1
|
Tarhan M, Meller D, Hammer M. Hyperautofluorescent material inside areas of macular atrophy may reveal non-lipofuscin fluorophores in late stage AMD. Acta Ophthalmol 2025; 103:e66-e75. [PMID: 39177106 PMCID: PMC11704839 DOI: 10.1111/aos.16752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE To characterize fundus autofluorescence (FAF) in complete (cRORA) and incomplete retinal pigment epithelium and outer retinal atrophy (iRORA) by fluorescence lifetime imaging ophthalmology (FLIO). METHODS Overall, 98 macular atrophy (MA) lesions in 42 eyes of 37 age-related macular degeneration (AMD) patients (mean age: 80.9 ± 5.8 years), 25 of them classified as iRORA and 73 as cRORA by OCT, were investigated by FLIO in a short (SSC: 498-560 nm) and a long wavelength channel (LSC: 560-720 nm). Differences of FAF lifetimes and peak emission wavelength (PEW) between atrophic lesions and intact retinal pigment epithelium (RPE) in the outer ring of the ETDRS grid were considered. RESULTS FAF lifetimes in MA were longer and PEW were significantly (p < 0.001) shorter than in intact RPE by 112 ± 78 ps (SSC), 91 ± 64 ps (LSC), 27 ± 18 nm (PEW) in iRORA and by 227 ± 112 ps (SSC), 167 ± 81 ps (LSC), and 54 ± 17 nm (PEW) in cRORA. 37% of iRORA and 24% of cRORA were hyperautofluorescent in SSC. Persistent sub-RPE-BL material in MA was newly found as a hyperautofluorescent entity with lifetimes considerably longer than that of drusen and RPE. CONCLUSIONS Despite RPE and, thus, lipofuscin are greatly absent in MA, considerable FAF, preferably at short wavelengths, was found in those lesions. Drusen, persistent sub-RPE-BL material, basal laminar deposits, persistent activated RPE, and sclera were identified as putative sources of this fluorescence. FLIO can help to characterize respective fluorophores.
Collapse
Affiliation(s)
- Melih Tarhan
- Department of OphthalmologyUniversity Hospital JenaJenaGermany
| | - Daniel Meller
- Department of OphthalmologyUniversity Hospital JenaJenaGermany
| | - Martin Hammer
- Department of OphthalmologyUniversity Hospital JenaJenaGermany
- Department of OphthalmologyUniversity Hospital BonnBonnGermany
- Center for Medical Optics and PhotonicsUniversity of JenaJenaGermany
| |
Collapse
|
2
|
Shaw EM, Tate AJ, Periasamy R, Lipinski DM. Characterization of drusen formation in a primary porcine tissue culture model of dry AMD. Mol Ther Methods Clin Dev 2024; 32:101331. [PMID: 39434920 PMCID: PMC11492580 DOI: 10.1016/j.omtm.2024.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Age-related macular degeneration (AMD) affects millions of individuals worldwide and is a leading cause of blindness in the elderly. In dry AMD, lipoproteinaceous deposits called drusen accumulate between the retinal pigment epithelium (RPE) and Bruch's membrane, leading to impairment of oxygen and nutrient trafficking to the neural retina, and degeneration of the overlying photoreceptor cells. Owing to key differences in human and animal ocular anatomy and the slowly progressing nature of the disease, AMD is not easily modeled in vivo. In this study, we further characterize a "drusen-in-a-dish" primary porcine RPE model system by employing vital lipid staining to monitor sub-RPE deposition over time in monolayers of cells cultured on porous transwell membranes. We demonstrate for the first time using a semi-automated image analysis pipeline that the number and size of sub-RPE deposits increases gradually but significantly over time and confirm that sub-RPE deposits grown in culture immunostain positive for multiple known components found in human drusen. As a result, we propose that drusen-in-a-dish cell culture models represent a high-throughput and cost-scalable alternative to animal models in which to study the pathobiology of drusen accumulation and may serve as useful tools for screening novel therapeutics aimed at treating dry AMD.
Collapse
Affiliation(s)
- Erika M. Shaw
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexander J. Tate
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ramesh Periasamy
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel M. Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Peterson KM, Mishra S, Asaki E, Powell JI, He Y, Berger AE, Rajapakse D, Wistow G. Serum-deprivation response of ARPE-19 cells; expression patterns relevant to age-related macular degeneration. PLoS One 2024; 19:e0293383. [PMID: 39325754 PMCID: PMC11426544 DOI: 10.1371/journal.pone.0293383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/26/2024] [Indexed: 09/28/2024] Open
Abstract
ARPE-19 cells are derived from adult human retinal pigment epithelium (RPE). The response of these cells to the stress of serum deprivation mimics some important processes relevant to age-related macular degeneration (AMD). Here we extend the characterization of this response using RNASeq and EGSEA gene set analysis of ARPE-19 cells over nine days of serum deprivation. This experiment confirmed the up-regulation of cholesterol and lipid-associated pathways that increase cholesterol levels in these cells. The gene expression analysis also identified other pathways relevant to AMD progression. There were significant changes in extracellular matrix gene expression, notably a switch from expression of collagen IV, a key component of Bruch's membrane (part of the blood-retina barrier), to expression of a fibrosis-like collagen type I matrix. Changes in the expression profile of the extracellular matrix led to the discovery that amelotin is induced in AMD and is associated with the development of the calcium deposits seen in late-stage geographic atrophy. The transcriptional profiles of other pathways, including inflammation, complement, and coagulation, were also modified, consistent with immune response patterns seen in AMD. As previously noted, the cells resist apoptosis and autophagy but instead initiate a gene expression pattern characteristic of senescence, consistent with the maintenance of barrier function even as other aspects of RPE function are compromised. Other differentially regulated genes were identified that open new avenues for investigation. Our results suggest that ARPE-19 cells maintain significant stress responses characteristic of native RPE that are informative for AMD. As such, they provide a convenient system for discovery and for testing potential therapeutic interventions.
Collapse
Affiliation(s)
- Katherine M. Peterson
- Molecular Structure and Functional Genomics Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sanghamitra Mishra
- Molecular Structure and Functional Genomics Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Esther Asaki
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John I. Powell
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yiwen He
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan E. Berger
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dinusha Rajapakse
- Molecular Structure and Functional Genomics Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Graeme Wistow
- Molecular Structure and Functional Genomics Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Viheriälä T, Hongisto H, Saari L, Oksanen M, Ilmarinen T, Väärämäki S, Uusitalo H, Nevalainen P, Skottman H. Novel Human Induced Pluripotent Stem Cell-Based Model for Retinal Pigment Epithelial Cells to Reveal Possible Disease Mechanisms for Macular Degeneration in Pseudoxanthoma Elasticum. J Ophthalmol 2024; 2024:6939920. [PMID: 39347541 PMCID: PMC11438508 DOI: 10.1155/2024/6939920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/06/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare metabolic disease with autosomal recessive inheritance. The manifestation in PXE is represented by retinal complications, pseudoxanthomas of the skin folding areas, and arterial calcification. The retinal complications are caused by the calcification of Bruch's membrane beneath retinal pigment epithelial cells (RPE) that can lead to retinal macular degeneration. The exact mechanism for the retinal pathophysiology is not known, and patients have variable symptoms and findings. Two induced pluripotent stem cell (hiPSC) lines from a patient carrying the common homozygous mutation c.3421C > T, p.Arg1141X in the ATP-binding cassette transporter gene (ABCC6; OMIM264800) were established and fully characterized. Then, RPE cells were differentiated, and molecular and functional characterization was conducted as a comparison to healthy controls. Data demonstrated that PXE-specific high-quality hiPSC lines can be established from a skin biopsy regardless of the skin-related disease phenotype and disease-specific RPE differentiation is feasible. The molecular and functional assessment of the PXE-specific RPE indicated increased pigmentation and reduced epithelial barrier functions as well as phagocytosis activity as compared to healthy controls. Although preliminary data, this indicates possible RPE-dependent factors that might explain the individual vulnerability of the retinas for macular degeneration in PXE. Future validation of the novel findings with additional PXE patients will be important.
Collapse
Affiliation(s)
- Taina Viheriälä
- Faculty of Medicine and Health Technology Tampere University, Tampere, Finland
| | - Heidi Hongisto
- Faculty of Medicine and Health Technology Tampere University, Tampere, Finland
| | - Lyydia Saari
- Faculty of Medicine and Health Technology Tampere University, Tampere, Finland
| | - Marika Oksanen
- Faculty of Medicine and Health Technology Tampere University, Tampere, Finland
| | - Tanja Ilmarinen
- Faculty of Medicine and Health Technology Tampere University, Tampere, Finland
| | - Suvi Väärämäki
- Centre for Vascular Surgery and Interventional Radiology Tampere University Hospital and Tampere University, Tampere, Finland
| | - Hannu Uusitalo
- SILK Department of Ophthalmology Faculty of Medicine and Health Technology Tampere University, Tampere, Finland
- Tays Eye Centre Tampere University Hospital, Tampere, Finland
| | - Pasi Nevalainen
- Department of Internal Medicine Tampere University Hospital, Tampere, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology Tampere University, Tampere, Finland
| |
Collapse
|
5
|
Wagner N, Tsai T, Reinehr S, Theile J, Dick HB, Joachim SC. Retinal debris triggers cytotoxic damage in cocultivated primary porcine RPE cells. Front Neurosci 2024; 18:1401571. [PMID: 39114482 PMCID: PMC11303199 DOI: 10.3389/fnins.2024.1401571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction One of the most common causes of vision loss in the elderly population worldwide is age-related macular degeneration (AMD). Subsequently, the number of people affected by AMD is estimated to reach approximately 288 million by the year 2040. The aim of this study was to develop an ex vivo model that simulates various aspects of the complex AMD pathogenesis. Methods For this purpose, primary porcine retinal pigment epithelial cells (ppRPE) were isolated and cultured. One group was exposed to medium containing sodium iodate (NaIO3) to induce degeneration. The others were exposed to different supplemented media, such as bovine serum albumin (BSA), homogenized porcine retinas (HPR), or rod outer segments (ROOS) for eight days to promote retinal deposits. Then, these ppRPE cells were cocultured with porcine neuroretina explants for another eight days. To assess the viability of ppRPE cells, live/dead assay was performed at the end of the study. The positive RPE65 and ZO1 area was evaluated by immunocytochemistry and the expression of RLBP1, RPE65, and TJP1 was analyzed by RT-qPCR. Additionally, drusen (APOE), inflammation (ITGAM, IL6, IL8, NLRP3, TNF), oxidative stress (NFE2L2, SOD1, SOD2), and hypoxia (HIF1A) markers were investigated. The concentration of the inflammatory cytokines IL-6 and IL-8 was determined in medium supernatants from day 16 and 24 via ELISA. Results Live/dead assay suggests that especially exposure to NaIO3 and HPR induced damage to ppRPE cells, leading in a significant ppRPE cell loss. All supplemented media resulted in decreased RPE-characteristic markers (RPE65; ZO-1) and gene expression like RLBP1 and RPE65 in the cultured ppRPE cells. Besides, some inflammatory, oxidative as well as hypoxic stress markers were altered in ppRPE cells cultivated with NaIO3. The application of HPR induced an enhanced APOE expression. Pre-exposure of the ppRPE cells led to a diminished number of cones in all supplemented media groups compared to controls. Discussion Overall, this novel coculture model represents an interesting initial approach to incorporating deposits into coculture to mimic AMD pathogenesis. Nevertheless, the effects of the media used need to be investigated in further studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Álvarez-Barrios A, Álvarez L, Pereiro R, González-Iglesias H. Elemental mass spectrometry to study metallo-transcriptomic changes during the in vitro degeneration of the retinal pigment epithelium. Anal Bioanal Chem 2024; 416:2699-2710. [PMID: 37507467 PMCID: PMC11009741 DOI: 10.1007/s00216-023-04880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Trace elements play crucial roles in cellular biology. Their improper homeostasis may contribute to the progress of eye diseases, exacerbated during ageing. The retinal pigment epithelium (RPE) is progressively deteriorated during age-related neurodegeneration and metal homeostasis may be compromised. In this study, elemental mass spectrometry (MS) was combined with cellular and molecular biology techniques to identify changes in trace elements during the in vitro degeneration of human RPE cells. Cells were collected at 21, 91, and 133 days and processed for RNA sequencing; Ca, Na, P, Mg, and Cu quantification by flow injection analysis and inductively coupled plasma-MS; and protein analysis by immunocytochemistry. Four-month-old RPE cultures showed depigmentation, impaired barrier function, and antioxidant protection, manifesting signs of epithelial-to-mesenchymal transition. Na and P significantly increased in the cytosol of degenerated RPE cells (from 15 ± 20 to 13495 ± 638 ng·µg-1 and from 30.6 ± 9.5 to 116.8 ± 16.8 ng·µg-1, respectively). Mg decreased in both the cytosol and insoluble fraction of cells (from 2.83 ± 0.40 to 1.58 ± 0.56 ng·µg-1 and from 247.57 ± 11.06 to 30 ± 8 ng·g-1, respectively), while P and Cu decreased in the insoluble fraction after 133 days in culture (from 9471 ± 1249 to 4555 ± 985 ng·µg-1 and from 2251 ± 79 to 1054 ± 235 ng·g-1, respectively), along with changes in metal-dependent antioxidant enzymes and Cu transporters. This RPE model reflected metal homeostatic changes, providing additional perspectives on effects of metal regulation during ageing.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Fundación de Investigación Oftalmológica, Avda. Dres. Fernández-Vega. 34, 33012, Oviedo, Spain
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Lydia Álvarez
- Fundación de Investigación Oftalmológica, Avda. Dres. Fernández-Vega. 34, 33012, Oviedo, Spain.
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012, Oviedo, Spain.
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.
| |
Collapse
|
7
|
Grubaugh CR, Dhingra A, Prakash B, Montenegro D, Sparrow JR, Daniele LL, Curcio CA, Bell BA, Hussain MM, Boesze-Battaglia K. Microsomal triglyceride transfer protein is necessary to maintain lipid homeostasis and retinal function. FASEB J 2024; 38:e23522. [PMID: 38445789 PMCID: PMC10949407 DOI: 10.1096/fj.202302491r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (APOB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic depletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor-associated cholesterol deposits, and photoreceptor cell death, and loss of rod but not cone function. RPE-specific reduction in Mttp had no significant effect on plasma lipids and lipoproteins. While APOB was decreased in the RPE, most ocular retinoids remained unchanged, with the exception of the storage form of retinoid, retinyl ester. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but is not directly involved in plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.
Collapse
Affiliation(s)
- Catharina R. Grubaugh
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Binu Prakash
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Diego Montenegro
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY, 10027 USA
| | - Janet R. Sparrow
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY, 10027 USA
| | - Lauren L. Daniele
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brent A. Bell
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Curcio CA, Kar D, Owsley C, Sloan KR, Ach T. Age-Related Macular Degeneration, a Mathematically Tractable Disease. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38466281 PMCID: PMC10916886 DOI: 10.1167/iovs.65.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
A progression sequence for age-related macular degeneration onset may be determinable with consensus neuroanatomical nomenclature augmented by drusen biology and eye-tracked clinical imaging. This narrative review proposes to supplement the Early Treatment of Diabetic Retinopathy Study (sETDRS) grid with a ring to capture high rod densities. Published photoreceptor and retinal pigment epithelium (RPE) densities in flat mounted aged-normal donor eyes were recomputed for sETDRS rings including near-periphery rich in rods and cumulatively for circular fovea-centered regions. Literature was reviewed for tissue-level studies of aging outer retina, population-level epidemiology studies regionally assessing risk, vision studies regionally assessing rod-mediated dark adaptation (RMDA), and impact of atrophy on photopic visual acuity. The 3 mm-diameter xanthophyll-rich macula lutea is rod-dominant and loses rods in aging whereas cone and RPE numbers are relatively stable. Across layers, the largest aging effects are accumulation of lipids prominent in drusen, loss of choriocapillary coverage of Bruch's membrane, and loss of rods. Epidemiology shows maximal risk for drusen-related progression in the central subfield with only one third of this risk level in the inner ring. RMDA studies report greatest slowing at the perimeter of this high-risk area. Vision declines precipitously when the cone-rich central subfield is invaded by geographic atrophy. Lifelong sustenance of foveal cone vision within the macula lutea leads to vulnerability in late adulthood that especially impacts rods at its perimeter. Adherence to an sETDRS grid and outer retinal cell populations within it will help dissect mechanisms, prioritize research, and assist in selecting patients for emerging treatments.
Collapse
Affiliation(s)
- Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Risseeuw S, Pilgrim MG, Bertazzo S, Brown CN, Csincsik L, Fearn S, Thompson RB, Bergen AA, ten Brink JB, Kortvely E, Spiering W, Ossewaarde–van Norel J, van Leeuwen R, Lengyel I. Bruch's Membrane Calcification in Pseudoxanthoma Elasticum: Comparing Histopathology and Clinical Imaging. OPHTHALMOLOGY SCIENCE 2024; 4:100416. [PMID: 38170125 PMCID: PMC10758992 DOI: 10.1016/j.xops.2023.100416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 01/05/2024]
Abstract
Purpose To investigate the histology of Bruch's membrane (BM) calcification in pseudoxanthoma elasticum (PXE) and correlate this to clinical retinal imaging. Design Experimental study with clinicopathological correlation. Subjects and Controls Six postmortem eyes from 4 PXE patients and 1 comparison eye from an anonymous donor without PXE. One of the eyes had a multimodal clinical image set for comparison. Methods Calcification was labeled with OsteSense 680RD, a fluorescent dye specific for hydroxyapatite, and visualized with confocal microscopy. Scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy (SEM-EDX) and time-of-flight secondary ion mass spectrometry (TOF-SIMs) were used to analyze the elemental and ionic composition of different anatomical locations. Findings on cadaver tissues were compared with clinical imaging of 1 PXE patient. Main Outcome Measures The characteristics and topographical distribution of hydroxyapatite in BM in eyes with PXE were compared with the clinical manifestations of the disease. Results Analyses of whole-mount and sectioned PXE eyes revealed an extensive, confluent OsteoSense labeling in the central and midperipheral BM, transitioning to a speckled labeling in the midperiphery. These areas corresponded to hyperreflective and isoreflective zones on clinical imaging. Scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy and TOF-SIMs analyses identified these calcifications as hydroxyapatite in BM of PXE eyes. The confluent fluorescent appearance originates from heavily calcified fibrous structures of both the collagen and the elastic layers of BM. Calcification was also detected in an aged comparison eye, but this was markedly different from PXE eyes and presented as small snowflake-like deposits in the posterior pole. Conclusions Pseudoxanthoma elasticum eyes show extensive hydroxyapatite deposition in the inner and outer collagenous and elastic BM layers in the macula with a gradual change toward the midperiphery, which seems to correlate with the clinical phenotype. The snowflake-like calcification in BM of an aged comparison eye differed markedly from the extensive calcification in PXE. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Sara Risseeuw
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Matthew G. Pilgrim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Connor N. Brown
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Lajos Csincsik
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sarah Fearn
- Department of Materials, Imperial College London, London, United Kingdom
| | - Richard B. Thompson
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - Arthur A. Bergen
- Departments of Human Genetics and Ophthalmology, Amsterdam UMC, location AMC Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jacoline B. ten Brink
- Departments of Human Genetics and Ophthalmology, Amsterdam UMC, location AMC Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elod Kortvely
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | | | - Redmer van Leeuwen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
10
|
Zhao Q, Lai K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp Eye Res 2024; 239:109770. [PMID: 38145794 DOI: 10.1016/j.exer.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Age-related macular degeneration (AMD) can lead to irreversible impairment of visual function, and the number of patients with AMD has been increasing globally. The immunoinflammatory theory is an important pathogenic mechanism of AMD, with macrophages serving as the primary inflammatory infiltrating cells in AMD lesions. Its powerful immunoinflammatory regulatory function has attracted considerable attention. Herein, we provide an overview of the involvement of macrophage-regulated immunoinflammation in different stages of AMD. Additionally, we summarize novel therapeutic approaches for AMD, focusing on targeting macrophages, such as macrophage/microglia modulators, reduction of macrophage aggregation in the subretinal space, modulation of macrophage effector function, macrophage phenotypic alterations, and novel biomimetic nanocomposites development based on macrophage-associated functional properties. We aimed to provide a basis and reference for the further exploration of AMD pathogenesis, developmental influences, and new therapeutic approaches.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China.
| |
Collapse
|
11
|
Grubaugh CR, Dhingra A, Prakash B, Montenegro D, Sparrow JR, Daniele LL, Curcio CA, Bell BA, Hussain MM, Boesze-Battaglia K. Microsomal triglyceride transfer protein is necessary to maintain lipid homeostasis and retinal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570418. [PMID: 38105975 PMCID: PMC10723417 DOI: 10.1101/2023.12.06.570418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or to age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (apoB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic deletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor -associated cholesterol deposits and photoreceptor cell death, and loss of rod but not cone function. RPE-specific ablation of Mttp had no significant effect on plasma lipids and lipoproteins. While, apoB was decreased in the RPE, ocular retinoid concentrations remained unchanged. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but not directly involved in ocular retinoid and plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.
Collapse
Affiliation(s)
- Catharina R. Grubaugh
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Binu Prakash
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Diego Montenegro
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY,10027 USA
| | - Janet R. Sparrow
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY,10027 USA
| | - Lauren L. Daniele
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brent A. Bell
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Fietz A, Schnichels S, Hurst J. Co-cultivation of primary porcine RPE cells and neuroretina induces inflammation: a potential inflammatory AMD-model. Sci Rep 2023; 13:19345. [PMID: 37935821 PMCID: PMC10630302 DOI: 10.1038/s41598-023-46029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
One common aspect in the pathology of many retinal diseases like age-related macular degeneration (AMD) is the death of retinal pigment epithelium (RPE) cells. RPE cells are essential for photoreceptor survival as they recycle and remove compounds of the visual cycle and secrete protective cytokines. Studying RPE cells is crucial to improve our understanding of retinal pathologies, yet only a few retinal ex vivo models include them or do so only indirectly. Besides the positive effects in indirect co-cultivation models, also a slight inflammation was observed. In this study we developed an ex vivo model consisting of a primary porcine RPE monolayer directly co-cultured with porcine retinal organ cultures, to investigate and simulate inflammatory retinal diseases, such as (dry) AMD. The direct co-cultivation resulted in immune reactivity (enhanced expression of pro-inflammatory cytokines e.g., IL-1β, IL-6, IL-8) and cell death. These effects were evaluated for the retinal explant as well as for the RPE-monolayer to further understand the complex interactions between these two compartments. Taken together, this ex vivo model can be used to study inflammatory retinal diseases like AMD as well as the rejection observed after RPE-transplantation.
Collapse
Affiliation(s)
- Agnes Fietz
- Centre for Ophthalmology, University Eye Hospital Tübingen, 72076, Tübingen, Germany
| | - Sven Schnichels
- Centre for Ophthalmology, University Eye Hospital Tübingen, 72076, Tübingen, Germany.
| | - José Hurst
- Centre for Ophthalmology, University Eye Hospital Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
13
|
Hernandez BJ, Skiba NP, Plössl K, Strain M, Liu Y, Grigsby D, Kelly U, Cady MA, Manocha V, Maminishkis A, Watkins T, Miller SS, Ashley‐Koch A, Stamer WD, Weber BHF, Bowes Rickman C, Klingeborn M. Polarized Desmosome and Hemidesmosome Shedding via Small Extracellular Vesicles is an Early Indicator of Outer Blood-Retina Barrier Dysfunction. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e116. [PMID: 38108061 PMCID: PMC10720597 DOI: 10.1002/jex2.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023]
Abstract
The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photoreceptor function of the eye, and is constantly exposed to oxidative stress. As such, dysfunction of the RPE underlies pathology leading to development of age-related macular degeneration (AMD), the leading cause of vision loss among the elderly in industrialized nations. A major responsibility of the RPE is to process photoreceptor outer segments, which relies on the proper functioning of its endocytic pathways and endosomal trafficking. Exosomes and other extracellular vesicles (EVs) from RPE are an essential part of these pathways and may be early indicators of cellular stress. To test the role of small EVs (sEVs) including exosomes, that may underlie the early stages of AMD, we used a polarized primary RPE cell culture model under chronic subtoxic oxidative stress. Unbiased proteomic analyses of highly purified basolateral sEVs from oxidatively stressed RPE cultures revealed changes in proteins involved in epithelial barrier integrity. There were also significant changes in proteins accumulating in the basal-side sub-RPE extracellular matrix during oxidative stress, that could be prevented with an inhibitor of sEV release. Thus, chronic subtoxic oxidative stress in primary RPE cultures induces changes in sEV content, including basal-side specific desmosome and hemidesmosome shedding via sEVs. These findings provide novel biomarkers of early cellular dysfunction and opportunity for therapeutic intervention in age-related retinal diseases (e.g., AMD).
Collapse
Affiliation(s)
- Belinda J. Hernandez
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
| | - Karolina Plössl
- Institute of Human GeneticsUniversity of RegensburgRegensburgGermany
| | - Madison Strain
- Duke Molecular Physiology Institute, Department of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Yutao Liu
- Department of Cellular Biology and AnatomyAugusta UniversityAugustaGeorgiaUSA
| | - Daniel Grigsby
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
| | - Una Kelly
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
| | - Martha A. Cady
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
| | - Vikram Manocha
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
| | - Arvydas Maminishkis
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and DiseaseNational Eye Institute, National Institutes of HealthBethesdaMarylandUSA
| | - TeddiJo Watkins
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
- Office of Animal Welfare Assurance, Duke Animal Care and Use ProgramDuke UniversityDurhamNorth CarolinaUSA
| | - Sheldon S. Miller
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and DiseaseNational Eye Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Allison Ashley‐Koch
- Duke Molecular Physiology Institute, Department of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Bernhard H. F. Weber
- Institute of Human GeneticsUniversity of RegensburgRegensburgGermany
- Institute of Clinical Human GeneticsUniversity Hospital RegensburgRegensburgGermany
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
- Department of Cell BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke Eye CenterDuke UniversityDurhamNorth CarolinaUSA
- McLaughlin Research InstituteGreat FallsMontanaUSA
| |
Collapse
|
14
|
Kar D, Corradetti G, Swain TA, Clark ME, McGwin G, Owsley C, Sadda SR, Curcio CA. Choriocapillaris Impairment Is Associated With Delayed Rod-Mediated Dark Adaptation in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2023; 64:41. [PMID: 37768273 PMCID: PMC10540875 DOI: 10.1167/iovs.64.12.41] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Purpose Progress toward treatment and prevention of age-related macular degeneration (AMD) requires imaging end points that relate to vision. We investigated choriocapillaris flow signal deficits (FD%) and visual function in eyes of individuals aged ≥60 years, with and without AMD. Methods One eye of each participant in the baseline visit of the Alabama Study on Early Age-Related Macular Degeneration 2 (ALSTAR2; NCT04112667) was studied. AMD presence and severity was determined using the Age-Related Eye Disease Study (AREDS) grading system. FD% was quantified using macular spectral domain optical coherence tomography angiography (OCTA) scans. Vision tests included rod-mediated dark adaptation (RMDA), best-corrected visual acuity, and contrast sensitivity (photopic and mesopic), and microperimetric light sensitivity (scotopic, mesopic, and photopic). Presence of subretinal drusenoid deposits (SDD) was determined using multimodal imaging. Results In 410 study eyes of 410 participants (mean [SD] age = 71.7 years [5.9]), FD% was higher in early AMD (mean [SD] = 54.0% [5.5], N = 122) and intermediate AMD (59.8% [7.4], N = 92), compared to normal (52.1% [5.3], N = 196) eyes. Among visual functions evaluated, RMDA showed the strongest association with FD% (r = 0.35, P < 0.0001), followed by contrast sensitivity (r = -0.22, P < 0.0001). Eyes with SDD had worse FD% (58.3% [7.4], N = 87), compared to eyes without SDD (53.4% [6.0], N = 323, P = < 0.0001). Conclusions Choriocapillaris FD% were associated with AMD severity and with impaired vision, especially RMDA. Reduced metabolic transport and exchange across the choriocapillaris-Bruch's membrane retinal pigment epithelium (RPE) complex, a causal factor for high-risk soft drusen formation, also may impair photoreceptor sustenance from the circulation. This includes retinoid resupply, essential to dynamic rod function.
Collapse
Affiliation(s)
- Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Giulia Corradetti
- Doheny Eye Institute, Los Angeles, California, United States
- Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, California, United States
| | - Thomas A. Swain
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - SriniVas R. Sadda
- Doheny Eye Institute, Los Angeles, California, United States
- Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, California, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
15
|
Hernandez BJ, Skiba NP, Plößl K, Strain M, Grigsby D, Kelly U, Cady MA, Manocha V, Maminishkis A, Watkins T, Miller SS, Ashley-Koch A, Stamer WD, Weber BHF, Rickman CB, Klingeborn M. Polarized Desmosome and Hemidesmosome Shedding via Exosomes is an Early Indicator of Outer Blood-Retina Barrier Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544677. [PMID: 37398366 PMCID: PMC10312606 DOI: 10.1101/2023.06.12.544677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photoreceptor function of the eye, and is constantly exposed to oxidative stress. As such, dysfunction of the RPE underlies pathology leading to development of age-related macular degeneration (AMD), the leading cause of vision loss among the elderly in industrialized nations. A major responsibility of the RPE is to process photoreceptor outer segments, which relies on the proper functioning of its endocytic pathways and endosomal trafficking. Exosomes and other extracellular vesicles from RPE are an essential part of these pathways and may be early indicators of cellular stress. To test the role of exosomes that may underlie the early stages of AMD, we used a polarized primary RPE cell culture model under chronic subtoxic oxidative stress. Unbiased proteomic analyses of highly purified basolateral exosomes from oxidatively stressed RPE cultures revealed changes in proteins involved in epithelial barrier integrity. There were also significant changes in proteins accumulating in the basal-side sub-RPE extracellular matrix during oxidative stress, that could be prevented with an inhibitor of exosome release. Thus, chronic subtoxic oxidative stress in primary RPE cultures induces changes in exosome content, including basal-side specific desmosome and hemidesmosome shedding via exosomes. These findings provide novel biomarkers of early cellular dysfunction and opportunity for therapeutic intervention in age-related retinal diseases, (e.g., AMD) and broadly from blood-CNS barriers in other neurodegenerative diseases.
Collapse
|
16
|
McGwin G, Kar D, Berlin A, Clark ME, Swain TA, Crosson JN, Sloan KR, Owsley C, Curcio CA. Macular and Plasma Xanthophylls Are Higher in Age-related Macular Degeneration than in Normal Aging: Alabama Study on Early Age-related Macular Degeneration 2 Baseline. OPHTHALMOLOGY SCIENCE 2023; 3:100263. [PMID: 36864830 PMCID: PMC9972499 DOI: 10.1016/j.xops.2022.100263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Purpose Quantification of retinal xanthophyll carotenoids in eyes with and without age-related macular degeneration (AMD) via macular pigment optical volume (MPOV), a metric for xanthophyll abundance from dual wavelength autofluorescence, plus correlations to plasma levels, could clarify the role of lutein (L) and zeaxanthin (Z) in health, AMD progression, and supplementation strategies. Design Cross-sectional observational study (NCT04112667). Participants Adults ≥ 60 years from a comprehensive ophthalmology clinic, with healthy maculas or maculas meeting fundus criteria for early or intermediate AMD. Methods Macular health and supplement use was assessed by the Age-related Eye Disease Study (AREDS) 9-step scale and self-report, respectively. Macular pigment optical volume was measured from dual wavelength autofluorescence emissions (Spectralis, Heidelberg Engineering). Non-fasting blood draws were assayed for L and Z using high-performance liquid chromatography. Associations among plasma xanthophylls and MPOV were assessed adjusting for age. Main Outcome Measures Age-related macular degeneration presence and severity, MPOV in fovea-centered regions of radius 2.0° and 9.0°; plasma L and Z (μM/ml). Results Of 809 eyes from 434 persons (89% aged 60-79, 61% female), 53.3% eyes were normal, 28.2% early AMD, and 18.5% intermediate AMD. Macular pigment optical volume 2° and 9° were similar in phakic and pseudophakic eyes, which were combined for analysis. Macular pigment optical volume 2° and 9° and plasma L and Z were higher in early AMD than normal and higher still in intermediate AMD (P < 0.0001). For all participants, higher plasma L was correlated with higher MPOV 2° (Spearman correlation coefficient [Rs] = 0.49; P < 0.0001). These correlations were significant (P < 0.0001) but lower in normal (Rs = 0.37) than early and intermediate AMD (Rs = 0.52 and 0.51, respectively). Results were similar for MPOV 9°. Plasma Z, MPOV 2°, and MPOV 9° followed this same pattern of associations. Associations were not affected by supplement use or smoking status. Conclusions A moderate positive correlation of MPOV with plasma L and Z comports with regulated xanthophyll bioavailability and a hypothesized role for xanthophyll transfer in soft drusen biology. An assumption that xanthophylls are low in AMD retina underlies supplementation strategies to reduce progression risk, which our data do not support. Whether higher xanthophyll levels in AMD are due to supplement use cannot be determined in this study.
Collapse
Key Words
- ALSTAR2, Alabama Study on Early Age-related Macular Degeneration 2
- AMD, age-related macular degeneration
- AREDS, age-related eye disease studies
- Age-related macular degeneration
- Autofluorescence
- BrM, Bruch’s membrane
- HDL, high density lipoprotein
- L, Lutein
- Lutein
- MP, macular pigment
- MPOD, macular pigment optical density
- MPOV, macular pigment optical volume
- Macular xanthophyll pigment
- RPE, retinal pigment epithelium
- Z, Zeaxanthin
- Zeaxanthin
Collapse
Affiliation(s)
- Gerald McGwin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andreas Berlin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Ophthalmology, University Hospital Wurzburg, Wurzburg, Germany
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas A. Swain
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jason N. Crosson
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Retina Consultants of Alabama, Birmingham, Alabama
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Computer Science, School of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
17
|
Emri E, Cappa O, Kelly C, Kortvely E, SanGiovanni JP, McKay BS, Bergen AA, Simpson DA, Lengyel I. Zinc Supplementation Induced Transcriptional Changes in Primary Human Retinal Pigment Epithelium: A Single-Cell RNA Sequencing Study to Understand Age-Related Macular Degeneration. Cells 2023; 12:773. [PMID: 36899910 PMCID: PMC10000409 DOI: 10.3390/cells12050773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Zinc supplementation has been shown to be beneficial to slow the progression of age-related macular degeneration (AMD). However, the molecular mechanism underpinning this benefit is not well understood. This study used single-cell RNA sequencing to identify transcriptomic changes induced by zinc supplementation. Human primary retinal pigment epithelial (RPE) cells could mature for up to 19 weeks. After 1 or 18 weeks in culture, we supplemented the culture medium with 125 µM added zinc for one week. RPE cells developed high transepithelial electrical resistance, extensive, but variable pigmentation, and deposited sub-RPE material similar to the hallmark lesions of AMD. Unsupervised cluster analysis of the combined transcriptome of the cells isolated after 2, 9, and 19 weeks in culture showed considerable heterogeneity. Clustering based on 234 pre-selected RPE-specific genes divided the cells into two distinct clusters, we defined as more and less differentiated cells. The proportion of more differentiated cells increased with time in culture, but appreciable numbers of cells remained less differentiated even at 19 weeks. Pseudotemporal ordering identified 537 genes that could be implicated in the dynamics of RPE cell differentiation (FDR < 0.05). Zinc treatment resulted in the differential expression of 281 of these genes (FDR < 0.05). These genes were associated with several biological pathways with modulation of ID1/ID3 transcriptional regulation. Overall, zinc had a multitude of effects on the RPE transcriptome, including several genes involved in pigmentation, complement regulation, mineralization, and cholesterol metabolism processes associated with AMD.
Collapse
Affiliation(s)
- Eszter Emri
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
- Section Ophthalmogenetics, Department of Human Genetics, Queen Emma Centre for Precision Medicine, Amsterdam UMC, Location AMC, 1105AZ Amsterdam, The Netherlands
| | - Oisin Cappa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Caoimhe Kelly
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Elod Kortvely
- Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - John Paul SanGiovanni
- Biosciences Research Laboratories, BIO5 Institute, University of Arizona, 1230 North Cherry Avenue, Tucson, AZ 85724, USA
| | - Brian S. McKay
- Department of Ophthalmology and Vision Science, University of Arizona, 1656 E. Mabel Street, Tucson, AZ 85724, USA
| | - Arthur A. Bergen
- Section Ophthalmogenetics, Department of Human Genetics, Queen Emma Centre for Precision Medicine, Amsterdam UMC, Location AMC, 1105AZ Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), 1105AZ Amsterdam, The Netherlands
| | - David A. Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| |
Collapse
|
18
|
Menero-Valdés P, Lores-Padín A, Fernández B, Quarles CD, García M, González-Iglesias H, Pereiro R. Determination and localization of specific proteins in individual ARPE-19 cells by single cell and laser ablation ICP-MS using iridium nanoclusters as label. Talanta 2023; 253:123974. [PMID: 36195026 DOI: 10.1016/j.talanta.2022.123974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022]
Abstract
Single cell-inductively coupled plasma-mass spectrometry (sc-ICP-MS) and laser ablation (LA)-ICP-MS have been complementary employed to develop a comprehensive study of APOE and claudin-1 expression in ARPE-19 cells submitted to a glucose treatment (100 mM, 48 h) that induces oxidative stress conditions. Results were compared with control cells. The determination of the two proteins by ICP-MS was sequentially carried out using specific immunoprobes labelled with IrNCs that offer a huge amplification (1760 ± 90 atoms of Ir on average). A novel sample introduction system, the microFAST Single Cell set-up, was employed for sc-ICP-MS analysis. This introduction system resulted in a cellular transport efficiency of 85 ± 9% for ARPE-19 cells (91 ± 5% using a PtNPs standard). After the proper immunocytochemistry protocol with the specific IrNCs immunoprobes in cell suspensions (sc-ICP-MS), the mass of APOE and claudin-1 in individual ARPE-19 cells was obtained. Average detection limits per cell by sc-ICP-MS were 0.02 fg of APOE and 3 ag of claudin-1. The results of sample analyses obtained by sc-ICP-MS were validated with commercial ELISA kits. The distribution of both target proteins in individual cells (fixated in the chamber wall) was unveiled by LA-ICP-MS. The high amplification provided by the IrNCs immunoprobes allowed the identification of APOE and claudin-1 within individual ARPE-19 cells. High resolution images were obtained using a laser spot of 2 × 2 μm.
Collapse
Affiliation(s)
- Paula Menero-Valdés
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, Oviedo, 33006, Spain
| | - Ana Lores-Padín
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, Oviedo, 33006, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, Oviedo, 33006, Spain.
| | - C Derrick Quarles
- Elemental Scientific, Inc., 7277 World Communications Drive, Omaha, NE, 68122, USA
| | - Montserrat García
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, Oviedo, 33012, Spain; Department of Cellular Morphology and Biology, Faculty of Medicine, Julian Clavería, Oviedo, 33006, Spain
| | - Héctor González-Iglesias
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, Oviedo, 33006, Spain.
| |
Collapse
|
19
|
Chen YY, Chen YJ. The Relationship between Dietary Calcium and Age-Related Macular Degeneration. Nutrients 2023; 15:671. [PMID: 36771377 PMCID: PMC9920890 DOI: 10.3390/nu15030671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Mineral element supplements are widely used in the older adult population. However, little is known of their impact on the progression of age-related macular degeneration (ARMD). The aim of this study was to examine the association between dietary micronutrients and ARMD in older adults. METHODS We enrolled 5227 participants from the National Health and Nutrition Examination Survey (NHANES 2005-2008) in this cross-sectional study. ARMD was evaluated using an ophthalmic digital imaging system and digital camera. Mineral element consumption was collected using a 24-hour dietary recall. The association between mineral element use and the presence of ARMD was determined by multivariable logistic regression. RESULTS After adjusting for relevant variables, dietary calcium was negatively associated with ARMD (OR: 680, 95%CI: 0.482-0.960). In contrast to dietary form, serum concentration of calcium was not associated with ARMD. Moreover, increased dietary calcium was associated with reduced ARMD (OR: 0.684, 95%CI: 0.468-1.000). CONCLUSION A lower consumption of dietary calcium was significantly associated with a higher risk of ARMD. Further longitudinal studies are necessary to explore these findings.
Collapse
Affiliation(s)
- Yuan-Yuei Chen
- Department of Pathology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Department of Pathology, Tri-Service General Hospital Songshan Branch, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Ying-Jen Chen
- Department of Ophthalmology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
20
|
Álvarez-Barrios A, Álvarez L, Artime E, García M, Lengyel I, Pereiro R, González-Iglesias H. Altered zinc homeostasis in a primary cell culture model of the retinal pigment epithelium. Front Nutr 2023; 10:1124987. [PMID: 37139441 PMCID: PMC10149808 DOI: 10.3389/fnut.2023.1124987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
The retinal pigment epithelium (RPE) is progressively degenerated during age-related macular degeneration (AMD), one of the leading causes of irreversible blindness, which clinical hallmark is the buildup of sub-RPE extracellular material. Clinical observations indicate that Zn dyshomeostasis can initiate detrimental intracellular events in the RPE. In this study, we used a primary human fetal RPE cell culture model producing sub-RPE deposits accumulation that recapitulates features of early AMD to study Zn homeostasis and metalloproteins changes. RPE cell derived samples were collected at 10, 21 and 59 days in culture and processed for RNA sequencing, elemental mass spectrometry and the abundance and cellular localization of specific proteins. RPE cells developed processes normal to RPE, including intercellular unions formation and expression of RPE proteins. Punctate deposition of apolipoprotein E, marker of sub-RPE material accumulation, was observed from 3 weeks with profusion after 2 months in culture. Zn cytoplasmic concentrations significantly decreased 0.2 times at 59 days, from 0.264 ± 0.119 ng·μg-1 at 10 days to 0.062 ± 0.043 ng·μg-1 at 59 days (p < 0.05). Conversely, increased levels of Cu (1.5-fold in cytoplasm, 5.0-fold in cell nuclei and membranes), Na (3.5-fold in cytoplasm, 14.0-fold in cell nuclei and membranes) and K (6.8-fold in cytoplasm) were detected after 59-days long culture. The Zn-regulating proteins metallothioneins showed significant changes in gene expression over time, with a potent down-regulation at RNA and protein level of the most abundant isoform in primary RPE cells, from 0.141 ± 0.016 ng·mL-1 at 10 days to 0.056 ± 0.023 ng·mL-1 at 59 days (0.4-fold change, p < 0.05). Zn influx and efflux transporters were also deregulated, along with an increase in oxidative stress and alterations in the expression of antioxidant enzymes, including superoxide dismutase, catalase and glutathione peroxidase. The RPE cell model producing early accumulation of extracellular deposits provided evidences on an altered Zn homeostasis, exacerbated by changes in cytosolic Zn-binding proteins and Zn transporters, along with variations in other metals and metalloproteins, suggesting a potential role of altered Zn homeostasis during AMD development.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Fundación de Investigación Oftalmológica, Oviedo, Spain
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, Oviedo, Spain
| | - Lydia Álvarez
- Fundación de Investigación Oftalmológica, Oviedo, Spain
- Lydia Álvarez,
| | - Enol Artime
- Fundación de Investigación Oftalmológica, Oviedo, Spain
| | | | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- *Correspondence: Héctor González-Iglesias,
| |
Collapse
|
21
|
Hood EMS, Curcio CA, Lipinski D. Isolation, culture, and cryosectioning of primary porcine retinal pigment epithelium on transwell cell culture inserts. STAR Protoc 2022; 3:101758. [PMID: 36227744 PMCID: PMC9576630 DOI: 10.1016/j.xpro.2022.101758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Primary culture and long-term maintenance of primary retinal pigment epithelium (RPE) is a useful model system for the study of ocular pathologies such as age-related macular degeneration. Here, we detail the steps for the isolation and long-term culture of primary porcine RPE. We also describe steps for cryoprotecting, cryosectioning, and interrogating with immunofluorescence and histochemistry RPE cells grown on transwell membranes. These techniques can be used in histological studies to detect sub-RPE deposits. For complete details on the use and execution of this protocol, please refer to Pilgrim et al., (2017).
Collapse
Affiliation(s)
- Erika M S Hood
- Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Lipinski
- Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
22
|
den Hollander AI, Mullins RF, Orozco LD, Voigt AP, Chen HH, Strunz T, Grassmann F, Haines JL, Kuiper JJW, Tumminia SJ, Allikmets R, Hageman GS, Stambolian D, Klaver CCW, Boeke JD, Chen H, Honigberg L, Katti S, Frazer KA, Weber BHF, Gorin MB. Systems genomics in age-related macular degeneration. Exp Eye Res 2022; 225:109248. [PMID: 36108770 PMCID: PMC10150562 DOI: 10.1016/j.exer.2022.109248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 12/29/2022]
Abstract
Genomic studies in age-related macular degeneration (AMD) have identified genetic variants that account for the majority of AMD risk. An important next step is to understand the functional consequences and downstream effects of the identified AMD-associated genetic variants. Instrumental for this next step are 'omics' technologies, which enable high-throughput characterization and quantification of biological molecules, and subsequent integration of genomics with these omics datasets, a field referred to as systems genomics. Single cell sequencing studies of the retina and choroid demonstrated that the majority of candidate AMD genes identified through genomic studies are expressed in non-neuronal cells, such as the retinal pigment epithelium (RPE), glia, myeloid and choroidal cells, highlighting that many different retinal and choroidal cell types contribute to the pathogenesis of AMD. Expression quantitative trait locus (eQTL) studies in retinal tissue have identified putative causal genes by demonstrating a genetic overlap between gene regulation and AMD risk. Linking genetic data to complement measurements in the systemic circulation has aided in understanding the effect of AMD-associated genetic variants in the complement system, and supports that protein QTL (pQTL) studies in plasma or serum samples may aid in understanding the effect of genetic variants and pinpointing causal genes in AMD. A recent epigenomic study fine-mapped AMD causal variants by determing regulatory regions in RPE cells differentiated from induced pluripotent stem cells (iPSC-RPE). Another approach that is being employed to pinpoint causal AMD genes is to produce synthetic DNA assemblons representing risk and protective haplotypes, which are then delivered to cellular or animal model systems. Pinpointing causal genes and understanding disease mechanisms is crucial for the next step towards clinical translation. Clinical trials targeting proteins encoded by the AMD-associated genomic loci C3, CFB, CFI, CFH, and ARMS2/HTRA1 are currently ongoing, and a phase III clinical trial for C3 inhibition recently showed a modest reduction of lesion growth in geographic atrophy. The EYERISK consortium recently developed a genetic test for AMD that allows genotyping of common and rare variants in AMD-associated genes. Polygenic risk scores (PRS) were applied to quantify AMD genetic risk, and may aid in predicting AMD progression. In conclusion, genomic studies represent a turning point in our exploration of AMD. The results of those studies now serve as a driving force for several clinical trials. Expanding to omics and systems genomics will further decipher function and causality from the associations that have been reported, and will enable the development of therapies that will lessen the burden of AMD.
Collapse
Affiliation(s)
- Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; AbbVie, Genomics Research Center, Cambridge, MA, USA.
| | - Robert F Mullins
- The University of Iowa Institute for Vision Research, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | | | - Andrew P Voigt
- The University of Iowa Institute for Vision Research, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | | | - Tobias Strunz
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | | | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA; Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Center of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Rando Allikmets
- Department of Ophthalmology, Columbia University, NY, USA; Department of Pathology and Cell Biology, Columbia University, NY, USA
| | - Gregory S Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Dwight Stambolian
- Departments of Ophthalmology and Human Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Caroline C W Klaver
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; Departments of Ophthalmology and Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, NY, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, NY, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Hao Chen
- Genentech, South San Francisco, CA, USA
| | | | | | - Kelly A Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, USA
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
| | - Michael B Gorin
- Departments of Ophthalmology and Human Genetics, University of California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Study of the protective role of Zn in cultured retinal pigment epithelial cells subjected to pro-inflammatory conditions using transcriptomics and mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Ramtohul P, Cabral D, Klancnik JM, Curcio CA, Freund KB. Soft drusen accumulation within a full-thickness macular hole: new insights into the mechanisms of lipid cycling pathways in age-related macular degeneration. Eye (Lond) 2022; 36:2346-2347. [PMID: 35296802 PMCID: PMC9674576 DOI: 10.1038/s41433-022-02012-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Prithvi Ramtohul
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
| | - Diogo Cabral
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
| | - James M Klancnik
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
- Department of Ophthalmology, NYU Grossman School of New York, New York, NY, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of New York, New York, NY, USA.
| |
Collapse
|
25
|
Evaluation of the microperimetry in eyes with cuticular drusen. Sci Rep 2022; 12:17557. [PMID: 36266529 PMCID: PMC9584893 DOI: 10.1038/s41598-022-22513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/17/2022] [Indexed: 01/13/2023] Open
Abstract
Retinal sensitivity may vary by subtypes of cuticular drusen. This retrospective study included 52 eyes of 32 patients with cuticular drusen. All the patients underwent assessment of best-corrected visual acuity (BCVA), spectral-domain optical coherence tomography (SD-OCT), color fundus photography, fluorescein angiography, fundus autofluorescence, and microperimetry. The area occupied by drusen was counted using microperimetry. The cuticular drusen subtype was classified into 3 groups based on the SD-OCT findings. Age, BCVA, pattern standard deviation, area occupied by drusen, pupil size, and the false-positive rate were not significantly different (p > 0.05) according to the cuticular drusen type. The mean retinal sensitivity (MRS) (p = 0.063) and mean deviation (MD) (p = 0.098) showed marginally significant differences among the groups. In the subgroup analyses, type 1 and type 3 cuticular drusen showed significant differences in the MD (- 1.8 ± 2.1 vs - 5.1 ± 5.3; p = 0.011) and MRS (25.1 ± 2.2 vs 21.3 ± 5.7; p = 0.016) without differences in age, BCVA, or the area occupied by drusen (p > 0.05). The results indicate that depending on the subtypes of cuticular drusen type, the deterioration of retinal sensitivity is more likely to occur than decreased vision.
Collapse
|
26
|
Bharti K, den Hollander AI, Lakkaraju A, Sinha D, Williams DS, Finnemann SC, Bowes-Rickman C, Malek G, D'Amore PA. Cell culture models to study retinal pigment epithelium-related pathogenesis in age-related macular degeneration. Exp Eye Res 2022; 222:109170. [PMID: 35835183 PMCID: PMC9444976 DOI: 10.1016/j.exer.2022.109170] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
Abstract
Age-related macular degeneration (AMD) is a disease that affects the macula - the central part of the retina. It is a leading cause of irreversible vision loss in the elderly. AMD onset is marked by the presence of lipid- and protein-rich extracellular deposits beneath the retinal pigment epithelium (RPE), a monolayer of polarized, pigmented epithelial cells located between the photoreceptors and the choroidal blood supply. Progression of AMD to the late nonexudative "dry" stage of AMD, also called geographic atrophy, is linked to progressive loss of areas of the RPE, photoreceptors, and underlying choriocapillaris leading to a severe decline in patients' vision. Differential susceptibility of macular RPE in AMD and the lack of an anatomical macula in most lab animal models has promoted the use of in vitro models of the RPE. In addition, the need for high throughput platforms to test potential therapies has driven the creation and characterization of in vitro model systems that recapitulate morphologic and functional abnormalities associated with human AMD. These models range from spontaneously formed cell line ARPE19, immortalized cell lines such as hTERT-RPE1, RPE-J, and D407, to primary human (fetal or adult) or animal (mouse and pig) RPE cells, and embryonic and induced pluripotent stem cell (iPSC) derived RPE. Hallmark RPE phenotypes, such as cobblestone morphology, pigmentation, and polarization, vary significantly betweendifferent models and culture conditions used in different labs, which would directly impact their usability for investigating different aspects of AMD biology. Here the AMD Disease Models task group of the Ryan Initiative for Macular Research (RIMR) provides a summary of several currently used in vitro RPE models, historical aspects of their development, RPE phenotypes that are attainable in these models, their ability to model different aspects of AMD pathophysiology, and pros/cons for their use in the RPE and AMD fields. In addition, due to the burgeoning use of iPSC derived RPE cells, the critical need for developing standards for differentiating and rigorously characterizing RPE cell appearance, morphology, and function are discussed.
Collapse
Affiliation(s)
- Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, NIH, Bethesda, MD, USA.
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; AbbVie, Genomics Research Center, Cambridge, MA, USA.
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, USA.
| | - Debasish Sinha
- Department of Ophthalmology, Cell Biology and Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - David S Williams
- Stein Eye Institute, Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Silvia C Finnemann
- Center of Cancer, Genetic Diseases, and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| | - Catherine Bowes-Rickman
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Patricia A D'Amore
- Mass Eye and Ear, Departments of Ophthalmology and Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Chen L, Yang P, Curcio CA. Visualizing lipid behind the retina in aging and age-related macular degeneration, via indocyanine green angiography (ASHS-LIA). Eye (Lond) 2022; 36:1735-1746. [PMID: 35314773 PMCID: PMC9391351 DOI: 10.1038/s41433-022-02016-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/12/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Age-related macular degeneration (AMD) causes legal blindness in older adults worldwide. Soft drusen are the most extensively documented intraocular risk factor for progression to advanced AMD. A long-standing paradox in AMD pathophysiology has been the vulnerability of Asian populations to polypoidal choroidal vasculopathy (PCV) in the presence of relatively few drusen. Age-related scattered hypofluorescent spots on late phase indocyanine green angiography (ASHS-LIA) was recently proposed as precursors of PCV. Herein, we offer a resolution to the paradox by reviewing evidence that ASHS-LIA indicates the diffuse form of lipoprotein-related lipids accumulating in Bruch's membrane (BrM) throughout adulthood. Deposition of these lipids leads to soft drusen and basal linear deposit (BLinD), a thin layer of soft drusen material in AMD; Pre-BLinD is the precursor. This evidence includes: 1. Both ASHS-LIA and pre-BLinD/BLinD accumulate in older adults and start under the macula; 2. ASHS-LIA shares hypofluorescence with soft drusen, known to be physically continuous with pre-BLinD/BLinD. 3. Model system studies illuminated a mechanism for indocyanine green uptake by retinal pigment epithelium. 4. Neither ASHS-LIA nor pre-BLinD/ BLinD are visible by multimodal imaging anchored on current optical coherence tomography, as confirmed with direct clinicopathologic correlation. To contextualize ASHS-LIA, we also summarize angiographic characteristics of different drusen subtypes in AMD. As possible precursors for PCV, lipid accumulation in forms beyond soft drusen may contribute to the pathogenesis of this prevalent disease in Asia. ASHS-LIA also might help identify patients at risk for progression, of value to clinical trials for therapies targeting early or intermediate AMD.
Collapse
Affiliation(s)
- Ling Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
28
|
Grant MB, Bernstein PS, Boesze-Battaglia K, Chew E, Curcio CA, Kenney MC, Klaver C, Philp NJ, Rowan S, Sparrow J, Spaide RF, Taylor A. Inside out: Relations between the microbiome, nutrition, and eye health. Exp Eye Res 2022; 224:109216. [PMID: 36041509 DOI: 10.1016/j.exer.2022.109216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Age-related macular degeneration (AMD) is a complex disease with increasing numbers of individuals being afflicted and treatment modalities limited. There are strong interactions between diet, age, the metabolome, and gut microbiota, and all of these have roles in the pathogenesis of AMD. Communication axes exist between the gut microbiota and the eye, therefore, knowing how the microbiota influences the host metabolism during aging could guide a better understanding of AMD pathogenesis. While considerable experimental evidence exists for a diet-gut-eye axis from murine models of human ocular diseases, human diet-microbiome-metabolome studies are needed to elucidate changes in the gut microbiome at the taxonomic and functional levels that are functionally related to ocular pathology. Such studies will reveal new ways to diminish risk for progression of- or incidence of- AMD. Current data suggest that consuming diets rich in dark fish, fruits, vegetables, and low in glycemic index are most retina-healthful during aging.
Collapse
Affiliation(s)
- Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Paul S Bernstein
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | | | - Emily Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, Bethesda, MD, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Cristina Kenney
- Department of Ophthalmology, University of California at Irvine, Irvine, CA, USA
| | - Caroline Klaver
- Department of Ophthalmology, Department of Epidemiology, Erasmus Medical Center Rotterdam, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Nancy J Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Janet Sparrow
- Department of Ophthalmology, Columbia University, New York City, NY, USA
| | - Richard F Spaide
- Vitreous, Retina, Macula Consultants of New York, New York, NY, USA
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| |
Collapse
|
29
|
Molins B, Mesquida M, Adan A. Bioengineering approaches for modelling retinal pathologies of the outer blood-retinal barrier. Prog Retin Eye Res 2022:101097. [PMID: 35840488 DOI: 10.1016/j.preteyeres.2022.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
Alterations of the junctional complex of the outer blood-retinal barrier (oBRB), which is integrated by the close interaction of the retinal pigment epithelium, the Bruch's membrane, and the choriocapillaris, contribute to the loss of neuronal signalling and subsequent vision impairment in several retinal inflammatory disorders such as age-related macular degeneration and diabetic retinopathy. Reductionist approaches into the mechanisms that underlie such diseases have been hindered by the absence of adequate in vitro models using human cells to provide the 3D dynamic architecture that enables expression of the in vivo phenotype of the oBRB. Conventional in vitro cell models are based on 2D monolayer cellular cultures, unable to properly recapitulate the complexity of living systems. The main drawbacks of conventional oBRB models also emerge from the cell sourcing, the lack of an appropriate Bruch's membrane analogue, and the lack of choroidal microvasculature with flow. In the last years, the advent of organ-on-a-chip, bioengineering, and stem cell technologies is providing more advanced 3D models with flow, multicellularity, and external control over microenvironmental properties. By incorporating additional biological complexity, organ-on-a-chip devices can mirror physiologically relevant properties of the native tissue while offering additional set ups to model and study disease. In this review we first examine the current understanding of oBRB biology as a functional unit, highlighting the coordinated contribution of the different components to barrier function in health and disease. Then we describe recent advances in the use of pluripotent stem cells-derived retinal cells, Bruch's membrane analogues, and co-culture techniques to recapitulate the oBRB. We finally discuss current advances and challenges of oBRB-on-a-chip technologies for disease modelling.
Collapse
Affiliation(s)
- Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain.
| | - Marina Mesquida
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Alfredo Adan
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Instituto Clínic de Oftalmología, Hospital Clínic Barcelona, C/ Sabino de Arana 1, 08028, Barcelona, Spain
| |
Collapse
|
30
|
Wu A, Lu R, Lee E. Tissue engineering in age-related macular degeneration: a mini-review. J Biol Eng 2022; 16:11. [PMID: 35578246 PMCID: PMC9109377 DOI: 10.1186/s13036-022-00291-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Age-related macular degeneration (AMD) is a progressive, degenerative disease of the macula, leading to severe visual loss in the elderly population. There are two types of AMD: non-exudative ('dry') AMD and exudative ('wet') AMD. Non-exudative AMD is characterized by drusen formation and macular atrophy, while the blood vessels are not leaky. Exudative AMD is a more advanced form of the disease, featured with abnormal blood vessel growth and vascular leakage. Even though anti-angiogenic therapies have been effective in treating wet AMD by normalizing blood vessels, there is no treatment available to prevent or treat dry AMD. Currently, the mechanisms of drusen formation and macular atrophy in the dry AMD are poorly understood, in part because the currently available in vivo models of AMD could not decouple and isolate the complex biological and biophysical factors in the macular region for a detailed mechanism study, including the complement system, angiogenesis factors, extracellular matrix, etc. In the present review article, we describe the biological background of AMD and the key cells and structures in AMD, including retinal epithelium, photoreceptor, Bruch's membrane, and choriocapillaris. We also discuss pre-clinical animal models of AMD and in vivo tissue-engineered approaches, including cell suspension injection and organoid-derived cell sheet transplantation. We also discuss in vitro tissue-engineered models for AMD research. Specifically, we evaluate and compare currently available two- and three-dimensional AMD tissue-engineered models that mimic key anatomical players in AMD progression, including pathophysiological characteristics in Bruch's membrane, photoreceptor, and choriocapillaris. Finally, we discuss the limitation of current AMD models and future directions.
Collapse
Affiliation(s)
- Andres Wu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Ann S. Bowers College of Computing and Information Science, Cornell University, Ithaca, NY, 14853, USA
| | - Renhao Lu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
31
|
Rizzolo LJ, Nasonkin IO, Adelman RA. Retinal Cell Transplantation, Biomaterials, and In Vitro Models for Developing Next-generation Therapies of Age-related Macular Degeneration. Stem Cells Transl Med 2022; 11:269-281. [PMID: 35356975 PMCID: PMC8968686 DOI: 10.1093/stcltm/szac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Retinal pigment epithelium (RPE) cells grown on a scaffold, an RPE patch, have potential to ameliorate visual impairment in a limited number of retinal degenerative conditions. This tissue-replacement therapy is suited for age-related macular degeneration (AMD), and related diseases. RPE cells must be transplanted before the disease reaches a point of no return, represented by the loss of photoreceptors. Photoreceptors are specialized, terminally differentiated neurosensory cells that must interact with RPE's apical processes to be functional. Human photoreceptors are not known to regenerate. On the RPE's basal side, the RPE transplant must induce the reformation of the choriocapillaris, thereby re-establishing the outer blood-retinal barrier. Because the scaffold is positioned between the RPE and choriocapillaris, it should ideally degrade and be replaced by the natural extracellular matrix that separates these tissues. Besides biodegradable, the scaffolds need to be nontoxic, thin enough to not affect the focal length of the eye, strong enough to survive the transplant procedure, yet flexible enough to conform to the curvature of the retina. The challenge is patients with progressing AMD treasure their remaining vision and fear that a risky surgical procedure will further degrade their vision. Accordingly, clinical trials only treat eyes with severe impairment that have few photoreceptors to interact with the transplanted patch. Although safety has been demonstrated, the cell-replacement mechanism and efficacy remain difficult to validate. This review covers the structure of the retina, the pathology of AMD, the limitations of cell therapy approaches, and the recent progress in developing retinal therapies using biomaterials.
Collapse
Affiliation(s)
- Lawrence J Rizzolo
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
- Department of Surgery, Yale University, New Haven, CT, USA
| | | | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
| |
Collapse
|
32
|
Engel AL, Wang Y, Khuu TH, Worrall E, Manson MA, Lim RR, Knight K, Yanagida A, Qi JH, Ramakrishnan A, Weleber RG, Klein ML, Wilson DJ, Anand-Apte B, Hurley JB, Du J, Chao JR. Extracellular matrix dysfunction in Sorsby patient-derived retinal pigment epithelium. Exp Eye Res 2022; 215:108899. [PMID: 34929159 PMCID: PMC8923943 DOI: 10.1016/j.exer.2021.108899] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
Sorsby Fundus Dystrophy (SFD) is a rare form of macular degeneration that is clinically similar to age-related macular degeneration (AMD), and a histologic hallmark of SFD is a thick layer of extracellular deposits beneath the retinal pigment epithelium (RPE). Previous studies of SFD patient-induced pluripotent stem cell (iPSC) derived RPE differ as to whether these cultures recapitulate this key clinical feature by forming increased drusenoid deposits. The primary purpose of this study is to examine whether SFD patient-derived iPSC-RPE form basal deposits similar to what is found in affected family member SFD globes and to determine whether SFD iPSC RPE may be more oxidatively stressed. We performed a careful comparison of iPSC RPE from three control individuals, multiple iPSC clones from two SFD patients' iPSC RPE, and post-mortem eyes of affected SFD family members. We also examined the effect of CRISPR-Cas9 gene correction of the S204C TIMP3 mutation on RPE phenotype. Finally, targeted metabolomics with liquid chromatography and mass spectrometry analysis and stable isotope-labeled metabolite analysis were performed to determine whether SFD RPE are more oxidatively stressed. We found that SFD iPSC-RPE formed significantly more sub-RPE deposits (∼6-90 μm in height) compared to control RPE at 8 weeks. These deposits were similar in composition to the thick layer of sub-RPE deposits found in SFD family member globes by immunofluorescence staining and TEM imaging. S204C TIMP3 correction by CRISPR-Cas9 gene editing in SFD iPSC RPE cells resulted in significantly reduced basal laminar and sub-RPE calcium deposits. We detected a ∼18-fold increase in TIMP3 accumulation in the extracellular matrix (ECM) of SFD RPE, and targeted metabolomics showed that intracellular 4-hydroxyproline, a major breakdown product of collagen, is significantly elevated in SFD RPE, suggesting increased ECM turnover. Finally, SFD RPE cells have decreased intracellular reduced glutathione and were found to be more vulnerable to oxidative stress. Our findings suggest that elements of SFD pathology can be demonstrated in culture which may lead to insights into disease mechanisms.
Collapse
Affiliation(s)
- Abbi L. Engel
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - YeKai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506,Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Thomas H. Khuu
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Emily Worrall
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Megan A. Manson
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Rayne R. Lim
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Kaitlen Knight
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Aya Yanagida
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Jian Hua Qi
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44106
| | - Aravind Ramakrishnan
- Center for Blood Cancers and Oncology, St. David’s South Austin Medical Center, Austin, TX 78704
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201
| | - Michael L. Klein
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201
| | - David J. Wilson
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44106
| | - James B. Hurley
- Department of Ophthalmology, University of Washington, Seattle, WA 98109,Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506,Department of Biochemistry, West Virginia University, Morgantown, WV 26506,Corresponding authors: , 750 Republican Street, Box 358058, Seattle WA 98109 (206) 221-0594; or , One Medical Center Dr., PO Box 9193, WVU Eye Institute, Morgantown, WV 26505; Phone: (304)-598-6903; Fax: (304)-598- 6928
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, WA 98109,Corresponding authors: , 750 Republican Street, Box 358058, Seattle WA 98109 (206) 221-0594; or , One Medical Center Dr., PO Box 9193, WVU Eye Institute, Morgantown, WV 26505; Phone: (304)-598-6903; Fax: (304)-598- 6928
| |
Collapse
|
33
|
Chuang JZ, Yang N, Nakajima N, Otsu W, Fu C, Yang HH, Lee MP, Akbar AF, Badea TC, Guo Z, Nuruzzaman A, Hsu KS, Dunaief JL, Sung CH. Retinal pigment epithelium-specific CLIC4 mutant is a mouse model of dry age-related macular degeneration. Nat Commun 2022; 13:374. [PMID: 35042858 PMCID: PMC8766482 DOI: 10.1038/s41467-021-27935-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. Dry AMD has unclear etiology and no treatment. Lipid-rich drusen are the hallmark of dry AMD. An AMD mouse model and insights into drusenogenesis are keys to better understanding of this disease. Chloride intracellular channel 4 (CLIC4) is a pleomorphic protein regulating diverse biological functions. Here we show that retinal pigment epithelium (RPE)-specific Clic4 knockout mice exhibit a full spectrum of functional and pathological hallmarks of dry AMD. Multidisciplinary longitudinal studies of disease progression in these mice support a mechanistic model that links RPE cell-autonomous aberrant lipid metabolism and transport to drusen formation.
Collapse
Affiliation(s)
- Jen-Zen Chuang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| | - Nan Yang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nobuyuki Nakajima
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Urology, Tokai University, Kanagawa, Japan
| | - Wataru Otsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Cheng Fu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Howard Hua Yang
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maxwell Ping Lee
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Tudor Constantin Badea
- National Eye Institute, National institute of Health, Bethesda, MD, USA
- Research and Development Institute, Transilvania University of Brasov, School of Medicine, Brasov, Romania
| | - Ziqi Guo
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Afnan Nuruzzaman
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Kuo-Shun Hsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Sloan Kettering Cancer Institute, New York, NY, USA
| | - Joshua L Dunaief
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
34
|
Epithelial phenotype restoring drugs suppress macular degeneration phenotypes in an iPSC model. Nat Commun 2021; 12:7293. [PMID: 34911940 PMCID: PMC8674335 DOI: 10.1038/s41467-021-27488-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 11/16/2021] [Indexed: 01/14/2023] Open
Abstract
Age-related Macular Degeneration (AMD), a blinding eye disease, is characterized by pathological protein- and lipid-rich drusen deposits underneath the retinal pigment epithelium (RPE) and atrophy of the RPE monolayer in advanced disease stages - leading to photoreceptor cell death and vision loss. Currently, there are no drugs that stop drusen formation or RPE atrophy in AMD. Here we provide an iPSC-RPE AMD model that recapitulates drusen and RPE atrophy. Drusen deposition is dependent on AMD-risk-allele CFH(H/H) and anaphylatoxin triggered alternate complement signaling via the activation of NF-κB and downregulation of autophagy pathways. Through high-throughput screening we identify two drugs, L-745,870, a dopamine receptor antagonist, and aminocaproic acid, a protease inhibitor that reduce drusen deposits and restore RPE epithelial phenotype in anaphylatoxin challenged iPSC-RPE with or without the CFH(H/H) genotype. This comprehensive iPSC-RPE model replicates key AMD phenotypes, provides molecular insight into the role of CFH(H/H) risk-allele in AMD, and discovers two candidate drugs to treat AMD.
Collapse
|
35
|
Mack HG, Colville DJ, Harraka P, Savige JA, Invernizzi A, Fraser-Bell S. Retinal findings in glomerulonephritis. Clin Exp Optom 2021; 105:474-486. [PMID: 34877922 DOI: 10.1080/08164622.2021.2003691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The complement system is part of the innate immune system activated by three distinct pathways: classical, lectin and alternative. It is also involved in retinal development and homoeostasis. Dense deposit disease is a rare renal disease associated with mutations in Complement factor H and overactivity of the alternative complement pathway. As well as glomerulonephritis, many affected individuals have retinal drusen and may be at risk of vision loss due to macular atrophy or choroidal neovascularisation. We discuss the reclassification of dense deposit disease as a type of C3 glomerulonephropathy, and hypothesise on the mechanisms of retinal abnormalities. Drusen have also been described in individuals with other types of glomerulonephritis involving abnormalities of the classical (membranoproliferative glomerulonephritis type 1) or lectin (IgA nephropathy, lupus nephritis) complement pathways. Although drusen are found in abnormalities of all three complement pathways, the age at onset, aetiology, and the threat to vision differs. This review describes drusen and other retinal abnormalities associated with the glomerulonephritides due to abnormal activation in each of the three complement activation pathways, and provides the first report of drusen occurring in a patient with the recently reclassified C3 glomerulonephritis with homozygous variant V62I in complement factor H. Optometric management of young patients presenting with retinal drusen is discussed, and complement-based therapies for visual loss are reviewed.
Collapse
Affiliation(s)
- Heather G Mack
- Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Australia.,Department of Ophthalmology, Melbourne Health, Melbourne, Australia.,Centre for Eye Research, University of Melbourne, Melbourne, Australia
| | - Deborah J Colville
- Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Australia.,Department of Ophthalmology, Melbourne Health, Melbourne, Australia
| | - Phillip Harraka
- Department of Medicine (Northern), University of Melbourne, Melbourne, Australia
| | - Judith Anne Savige
- Department of Medicine (Northern), University of Melbourne, Melbourne, Australia
| | - Alessandro Invernizzi
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy
| | | |
Collapse
|
36
|
Yang S, Gao Z, Qiu H, Zuo C, Mi L, Xiao H, Liu X. Low-Reflectivity Drusen With Overlying RPE Damage Revealed by Spectral-Domain OCT: Hint for the Development of Age-Related Macular Degeneration. Front Med (Lausanne) 2021; 8:706502. [PMID: 34765613 PMCID: PMC8575777 DOI: 10.3389/fmed.2021.706502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To observe the relationship between the characteristic changes in the drusen morphology revealed by the spectral-domain optical coherence tomography (SD-OCT) and the progression of age-related macular degeneration (AMD). Methods: A total of 380 drusen in 45 eyes in 35 patients with the intermediate drusen were longitudinally followed up every 6 months by SD-OCT for a period of 24 months. The drusen were divided into the dynamic group and stable group according to the following parameters: number, volume, concurrent retinal pigment epithelium (RPE)/ellipsoid zone (EZ) damage, and the development of advanced AMD. The morphological characteristics of the progressive or stable drusen were further analyzed. Odds ratios (ORs) and the risk for the drusen progression were calculated. Results: The level of interobserver and intraobserver agreement for each drusen tomographic morphological parameters ranged from 82.7 to 90%. At the end of an average follow-up of 15.92 ± 6.99 months, six patients developed choroidal neovascularization and no patients developed geographic atrophy. Finally, 139 drusen changed and 241 drusen remained stable. The drusen with low reflectivity (p < 0.001; OR: 5.26; 95% CI: 2.24-12.36), non-homogeneity without a core (p < 0.001; OR: 4.31; 95% CI: 2.08-8.92), RPE damage (p < 0.001; OR: 28.12; 95% CI: 9.43-83.85), and the EZ damage (p < 0.001; OR: 14.01; 95% CI: 5.28-37.18) were significantly associated with active change; the drusen with low reflectivity (p = 0.01; OR: 2.95; 95% CI: 1.29-6.75) and decreased overlying RPE reflectivity (p < 0.001; OR: 21.67; 95% CI: 9.20-51.02) were the independent predictors for progression. The drusen with high reflectivity were significantly associated with stabilization (p = 0.03; OR: 0.17; 95% CI: 0.04-0.84). Conclusion: Spectral-domain optical coherence tomography is an optimized, accurate, and efficient method to follow-up the drusen. The intermediate non-exudative AMD prognosis of the patient was most strongly correlated with the drusen reflectivity and disruption of the overlying RPE layer. The drusen with low reflectivity and overlying RPE damage were more likely to progress and required frequent follow-up.
Collapse
Affiliation(s)
- Shasha Yang
- Department of Ophthalmology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zongyin Gao
- Department of Ophthalmology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haijiang Qiu
- Department of Ophthalmology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lan Mi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hui Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Tichotová L, Studenovska H, Petrovski G, Popelka Š, Nemesh Y, Sedláčková M, Drutovič S, Rohiwal S, Jendelová P, Erceg S, Brymová A, Artero‐Castro A, Lytvynchuk L, Straňák Z, Ellederová Z, Motlík J, Ardan T. Advantages of nanofibrous membranes for culturing of primary RPE cells compared to commercial scaffolds. Acta Ophthalmol 2021; 100:e1172-e1185. [PMID: 34687141 DOI: 10.1111/aos.15034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Dysfunction of the retinal pigment epithelium (RPE) causes numerous forms of retinal degeneration. RPE replacement is a modern option to save vision. We aimed to test the results of transplanting cultured RPEs on biocompatible membranes. METHODS We cultivated porcine primary RPE cells isolated from cadaver eyes from the slaughterhouse on two types of membranes: commercial polyester scaffolds Transwell (Corning Inc., Kenneburg, ME, USA) with 0.4 µm pore size and prepared Poly (L-lactide-co-DL-lactide) (PDLLA) nanofibrous membranes with an average pore size of 0.4 µm. RESULTS Five types of assays were used for the analysis: immunocytochemistry (ICC), phagocytosis assay, Western blotting, real-time qPCR (RT-qPCR) and electron microscopy. RT-qPCR demonstrated that RPEs cultured on nanofibrous membranes have higher expressions of BEST1 (bestrophin 1), RLBP1 (retinaldehyde-binding protein 1), RPE65 (retinal pigment epithelium-specific 65 kDa protein), PAX6 (transcription factor PAX6), SOX9 (transcription factor SOX9), DCT (dopachrome tautomerase) and MITF (microphthalmia-associated transcription factor). ICC of the RPEs cultured on nanofibrous membranes showed more intensive staining of markers such as BEST1, MCT1 (monocarboxylate transporter 1), Na+ /K+ ATPase, RPE65 and acetylated tubulin in comparison with commercial ones. Additionally, the absence of α-SMA proved the stability of the RPE polarization state and the absence of epithelial-to-mesenchymal transition. RPE possessed high phagocytic activity. Electron microscopy of both membranes confirmed a confluent layer of RPE cells and their genuine morphological structure, which was comparable to native RPEs. CONCLUSIONS Retinal pigment epitheliums cultured on polylactide nanofibrous membranes improved the final quality of the cell product by having better maturation and long-term survival of the RPE monolayer compared to those cultured on commercial polyester scaffolds. PDLLA-cultured RPEs are a plausible source for the replacement of non-functioning RPEs during cell therapy.
Collapse
Affiliation(s)
- Lucie Tichotová
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
- Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
| | - Hana Studenovska
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Goran Petrovski
- Center for Eye Research Department of Ophthalmology Oslo University Hospital and Institute for Clinical Medicine University of Oslo Oslo Norway
| | - Štěpán Popelka
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Yaroslav Nemesh
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
- Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
| | - Miroslava Sedláčková
- Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
| | - Saskia Drutovič
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
| | - Sonali Rohiwal
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
| | - Pavla Jendelová
- Institute of Experimental Medicine Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Slaven Erceg
- Institute of Experimental Medicine Academy of Sciences of the Czech Republic Prague Czech Republic
- Stem Cell Therapies in Neurodegenerative Diseases Lab Research Center ‘Principe Felipe’ Valencia Spain
| | - Anna Brymová
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
- Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
| | - Ana Artero‐Castro
- Stem Cell Therapies in Neurodegenerative Diseases Lab Research Center ‘Principe Felipe’ Valencia Spain
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology Justus‐Liebig‐University Giessen University Hospital Giessen and Marburg Giessen Germany
| | - Zbyněk Straňák
- Ophthalmology Department of 3rd Faculty of Medicine Charles University and University Hospital Kralovske Vinohrady Prague Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Zdeňka Ellederová
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
| | - Jan Motlík
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
| | - Taras Ardan
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
| |
Collapse
|
38
|
Chinchilla B, Fernandez-Godino R. AMD-Like Substrate Causes Epithelial Mesenchymal Transition in iPSC-Derived Retinal Pigment Epithelial Cells Wild Type but Not C3-Knockout. Int J Mol Sci 2021; 22:ijms22158183. [PMID: 34360950 PMCID: PMC8348968 DOI: 10.3390/ijms22158183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
The Bruch's membrane (BrM) is a five-layered extracellular matrix (ECM) that supports the retinal pigment epithelium (RPE). Normal age-related changes in the BrM may lead to RPE cell damage and ultimately to the onset and progression of age-related macular degeneration (AMD), which is the most common cause of visual loss among the elderly. A role for the complement system in AMD pathology has been established, but the disease mechanisms are poorly understood, which hampers the design of efficient therapies to treat millions of patients. In an effort to identify the mechanisms that lead from normal aging to pathology, we have developed a cell-based model using complement deficient human induced pluripotent stem cell (iPSC)-derived RPE cells cultured on an AMD-like ECM that mimics BrM. The data present evidence that changes in the ECM result in loss of differentiation and promote epithelial mesenchymal transition (EMT) of healthy RPE cells. This pathological process is mediated by complement activation and involves the formation of a randomly oriented collagen meshwork that drives the dedifferentiation of the RPE monolayer. Genetic ablation of complement component 3 has a protective effect against EMT but does not prevent the abnormal deposition of collagens. These findings offer new insights into the sequence of events that initiate AMD and may guide the design of efficient therapies to treat this disease with unmet medical needs.
Collapse
|
39
|
Pollreisz A, Reiter GS, Bogunovic H, Baumann L, Jakob A, Schlanitz FG, Sacu S, Owsley C, Sloan KR, Curcio CA, Schmidt-Erfurth U. Topographic Distribution and Progression of Soft Drusen Volume in Age-Related Macular Degeneration Implicate Neurobiology of Fovea. Invest Ophthalmol Vis Sci 2021; 62:26. [PMID: 33605982 PMCID: PMC7900846 DOI: 10.1167/iovs.62.2.26] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose To refine estimates of macular soft drusen abundance in eyes with age-related macular degeneration (AMD) and evaluate hypotheses about drusen biogenesis, we investigated topographic distribution and growth rates of drusen by optical coherence tomography (OCT). We compared results to retinal features with similar topographies (cone density and macular pigment) in healthy eyes. Methods In a prospective study, distribution and growth rates of soft drusen in eyes with AMD were identified by human observers in OCT volumes and analyzed with computer-assistance. Published histologic data for macular cone densities (n = 12 eyes) and in vivo macular pigment optical density (MPOD) measurements in older adults with unremarkable maculae (n = 31; 62 paired eyes, averaged) were revisited. All values were normalized to Early Treatment Diabetic Retinopathy Study (ETDRS) subfield areas. Results Sixty-two eyes of 44 patients were imaged for periods up to 78 months. Soft drusen volume per unit volume at baseline is 24.6-fold and 2.3-fold higher in the central ETDRS subfield than in outer and inner rings, respectively, and grows most prominently there. Corresponding ratios (central versus inner and central versus outer) for cone density in donor eyes is 13.3-fold and 5.1-fold and for MPOD, 24.6 and 23.9-fold, and 3.6 and 3.6-fold. Conclusions Normalized soft drusen volume in AMD eyes as assessed by OCT is ≥ 20-fold higher in central ETDRS subfields than in outer rings, paralleling MPOD distribution in healthy eyes. Data on drusen volume support this metric for AMD risk assessment and clinical trial outcome measure. Alignment of different data modalities support the ETDRS grid for standardizing retinal topography in mechanistic studies of drusen biogenesis.
Collapse
Affiliation(s)
- Andreas Pollreisz
- Department of Ophthalmology and Optometry, Medical University Vienna, Vienna, Austria
| | - Gregor S Reiter
- Department of Ophthalmology and Optometry, Medical University Vienna, Vienna, Austria
| | - Hrvoje Bogunovic
- Department of Ophthalmology and Optometry, Medical University Vienna, Vienna, Austria
| | - Lukas Baumann
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University Vienna, Vienna, Austria
| | - Astrid Jakob
- Department of Ophthalmology and Optometry, Medical University Vienna, Vienna, Austria
| | - Ferdinand G Schlanitz
- Department of Ophthalmology and Optometry, Medical University Vienna, Vienna, Austria
| | - Stefan Sacu
- Department of Ophthalmology and Optometry, Medical University Vienna, Vienna, Austria
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kenneth R Sloan
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | |
Collapse
|
40
|
Fan J, Rajapakse D, Peterson K, Lerner J, Parsa S, Ponduri A, Sagar V, Duncan T, Dong L, Wistow G. Retbindin mediates light-damage in mouse retina while its absence leads to premature retinal aging. Exp Eye Res 2021; 209:108698. [PMID: 34228964 DOI: 10.1016/j.exer.2021.108698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
Vision requires the transport and recycling of the pigment 11-cis retinaldehyde (retinal) between the retinal pigment epithelium (RPE) and photoreceptors. 11-cis retinal is also required for light-mediated photoreceptor death in dark-adapted mouse eye, probably through overstimulation of rod cells adapted for low light. Retbindin is a photoreceptor-specific protein, of unclear function, that is localized between the RPE and the tips of the photoreceptors. Unexpectedly, young Rtbdn-KO mice, with targeted deletion (KO) of retbindin, showed delayed regeneration of retinal function after bleaching and were strongly resistant to light-induced photoreceptor death. Furthermore, bio-layer interferometry binding studies showed recombinant retbindin had significant affinity for retinoids, most notably 11-cis retinal. This suggests that retbindin mediates light damage, probably through a role in transport of 11-cis retinal. In Rtbdn-KO mice, retinal development was normal, as were amplitudes of rod and cone electroretinograms (ERG) up to 4 months, although implicit times and c-waves were affected. However, with aging, both light- and dark-adapted ERG amplitudes declined significantly and photoreceptor outer segments became disordered, However, in contrast to other reports, there was little retinal degeneration or drop in flavin levels. The RPE developed vacuoles and lipid, protein and calcium deposits reminiscent of age-related macular degeneration. Other signs of premature aging included loss of OPN4+ retinal ganglion cells and activation of microglia. Thus, retbindin plays an unexpected role in the mammalian visual cycle, probably as an adaptation for vision in dim light. It mediates light damage in the dark-adapted eye, but also plays a role in light-adapted responses and in long term retinal homeostasis.
Collapse
Affiliation(s)
- Jianguo Fan
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dinusha Rajapakse
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Peterson
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Lerner
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shabnam Parsa
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arjun Ponduri
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vatsala Sagar
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
41
|
Peripheral Monocyte Count and Age-Related Macular Degeneration. The Tongren Health Care Study. Am J Ophthalmol 2021; 227:143-153. [PMID: 33737032 DOI: 10.1016/j.ajo.2021.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE To assess potential associations between the prevalence of age-related macular degeneration (AMD) and systemic parameters in a Chinese population. DESIGN Cross-sectional study. METHODS The Tongren Health Care Study included individuals attending regular health care check-up examinations in the Beijing Tongren Hospital from 2017 to 2019. Detailed medical examinations and ophthalmic examinations were applied, including fundus photography. AMD was evaluated according to the Beckman Initiative guidelines. RESULTS The study included 7,719 participants (mean age: 60.5 ± 8.1 years; range: 50-97 years). The prevalence of any, early, intermediate, and late AMD was 1,607 of 7,719 (20.8%; 95% confidence interval [CI]: 20.1%, 21.9%), 832 of 7,719 (10.8%; 95% CI: 10.1%, 11.5%), 733 of 7,719 (9.5%; 95% CI: 8.9%, 10.2%), and 42 of 7,719 (0.50%; 95% CI: 0.40%, 0.70%), respectively. In multivariate analysis, the prevalence of any AMD increased with higher blood monocyte count (odds ratio [OR]:3.49; 95% CI: 2.26, 5.38; P < .001), after adjusting for older age (OR: 1.06; 95% CI: 1.05, 1.07; P < .001), higher serum concentration of calcium (OR: 2.52; 95% CI: 1.32, 4.84; P = .005), high-density lipoproteins (OR: 1.39; 95% CI: 1.19, 1.61; P < .001), and lower lipoprotein a (OR: 0.99; 95% CI: 0.98, 0.99; P = .02). Similar findings were obtained for the prevalence of intermediate and late AMD combined. The association between higher monocyte count and higher AMD prevalence showed the highest odds ratio for the age group of 50-59 years (any AMD: OR: 4.35, P < .001; intermediate and late AMD: OR: 6.14, P < .001). Individuals with a monocyte count of ≥0.5 × 109/L as compared to participants with a monocyte of 0.1-0.4 × 109/L had a 1.45-fold increased risk for any AMD (OR: 1.45; 95% CI: 1.27, 1.64; P < .001) and 1.58 fold increase risk for intermediate/late AMD (OR: 1.58; 95% CI: 1.33, 1.87; P < .001). CONCLUSION A higher prevalence of early AMD, intermediate AMD, late AMD, and any AMD was associated with a higher peripheral monocyte count. In agreement with previous studies, the observation suggests monocytes playing a role in the pathogenesis of AMD.
Collapse
|
42
|
Chinchilla B, Foltopoulou P, Fernandez-Godino R. Tick-over-mediated complement activation is sufficient to cause basal deposit formation in cell-based models of macular degeneration. J Pathol 2021; 255:120-131. [PMID: 34155630 DOI: 10.1002/path.5747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022]
Abstract
Despite numerous unsuccessful clinical trials for anti-complement drugs to treat age-related macular degeneration (AMD), the complement system has not been fully explored as a target to stop drusen growth in patients with dry AMD. We propose that the resilient autoactivation of C3 by hydrolysis of its internal thioester (tick-over), which cannot be prevented by existing drugs, plays a critical role in the formation of drusenoid deposits underneath the retinal pigment epithelium (RPE). We have combined gene editing tools with stem cell technology to generate cell-based models that allow the role of the tick-over in sub-RPE deposit formation to be studied. The results demonstrate that structurally or genetically driven pathological events affecting the RPE and Bruch's membrane can lead to dysregulation of the tick-over, which is sufficient to stimulate the formation of sub-RPE deposits. This can be prevented with therapies that downregulate C3 expression. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Blanca Chinchilla
- The Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Parthena Foltopoulou
- The Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Rosario Fernandez-Godino
- The Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Fleckenstein M, Keenan TDL, Guymer RH, Chakravarthy U, Schmitz-Valckenberg S, Klaver CC, Wong WT, Chew EY. Age-related macular degeneration. Nat Rev Dis Primers 2021; 7:31. [PMID: 33958600 DOI: 10.1038/s41572-021-00265-2] [Citation(s) in RCA: 433] [Impact Index Per Article: 108.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of legal blindness in the industrialized world. AMD is characterized by accumulation of extracellular deposits, namely drusen, along with progressive degeneration of photoreceptors and adjacent tissues. AMD is a multifactorial disease encompassing a complex interplay between ageing, environmental risk factors and genetic susceptibility. Chronic inflammation, lipid deposition, oxidative stress and impaired extracellular matrix maintenance are strongly implicated in AMD pathogenesis. However, the exact interactions of pathophysiological events that culminate in drusen formation and the associated degeneration processes remain to be elucidated. Despite tremendous advances in clinical care and in unravelling pathophysiological mechanisms, the unmet medical need related to AMD remains substantial. Although there have been major breakthroughs in the treatment of exudative AMD, no efficacious treatment is yet available to prevent progressive irreversible photoreceptor degeneration, which leads to central vision loss. Compelling progress in high-resolution retinal imaging has enabled refined phenotyping of AMD in vivo. These insights, in combination with clinicopathological and genetic correlations, have underscored the heterogeneity of AMD. Hence, our current understanding promotes the view that AMD represents a disease spectrum comprising distinct phenotypes with different mechanisms of pathogenesis. Hence, tailoring therapeutics to specific phenotypes and stages may, in the future, be the key to preventing irreversible vision loss.
Collapse
Affiliation(s)
- Monika Fleckenstein
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| | - Tiarnán D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Usha Chakravarthy
- Department of Ophthalmology, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Caroline C Klaver
- Department of Ophthalmology, Erasmus MC, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Ophthalmology, Radboud Medical Center, Nijmegen, Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Wai T Wong
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
44
|
SUBRETINAL DRUSENOID DEPOSIT IN AGE-RELATED MACULAR DEGENERATION: Histologic Insights Into Initiation, Progression to Atrophy, and Imaging. Retina 2021; 40:618-631. [PMID: 31599795 DOI: 10.1097/iae.0000000000002657] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To clarify the role of subretinal drusenoid deposits (SDD; pseudodrusen) in the progression of age-related macular degeneration through high-resolution histology. METHODS In 33 eyes of 32 donors (early age-related macular degeneration, n = 15; geographic atrophy, n = 9; neovascular age-related macular degeneration, n = 7; unremarkable, n = 2), and 2 eyes of 2 donors with in vivo multimodal imaging including optical coherence tomography, examples of SDD contacting photoreceptors were assessed. RESULTS Subretinal drusenoid deposits were granular extracellular deposits at the apical retinal pigment epithelium (RPE); the smallest were 4-µm wide. Outer segment (OS) fragments and RPE organelles appeared in some larger deposits. A continuum of photoreceptor degeneration included OS disruption, intrusion into inner segments, and disturbance of neurosensory retina. In a transition to outer retinal atrophy, SDD appeared to shrink, OS disappeared, inner segment shortened, and the outer nuclear layer thinned and became gliotic. Stage 1 SDD on optical coherence tomography correlated with displaced OS. Confluent and disintegrating Stage 2 to 3 SDD on optical coherence tomography and dot pseudodrusen by color fundus photography correlated with confluent deposits and ectopic RPE. CONCLUSION Subretinal drusenoid deposits may start at the RPE as granular, extracellular deposits. Photoreceptor OS, RPE organelles, and cell bodies may appear in some advanced deposits. A progression to atrophy associated with deposit diminution was confirmed. Findings support a biogenesis hypothesis of outer retinal lipid cycling.
Collapse
|
45
|
Zhang Q, Presswalla F, Ali RR, Zacks DN, Thompson DA, Miller JML. Pharmacologic activation of autophagy without direct mTOR inhibition as a therapeutic strategy for treating dry macular degeneration. Aging (Albany NY) 2021; 13:10866-10890. [PMID: 33872219 PMCID: PMC8109132 DOI: 10.18632/aging.202974] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Dry age-related macular degeneration (AMD) is marked by the accumulation of extracellular and intracellular lipid-rich deposits within and around the retinal pigment epithelium (RPE). Inducing autophagy, a conserved, intracellular degradative pathway, is a potential treatment strategy to prevent disease by clearing these deposits. However, mTOR inhibition, the major mechanism for inducing autophagy, disrupts core RPE functions. Here, we screened autophagy inducers that do not directly inhibit mTOR for their potential as an AMD therapeutic in primary human RPE culture. Only two out of more than thirty autophagy inducers tested reliably increased autophagy flux in RPE, emphasizing that autophagy induction mechanistically differs across distinct tissues. In contrast to mTOR inhibitors, these compounds preserved RPE health, and one inducer, the FDA-approved compound flubendazole (FLBZ), reduced the secretion of apolipoprotein that contributes to extracellular deposits termed drusen. Simultaneously, FLBZ increased production of the lipid-degradation product β-hydroxybutyrate, which is used by photoreceptor cells as an energy source. FLBZ also reduced the accumulation of intracellular deposits, termed lipofuscin, and alleviated lipofuscin-induced cellular senescence and tight-junction disruption. FLBZ triggered compaction of lipofuscin-like granules into a potentially less toxic form. Thus, induction of RPE autophagy without direct mTOR inhibition is a promising therapeutic approach for dry AMD.
Collapse
Affiliation(s)
- Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Feriel Presswalla
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Robin R. Ali
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- KCL Centre for Cell and Gene Therapy, London, England WC2R 2LS, United Kingdom
| | - David N. Zacks
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Debra A. Thompson
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jason ML. Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
46
|
Manian KV, Galloway CA, Dalvi S, Emanuel AA, Mereness JA, Black W, Winschel L, Soto C, Li Y, Song Y, DeMaria W, Kumar A, Slukvin I, Schwartz MP, Murphy WL, Anand-Apte B, Chung M, Benoit DSW, Singh R. 3D iPSC modeling of the retinal pigment epithelium-choriocapillaris complex identifies factors involved in the pathology of macular degeneration. Cell Stem Cell 2021; 28:846-862.e8. [PMID: 33784497 DOI: 10.1016/j.stem.2021.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/09/2020] [Accepted: 02/02/2021] [Indexed: 11/15/2022]
Abstract
The retinal pigment epithelium (RPE)-choriocapillaris (CC) complex in the eye is compromised in age-related macular degeneration (AMD) and related macular dystrophies (MDs), yet in vitro models of RPE-CC complex that enable investigation of AMD/MD pathophysiology are lacking. By incorporating iPSC-derived cells into a hydrogel-based extracellular matrix, we developed a 3D RPE-CC model that recapitulates key features of both healthy and AMD/MD eyes and provides modular control over RPE and CC layers. Using this 3D RPE-CC model, we demonstrated that both RPE- and mesenchyme-secreted factors are necessary for the formation of fenestrated CC-like vasculature. Our data show that choroidal neovascularization (CNV) and CC atrophy occur in the absence of endothelial cell dysfunction and are not necessarily secondary to drusen deposits underneath RPE cells, and CC atrophy and/or CNV can be initiated systemically by patient serum or locally by mutant RPE-secreted factors. Finally, we identify FGF2 and matrix metalloproteinases as potential therapeutic targets for AMD/MDs.
Collapse
Affiliation(s)
- Kannan V Manian
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Chad A Galloway
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14620, USA
| | - Sonal Dalvi
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Anthony A Emanuel
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Jared A Mereness
- Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Department of Orthopedics and Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA; Center for Oral Biology, University of Rochester, Rochester, NY 14642, USA; Department of Environmental Medicine, University of Rochester, Rochester, NY 14642 USA
| | - Whitney Black
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Lauren Winschel
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Celia Soto
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA
| | - Yiming Li
- Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA
| | - Yuanhui Song
- Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA
| | - William DeMaria
- Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA
| | - Akhilesh Kumar
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Igor Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715, USA
| | - Michael P Schwartz
- NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA; Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53715, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53715, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI 53715, USA
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mina Chung
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA
| | - Danielle S W Benoit
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Engineering, Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Department of Orthopedics and Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA; Center for Oral Biology, University of Rochester, Rochester, NY 14642, USA; Department of Environmental Medicine, University of Rochester, Rochester, NY 14642 USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA; Materials Science Program, University of Rochester, Rochester, NY 14620, USA; Department of Chemical Engineering, University of Rochester, NY 14620, USA
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Department of Orthopedics and Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA.
| |
Collapse
|
47
|
Abstract
Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intraretinal sterol transport, metabolism, and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: (a) cholesterol synthesis in the neural retina; (b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); (c) cholesterol efflux from the neural retina and the RPE; and (d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps and opportunities in the field that beg further research in this topic area.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.
| |
Collapse
|
48
|
Ma HH, Liutkevičienė R. Age-Related Macular Degeneration: What Do We Know So Far? Acta Med Litu 2021; 28:36-47. [PMID: 34393627 PMCID: PMC8311835 DOI: 10.15388/amed.2021.28.1.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 01/17/2023] Open
Abstract
Ageing is a natural process that everyone experiences and nobody is an exception. With ageing, our body experiences physiological changes. In this article, the focus is made on the physiological changes of our eyes related to ageing and age-related macular degeneration (AMD), which is the most common cause of incurable visual impairment in developed countries. With ageing populations increasing in many countries, more and more patients will have AMD in a foreseeable future. In Eastern Europe, blindness due to AMD, currently, is approximately 20% and there has been an increasing trend depicted in the future. Generally, AMD can be divided into early stages and two forms in an advanced (late) stage. Advanced AMD form includes neovascular AMD (wet) and geographic atrophy (late dry), both of these are associated with substantial, progressive visual impairment. The pathogenesis of AMD is complex and, by far, not completely understood. Multiple factors have been studied, for example: environmental factor, genetic factor (complement factor H), lifestyle. It has been proved that they are linked to higher the risk of developing of AMD, however, the actual pathogenesis is not yet formulated. AMD progression can also be a culprit to certain biochemical events and molecular changes linked to inflammation and pathological angiogenesis. In nowadays, we do have diagnostic methods for both early and late forms of AMD as well as ways to prevent progression of early AMD and wet AMD. However, until now, there is still no treatment for dry AMD. This article is a brief review of AMD and may hopefully lead to some future directions in early diagnostic methods and treating dry AMD.
Collapse
Affiliation(s)
- Ho Hin Ma
- Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Rasa Liutkevičienė
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| |
Collapse
|
49
|
Chen L, Messinger JD, Kar D, Duncan JL, Curcio CA. Biometrics, Impact, and Significance of Basal Linear Deposit and Subretinal Drusenoid Deposit in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 62:33. [PMID: 33512402 PMCID: PMC7846955 DOI: 10.1167/iovs.62.1.33] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Purpose Basal linear deposit (BLinD) is a thin layer of soft drusen material. To elucidate the biology of extracellular deposits conferring age-related macular degeneration (AMD) progression risk and inform multimodal clinical imaging based on optical coherence tomography (OCT), we examined lipid content and regional prevalence of BLinD, soft drusen, pre-BLinD, and subretinal drusenoid deposit (SDD) in AMD and non-AMD aged eyes. We estimated BLinD volume and illustrated its relation to type 1 macular neovascularization (MNV). Methods Donor eyes were classified as early to intermediate AMD (n = 25) and age-matched controls (n = 54). In high-resolution histology, we assessed BLinD/soft drusen thickness at 836 and 1716 locations in AMD and control eyes, respectively. BLinD volume was estimated using solid geometry in donor eyes, one clinically characterized. Results BLinD, drusen, type 1 MNV, and fluid occupy the sub-RPE-basal laminar space. BLinD volume in a 3-mm diameter circle may be as much as 0.0315 mm3. Osmophilic lipid was more concentrated in BLinD/drusen than SDD. In the fovea, BLinD/drusen was prevalent in AMD eyes; pre-BLinD was prevalent in control eyes. SDD was low in the fovea and high in perifovea, especially in AMD eyes. Conclusions Although invisible, BLinD may presage type 1 MNV. BLinD volume approaches the criterion OCT drusen volume of 0.03 mm3 for AMD progression risk. BLinD culminates years of subfoveal lipid accumulation. SDD is detected relatively late in life, with currently unknown precursors. Deposit topography suggests one outer retinal lipid recycling system serving specialized cone and rod physiology, and its dysregulation in AMD is due to impaired transfer to the circulation.
Collapse
Affiliation(s)
- Ling Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jeffrey D. Messinger
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jacque L. Duncan
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
50
|
Innate Immunity in Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:121-141. [PMID: 33848000 DOI: 10.1007/978-3-030-66014-7_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple lines of investigation have demonstrated that inflammation plays significant roles in etiology of age-related macular degeneration (AMD). Although interventional trials in AMD therapy targeting inflammatory pathways have been conducted, they have not yet been successful and a detailed understanding as to why some have failed is still elusive. One limitation is the relative dearth of information on how immune cells interact with retinal cells to generate AMD phenotypes at each disease stage. Here, we summarize current research evidence and hypotheses regarding potential pathogenic roles of innate immune cells in the eye, which include resident retinal microglia, macrophages derived from infiltrating systemic monocytes, and macrophages resident in the choroid. We relate recent findings regarding the physiology, function, and cellular interactions involving innate immune cells in the retina and choroid to AMD-related processes, including: (1) drusen formation and regression, (2) the onset and spread of degeneration in late atrophic AMD, and (3) the initiation, growth, and exudation of neovascular vessels in late "wet" AMD. Understanding how innate immune cells contribute to specific AMD phenotypes can assist in generating a comprehensive view on the inflammatory etiology of AMD and aid in identifying anti-inflammatory therapeutic strategies and selecting appropriate clinical outcomes for the planned interventions.
Collapse
|