervention, either from a FIR radiator (FIRR) lamp or from an innovative FIR material (FIRM). Refraction, axial length (AL), ChT, and levels of hypoxia-labeled pimonidazole in the choroid and sclera were measured. Results Both FIRR and FIRM inhibited increases in refraction and AL and attenuate the decrease in ChT. They also mitigated choroidal and scleral hypoxia. Compared to FIRR, FIRM demonstrated a greater effect on myopia control and hypoxia attenuation. However, the difference in AL reduction between the two FIR sources was not statistically significant. Conclusion FIR effectively controls myopia, and the innovative FIR material may represent a breakthrough in myopia management in the near future.
Collapse
Affiliation(s)
- Xu Weiwei
- Department of Ophthalmology, The Chinese PLA General Hospital, Beijing, China
| | - Liu Jingxi
- National Research Institute for Family Planning, Beijing, China
| | - Guoji Erti
- National Research Institute for Family Planning, Beijing, China
| | - Zhou Xinrun
- School of Medicine, Nankai University, Tianjin, China
| | - Huang Yifei
- Department of Ophthalmology, The Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Sharma M, Pal P, Gupta SK, Potdar MB, Belgamwar AV. Microglial-mediated immune mechanisms in autoimmune uveitis: Elucidating pathogenic pathways and targeted therapeutics. J Neuroimmunol 2024; 395:578433. [PMID: 39168018 DOI: 10.1016/j.jneuroim.2024.578433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
This review offers a comprehensive examination of the role of microglia in the pathogenesis of autoimmune uveitis, an inflammatory eye disease with significant potential for vision impairment. Central to our discussion is the dual nature of microglial cells, which act as both protectors and potential perpetrators in the immune surveillance of the retina. We explore the mechanisms of microglial activation, highlighting the key signaling pathways involved, such as NF-κB, JAK/STAT, MAPK, and PI3K/Akt. The review also delves into the genetic and environmental factors influencing microglial behavior, underscoring their complex interaction in disease manifestation. Advanced imaging techniques and emerging biomarkers for microglial activation, pivotal in diagnosing and monitoring the disease, are critically assessed. Additionally, we discuss current and novel therapeutic strategies targeting microglial activity, emphasizing the shift towards more precise and personalized interventions. This article aims to provide a nuanced understanding of microglial dynamics in autoimmune uveitis, offering insights into potential avenues for effective treatment and management.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India; IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, Uttar Pradesh, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| | - Mrugendra B Potdar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Aarti V Belgamwar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| |
Collapse
|
3
|
Wan Z, Wu Y, Shen T, Hu C, Lin R, Ren C, Yu D, Li T, Zhu M, Cai W, Yu J. Evaluation of inflammatory hyperreflective foci and plasma EPA as diagnostic and predictive markers for age-related macular degeneration. Front Neurosci 2024; 18:1401101. [PMID: 39450123 PMCID: PMC11499227 DOI: 10.3389/fnins.2024.1401101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives To detect the plasma polyunsaturated fatty acids (PUFAs) concentrations in age-related macular degeneration (AMD) patients and healthy controls. Additionally, advanced studies were conducted to investigate the relationship between PUFAs concentrations and ophthalmological characteristics, including hyperreflective foci (HRF), visual acuity, and anti-vascular endothelial growth factor (anti-VEGF) response in patients with AMD. Methods This prospective, single-site study recruited a total of 315 participants, consisting of 105 individuals with dry AMD (early-stage AMD group), 105 individuals with neovascular AMD (late-stage AMD group), and 105 elderly individuals without any fundus diseases (healthy controls). The levels of omega-3 and omega-6 PUFAs in plasma were detected using gas chromatography. Retinal thickness, choroidal thickness, and macular volume were quantified using optical coherence tomography angiography (OCTA) scan with a 6 × 6 mm macular area, and the amounts of HRF were analyzed with OCTA scanning data. Results Compared to the control group, AMD patients exhibited significantly lower plasma concentrations of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and alpha linolenic acid. HRF were observed in various retinal layers of AMD patients, particularly those with late-stage AMD. The correlation coefficient matrix and multiple linear regression models demonstrated that HRF played a crucial role in best corrected visual acuity for both early (p < 0.001) and late-stage AMD patients (p = 0.006), while EPA had an inverse effect on the logarithm of the minimum angle of resolution (logMAR) value in patients with early-stage AMD (p < 0.001). As compared to patients with good responses to anti-VEGF therapy, those with poor responses had significantly lower baseline logMAR (p < 0.001), central retina thickness (p = 0.002), macular volume (p = 0.027), HRF (p = 0.024), and plasma EPA (p < 0.001). This study used a ROC curve analysis to identify the combination of HRF and EPA as a potential biomarker for predicting the response to anti-VEGF treatment in late-stage AMD patients, with an area under the curve (AUC) value of 0.775. Conclusions Reduced plasma EPA was detected in AMD cases and the lower EPA concentration was related to poorer visual acuity. Additionally, the quantity of HRF combined with concentration of plasma EPA may serve as the prognostic indicator for predicting the effect of anti-VEGF treatment in late-stage AMD patients.
Collapse
Affiliation(s)
- Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianyi Shen
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengyu Hu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruoyi Lin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chengda Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tingting Li
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Ophthalmology, The Third People's Hospital of Bengbu, Bengbu, China
| |
Collapse
|
4
|
Pichi F, Neri P, Aljeneibi S, Hay S, Chaudhry H, Saturno MC, Carreno E. In Vivo Visualization of Macrophage-Like Cells in Patients with Uveitis by Use of En Face Swept Source Optical Coherence Tomography. Ocul Immunol Inflamm 2024; 32:1532-1538. [PMID: 37722841 DOI: 10.1080/09273948.2023.2254369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
AIMS To detect macrophage-like cells (MLCs) in uveitis patients and describe their characteristics compared to healthy subjects by using en face SS-OCTA. METHODS Fifteen consecutive patients with "active" uveitis and 11 healthy participants underwent 6 macular scans of 6×6mm using SS-OCTA. The 3μm en face OCT slabs on inner limiting membrane were used to visualize the MLCs. RESULTS In healthy subjects there was an average of 478.2±149.7 MLCs with a density of 13.28±4.16 cells/mm2. MLCs were larger in patients with "active" uveitis than in controls (891.18±69.46 µm2 vs.885±77.53 µm2). Patients with "active" anterior uveitis had a significantly reduced count and density of MLCs (172±14.68 and 4.77±0.4 cell/mm2) compared to controls, while patients with posterior uveitis had a statistically increased count (546.1±132.4) and area (909.23+/-54.97 µm2) of MLCs compared to controls. CONCLUSIONS MLCs detected with en face SS-OCTA are increased in number and size in active posterior uveitis eyes compared to controls.
Collapse
Affiliation(s)
- Francesco Pichi
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Piergiorgio Neri
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shaikha Aljeneibi
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Steven Hay
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Hannah Chaudhry
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Ester Carreno
- Department of Ophthalmology, University Hospital Fundación Jiménez Díaz, Madrid, Spain
- Department of Ophthalmology, University Hospital Rey Juan Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
5
|
Karalezli A, Kaderli ST, Kaderli A, Kaya C, Sul S. Comparison of changes in number of hyperreflective dots after intravitreal ranibizumab or dexamethasone implant in patients with branch retinal vein occlusion. Taiwan J Ophthalmol 2024; 14:387-393. [PMID: 39430351 PMCID: PMC11488816 DOI: 10.4103/tjo.tjo-d-22-00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/01/2023] [Indexed: 10/22/2024] Open
Abstract
PURPOSE To compare the effect of intravitreal ranibizumab (IVR) or intravitreal dexamethasone implants (IVD) on the regression of hyperreflective dots (HRDs) in patients with branch retinal vein occlusion (BRVO). MATERIALS AND METHODS Thirty-seven eyes with cystoid macular edema who received IVR or IVD and followed up for at least 12 months were included in this study. The patients were divided into three Groups according to intravitreal treatments. Group 1 consisted of 12 eyes who received only IVD, Group 2 consisted of 10 eyes who received only IVR, and Group 3 consisted of 15 eyes who received both IVD and IVR. The number of HRDs and best-corrected visual acuity (BCVA) were compared between the Groups through the follow-up time. RESULTS The mean number of HRDs in inner and outer retinal layers was significantly decreased in Group 1 and Group 3 (For Group 1; P < 0.001, P = 0.001, for Group 3; P < 0.001, P < 0.001). At the 1st year, the number of HRDs in inner and outer retinal layers was significantly lower in Group 1 and Group 3 than Group 2 (All P < 0.05). The BCVA was higher in Group 3 than Group 2 at 1st year (P = 0.048). CONCLUSION The HRDs should be considered inflammatory markers in the follow-up of CME in BRVO.
Collapse
Affiliation(s)
- Aylin Karalezli
- Department of Ophthalmology, Mugla Sitki Kocman University School of Medicine, Mugla, Turkey
| | - Sema Tamer Kaderli
- Department of Ophthalmology, Mugla Sitki Kocman Education and Training Hospital, Mugla, Turkey
| | - Ahmet Kaderli
- Department of Ophthalmology, Mugla Sitki Kocman University School of Medicine, Mugla, Turkey
| | - Cansu Kaya
- Department of Ophthalmology, Mugla Sitki Kocman University School of Medicine, Mugla, Turkey
| | - Sabahattin Sul
- Department of Ophthalmology, Mugla Sitki Kocman University School of Medicine, Mugla, Turkey
| |
Collapse
|
6
|
Xu X, Li X, Tang Q, Zhang Y, Zhang L, Zhang M. Exploring laser-induced acute and chronic retinal vein occlusion mouse models: Development, temporal in vivo imaging, and application perspectives. PLoS One 2024; 19:e0305741. [PMID: 38885229 PMCID: PMC11182531 DOI: 10.1371/journal.pone.0305741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Photodynamic venous occlusion is a commonly accepted method for establishing mouse models of retinal vein occlusion (RVO). However, existing model parameters do not distinguish between acute and chronic RVO subtypes. Large variations in laser energy seem to correlate with fluctuating retinopathy severity and high rates of venous recanalization during the acute phase, along with the variable levels of retinal perfusion during the chronic phase. After optimizing the modeling procedure and defining success and exclusion criteria, laser energy groups of 80mW, 100mW, and 120mW were established. Multimodal imaging confirmed that higher energy levels increased the incidence of retinal cystoid edema and intraretinal hemorrhage, exacerbated the severity of exudative retinal detachment, and reduced the venous recanalization rate. For the acute model, 100mW was considered an appropriate parameter for balancing moderate retinopathy and venous recanalization. Continuous imaging follow-up revealed that day 1 after RVO was the optimal observation point for peaking of retinal thickness and intensive occurrence of retinal cystic edema and intraretinal hemorrhage. After excluding the influence of venous recanalization on retinal thickness, acute retinal edema demonstrated a positive response to standard anti-vascular endothelial growth factor therapy, validating the clinical relevance of the acute RVO model for further study in pathogenic mechanisms and therapeutic efficacy. For the chronic model, the 120mW parameter with the lowest venous recanalization rate was applied, accompanied by an increase in both photocoagulation shots and range to ensure sustained vein occlusion. Imaging follow-up clarified non-ischemic retinopathy characterized by tortuosity and dilation of the distal end, branches, and adjacent veins of the occluded vein. These morphological changes are quantifiable and could be combined with electrophysiological functional assessment for treatment effectiveness evaluation. Moreover, the stable state of venous occlusion may facilitate investigations into response and compensation mechanisms under conditions of chronic retinal hypoperfusion.
Collapse
Affiliation(s)
- Xiaowei Xu
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xun Li
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingqing Tang
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meixia Zhang
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Pichi F, Neri P, Aljneibi S, Hay S, Chaudhry H, Carreño E. Vitreoretinal Interface Cells Correlate In Vivo With Uveitis Activity and Decrease With Anti-Inflammatory Treatment. Transl Vis Sci Technol 2024; 13:15. [PMID: 38767904 PMCID: PMC11114619 DOI: 10.1167/tvst.13.5.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose To highlight the utility of en face swept-source optical coherence tomography angiography (SS-OCTA) in assessing vitreoretinal interface cells (VRICs) of patients with active uveitis and their dynamics. Methods In this prospective, single-center study, 20 eyes from patients with active uveitis were analyzed using six 6 × 6-mm macular scans at three time points: active inflammation (baseline), clinically improving (T1), and resolved inflammation (T2). VRICs were visualized using 3-µm en face OCT slabs on the inner limiting membrane. The variation of VRIC number, density, and size over time was assessed, and VRIC measurements were compared with clinical grading. Results At baseline, the VRIC count was significantly higher (552.5 VRICs) than that of the healthy controls (478.2 VRICs), with a density of 15.3 cells/mm2. VRIC number decreased significantly to 394.8 (P = 0.007) at T1, with a density of 10.9 cells/mm2 (P = 0.007). VRIC size reduced from 6.8 µm to 6.3 µm at T1 (P = 0.009) and remained stable at T2 (P = 0.3). Correlation coefficients between inflammatory parameters (anterior chamber cells and National Eye Institute vitreous haze), and VRIC count indicated a positive correlation at baseline (r = 0.53), weakening at T1 (r = 0.36), and becoming negative at T2 (r = -0.24). Conclusions En face SS-OCTA revealed increased VRIC number and size in active uveitis, likely due to monocyte recruitment. Post-inflammation control, VRIC number, size, and density significantly decreased, returning to normal despite residual anterior chamber cells or vitreous haze. Translational Relevance Visualization of VRICs by in vivo OCT opens up new opportunities for therapeutic targets.
Collapse
Affiliation(s)
- Francesco Pichi
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Piergiorgio Neri
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Shaikha Aljneibi
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Steven Hay
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Hannah Chaudhry
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ester Carreño
- University Hospital Fundación Jiménez Díaz, Madrid, Spain
- University Hospital Rey Juan Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
8
|
Hai Y, Ren K, Zhang Y, Yang L, Cao H, Yuan X, Su L, Li H, Feng X, Liu D. HIF-1α serves as a co-linker between AD and T2DM. Biomed Pharmacother 2024; 171:116158. [PMID: 38242039 DOI: 10.1016/j.biopha.2024.116158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Alzheimer's disease (AD)-related brain deterioration is linked to the type 2 diabetes mellitus (T2DM) features hyperglycemia, hyperinsulinemia, and insulin resistance. Hypoxia as a common risk factor for both AD and T2DM. Hypoxia-inducible factor-1 alpha (HIF-1α) acts as the main regulator of the hypoxia response and may be a key target in the comorbidity of AD and T2DM. HIF-1α expression is closely related to hyperglycemia, insulin resistance, and inflammation. Tissue oxygen consumption disrupts HIF-1α homeostasis, leading to increased reactive oxygen species levels and the inhibition of insulin receptor pathway activity, causing neuroinflammation, insulin resistance, abnormal Aβ deposition, and tau hyperphosphorylation. HIF-1α activation also leads to the deposition of Aβ by promoting the abnormal shearing of amyloid precursor protein and inhibiting the degradation of Aβ, and it promotes tau hyperphosphorylation by activating oxidative stress and the activation of astrocytes, which further exasperates AD. Therefore, we believe that HIF-α has great potential as a target for the treatment of AD. Importantly, the intracellular homeostasis of HIF-1α is a more crucial factor than its expression level.
Collapse
Affiliation(s)
- Yang Hai
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China; Key Laboratory of Dunhuang Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China.
| | - Ke Ren
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Yarong Zhang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Lili Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Haoshi Cao
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Xianxia Yuan
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Linling Su
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Hailong Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Xiaoli Feng
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China; Key Laboratory of Dunhuang Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Dongling Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China; Northwest Collaborative Innovation Center for Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, PR China; Gansu Pharmaceutical Industry Innovation Research Institute, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
9
|
Tsioti I, Steiner BL, Escher P, Zinkernagel MS, Benz PM, Kokona D. Systemic Lipopolysaccharide Exposure Exacerbates Choroidal Neovascularization in Mice. Ocul Immunol Inflamm 2024; 32:19-30. [PMID: 36441988 DOI: 10.1080/09273948.2022.2147547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022]
Abstract
This study aims to investigate the effect of a systemic lipopolysaccharide (LPS) stimulus in the course of laser-induced choroidal neovascularization (CNV) in C57BL/6 J mice. A group of CNV-subjected mice received 1 mg/kg LPS via the tail vein immediately after CNV induction. Mouse eyes were monitored in vivo with fluorescein angiography for 2 weeks. In situ hybridization and flow cytometry were performed in the retina at different time points. LPS led to increased fluorescein leakage 3 days after CNV, correlated with a large influx of monocyte-derived macrophages and increase of pro-inflammatory microglia/macrophages in the retina. Additionally, LPS enhanced Vegfα mRNA expression by Glul-expressing cells but not Aif1 positive microglia/macrophages in the laser lesion. These findings suggest that systemic LPS exposure has transient detrimental effects in the course of CNV through activation of microglia/macrophages to a pro-inflammatory phenotype and supports the important role of these cells in the CNV course.
Collapse
Affiliation(s)
- Ioanna Tsioti
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Beatrice L Steiner
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Pascal Escher
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Peter M Benz
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Despina Kokona
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Kuo CY, Lin PK. The association of aldosterone with papillophlebitis and retinal artery occlusion: A case report. Eur J Ophthalmol 2024; 34:NP44-NP47. [PMID: 33525896 DOI: 10.1177/1120672121991399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To explore the association between elevated blood aldosterone levels and papillophlebitis and retinal artery occlusion in a young, healthy woman. CASE DESCRIPTION A 19-year-old woman with an unremarkable medical history presented with sudden-onset visual loss in the right eye, which lasted for 10 hours. Fundus examination revealed retinal whitening, splinter hemorrhages, disc swelling, and tortuous vessels in the right eye. Optical coherence tomography revealed inner retinal thickening. Fluorescein angiography demonstrated a delayed arteriovenous transit time and delayed filling of the cilioretinal artery circulation. Further workup showed a high aldosterone level and aldosterone-to-renin ratio. The patient was treated with steroid pulse therapy and combined intravitreal injection of dexamethasone implant and aflibercept. Visual acuity was recovered from count finger at initial presentation to 6/15 on the fifth day. For over 2 months, the fundal manifestations gradually subsided. Three months after the episode, her visual acuity further improved to 6/6.7. CONCLUSION This report emphasizes the potential role aldosterone plays in the complex disease mechanism of retinal vasculopathy. In addition, steroid pulse therapy is more effective when applied in conjunction with combined intravitreal injection therapy for rescuing impaired vision caused by retinal vascular occlusion.
Collapse
Affiliation(s)
- Che-Yuan Kuo
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei
| | - Po-Kang Lin
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei
- Department of Ophthalmology, National Yang-Ming University, Taipei
| |
Collapse
|
11
|
Tian Y, Zhang T, Li J, Tao Y. Advances in development of exosomes for ophthalmic therapeutics. Adv Drug Deliv Rev 2023; 199:114899. [PMID: 37236425 DOI: 10.1016/j.addr.2023.114899] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Exosomes contain multiple bioactive molecules and maintain the connection between cells. Recent advances in exosome-based therapeutics have witnessed unprecedented opportunities in treating ophthalmic diseases, including traumatic diseases, autoimmune diseases, chorioretinal diseases and others. Utilization of exosomes as delivery vectors to encapsulate both drugs and therapeutic genes could yield higher efficacy and avoid the unnecessary immune responses. However, exosome-based therapies also come with some potential ocular risks. In this review, we first present a general introduction to exosomes. Then we provide an overview of available applications and discuss their potential risks. Moreover, we review recently reported exosomes as delivery vectors for ophthalmic diseases. Finally, we put forward future perspectives to grapple with its translation and underlying issues.
Collapse
Affiliation(s)
- Ying Tian
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Tao Zhang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
12
|
Icariside II alleviates ischemic retinopathy by modulating microglia and promoting vessel integrity. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
|
13
|
Wu KY, Joly-Chevrier M, Akbar D, Tran SD. Overcoming Treatment Challenges in Posterior Segment Diseases with Biodegradable Nano-Based Drug Delivery Systems. Pharmaceutics 2023; 15:1094. [PMID: 37111579 PMCID: PMC10142934 DOI: 10.3390/pharmaceutics15041094] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Posterior segment eye diseases present a challenge in treatment due to the complex structures in the eye that serve as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of topical and intraocular medications. This hinders effective treatment and requires frequent dosing, such as the regular use of eye drops or visits to the ophthalmologist for intravitreal injections, to manage the disease. Moreover, the drugs must be biodegradable to minimize toxicity and adverse reactions, as well as small enough to not affect the visual axis. The development of biodegradable nano-based drug delivery systems (DDSs) can be the solution to these challenges. First, they can stay in ocular tissues for longer periods of time, reducing the frequency of drug administration. Second, they can pass through ocular barriers, offering higher bioavailability to targeted tissues that are otherwise inaccessible. Third, they can be made up of polymers that are biodegradable and nanosized. Hence, therapeutic innovations in biodegradable nanosized DDS have been widely explored for ophthalmic drug delivery applications. In this review, we will present a concise overview of DDSs utilized in the treatment of ocular diseases. We will then examine the current therapeutic challenges faced in the management of posterior segment diseases and explore how various types of biodegradable nanocarriers can enhance our therapeutic arsenal. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 was conducted. Through the advances in biodegradable materials, combined with a better understanding of ocular pharmacology, the nano-based DDSs have rapidly evolved, showing great promise to overcome challenges currently encountered by clinicians.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | | | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
14
|
Rangwani SM, Hawn S, Sklar NC, Mirza RG, Lavine JA. Macrophage-like Cells Are Increased in Retinal Vein Occlusion and Correlate with More Intravitreal Injections and Worse Visual Acuity Outcomes. J Pers Med 2022; 13:45. [PMID: 36675705 PMCID: PMC9860779 DOI: 10.3390/jpm13010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Macrophage-like cells (MLCs) are an emerging retinal biomarker. MLCs are increased in retinal vein occlusion (RVO) eyes, but their predictive value is unknown. This study investigated if MLCs can predict meaningful clinical outcomes. This prospective, cross-sectional study involved 46 eyes from 23 patients with unilateral RVO. Patients' unaffected eyes were used as matched controls. MLCs were quantified to determine MLC density and percent image area. We collected demographic, clinical, ocular, and imaging characteristics at the time of MLC imaging. We additionally recorded best corrected visual acuity (BCVA) and number of intravitreal injections at 6 months and 12 months post-imaging. MLC density and percent area increased by 1.86 (p = 0.0266)- and 1.94 (p = 0.0415)-fold in RVO compared to control eyes. We found no significant correlation between MLC parameters and any baseline characteristic. MLC density was positively correlated with the number of intravitreal injections at 6 months (n = 12, r = 0.62, p = 0.03) and 12 months (n = 9, r = 0.80, p = 0.009) post-imaging. MLC percent area was correlated with LogMAR BCVA change over 12 months (n = 17, r = 0.57, p = 0.02). High MLC counts correlated with more future intravitreal injections and worse visual acuity outcomes, suggesting that MLCs are a biomarker for treatment resistant RVO eyes.
Collapse
Affiliation(s)
| | | | | | | | - Jeremy A. Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Murenu E, Gerhardt MJ, Biel M, Michalakis S. More than meets the eye: The role of microglia in healthy and diseased retina. Front Immunol 2022; 13:1006897. [PMID: 36524119 PMCID: PMC9745050 DOI: 10.3389/fimmu.2022.1006897] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia are the main resident immune cells of the nervous system and as such they are involved in multiple roles ranging from tissue homeostasis to response to insults and circuit refinement. While most knowledge about microglia comes from brain studies, some mechanisms have been confirmed for microglia cells in the retina, the light-sensing compartment of the eye responsible for initial processing of visual information. However, several key pieces of this puzzle are still unaccounted for, as the characterization of retinal microglia has long been hindered by the reduced population size within the retina as well as the previous lack of technologies enabling single-cell analyses. Accumulating evidence indicates that the same cell type may harbor a high degree of transcriptional, morphological and functional differences depending on its location within the central nervous system. Thus, studying the roles and signatures adopted specifically by microglia in the retina has become increasingly important. Here, we review the current understanding of retinal microglia cells in physiology and in disease, with particular emphasis on newly discovered mechanisms and future research directions.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| | | | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| |
Collapse
|
16
|
Neurovascular injury associated non-apoptotic endothelial caspase-9 and astroglial caspase-9 mediate inflammation and contrast sensitivity decline. Cell Death Dis 2022; 13:937. [PMID: 36347836 PMCID: PMC9643361 DOI: 10.1038/s41419-022-05387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Retinal neurovascular injuries are a leading cause of vision loss in young adults presenting unmet therapeutic needs. Neurovascular injuries damage homeostatic communication between endothelial, pericyte, glial, and neuronal cells through signaling pathways that remain to be established. To understand the mechanisms that contribute to neuronal death, we use a mouse model of retinal vein occlusion (RVO). Using this model, we previously discovered that after vascular damage, there was non-apoptotic activation of endothelial caspase-9 (EC Casp9); knock-out of EC Casp9 led to a decrease in retinal edema, capillary ischemia, and neuronal death. In this study, we aimed to explore the role of EC Casp9 in vision loss and inflammation. We found that EC Casp9 is implicated in contrast sensitivity decline, induction of inflammatory cytokines, and glial reactivity. One of the noted glial changes was increased levels of astroglial cl-caspase-6, which we found to be activated cell intrinsically by astroglial caspase-9 (Astro Casp9). Lastly, we discovered that Astro Casp9 contributes to capillary ischemia and contrast sensitivity decline after RVO (P-RVO). These findings reveal specific endothelial and astroglial non-apoptotic caspase-9 roles in inflammation and neurovascular injury respectively; and concomitant relevancy to contrast sensitivity decline.
Collapse
|
17
|
Increased Macrophage-like Cell Density in Retinal Vein Occlusion as Characterized by en Face Optical Coherence Tomography. J Clin Med 2022; 11:jcm11195636. [PMID: 36233504 PMCID: PMC9572031 DOI: 10.3390/jcm11195636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives: to quantitatively analyze macrophage-like cells (MLCs) at the vitreoretinal interface in retinal vein occlusion (RVO) using swept-source optical coherence tomography angiography (SS-OCTA) and en face optical coherence tomography (OCT). Methods: The study included 72 RVO patients, with 43 acute patients and 29 chronic patients. For a normal control, 64 fellow eyes were included. MLCs were visualized in a 5 μm en face OCT slab above the vitreoretinal interface centered on the fovea. After semi-automatic binarization and quantification, we evaluated the MLC count and density among groups. We also investigated the MLC density and distribution relative to retinal edema. Results: Morphological changes and congregation of MLCs appeared in RVO eyes. The MLC density of both the acute and chronic groups was significantly higher than that of the control eyes (p < 0.001). In the acute group, the MLC density of the edematous region was lower than both the non-edematous region (p < 0.001) and the whole image (p < 0.01). The MLC density in acute eyes was negatively correlated to central fovea thickness (CFT) (r = −0.352, p < 0.05). The MLC density in chronic eyes was positively correlated to CFT and mean retina thickness (MRT) (r = 0.406, p < 0.05; r = 0.412, p < 0.05, respectively). Conclusions: SS-OCTA is a viable and simple method for the characterization of MLCs at the vitreoretinal interface. A significant increase in the MLC density in both acute and chronic eyes implicates the activation and recruitment of MLCs in RVO and that the MLC density and distribution can be affected by retinal edema.
Collapse
|
18
|
Wieghofer P, Engelbert M, Chui TYP, Rosen RB, Sakamoto T, Sebag J. Hyalocyte origin, structure, and imaging. EXPERT REVIEW OF OPHTHALMOLOGY 2022; 17:233-248. [PMID: 36632192 PMCID: PMC9831111 DOI: 10.1080/17469899.2022.2100762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023]
Abstract
Introduction Hyalocytes have been recognized as resident tissue macrophages of the vitreous body since the mid-19th century. Despite this, knowledge about their origin, turnover, and dynamics is limited. Areas covered Historically, initial studies on the origin of hyalocytes used light and electron microscopy. Modern investigations across species including rodents and humans will be described. Novel imaging is now available to study human hyalocytes in vivo. The shared ontogeny with retinal microglia and their eventual interdependence as well as differences will be discussed. Expert opinion Owing to a common origin as myeloid cells, hyalocytes and retinal microglia have similarities, but hyalocytes appear to be distinct as resident macrophages of the vitreous body.
Collapse
Affiliation(s)
- Peter Wieghofer
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstraße 2, 86159 Augsburg, Germany
| | - Michael Engelbert
- Vitreous Retina Macula Consultants of New York, New York, NY 10022, USA
- LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, NY 10065, USA
- Department of Ophthalmology, New York University School of Medicine, New York, NY 10016, USA
| | - Toco YP Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Richard B Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Taiji Sakamoto
- Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - J Sebag
- Doheny Eye Institute, UCLA, Los Angeles, CA, USA
- Clinical Ophthalmology, Stein Eye Institute, Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- VMR Institute for Vitreous Macula Retina, Huntington Beach, CA, USA
| |
Collapse
|
19
|
Analysis of the Cytokine Expression in the Aqueous Humor of Individuals with BRVO-Associated Macular Edema. J Ophthalmol 2022; 2022:1514244. [PMID: 35967519 PMCID: PMC9371839 DOI: 10.1155/2022/1514244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose This study aimed to determine the expression levels of vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in the aqueous humor of patients with macular edema (ME) caused by branch retinal vein occlusion (BRVO), as well as to investigate the relationship between the cytokines as mentioned earlier and best-corrected visual acuity (BCVA), ME, and the degree of ME from the molecular level. Methods In a prospective observational study, fluorescein fundus angiography (FFA) and optical coherence tomography (OCT) were used to classify 58 patients with non-ischemic BRVO-ME into three groups according to the degree of ME: 14-mild, 17-moderate, and 27-severe. The specific concentration of IL-6, VEGF, ICAM-1, and VCAM-1 in the aqueous humor was detected using the BD CSCanto™ II Flow Cytometer (US). Spearman or Pearson correlation analysis was used to test the correlation between the levels of BCVA and severity of ME and the expression levels of IL-6, VEGF, ICAM-1, and VCAM-1 in the aqueous humor. Results According to the obtained data, BCVA did not correlate with the severity of ME, and these four cytokines expression levels in patients' aqueous humor (P > 0.05). Moreover, BCVA did not correlate with mild, moderate, or severe ME as well (P > 0.05). However, the levels of these four cytokines were correlated with the severity of the ME. These underlined cytokines were linked to the mild, moderate, and severe degrees of ME. VEGF was also significantly correlated (r > 0.8, P < 0.0001) with the severity of ME. Conclusions This study suggests that the severity of ME in BRVO-ME patients is significantly correlated with the expression levels of IL-6, VEGF, ICAM-1, and VCAM-1 in the aqueous humor. Lowering the level of disease-associated cytokines may potentially reduce the degree of ME. Therefore, an in-depth study of the levels and the relationship may provide some evidence for the pathogenesis, treatment, and prevention of BRVO-ME.
Collapse
|
20
|
Zeng Y, Zhang X, Mi L, Gan Y, Su Y, Li M, Yang R, Zhang Y, Wen F. Characterization of Macrophage-Like Cells in Retinal Vein Occlusion Using En Face Optical Coherence Tomography. Front Immunol 2022; 13:855466. [PMID: 35309338 PMCID: PMC8927673 DOI: 10.3389/fimmu.2022.855466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the clinical features of a macrophage-like cell (MLC) obtained by en face optical coherence tomography (OCT) in retinal vein occlusion (RVO). Methods The study involved 36 patients with treatment-naïve unilateral acute RVO, including 21 branch RVO (BRVO) and 15 central RVO. Vessel density and macular thickness were quantified using OCT angiography. A 3-μm en face OCT slab on the inner limiting membrane in the optic nerve head (ONH) region or macular region was used to visualize the MLCs. The MLCs were binarized and quantified using a semiautomated method. The unaffected fellow eyes served as the control group. Results The morphology of MLCs appeared larger and plumper in RVO eyes. The mean MLC density in the ONH and macular regions was 2.46 times and 2.86 times higher than their fellow eyes, respectively (p < 0.001). The macular MLC density of the occlusive region was significantly lower than that of the unaffected region in BRVO (p = 0.01). The ONH and macular MLC densities in the non-perfused region were significantly lower than those in the perfused region in all RVO eyes (p < 0.001). The ONH MLC density in RVO eyes was negatively correlated with radial peripapillary capillary vessel density (r = -0.413, p = 0.012). Both ONH and macular MLC densities were positively correlated with macular thickness (r = 0.505, p = 0.002; r = 0.385, p = 0.02, respectively). Conclusion The increased density and changes of morphology characterized by OCT may indicate generalized activation and aggregation of MLCs in RVO. More MLCs are recruited in the perfused region rather than the non-perfused region. RVO eyes with a higher density of MLCs tend to suffer from the thicker macula.
Collapse
Affiliation(s)
- Yunkao Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xiongze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Lan Mi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yuhong Gan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yongyue Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Miaoling Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Ruijun Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yining Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Feng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
21
|
Rad LM, Yumashev AV, Hussen BM, Jamad HH, Ghafouri-Fard S, Taheri M, Rostami S, Niazi V, Hajiesmaeili M. Therapeutic Potential of Microvesicles in Cell Therapy and Regenerative Medicine of Ocular Diseases With an Especial Focus on Mesenchymal Stem Cells-Derived Microvesicles. Front Genet 2022; 13:847679. [PMID: 35422841 PMCID: PMC9001951 DOI: 10.3389/fgene.2022.847679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
These days, mesenchymal stem cells (MSCs), because of immunomodulatory and pro-angiogenic abilities, are known as inevitable factors in regenerative medicine and cell therapy in different diseases such as ocular disorder. Moreover, researchers have indicated that exosome possess an essential potential in the therapeutic application of ocular disease. MSC-derived exosome (MSC-DE) have been identified as efficient as MSCs for treatment of eye injuries due to their small size and rapid diffusion all over the eye. MSC-DEs easily transfer their ingredients such as miRNAs, proteins, and cytokines to the inner layer in the eye and increase the reconstruction of the injured area. Furthermore, MSC-DEs deliver their immunomodulatory cargos in inflamed sites and inhibit immune cell migration, resulting in improvement of autoimmune uveitis. Interestingly, therapeutic effects were shown only in animal models that received MSC-DE. In this review, we summarized the therapeutic potential of MSCs and MSC-DE in cell therapy and regenerative medicine of ocular diseases.
Collapse
Affiliation(s)
- Lina Moallemi Rad
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Alexey V Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hazha Hadayat Jamad
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Samaneh Rostami
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciecnes, Zanjan, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Critical Care Quality Improvement Research Center, Loghman Hakin Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Ding X, Hu Y, Yu H, Li Q. Changes of Optical Coherence Tomography Biomarkers in Macular Edema Secondary to Retinal Vein Occlusion After Anti-VEGF and Anti-Inflammatory Therapies. Drug Des Devel Ther 2022; 16:717-725. [PMID: 35313554 PMCID: PMC8934115 DOI: 10.2147/dddt.s351683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Xuefei Ding
- Department of Ophtalmology, Henan Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yijun Hu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People’ s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- Refractive Surgery Center, Aier Institute of Refractive Surgery, Guangzhou Aier Eye Hospital, Guangzhou, People’s Republic of China
| | - Honghua Yu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People’ s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- Honghua Yu, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan Second Road, Guangzhou, 510080, People’s Republic of China, Email
| | - Qiuming Li
- Department of Ophtalmology, Henan Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Correspondence: Qiuming Li, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Zhengzhou, 450052, People’s Republic of China, Tel +86 15837188476, Email
| |
Collapse
|
23
|
Matei N, Leahy S, Blair NP, Shahidi M. Assessment of retinal oxygen metabolism, visual function, thickness and degeneration markers after variable ischemia/reperfusion in rats. Exp Eye Res 2021; 213:108838. [PMID: 34774489 DOI: 10.1016/j.exer.2021.108838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022]
Abstract
After total retinal ischemia induced experimentally by ophthalmic vessel occlusion followed by reperfusion, studies have reported alterations in retinal oxygen metabolism (MO2), delivery (DO2), and extraction fraction (OEF), as well as visual dysfunction and cell loss. In the current study, under variable durations of ischemia/reperfusion, changes in these oxygen metrics, visual function, retinal thickness, and degeneration markers (gliosis and apoptosis) were assessed and related. Additionally, the prognostic value of MO2 for predicting visual function and retinal thickness outcomes was reported. Sixty-one rats were divided into 5 groups of ischemia duration (0 [sham], 60, 90, 120, or 180 min) and 2 reperfusion durations (1 h, 7 days). Phosphorescence lifetime and blood flow imaging, electroretinography, and optical coherence tomography were performed. MO2 reduction was related to visual dysfunction, retinal thinning, increased gliosis and apoptosis after 7-days reperfusion. Impairment in MO2 after 1-h reperfusion predicted visual function and retinal thickness outcomes after 7-days reperfusion. Since MO2 can be measured in humans, findings from analogous studies may find value in the clinical setting.
Collapse
Affiliation(s)
- Nathanael Matei
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, United States
| | - Sophie Leahy
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, United States
| | - Norman P Blair
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
24
|
Kohno H, Terauchi R, Watanabe S, Ichihara K, Watanabe T, Nishijima E, Watanabe A, Nakano T. Effect of Lecithin-Bound Iodine Treatment on Inherited Retinal Degeneration in Mice. Transl Vis Sci Technol 2021; 10:8. [PMID: 34751741 PMCID: PMC8590179 DOI: 10.1167/tvst.10.13.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Although lecithin-bound iodine (LBI) has been administered orally for retinal diseases, a lack of clinical studies and obscure action mechanism of LBI hinder its large-scale prescription. LBI treatment suppresses chemokine (C-C motif) ligand 2 (CCL2) secretion from retinal pigment epithelial cells in vitro. Herein, we assessed the in vivo effect of LBI treatment on retinal degeneration (RD) in mice. Methods Mertk−/−Cx3cr1GFP/+Ccr2RFP/+ mice—a model for RD—demonstrate fluorescein-labeled microglia/macrophage to facilitate visualization of CX3CR1-green fluorescent protein (GFP) and CCR2-red fluorescent protein (RFP). An LBI-containing mouse diet was provided to Mertk−/−Cx3cr1GFP/+Ccr2RFP/+ mice ad libitum from postnatal day (POD) 28. CX3CR1-GFP and CCR2-RFP expression was assessed at POD 56 using retinal sectioning and flat mounting. RD severity was assessed at POD 84. Retinal RNA was extracted from the mice of each group to measure chemokine expression. Electroretinography was performed to assess retinal function. Results CCR2-RFP expression in the retina and retinal pigment epithelial cells was suppressed by LBI treatment compared with that in the control at POD 56. The number of outer nuclear layer nuclei was higher in the group fed with LBI-containing diet than in the control mice at POD 84. Ccl2 and Ccr2 RNA expression was suppressed by LBI intake. Electroretinography showed the LBI-treated group to have a high b-wave amplitude compared with the control group. Conclusions Suppressing CCR2-RFP–positive macrophage invasion into the retina and CCL2 and CCR2 expression is a potential mechanism underlying LBI-mediated attenuation of RD. Translational Relevance Life-long LBI administration may become a candidate for treating RD.
Collapse
Affiliation(s)
- Hideo Kohno
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryo Terauchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sumiko Watanabe
- Department of Retinal Biology and Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Ichihara
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomoyuki Watanabe
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Euido Nishijima
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Akira Watanabe
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Guo M, Schwartz TD, Dunaief JL, Cui QN. Myeloid cells in retinal and brain degeneration. FEBS J 2021; 289:2337-2361. [PMID: 34478598 PMCID: PMC8891394 DOI: 10.1111/febs.16177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022]
Abstract
Retinal inflammation underlies multiple prevalent ocular and neurological diseases. Similar inflammatory processes are observed in glaucomatous optic neuropathy, age-related macular degeneration, retinitis pigmentosa, posterior uveitis, Alzheimer's disease, and Parkinson's disease. In particular, human and animal studies have demonstrated the important role microglia/macrophages play in initiating and maintaining a pro-inflammatory environment in degenerative processes impacting vision. On the other hand, microglia have also been shown to have a protective role in multiple central nervous system diseases. Identifying the mechanisms underlying cell dysfunction and death is the first step toward developing novel therapeutics for these diseases impacting the central nervous system. In addition to reviewing recent key studies defining important mediators of retinal inflammation, with an emphasis on translational studies that bridge this research from bench to bedside, we also highlight a promising therapeutic class of medications, the glucagon-like peptide-1 receptor agonists. Finally, we propose areas where additional research is necessary to identify mechanisms that can be modulated to shift the balance from a neurotoxic to a neuroprotective retinal environment.
Collapse
Affiliation(s)
- Michelle Guo
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Turner D Schwartz
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi N Cui
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Uemura A, Fruttiger M, D'Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD, Langmann T. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res 2021; 84:100954. [PMID: 33640465 PMCID: PMC8385046 DOI: 10.1016/j.preteyeres.2021.100954] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Five vascular endothelial growth factor receptor (VEGFR) ligands (VEGF-A, -B, -C, -D, and placental growth factor [PlGF]) constitute the VEGF family. VEGF-A binds VEGF receptors 1 and 2 (VEGFR1/2), whereas VEGF-B and PlGF only bind VEGFR1. Although much research has been conducted on VEGFR2 to elucidate its key role in retinal diseases, recent efforts have shown the importance and involvement of VEGFR1 and its family of ligands in angiogenesis, vascular permeability, and microinflammatory cascades within the retina. Expression of VEGFR1 depends on the microenvironment, is differentially regulated under hypoxic and inflammatory conditions, and it has been detected in retinal and choroidal endothelial cells, pericytes, retinal and choroidal mononuclear phagocytes (including microglia), Müller cells, photoreceptor cells, and the retinal pigment epithelium. Whilst the VEGF-A decoy function of VEGFR1 is well established, consequences of its direct signaling are less clear. VEGFR1 activation can affect vascular permeability and induce macrophage and microglia production of proinflammatory and proangiogenic mediators. However the ability of the VEGFR1 ligands (VEGF-A, PlGF, and VEGF-B) to compete against each other for receptor binding and to heterodimerize complicates our understanding of the relative contribution of VEGFR1 signaling alone toward the pathologic processes seen in diabetic retinopathy, retinal vascular occlusions, retinopathy of prematurity, and age-related macular degeneration. Clinically, anti-VEGF drugs have proven transformational in these pathologies and their impact on modulation of VEGFR1 signaling is still an opportunity-rich field for further research.
Collapse
Affiliation(s)
- Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA.
| | - Sandro De Falco
- Angiogenesis Laboratory, Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy; ANBITION S.r.l., Via Manzoni 1, 80123, Naples, Italy.
| | - Antonia M Joussen
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, and Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| | - Lynne R Brunck
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kristian T Johnson
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - George N Lambrou
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kay D Rittenhouse
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany.
| |
Collapse
|
27
|
Ong JX, Nesper PL, Fawzi AA, Wang JM, Lavine JA. Macrophage-Like Cell Density Is Increased in Proliferative Diabetic Retinopathy Characterized by Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 34338748 PMCID: PMC8340655 DOI: 10.1167/iovs.62.10.2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/04/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose To quantitatively characterize macrophage-like cells (MLCs) at the vitreoretinal interface in different severity stages of diabetic retinopathy (DR) using optical coherence tomography angiography (OCTA). Methods The study included 72 eyes of 72 subjects: 18 healthy controls, 22 diabetes mellitus (DM) without DR, 17 nonproliferative DR (NPDR), and 15 proliferative DR (PDR). We obtained repeated (average, 6.5; range, 3-10) macular OCTA scans for each eye. We registered and averaged the 3-µm OCT slab above the vitreoretinal interface to visualize MLCs. Using a semiautomated method, we binarized and quantified MLCs and compared MLC densities among groups. We also evaluated MLC distribution relative to underlying superficial capillary plexus vasculature and quantified MLCs overlying blood vessels within the perivascular 30-µm watershed region and within ischemic zones (defined as >30 µm from the nearest vessel). Results MLC density was 2.8- to 3.8-fold higher in PDR compared with all other groups (P < 0.05 for all). MLC density in PDR was most increased in perivascular areas (3.3- to 4.2-fold; P < 0.05 vs. all) and on blood vessels (3.0- to 4.0-fold; P < 0.05 vs. all), and elevated to a lesser extent in ischemic areas (2.3- to 3.4-fold; P < 0.05 vs. all). MLCs were more likely to localize on blood vessels in DM without DR, NPDR, and PDR (P < 0.05 for all), but not healthy eyes. Conclusions MLC density was significantly increased in PDR. MLCs clustered on blood vessels in diabetic but not in healthy eyes. Further studies are needed to confirm the origin, identity, and function of MLCs during DR.
Collapse
Affiliation(s)
- Janice X. Ong
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Peter L. Nesper
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Amani A. Fawzi
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jacob M. Wang
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jeremy A. Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
28
|
Zhou X, Zhang S, Zhang G, Chen Y, Lei Y, Xiang J, Xu R, Qu J, Zhou X. Increased Choroidal Blood Perfusion Can Inhibit Form Deprivation Myopia in Guinea Pigs. Invest Ophthalmol Vis Sci 2021; 61:25. [PMID: 33211066 PMCID: PMC7683853 DOI: 10.1167/iovs.61.13.25] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose In guinea pigs, choroidal thickness (ChT) and choroidal blood perfusion (ChBP) simultaneously decrease in experimental myopia, and both increase during recovery. However, the causal relationship between ChBP and myopia requires further investigation. In this study, we examined the changes of ChBP with three different antimyopia treatments. We also actively increased ChBP to examine the direct effect on myopia development in guinea pigs. Methods Experiment 1: Guinea pigs wore occluders on the right eye for two weeks to induce form-deprivation myopia (FDM). Simultaneously they received daily antimyopia treatments: peribulbar injections of atropine or apomorphine or exposure to intense light. Experiment 2: The vasodilator prazosin was injected daily into the form-deprivation eyes to increase ChBP during the two-week induction of FDM. Other FDM animals received appropriate control treatments. Changes in refraction, axial length, ChBP, ChT, and hypoxia-labeled pimonidazole adducts in the sclera were measured. Results The antimyopia treatments atropine, apomorphine, and intense light all significantly inhibited myopia development and the decrease in ChBP. The treatments also reduced scleral hypoxia, as indicated by the decrease in hypoxic signals. Furthermore, actively increasing ChBP with prazosin inhibited the progression of myopia, as well as the increase in axial length and scleral hypoxia. Conclusions Our data strongly indicate that increased ChBP attenuates scleral hypoxia, and thereby inhibits the development of myopia. Thus ChBP may be a promising target for myopia retardation. As such, it can serve as an immediate predictor of myopia development as well as a long-term marker of it.
Collapse
Affiliation(s)
- Xuan Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, China
| | - Sen Zhang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, China
| | - Guoyun Zhang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, China
| | - Yizhong Chen
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, China
| | - Yi Lei
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, China
| | - Jing Xiang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, China
| | - Renchang Xu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, China
| |
Collapse
|
29
|
Wang YY, Huang ZT, Yuan MH, Jing F, Cai RL, Zou Q, Pu YS, Wang SY, Chen F, Yi WM, Zhang HJ, Cai ZY. Role of Hypoxia Inducible Factor-1α in Alzheimer's Disease. J Alzheimers Dis 2021; 80:949-961. [PMID: 33612545 DOI: 10.3233/jad-201448] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amyloid-β (Aβ) peptides and hyperphosphorylated tau protein are the most important pathological markers of Alzheimer's disease (AD). Neuroinflammation and oxidative stress are also involved in the development and pathological mechanism of AD. Hypoxia inducible factor-1α (HIF-1α) is a transcriptional factor responsible for cellular and tissue adaption to low oxygen tension. Emerging evidence has revealed HIF-1α as a potential medicinal target for neurodegenerative diseases. On the one hand, HIF-1α increases AβPP processing and Aβ generation by promoting β/γ-secretases and suppressing α-secretases, inactivates microglia and reduces their activity, contributes to microglia death and neuroinflammation, which promotes AD pathogenesis. On the other hand, HIF-1α could resist the toxic effect of Aβ, inhibits tau hyperphosphorylation and promotes microglial activation. In summary, this review focuses on the potential complex roles and the future perspectives of HIF-1α in AD, in order to provide references for seeking new drug targets and treatment methods for AD.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhen-Ting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Ming-Hao Yuan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Feng Jing
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Ruo-Lan Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,Zunyi Medical University, Zunyi, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yin-Shuang Pu
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Sheng-Yuan Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Fei Chen
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Wen-Min Yi
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Hui-Ji Zhang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhi-You Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
30
|
ASSESSMENT OF HYPERREFLECTIVE FOCI AFTER BEVACIZUMAB OR DEXAMETHASONE TREATMENT ACCORDING TO DURATION OF MACULAR EDEMA IN PATIENTS WITH BRANCH RETINAL VEIN OCCLUSION. Retina 2021; 41:355-365. [PMID: 32349101 DOI: 10.1097/iae.0000000000002826] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To evaluate the association between hyperreflective foci (HRF) on spectral domain optical coherence tomography and therapeutic effect of intravitreal bevacizumab (IVB) or intravitreal dexamethasone implants (IVD) according to macular edema (ME) duration in branch retinal vein occlusion. METHODS Consecutive treatment-naive patients received IVB or IVD for at least 6 months. Each group was subdivided according to ME duration (<3 months vs. ≥3 months). Hyperreflective foci and best-corrected visual acuity were compared. RESULTS Of 139 eyes (139 patients), 69 received IVB and 70 received IVD. At baseline, eyes with ME ≥ 3 months had more outer and total retinal HRF than eyes with ME < 3 months (P < 0.001 and P = 0.001). At 6 months, the IVD group exhibited a greater reduction in outer retinal HRF than the IVB group in both ME duration subgroups (P = 0.015 and P < 0.001). In the ME ≥ 3 months group, IVD resulted in greater best-corrected visual acuity improvement than IVB (P = 0.017). CONCLUSION Increased outer retinal HRF at baseline in eyes with ME ≥ 3 months together with a greater reduction in HRF at 6 months and better visual outcomes after IVD suggests that the inflammatory aspect of disease should be considered in the treatment of ME. Thus, IVD injection could be more appropriate for patients with a longer ME duration after branch retinal vein occlusion.
Collapse
|
31
|
Liu J, Jiang F, Jiang Y, Wang Y, Li Z, Shi X, Zhu Y, Wang H, Zhang Z. Roles of Exosomes in Ocular Diseases. Int J Nanomedicine 2020; 15:10519-10538. [PMID: 33402823 PMCID: PMC7778680 DOI: 10.2147/ijn.s277190] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes, nanoscale vesicles with a diameter of 30 to 150 nm, are composed of a lipid bilayer, protein, and genetic material. Exosomes are secreted by virtually all types of cells in the human body. They have key functions in cell-to-cell communication, immune regulation, inflammatory response, and neovascularization. Mounting evidence indicates that exosomes play an important role in various diseases, such as cancer, cardiovascular diseases, and brain diseases; however, the role that exosomes play in eye diseases has not yet been rigorously studied. This review covers current exosome research as it relates to ocular diseases including diabetic retinopathy, age-related macular degeneration, autoimmune uveitis, glaucoma, traumatic optic neuropathies, corneal diseases, retinopathy of prematurity, and uveal melanoma. In addition, we discuss recent advances in the biological functions of exosomes, focusing on the toxicity of exosomes and the use of exosomes as biomarkers and drug delivery vesicles. Finally, we summarize the primary considerations and challenges to be taken into account for the effective applications of exosomes.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Yu Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Yicheng Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Zelin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Xuefeng Shi
- Department of Pediatric Ophthalmology and Strabismus, Tianjin Eye Hospital, Tianjin, 300020, People's Republic of China.,School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, People's Republic of China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, People's Republic of China
| | - Yanping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| |
Collapse
|
32
|
Schwarzer P, Kokona D, Ebneter A, Zinkernagel MS. Effect of Inhibition of Colony-Stimulating Factor 1 Receptor on Choroidal Neovascularization in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:412-425. [PMID: 31783006 DOI: 10.1016/j.ajpath.2019.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/09/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
Neovascular age-related macular degeneration is one of the leading causes of blindness. Microglia and macrophages play a critical role in choroidal neovascularization (CNV) and may, therefore, be potential targets to modulate the disease course. This study evaluated the effect of the colony-stimulating factor-1 receptor inhibitor PLX5622 on experimental laser-induced CNV. A 98% reduction of retinal microglia cells was observed in the retina 1 week after initiation of PLX5622 treatment, preventing accumulation of macrophages within the laser site and leading to a reduction of leukocytes within the choroid after CNV induction. Mice treated with PLX5622 had a significantly faster decrease of the CNV lesion size, as revealed by in vivo imaging and immunohistochemistry from day 3 to day 14 compared with untreated mice. Several inflammatory modulators, such as chemokine (C-C motif) ligand 9, granulocyte-macrophage colony-stimulating factor, soluble tumor necrosis factor receptor-I, IL-1α, and matrix metallopeptidase-2, were elevated in the acute phase of the disease when microglia were ablated with PLX5622, whereas other cytokines (eg, interferon-γ, IL-4, and IL-10) were reduced. Our results suggest that colony-stimulating factor-1 receptor inhibition may be a novel therapeutic target in patients with neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Petra Schwarzer
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Despina Kokona
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Andreas Ebneter
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
33
|
Allingham MJ, Mettu PS, Cousins SW. Aldosterone as a mediator of severity in retinal vascular disease: Evidence and potential mechanisms. Exp Eye Res 2019; 188:107788. [PMID: 31479654 PMCID: PMC6802292 DOI: 10.1016/j.exer.2019.107788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/30/2019] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) and retinal vein occlusion (RVO) are the two most common retinal vascular diseases and are major causes of vision loss and blindness worldwide. Recent and ongoing development of medical therapies including anti-vascular endothelial growth factor and corticosteroid drugs for treatment of these diseases have greatly improved the care of afflicted patients. However, severe manifestations of retinal vascular disease result in persistent macular edema, progressive retinal ischemia and incomplete visual recovery. Additionally, choroidal vascular diseases including neovascular age-related macular degeneration (NVAMD) and central serous chorioretinopathy (CSCR) cause vision loss for which current treatments are incompletely effective in some cases and highly burdensome in others. In recent years, aldosterone has gained attention as a contributor to the various deleterious effects of retinal and choroidal vascular diseases via a variety of mechanisms in several retinal cell types. The following is a review of the role of aldosterone in retinal and choroidal vascular diseases as well as our current understanding of the mechanisms by which aldosterone mediates these effects.
Collapse
Affiliation(s)
- Michael J Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States.
| | - Priyatham S Mettu
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States
| | - Scott W Cousins
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
34
|
Jovanovic J, Liu X, Kokona D, Zinkernagel MS, Ebneter A. Inhibition of inflammatory cells delays retinal degeneration in experimental retinal vein occlusion in mice. Glia 2019; 68:574-588. [PMID: 31652020 PMCID: PMC7003783 DOI: 10.1002/glia.23739] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
The role of microglia in retinal inflammation is still ambiguous. Branch retinal vein occlusion initiates an inflammatory response whereby resident microglia cells are activated. They trigger infiltration of neutrophils that exacerbate blood–retina barrier damage, regulate postischemic inflammation and irreversible loss of neuroretina. Suppression of microglia‐mediated inflammation might bear potential for mitigating functional impairment after retinal vein occlusion (RVO). To test this hypothesis, we depleted microglia by PLX5622 (a selective tyrosine kinase inhibitor that targets the colony‐stimulating factor‐1 receptor) in fractalkine receptor reporter mice (Cx3cr1gfp/+) subjected to various regimens of PLX5622 treatment and experimental RVO. Effectiveness of microglia suppression and retinal outcomes including retinal thickness as well as ganglion cell survival were compared to a control group of mice with experimental vein occlusion only. PLX5622 caused dramatic suppression of microglia. Despite vein occlusion, reappearance of green fluorescent protein positive cells was strongly impeded with continuous PLX5622 treatment and significantly delayed after its cessation. In depleted mice, retinal proinflammatory cytokine signaling was diminished and retinal ganglion cell survival improved by almost 50% compared to nondepleted animals 3 weeks after vein occlusion. Optical coherence tomography suggested delayed retinal degeneration in depleted mice. In summary, findings indicate that suppression of cells bearing the colony‐stimulating factor‐1 receptor, mainly microglia and monocytes, mitigates ischemic damage and salvages retinal ganglion cells. Blood–retina barrier breakdown seems central in the disease mechanism, and complex interactions between different cell types composing the blood–retina barrier as well as sustained hypoxia might explain why the protective effect was only partial.
Collapse
Affiliation(s)
- Joël Jovanovic
- Department of Ophthalmology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Xuan Liu
- Department of Ophthalmology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department of Ophthalmology, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi, China
| | - Despina Kokona
- Department of Ophthalmology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Andreas Ebneter
- Department of Ophthalmology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
35
|
Spooner K, Fraser-Bell S, Hong T, Chang A. Prospective study of aflibercept for the treatment of persistent macular oedema secondary to retinal vein occlusions in eyes not responsive to long-term treatment with bevacizumab or ranibizumab. Clin Exp Ophthalmol 2019; 48:53-60. [PMID: 31498950 DOI: 10.1111/ceo.13636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 11/27/2022]
Abstract
IMPORTANCE To examine the effect of switching from intravitreal bevacizumab or ranibizumab to aflibercept in eyes with persistent macular oedema due to retinal vein occlusion (RVO). BACKGROUND We report the results of a prospective interventional study on the effect of aflibercept 2 mg in eyes with persistent macular oedema after long-term treatment with bevacizumab or ranibizumab. DESIGN Non-randomized, prospective clinical trial. PARTICIPANTS Eighteen eyes of eighteen patients were included. METHODS Eyes with persistent macular oedema despite a minimum of four previous intravitreal bevacizumab/ranibizumab injections were recruited into this 48-week trial. Three loading doses of intravitreal aflibercept were administered every 4-weeks, thereafter every 8-weeks until week 48. MAIN OUTCOME MEASURES Mean change from baseline in best corrected visual acuity (BCVA) as measured by early treatment diabetic retinopathy score (ETDRS) and central macular thickness (CMT) as measured by spectral domain optical coherence tomography (SD-OCT) at 48 weeks. RESULTS Patients had received a mean of 40.0 ± 17.8 bevacizumab/ranibizumab intravitreal injections prior to switching to aflibercept. The mean number of previous injections administered in the 12-months preceding entry into the study was 10.2 ± 2.4. Mean vision change at week 48 was +21.1 ± 5.1 ETDRS letters in the BRVO group and +18.8 ± 5.9 letters at in the CRVO group (P < .001 for both groups). Mean decrease in CMT was 87.6 ± 48.8 μm and 191.0 ± 128.3 μm, in the BRVO and CRVO groups, respectively (P < .001). Using linear regression analyses, a higher number of previous intravitreal ranibizumab/bevacizumab injections and thicker pre-switch CMT were correlated with greater visual gains. CONCLUSION AND RELEVANCE Switching to aflibercept from bevacizumab or ranibizumab in eyes with persistent macular oedema due to RVO can lead to functional and anatomical improvement. This effect was more obvious in eyes with a greater CMT prior to the switch.
Collapse
Affiliation(s)
- Kimberly Spooner
- Sydney Retina, Sydney, New South Wales, Australia.,Sydney Institute of Vision Science, Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Samantha Fraser-Bell
- Sydney Retina, Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Hong
- Sydney Retina, Sydney, New South Wales, Australia.,Sydney Institute of Vision Science, Sydney, New South Wales, Australia
| | - Andrew Chang
- Sydney Retina, Sydney, New South Wales, Australia.,Sydney Institute of Vision Science, Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Anti-angiogenic and anti-inflammatory effects of CD200-CD200R1 axis in oxygen-induced retinopathy mice model. Inflamm Res 2019; 68:945-955. [PMID: 31444514 DOI: 10.1007/s00011-019-01276-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE In this study, the expression changes and the potential effects of CD200 and its receptors during the process of retinal neovascularization (RNV) development had been detected, using a classic oxygen-induced retinopathy (OIR) mice model and CD200Fc (a CD200R1 agonist) intravitreal injection. MATERIALS AND METHODS 7 day postnatal (P7) C57BL/6J mice were raised in hyperoxia incubators with 75±2% oxygen for 5 days, and returned to room air at P12. All animals were subdivided into three groups: normoxia control, OIR, and OIR+CD200Fc group. The mice of OIR+CD200Fc group were intravitreal injected with CD200Fc (2μg/μL, 0.5μL) at P12. Retinas and vitreous samples were harvested at P17. The expression and localization of CD200 and its receptors were analyzed by Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and retinal whole-mount immunofluorescence. To investigate the effects of CD200Fc treatment, vascular endothelial growth factor (VEGF)-A, platelet-derived growth factor (PDGF)-BB, pro-inflammatory cytokines, NV area, and microglial activation were detected respectively. RESULTS In OIR group, both protein and RNA levels of CD200 and CD200R1 were significantly up-regulated. The increased CD200 and CD200R1 were co-localized with Alex594-labeled Griffonia simplicifolia isolectin B4 (IB4) on vascular endothelial cells in NV area of OIR samples, and CD200R1 was co-expressed with ionized calcium-bind adapter molecule 1 (iba1) on microglia in OIR samples at the same time. CD200Fc intravitreal injection could significantly reduce the release of VEGF-A, PDGF-BB, and pro-inflammatory cytokines; shrink the NV area; and inhibit the activation of microglia in OIR mice. CONCLUSION These findings suggested that the up-regulation of CD200 and CD200R1 was closely related to RNV development, and the antiangiogenic effects of CD200Fc in OIR model might be realized by inhibition of inflammatory response and microglia activation. The results may provide a new therapeutic target for RNV diseases.
Collapse
|
37
|
Extracellular Vesicles as a Potential Therapy for Neonatal Conditions: State of the Art and Challenges in Clinical Translation. Pharmaceutics 2019; 11:pharmaceutics11080404. [PMID: 31405234 PMCID: PMC6723449 DOI: 10.3390/pharmaceutics11080404] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Despite advances in intensive care, several neonatal conditions typically due to prematurity affect vital organs and are associated with high mortality and long-term morbidities. Current treatment strategies for these babies are only partially successful or are effective only in selected patients. Regenerative medicine has been shown to be a promising option for these conditions at an experimental level, but still warrants further exploration for the development of optimal treatment. Although stem cell-based therapy has emerged as a treatment option, studies have shown that it is associated with potential risks and hazards, especially in the fragile population of babies. Recently, extracellular vesicles (EVs) have emerged as an attractive therapeutic alternative that holds great regenerative potential and is cell-free. EVs are nanosized particles endogenously produced by cells that mediate intercellular communication through the transfer of their cargo. Currently, EVs are garnering considerable attention as they are the key effectors of stem cell paracrine signaling and can epigenetically regulate target cell genes through the release of RNA species, such as microRNA. Herein, we review the emerging literature on the therapeutic potential of EVs derived from different sources for the treatment of neonatal conditions that affect the brain, retinas, spine, lungs, and intestines and discuss the challenges for the translation of EVs into clinical practice.
Collapse
|
38
|
Roubeix C, Dominguez E, Raoul W, Guillonneau X, Paques M, Sahel JA, Sennlaub F. Mo-derived perivascular macrophage recruitment protects against endothelial cell death in retinal vein occlusion. J Neuroinflammation 2019; 16:157. [PMID: 31351497 PMCID: PMC6660930 DOI: 10.1186/s12974-019-1547-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/16/2019] [Indexed: 01/21/2023] Open
Abstract
Background To decipher the role of monocyte-derived macrophages (Mφs) in vascular remodeling of the occluded vein following experimental branch retinal vein occlusion (BRVO). Methods The inflammation induced by laser-induced BRVO on mice retina was evaluated at different time points by RT-PCR looking at inflammatory markers mRNA level expression, Icam-1, Cd11b, F4/80, Ccl2, and Ccr2 and by quantification of Iba1-positive macrophage (Mφ) density on Iba1-stained retinal flatmount. Repeated intraperitoneal EdU injection combined with liposome clodronate-induced monocyte (Mo) depletion in wildtype mice was used to differentiate Mo-derived Mφs from resident Mφs. Liposome clodronate Mo-depleted wildtype mice and Ccr2-deficient mice were used to evaluate the role of all CCR2+ and CCR2neg Mo-derived Mφs on EC apoptosis in the occluded vein. Results cd11b, ICAM-1, F4/80, Ccl2, and Ccr2 mRNA expression were increased 1, 3, and 7 days after vein occlusion. The number of parenchymal (parMφs) and perivascular (vasMφs) macrophages was increased 3 and 7 days after BRVO. The systemic depletion of all circulating Mos decreased significantly the BRVO-induced parMφs and vasMφs macrophage accumulation, while the deletion of CCR2+-inflammatory Mo only diminished the accumulation of parMφs, but not vasMφs. Finally, apoptotic ECs of the vein were more numerous in fully depleted, liposome clodronate-treated mice, than in Ccr2−/− mice that only lack the recruitment of CCR2+ inflammatory Mos. Conclusions BRVO triggers the recruitment of blood-derived parMφs and vasMφs. Interestingly, vasMφs accumulation was independent of CCR2. The observation that the inhibition of the recruitment of all infiltrating Mφs increases the vein EC apoptosis, while CCR2 deficiency does not, demonstrates that CCR2neg Mo-derived vasMφs protect the ECs against apoptosis in the occluded vein.
Collapse
Affiliation(s)
- Christophe Roubeix
- INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Sorbonne Université, UPMC Univ Paris 06, F-75012, Paris, France.
| | - Elisa Dominguez
- INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Sorbonne Université, UPMC Univ Paris 06, F-75012, Paris, France
| | - William Raoul
- Université François Rabelais de Tours, CNRS, GICC UMR 7292, Tours, France
| | - Xavier Guillonneau
- INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Sorbonne Université, UPMC Univ Paris 06, F-75012, Paris, France
| | - Michel Paques
- INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Sorbonne Université, UPMC Univ Paris 06, F-75012, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, F-75012, Paris, France
| | - José-Alain Sahel
- INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Sorbonne Université, UPMC Univ Paris 06, F-75012, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, F-75012, Paris, France
| | - Florian Sennlaub
- INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Sorbonne Université, UPMC Univ Paris 06, F-75012, Paris, France.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
39
|
Wooff Y, Man SM, Aggio-Bruce R, Natoli R, Fernando N. IL-1 Family Members Mediate Cell Death, Inflammation and Angiogenesis in Retinal Degenerative Diseases. Front Immunol 2019; 10:1618. [PMID: 31379825 PMCID: PMC6646526 DOI: 10.3389/fimmu.2019.01618] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
Inflammation underpins and contributes to the pathogenesis of many retinal degenerative diseases. The recruitment and activation of both resident microglia and recruited macrophages, as well as the production of cytokines, are key contributing factors for progressive cell death in these diseases. In particular, the interleukin 1 (IL-1) family consisting of both pro- and anti-inflammatory cytokines has been shown to be pivotal in the mediation of innate immunity and contribute directly to a number of retinal degenerations, including Age-Related Macular Degeneration (AMD), diabetic retinopathy, retinitis pigmentosa, glaucoma, and retinopathy of prematurity (ROP). In this review, we will discuss the role of IL-1 family members and inflammasome signaling in retinal degenerative diseases, piecing together their contribution to retinal disease pathology, and identifying areas of research expansion required to further elucidate their function in the retina.
Collapse
Affiliation(s)
- Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Si Ming Man
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
40
|
Xu W, Wu Y, Hu Z, Sun L, Dou G, Zhang Z, Wang H, Guo C, Wang Y. Exosomes from Microglia Attenuate Photoreceptor Injury and Neovascularization in an Animal Model of Retinopathy of Prematurity. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:778-790. [PMID: 31163320 PMCID: PMC6545376 DOI: 10.1016/j.omtn.2019.04.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
The role of microglia in the pathophysiology of ischemic retinal diseases has been studied extensively. Exosomes from microglial cells exert protective effects during several nervous system diseases, but their roles in hypoxia-induced retinopathy remain unclear. In our study, exosomes derived from microglial cells were injected into the vitreous body of mice with oxygen-induced retinopathy (OIR). Results showed that exosome-treated OIR mice exhibited smaller avascular areas and fewer neovascular tufts in addition to decreased vascular endothelial growth factor (VEGF) and transforming growth factor β (TGF-β) expression. Moreover, photoreceptor apoptosis was suppressed by exosome injection. Mechanistically, exosomes from microglial cells were incorporated into photoreceptors in vitro and inhibited the inositol-requiring enzyme 1α (IRE1α)-X-box binding protein 1 (XBP1) cascade, which contributes to hypoxia-induced photoreceptor apoptosis. Furthermore, the exosomes also downregulated the mRNA and protein levels of VEGF and TGF-β in hypoxia-exposed photoreceptors. A microRNA assay showed that microRNA-24-3p (miR-24-3p) levels were extremely high in exosomes from microglial cells, suggesting that this could be the key molecule that inhibits the hypoxia-induced expression of IRE1α in photoreceptors. These findings delineate a novel exosome-mediated mechanism of microglial cell-photoreceptor crosstalk that facilitates normal angiogenesis and visual function in OIR mice; thus, our results also suggest a potential therapeutic approach for retinopathy of prematurity.
Collapse
Affiliation(s)
- Wenqin Xu
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ying Wu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhicha Hu
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lijuan Sun
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zifeng Zhang
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haiyang Wang
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Changmei Guo
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yusheng Wang
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
41
|
Lee NE, Kang HM, Choi JH, Koh HJ, Lee SC. Sectoral changes of the peripapillary choroidal thickness in patients with unilateral branch retinal vein occlusion. Int J Ophthalmol 2019; 12:472-479. [PMID: 30918818 DOI: 10.18240/ijo.2019.03.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/06/2018] [Indexed: 01/02/2023] Open
Abstract
AIM To investigate sectoral changes in the mean peripapillary choroidal thickness (PCT) in patients with unilateral branch retinal vein occlusion (BRVO). METHODS This retrospective, interventional study included 41 patients with acute, unilateral BRVO without macular edema. All patients completed at least a 6-month follow-up period. The PCT was measured at eight locations (temporal, superotemporal, superior, superonasal, nasal, inferonasal, inferior, and inferotemporal). In addition to calculating the average of all locations, the peripapillary choroidal area was divided into four sectors: superior (average of superotemporal PCT, superior PCT, and superonasal PCT), temporal, inferior (average of inferotemporal PCT, inferior PCT, and inferonasal PCT), and nasal. RESULTS In the BRVO-affected eyes, the mean PCT was 177.7±69.8 µm (range, 70.1-396.0 µm) at baseline and 127.8±54.8 µm (range, 56.4-312.1 µm) at 6mo (P<0.001). In the non-affected contralateral eyes, the mean PCT was 192.5±60.6 µm (range, 61.4-365.0 µm) at baseline and 165.9±61.1 µm (range, 56.8-326.8 µm) at 6mo (P<0.001). In sectoral analysis, the mean PCT in each sector was significantly reduced in over 6mo in the BRVO-affected eyes (all P<0.001). In the non-affected contralateral eyes, the mean PCT was not significantly changed in any sector over the 6-month follow-up period (superior sector, P=0.143; temporal sector, P=0.825; inferior sector, P=0.192; and nasal sector, P=0.599). CONCLUSION Sectoral analysis shows that the mean PCTs in all sectors are reduced significantly over 6mo in the BRVO-affected eyes, but not in the non-affected contralateral eyes.
Collapse
Affiliation(s)
- Na Eun Lee
- Department of Ophthalmology, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon 22711, Republic of Korea
| | - Hae Min Kang
- Department of Ophthalmology, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon 22711, Republic of Korea
| | | | - Hyoung Jun Koh
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sung Chul Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
42
|
Allingham MJ, Tserentsoodol N, Saloupis P, Mettu PS, Cousins SW. Aldosterone Exposure Causes Increased Retinal Edema and Severe Retinopathy Following Laser-Induced Retinal Vein Occlusion in Mice. Invest Ophthalmol Vis Sci 2019; 59:3355-3365. [PMID: 30025072 DOI: 10.1167/iovs.17-23073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine the effects of aldosterone exposure on retinal edema and retinopathy in a mouse model of retinal vein occlusion (RVO). Methods RVO was induced immediately following intravenous injection of Rose bengal (66 mg/kg) using a 532-nm wavelength laser to place three to seven applications at 80 mW and 50-μm spot size directed at the superior retinal vein one disc diameter away from the nerve. Negative control consisted of placing an equal number of laser spots without targeting the vein. Male and female C57BL/6J mice aged 7 to 9 months with confirmed absence of Crb1rd8 were used. Aldosterone pellets releasing a daily dose of 0.83 μg/day were implanted subcutaneously 4 weeks prior to RVO. Retinal imaging by optical coherence tomography (OCT) was performed using a Micron IV rodent imaging system. Retinas were analyzed by immunohistochemistry using standard techniques. Retinal imaging and tissue analysis were performed 2, 4, and 7 days following RVO. Comparisons were made using Student's t-test, ANOVA, and Pearson's χ2. Results RVO caused retinal edema in the form of cystic spaces and retinal thickening detectable by both OCT and histology. RVO also caused Müller glia (MG) dysfunction manifest as upregulated glial fibrillary acidic protein (GFAP) and altered localization of aquaporin 4 (AQP4) and Kir4.1. Treatment with aldosterone caused a significant increase in retinal edema and more severe retinopathy manifest as retinal whitening and extensive intraretinal hemorrhage. MG dysfunction was more severe and persistent in aldosterone-treated mice. Finally, aldosterone greatly increased the number of infiltrating mononuclear phagocytes following RVO. Conclusions Systemic aldosterone exposure causes a more severe RVO phenotype manifest as increased severity and duration of retinal edema and more severe retinopathy. The effects of aldosterone may be mediated by MG dysfunction and increased infiltration of mononuclear phagocytes. This suggests that small increases in aldosterone levels may be a risk factor for severe RVO.
Collapse
Affiliation(s)
- Michael J Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Nomingerel Tserentsoodol
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Peter Saloupis
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Priyatham S Mettu
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Scott W Cousins
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
43
|
Inada M, Taguchi M, Harimoto K, Karasawa Y, Takeuchi M, Ito M. Protective effects of dexamethasone on hypoxia-induced retinal edema in a mouse model. Exp Eye Res 2019; 178:82-90. [DOI: 10.1016/j.exer.2018.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/09/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023]
|
44
|
Kokona D, Ebneter A, Escher P, Zinkernagel MS. Colony-stimulating factor 1 receptor inhibition prevents disruption of the blood-retina barrier during chronic inflammation. J Neuroinflammation 2018; 15:340. [PMID: 30541565 PMCID: PMC6292111 DOI: 10.1186/s12974-018-1373-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Microglia-associated inflammation is closely related to the pathogenesis of various retinal diseases such as uveitis and diabetic retinopathy, which are associated with increased vascular permeability. In this study, we investigated the effect of systemic lipopolysaccharide (LPS) exposure to activation and proliferation of retinal microglia /macrophages. METHODS Balb/c and Cx3cr1gfp/+ mice were challenged with LPS (1 mg/kg) daily for four consecutive days. For microglia depletion, mice were treated with colony-stimulating factor 1 receptor (CSF-1R) inhibitor PLX5622 1 week before the first LPS challenge and until the end of the experiment. In vivo imaging of the retina was performed on days 4 and 7 after the first LPS challenge, using optical coherence tomography and fluorescein angiography. Flow cytometry analysis, retinal whole mount, and retinal sections were used to investigate microglia and macrophage infiltration and proliferation after LPS challenge. Cytokines were analyzed in the blood as well as in the retina. Data analysis was performed using unpaired t tests, repeated measures one-way ANOVA, or ordinary one-way ANOVA followed by Tukey's post hoc analysis. Kruskal-Wallis test followed by Dunn's multiple comparison tests was used for the analysis of non-normally distributed data. RESULTS Repeated LPS challenge led to activation and proliferation of retinal microglia, infiltration of monocyte-derived macrophages into the retina, and breakdown of the blood-retina barrier (BRB) accompanied by accumulation of sub-retinal fluid. Using in vivo imaging, we show that the breakdown of the BRB is highly reproducible but transitory. Acute but not chronic systemic exposure to LPS triggered a robust release of inflammatory mediators in the retina with minimal effects in the blood plasma. Inhibition of the CSF-1R by PLX5622 resulted in depletion of retinal microglia, suppression of cytokine production in the retina, and prevention of BRB breakdown. CONCLUSIONS These findings suggest that microglia/macrophages play an important role in the pathology of retinal disorders characterized by breakdown of the BRB, and suppression of their activation may be a potential therapeutic target for such retinopathies.
Collapse
Affiliation(s)
- Despina Kokona
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Andreas Ebneter
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Pascal Escher
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland. .,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| |
Collapse
|
45
|
Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - A key player in healthy and diseased retina. Prog Neurobiol 2018; 173:18-40. [PMID: 29864456 DOI: 10.1016/j.pneurobio.2018.05.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Microglia, the resident immune cells of the brain and retina, are constantly engaged in the surveillance of their surrounding neural tissue. During embryonic development they infiltrate the retinal tissues and participate in the phagocytosis of redundant neurons. The contribution of microglia in maintaining the purposeful and functional histo-architecture of the adult retina is indispensable. Within the retinal microenvironment, robust microglial activation is elicited by subtle changes caused by extrinsic and intrinsic factors. When there is a disturbance in the cell-cell communication between microglia and other retinal cells, for example in retinal injury, the activated microglia can manifest actions that can be detrimental. This is evidenced by activated microglia secreting inflammatory mediators that can further aggravate the retinal injury. Microglial activation as a harbinger of a variety of retinal diseases is well documented by many studies. In addition, a change in the microglial phenotype which may be associated with aging, may predispose the retina to age-related diseases. In light of the above, the focus of this review is to highlight the role played by microglia in the healthy and diseased retina, based on findings of our own work and from that of others.
Collapse
Affiliation(s)
- Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore; Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, United States
| | - Wallace S Foulds
- Singapore Eye Research Institute Level 6, The Academia, Discovery Tower, 20 College Road, 169856, Singapore; University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore.
| |
Collapse
|
46
|
Gene expression profiling in a mouse model of retinal vein occlusion induced by laser treatment reveals a predominant inflammatory and tissue damage response. PLoS One 2018. [PMID: 29529099 PMCID: PMC5846732 DOI: 10.1371/journal.pone.0191338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Retinal vein occlusion (RVO) has been investigated in several laser-induced animal models using pigs, rabbits and rats. However, laser-induced RVO has been rarely reported in mice, despite the impressive number of available mutants, ease of handling and cost effectiveness. The aim of this study was to further assess the feasibility of a RVO mouse model for gene expression analysis and its possible use to investigate effects of hypoxia. Methods C57Bl/6J mice were injected with eosin Y for photo-sensitization. Subsequently, large retinal veins were laser-treated in one eye to induce vascular occlusion. Contralateral control eyes received non-occlusive retinal laser treatment sparing large vessels. The animals were followed for up to eight days and assessed by funduscopy, angiography, hypoxyprobe staining, histopathology and gene expression analysis by qPCR and RNA sequencing (RNAseq). Another group of mice was left untreated and studied at a single time point to determine baseline characteristics. Results Laser-induced RVO persisted in half of the treated veins for three days, and in a third of the veins for the whole observation period of 8 days. Funduscopy revealed large areas of retinal swelling in all laser-treated eyes, irrespective of vascular targeting or occlusion status. Damage of the outer retina, retinal pigment epithelium (RPE), and even choroid and sclera at the laser site was observed in histological sections. Genes associated with inflammation or cell damage were highly up-regulated in all laser-treated eyes as detected by RNAseq and qPCR. Retinal hypoxia was observed by hypoxyprobe staining in all RVO eyes for up to 5 days with a maximal extension at days 2 and 3, but no significant RVO-dependent changes in gene expression were detected for angiogenesis- or hypoxia-related genes. Conclusion The laser-induced RVO mouse model is characterized by a predominant general inflammatory and tissue damage response, which may obscure distinct hypoxia- and angiogenesis-related effects. A non-occlusive laser treatment control is essential to allow for proper data interpretation and should be mandatory in animal studies of laser-induced RVO to dissect laser-induced tissue damage from vascular occlusion effects.
Collapse
|
47
|
Spatio-temporal expression of Hexokinase-3 in the injured female rat spinal cords. Neurochem Int 2017; 113:23-33. [PMID: 29196144 DOI: 10.1016/j.neuint.2017.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 11/20/2022]
Abstract
Hexokinase-3 (HK3) is a member of hexokinase family, which can catalyze the first step of glucose metabolism. It can increase ATP levels, reduce the production of reactive oxygen species, increase mitochondrial biogenesis, protect mitochondrial membrane potential and play an antioxidant role. However, the change of its expression in spinal cord after injury is still unknown. In this study, we investigated the spatio-temporal expression of HK3 in the spinal cords by using a spinal cord injury (SCI) model in adult female Sprague-Dawley rats. Quantitative reverse transcription-PCR and western blot analysis revealed that HK3 could be detected in sham-opened spinal cords. After SCI, it gradually increased, reached a peak at 7 days post-injury (dpi), and then gradually decreased with the prolonging of injury time, but still maintained at a higher level for up to 28 dpi (the longest time evaluated in this study). Immunofluorescence staining showed that HK3 was found in GFAP+, β-tubulin III+ and IBA-1+ cells in sham-opened spinal cords. After SCI, in addition to the above-mentioned cells, it could also be found in CD45+ and CD68+ cells. These results demonstrate that HK3 is mainly expressed in astrocytes, neurons and microglia in normal spinal cords, and could rapidly increase in infiltrated leukocytes, activated microglia/macrophages and astrocytes after SCI. These data suggest that HK3 may be involved in the pathologic process of SCI by promoting glucose metabolism.
Collapse
|
48
|
Kokona D, Jovanovic J, Ebneter A, Zinkernagel MS. In Vivo Imaging of Cx3cr1gfp/gfp Reporter Mice with Spectral-domain Optical Coherence Tomography and Scanning Laser Ophthalmoscopy. J Vis Exp 2017. [PMID: 29155795 DOI: 10.3791/55984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spectral domain optical coherence tomography (SD-OCT) and scanning laser ophthalmoscopy (SLO) are extensively used in experimental ophthalmology. In the present protocol, mice expressing green fluorescent protein (gfp) under the promoter of Cx3cr1 (BALB/c-Cx3cr1gfp/gfp) were used to image microglia cells in vivo in the retina. Microglia are resident macrophages of the retina and have been implicated in several retinal diseases1,2,3,4,5,6. This protocol provides a detailed approach for generation of retinal B-scans, with SD-OCT, and imaging of microglia cell distribution in Cx3cr1gfp/gfp mice with SLO in vivo, using an ophthalmic imaging platform system. The protocol can be used in several reporter mouse lines. However, there are some limitations to the protocol presented here. First, both SLO and SD-OCT, when used in the high-resolution mode, collect data with high axial resolution but the lateral resolution is lower (3.5 µm and 6 µm, respectively). Moreover, the focus and saturation level in SLO is highly dependent on parameter selection and correct alignment of the eye. Additionally, using devices designed for human patients in mice is challenging due to the higher total optical power of the mouse eye compared to the human eye; this can lead to lateral magnification inaccuracies7, which are also dependent on the magnification by the mouse lens among others. However, despite that the axial scan position is dependent upon lateral magnification, the axial SD-OCT measurements are accurate8.
Collapse
Affiliation(s)
- Despina Kokona
- Department of Ophthalmology and Department of Clinical Research, Bern University Hospital and University of Bern;
| | - Joël Jovanovic
- Department of Ophthalmology and Department of Clinical Research, Bern University Hospital and University of Bern
| | - Andreas Ebneter
- Department of Ophthalmology and Department of Clinical Research, Bern University Hospital and University of Bern
| | - Martin S Zinkernagel
- Department of Ophthalmology and Department of Clinical Research, Bern University Hospital and University of Bern
| |
Collapse
|
49
|
Abstract
The hypoxia inducible factors (HIFs) promote changes in gene expression in response to hypoxia, and mediate key physiological responses such as angiogenesis. They play important roles in development and normal physiology, as well as in ischaemic and other pathologies. The human eye is a complex organ, with tight regulation of vascularisation and oxygen delivery, with the highly specialised retina containing both highly vascularised and avascular regions. This review, written to honour the significant contribution of Lorenz Poellinger to this field, covers the role of the HIFs in normal development of the eye, specifically the vasculature, as well as their roles in numerous retinal pathologies, including ischaemic retinopathies, and age-related macular degeneration (AMD). The characterisation of the HIFs in the eye has improved our understanding of the development, function, and numerous pathologies of the eye, and should inform future therapeutic approaches.
Collapse
|