1
|
Schloesser L, Klose SM, Mauschitz MM, Abdullah Z, Finger RP. The role of immune modulators in age-related macular degeneration. Surv Ophthalmol 2024; 69:851-869. [PMID: 39097172 DOI: 10.1016/j.survophthal.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
We provide an overview of the expanding literature on the role of cytokines and immune mediators in pathophysiology of age-related macular degeneration (AMD). Although many immunological mediators have been linked to AMD pathophysiology, the broader mechanistic picture remains unclear with substantial variations in the levels of evidence supporting these mediators. Therefore, we reviewed the literature considering the varying levels of supporting evidence. A Medical Subject Headings (MeSH) term-based literature research was conducted in September, 2023, consisting of the MeSH terms "cytokine" and "Age-related macular degeneration" connected by the operator "AND". After screening the publications by title, abstract, and full text, a total of 146 publications were included. The proinflammatory cytokines IL-1β (especially in basic research studies), IL-6, IL-8, IL-18, TNF-α, and MCP-1 are the most extensively characterised cytokines/chemokines, highlighting the role of local inflammasome activation and altered macrophage function in the AMD pathophysiology. Among the antiinflammatory mediators IL-4, IL-10, and TGF-β were found to be the most extensively characterised, with IL-4 driving and IL-10 and TGF-β suppressing disease progression. Despite the extensive literature on this topic, a profound understanding of AMD pathophysiology has not yet been achieved. Therefore, further studies are needed to identify potential therapeutic targets, followed by clinical studies.
Collapse
Affiliation(s)
- Lukas Schloesser
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Sara M Klose
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Asia-Pacific Centre for Animal Health, Faculty of Science, University of Melbourne, Melbourne, Australia
| | | | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Robert P Finger
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Pilotto E, Parolini F, Midena G, Cosmo E, Midena E. Small Hyperreflective Retinal Foci as in vivo imaging feature of resident microglia activation in geographic atrophy. Exp Eye Res 2024; 248:110064. [PMID: 39241860 DOI: 10.1016/j.exer.2024.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Geographic atrophy (GA), the atrophic late stage of age-related macular degeneration (AMD), is one of the leading causes of vision loss in developed countries. Based on genetic, histological and preclinical studies, the role of the innate immune system in the development and progression of GA is well established. Microglia, the principal resident immune cells, are recognized as key players in innate immunity and contributors to AMD development. Optical coherence tomography (OCT) allows to identify small hyperreflective retinal foci (HRF) with specific features known as aggregates of activated microglial cells as possible in vivo imaging feature of local neuroretinal inflammation. The purpose of this study was to evaluate the presence and amount of small HRF in the eyes of patients with different macular atrophic phenotypes. Patients with GA in both eyes (bilateral GA: B-GA group), patients with GA in one eye and macular new vessels (MNV) in the fellow-eye (unilateral GA: U-GA group) and patients with extensive macular atrophy with pseudodrusen (EMAP), a rare and aggressive variant of atrophic AMD, were retrospectively analyzed. HRF, defined as isolated punctiform elements of small dimensions (≤30 μm) with intermediate reflectivity (similar to that of the nerve fiber layer) and without a shadow cone, were manually identified and quantified. The amount of HRF was correlated to best corrected visual acuity (BCVA), GA lesion size, measured both at near infrared reflectance (NIR), and blue wavelength fundus autofluorescence (FAF) images, to some GA features (multifocal versus unifocal GA; presence versus absence of foveal sparing) and to central retinal thickness (CRT). Forty-six patients (26 in the B-GA group, 16 in the U-GA group and 4 in the EMAP group) were studied. Patients with EMAP were younger compared to patients with B-GA and to patients with U-GA (63.5 ± 6.8 years vs 80.4 ± 8.4 years B-GA, and vs 83.3 ± 6.1 years U-GA; p = 0.0004 and p= <0.0001, respectively). Mean BCVA, mean GA area at NIR and at FAF images, foveal sparing and multifocal versus unifocal GA distribution and mean CRT were not significantly different among groups. GA area was wider on NIR versus FAF in all groups, significantly in B-GA and U-GA groups (11.7 ± 7.6 mm2 vs 10.6 ± 7.1 mm2, p = 0.0087 in B-GA; 7.8 ± 9.2 mm2 vs 7.7 ± 9.4 mm2, p = 0.004 in U-GA). The number of HRF was significantly higher in U-GA compared to B-GA and to EMAP (47.4 ± 7.1 vs 31.6 ± 7.3 B-GA and 28.0 ± 4.9 EMAP, p < 0.0001 for both), while mean HRF number did not significantly differ between B-GA and EMAP (p = 0.1960). HRF count correlated only to CRT, positively in B-GA and negatively in U-GA group. The increase of small HRF, which mirrors retinal microglial activation, characterizes eyes with unilateral GA (and MNV in the fellow eye) but not eyes with bilateral GA or EMAP. The role of activated microglia in the retina of GA eyes needs to be better investigated, mainly considering the actual and new therapeutic strategies with which to reduce either the development or progression of the atrophic macular changes.
Collapse
Affiliation(s)
- Elisabetta Pilotto
- Department of Neuroscience - Ophthalmology, University of Padova, Padova, Italy.
| | - Federico Parolini
- Department of Neuroscience - Ophthalmology, University of Padova, Padova, Italy
| | | | - Eleonora Cosmo
- Department of Neuroscience - Ophthalmology, University of Padova, Padova, Italy
| | - Edoardo Midena
- Department of Neuroscience - Ophthalmology, University of Padova, Padova, Italy; IRCCS, Fondazione Bietti, Rome, Italy
| |
Collapse
|
3
|
Borzova E, Snarskaya E, Bratkovskaya A. Eyelid dermatitis in patch-tested adult patients: a systematic review with a meta-analysis. Sci Rep 2024; 14:18791. [PMID: 39138344 PMCID: PMC11322306 DOI: 10.1038/s41598-024-69612-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Eyelid dermatitis (ED) affects a cosmetically significant area and leads to patients' distress. Despite ongoing and recent research efforts, ED remains a multidisciplinary problem that needs further characterization. We aimed to evaluate the atopic eyelid dermatitis (AED) frequency in ED patients and to perform their clinical profiling. PubMed databases were searched from 01.01.1980 till 01.02.2024 to PRISMA guidelines using a search strategy: (eyelid OR periorbital OR periocular) AND (dermatitis or eczema). Studies with patch-tested ED patients were included. Proportional meta-analysis was performed using JBI SUMARI software. We included 65 studies across Europe, North America, Asia and Australia, with a total of 21,793 patch-tested ED patients. AED was reported in 27.5% (95% CI 0.177, 0.384) of patch-tested ED patients. Isolated ED was noted in 51.6% (95% CI 0.408, 0.623) of 8453 ED patients with reported lesion distribution, including 430 patients with isolated AED. Our meta-analysis demonstrated that the AED frequency in patch-tested ED patients exceeded the previous estimate of 10%. Isolated AED was noted in adult patients, attending contact allergy clinics. Future studies are needed to elucidate the global prevalence and natural history of isolated AED in adults.
Collapse
Affiliation(s)
- Elena Borzova
- Dermatology Division, Niigata University Graduate School of Medical and Dental Sciences (Medicine), 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Elena Snarskaya
- Department of Dermatology and Venereology, I.M. Sechenov First Moscow State Medical University, 4/1 Bolshaya Pirogovskaya Street, Moscow, Russian Federation, 119991
| | - Anna Bratkovskaya
- Department of Dermatology and Venereology, I.M. Sechenov First Moscow State Medical University, 4/1 Bolshaya Pirogovskaya Street, Moscow, Russian Federation, 119991
| |
Collapse
|
4
|
Liu J, Copland DA, Clare AJ, Gorski M, Richards BT, Scott L, Theodoropoulou S, Greferath U, Cox K, Shi G, Bell OH, Ou K, Powell JLB, Wu J, Robles LM, Li Y, Nicholson LB, Coffey PJ, Fletcher EL, Guymer R, Radeke MJ, Heid IM, Hageman GS, Chan YK, Dick AD. Replenishing IRAK-M expression in retinal pigment epithelium attenuates outer retinal degeneration. Sci Transl Med 2024; 16:eadi4125. [PMID: 38838135 DOI: 10.1126/scitranslmed.adi4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.
Collapse
Affiliation(s)
- Jian Liu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Alison J Clare
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg 93053, Germany
| | - Burt T Richards
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Louis Scott
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Sofia Theodoropoulou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Ursula Greferath
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Katherine Cox
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Gongyu Shi
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Oliver H Bell
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Kepeng Ou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Jenna Le Brun Powell
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Jiahui Wu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Luis Martinez Robles
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Yingxin Li
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Lindsay B Nicholson
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Peter J Coffey
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Erica L Fletcher
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Monte J Radeke
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg 93053, Germany
| | - Gregory S Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 2PD, UK
| |
Collapse
|
5
|
Kurzawa-Akanbi M, Tzoumas N, Corral-Serrano JC, Guarascio R, Steel DH, Cheetham ME, Armstrong L, Lako M. Pluripotent stem cell-derived models of retinal disease: Elucidating pathogenesis, evaluating novel treatments, and estimating toxicity. Prog Retin Eye Res 2024; 100:101248. [PMID: 38369182 DOI: 10.1016/j.preteyeres.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.
Collapse
|
6
|
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Shahwan M, Kukreti N, Wong LS, Kumarasamy V, Subramaniyan V. Kaempferol: Paving the path for advanced treatments in aging-related diseases. Exp Gerontol 2024; 188:112389. [PMID: 38432575 DOI: 10.1016/j.exger.2024.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Aging-related diseases (ARDs) are a major global health concern, and the development of effective therapies is urgently needed. Kaempferol, a flavonoid found in several plants, has emerged as a promising candidate for ameliorating ARDs. This comprehensive review examines Kaempferol's chemical properties, safety profile, and pharmacokinetics, and highlights its potential therapeutic utility against ARDs. Kaempferol's therapeutic potential is underpinned by its distinctive chemical structure, which confers antioxidative and anti-inflammatory properties. Kaempferol counteracts reactive oxygen species (ROS) and modulates crucial cellular pathways, thereby combating oxidative stress and inflammation, hallmarks of ARDs. Kaempferol's low toxicity and wide safety margins, as demonstrated by preclinical and clinical studies, further substantiate its therapeutic potential. Compelling evidence supports Kaempferol's substantial potential in addressing ARDs through several mechanisms, notably anti-inflammatory, antioxidant, and anti-apoptotic actions. Kaempferol exhibits a versatile neuroprotective effect by modulating various proinflammatory signaling pathways, including NF-kB, p38MAPK, AKT, and the β-catenin cascade. Additionally, it hinders the formation and aggregation of beta-amyloid protein and regulates brain-derived neurotrophic factors. In terms of its anticancer potential, kaempferol acts through diverse pathways, inducing apoptosis, arresting the cell cycle at the G2/M phase, suppressing epithelial-mesenchymal transition (EMT)-related markers, and affecting the phosphoinositide 3-kinase/protein kinase B signaling pathways. Subsequent studies should focus on refining dosage regimens, exploring innovative delivery systems, and conducting comprehensive clinical trials to translate these findings into effective therapeutic applications.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 346, United Arab Emirates
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 346, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia.
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Xiao J, Zhang JY, Luo W, He PC, Skondra D. The Emerging Role of Gut Microbiota in Age-Related Macular Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1627-1637. [PMID: 37156326 DOI: 10.1016/j.ajpath.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/14/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
Age-related macular degeneration (AMD) is a progressive, degenerative retinal disease that is a leading cause of blindness globally. Although multiple risk factors have been identified regarding disease incidence and progression, including smoking, genetics, and diet, the understanding of AMD pathogenesis remains unclear. As such, primary prevention is lacking, and current treatments have limited efficacy. More recently, the gut microbiome has emerged as an influential player in various ocular pathologies. As mediators of metabolism and immune regulation, perturbations in gut microbiota may impart significant effects distally on the neuroretina and its adjacent tissues, termed the gut-retina axis. In this review, key studies over the past several decades are summarized, both in humans and in animal models, which shed insight on the relationships between the gut microbiome and retinal biology and their implications for AMD. The literature linking gut dysbiosis with AMD is examined, along with preclinical animal models and techniques apt for studying the role of gut microbiota in AMD pathogenesis, which include interactions with systemic inflammation, immune regulation, chorioretinal gene expression, and diet. As understanding of the gut-retina axis continues to advance, so too will the possibility for more accessible and effective prevention and therapy of this vision-threatening condition.
Collapse
Affiliation(s)
- Jason Xiao
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Jason Y Zhang
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Wendy Luo
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - P Cody He
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, Illinois.
| |
Collapse
|
8
|
Liu J, Copland DA, Clare AJ, Gorski M, Richards BT, Scott L, Theodoropoulou S, Greferath U, Cox K, Bell OH, Ou K, Powell JLB, Wu J, Robles LM, Li Y, Nicholson LB, Coffey PJ, Fletcher EL, Guymer R, Radeke MJ, Heid IM, Hageman GS, Chan YK, Dick AD. Replenishing Age-Related Decline of IRAK-M Expression in Retinal Pigment Epithelium Attenuates Outer Retinal Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559733. [PMID: 37808640 PMCID: PMC10557650 DOI: 10.1101/2023.09.27.559733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Unchecked, chronic inflammation is a constitutive component of age-related diseases, including age-related macular degeneration (AMD). Here we identified interleukin-1 receptor-associated kinase (IRAK)-M as a key immunoregulator in retinal pigment epithelium (RPE) that declines with age. Rare genetic variants of IRAK-M increased the likelihood of AMD. IRAK-M expression in RPE declined with age or oxidative stress and was further reduced in AMD. IRAK-M-deficient mice exhibited increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M disrupted RPE cell homeostasis, including compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of AAV-expressing IRAK-M rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in IRAK-M-deficient mice. Our data support that replenishment of IRAK-M expression may redress dysregulated pro-inflammatory processes in AMD, thereby treating degeneration.
Collapse
Affiliation(s)
- Jian Liu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David A. Copland
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alison J. Clare
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Burt T. Richards
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Louis Scott
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sofia Theodoropoulou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ursula Greferath
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Katherine Cox
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Oliver H. Bell
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kepeng Ou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jenna Le Brun Powell
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jiahui Wu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Luis Martinez Robles
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Yingxin Li
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lindsay B. Nicholson
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Peter J. Coffey
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Erica L. Fletcher
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Monte J. Radeke
- Neuroscience Research Institute, University of California, Santa Barbara, California, United States
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Gregory S. Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States
| | - Andrew D. Dick
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
9
|
Khan AH, Chowers I, Lotery AJ. Beyond the Complement Cascade: Insights into Systemic Immunosenescence and Inflammaging in Age-Related Macular Degeneration and Current Barriers to Treatment. Cells 2023; 12:1708. [PMID: 37443742 PMCID: PMC10340338 DOI: 10.3390/cells12131708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Landmark genetic studies have revealed the effect of complement biology and its regulation on the pathogenesis of age-related macular degeneration (AMD). Limited phase 3 clinical trial data showing a benefit of complement inhibition in AMD raises the prospect of more complex mediators at play. Substantial evidence supports the role of para-inflammation in maintaining homeostasis in the retina and choroid. With increasing age, a decline in immune system regulation, known as immunosenescence, has been shown to alter the equilibrium maintained by para-inflammation. The altered equilibrium results in chronic, sterile inflammation with aging, termed 'inflammaging', including in the retina and choroid. The chronic inflammatory state in AMD is complex, with contributions from cells of the innate and adaptive branches of the immune system, sometimes with overlapping features, and the interaction of their secretory products with retinal cells such as microglia and retinal pigment epithelium (RPE), extracellular matrix and choroidal vascular endothelial cells. In this review, the chronic inflammatory state in AMD will be explored by immune cell type, with a discussion of factors that will need to be overcome in the development of curative therapies.
Collapse
Affiliation(s)
- Adnan H. Khan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
10
|
Tzoumas N, Riding G, Williams MA, Steel DH. Complement inhibitors for age-related macular degeneration. Cochrane Database Syst Rev 2023; 6:CD009300. [PMID: 37314061 PMCID: PMC10266126 DOI: 10.1002/14651858.cd009300.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a common eye disease and leading cause of sight loss worldwide. Despite its high prevalence and increasing incidence as populations age, AMD remains incurable and there are no treatments for most patients. Mounting genetic and molecular evidence implicates complement system overactivity as a key driver of AMD development and progression. The last decade has seen the development of several novel therapeutics targeting complement in the eye for the treatment of AMD. This review update encompasses the results of the first randomised controlled trials in this field. OBJECTIVES To assess the effects and safety of complement inhibitors in the prevention or treatment of AMD. SEARCH METHODS We searched CENTRAL on the Cochrane Library, MEDLINE, Embase, LILACS, Web of Science, ISRCTN registry, ClinicalTrials.gov, and the WHO ICTRP to 29 June 2022 with no language restrictions. We also contacted companies running clinical trials for unpublished data. SELECTION CRITERIA We included randomised controlled trials (RCTs) with parallel groups and comparator arms that studied complement inhibition for advanced AMD prevention/treatment. DATA COLLECTION AND ANALYSIS Two authors independently assessed search results and resolved discrepancies through discussion. Outcome measures evaluated at one year included change in best-corrected visual acuity (BCVA), untransformed and square root-transformed geographic atrophy (GA) lesion size progression, development of macular neovascularisation (MNV) or exudative AMD, development of endophthalmitis, loss of ≥ 15 letters of BCVA, change in low luminance visual acuity, and change in quality of life. We assessed risk of bias and evidence certainty using Cochrane risk of bias and GRADE tools. MAIN RESULTS Ten RCTs with 4052 participants and eyes with GA were included. Nine evaluated intravitreal (IVT) administrations against sham, and one investigated an intravenous agent against placebo. Seven studies excluded patients with prior MNV in the non-study eye, whereas the three pegcetacoplan studies did not. The risk of bias in the included studies was low overall. We also synthesised results of two intravitreal agents (lampalizumab, pegcetacoplan) at monthly and every-other-month (EOM) dosing intervals. Efficacy and safety of IVT lampalizumab versus sham for GA For 1932 participants in three studies, lampalizumab did not meaningfully change BCVA given monthly (+1.03 letters, 95% confidence interval (CI) -0.19 to 2.25) or EOM (+0.22 letters, 95% CI -1.00 to 1.44) (high-certainty evidence). For 1920 participants, lampalizumab did not meaningfully change GA lesion growth given monthly (+0.07 mm², 95% CI -0.09 to 0.23; moderate-certainty due to imprecision) or EOM (+0.07 mm², 95% CI -0.05 to 0.19; high-certainty). For 2000 participants, lampalizumab may have also increased MNV risk given monthly (RR 1.77, 95% CI 0.73 to 4.30) and EOM (RR 1.70, 95% CI 0.67 to 4.28), based on low-certainty evidence. The incidence of endophthalmitis in patients treated with monthly and EOM lampalizumab was 4 per 1000 (0 to 87) and 3 per 1000 (0 to 62), respectively, based on moderate-certainty evidence. Efficacy and safety of IVT pegcetacoplan versus sham for GA For 242 participants in one study, pegcetacoplan probably did not meaningfully change BCVA given monthly (+1.05 letters, 95% CI -2.71 to 4.81) or EOM (-1.42 letters, 95% CI -5.25 to 2.41), as supported by moderate-certainty evidence. In contrast, for 1208 participants across three studies, pegcetacoplan meaningfully reduced GA lesion growth when given monthly (-0.38 mm², 95% CI -0.57 to -0.19) and EOM (-0.29 mm², 95% CI -0.44 to -0.13), with high certainty. These reductions correspond to 19.2% and 14.8% versus sham, respectively. A post hoc analysis showed possibly greater benefits in 446 participants with extrafoveal GA given monthly (-0.67 mm², 95% CI -0.98 to -0.36) and EOM (-0.60 mm², 95% CI -0.91 to -0.30), representing 26.1% and 23.3% reductions, respectively. However, we did not have data on subfoveal GA growth to undertake a formal subgroup analysis. In 1502 participants, there is low-certainty evidence that pegcetacoplan may have increased MNV risk when given monthly (RR 4.47, 95% CI 0.41 to 48.98) or EOM (RR 2.29, 95% CI 0.46 to 11.35). The incidence of endophthalmitis in patients treated with monthly and EOM pegcetacoplan was 6 per 1000 (1 to 53) and 8 per 1000 (1 to 70) respectively, based on moderate-certainty evidence. Efficacy and safety of IVT avacincaptad pegol versus sham for GA In a study of 260 participants with extrafoveal or juxtafoveal GA, monthly avacincaptad pegol probably did not result in a clinically meaningful change in BCVA at 2 mg (+1.39 letters, 95% CI -5.89 to 8.67) or 4 mg (-0.28 letters, 95% CI -8.74 to 8.18), based on moderate-certainty evidence. Despite this, the drug was still found to have probably reduced GA lesion growth, with estimates of 30.5% reduction at 2 mg (-0.70 mm², 95% CI -1.99 to 0.59) and 25.6% reduction at 4 mg (-0.71 mm², 95% CI -1.92 to 0.51), based on moderate-certainty evidence. Avacincaptad pegol may have also increased the risk of developing MNV (RR 3.13, 95% CI 0.93 to 10.55), although this evidence is of low certainty. There were no cases of endophthalmitis reported in this study. AUTHORS' CONCLUSIONS Despite confirmation of the negative findings of intravitreal lampalizumab across all endpoints, local complement inhibition with intravitreal pegcetacoplan meaningfully reduces GA lesion growth relative to sham at one year. Inhibition of complement C5 with intravitreal avacincaptad pegol is also an emerging therapy with probable benefits on anatomical endpoints in the extrafoveal or juxtafoveal GA population. However, there is currently no evidence that complement inhibition with any agent improves functional endpoints in advanced AMD; further results from the phase 3 studies of pegcetacoplan and avacincaptad pegol are eagerly awaited. Progression to MNV or exudative AMD is a possible emergent adverse event of complement inhibition, requiring careful consideration should these agents be used clinically. Intravitreal administration of complement inhibitors is probably associated with a small risk of endophthalmitis, which may be higher than that of other intravitreal therapies. Further research is likely to have an important impact on our confidence in the estimates of adverse effects and may change these. The optimal dosing regimens, treatment duration, and cost-effectiveness of such therapies are yet to be established.
Collapse
Affiliation(s)
- Nikolaos Tzoumas
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Sunderland Eye Infirmary, Sunderland, UK
| | - George Riding
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
- North Middlesex University Hospital NHS Trust, London, UK
| | - Michael A Williams
- School of Medicine, Dentistry and Biomedical Science, Queen's University of Belfast, Belfast, UK
| | - David Hw Steel
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Sunderland Eye Infirmary, Sunderland, UK
| |
Collapse
|
11
|
Huang X, Zhang L, Fu Y, Zhang M, Yang Q, Peng J. Rethinking the potential and necessity of drug delivery systems in neovascular age-related macular degeneration therapy. Front Bioeng Biotechnol 2023; 11:1199922. [PMID: 37288355 PMCID: PMC10242387 DOI: 10.3389/fbioe.2023.1199922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Age-related macular degeneration (AMD) is the predominant threat to human vision and ultimately results in blindness. With the increase in the aging population, it has become a more crucial issue to human health. AMD is a multifactorial disease with the unique feature of uncontrollable angiogenesis during initiation and progression. Although increasing evidence indicates that AMD is largely hereditary, the predominant efficient treatment is antiangiogenesis, which mainly involves VEGF and HIF-α as therapeutic targets. The repeated administration of this treatment over the long term, generally through intravitreal injection, has called for the introduction of long-term drug delivery systems, which are expected to be achieved by biomaterials. However, the clinical results of the port delivery system indicate that the optimization of medical devices toward prolonging the activities of therapeutic biologics in AMD therapy seems more promising. These results indicate that we should rethink the possibility and potential of biomaterials as drug delivery systems in achieving long-term, sustained inhibition of angiogenesis in AMD therapy. In this review, the etiology, categorization, risk factors, pathogenesis, and current clinical treatments of AMD are briefly introduced. Next, the development status of long-term drug delivery systems is discussed, and the drawbacks and shortages of these systems are emphasized. By comprehensively considering the pathological aspect and the recent application of drug delivery systems in AMD therapy, we hope to find a better solution for the further development of long-term therapeutic strategies for AMD.
Collapse
Affiliation(s)
- Xi Huang
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyan Fu
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meixia Zhang
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Yang
- Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jinrong Peng
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Hammadi S, Tzoumas N, Ferrara M, Meschede IP, Lo K, Harris C, Lako M, Steel DH. Bruch's Membrane: A Key Consideration with Complement-Based Therapies for Age-Related Macular Degeneration. J Clin Med 2023; 12:2870. [PMID: 37109207 PMCID: PMC10145879 DOI: 10.3390/jcm12082870] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The complement system is crucial for immune surveillance, providing the body's first line of defence against pathogens. However, an imbalance in its regulators can lead to inappropriate overactivation, resulting in diseases such as age-related macular degeneration (AMD), a leading cause of irreversible blindness globally affecting around 200 million people. Complement activation in AMD is believed to begin in the choriocapillaris, but it also plays a critical role in the subretinal and retinal pigment epithelium (RPE) spaces. Bruch's membrane (BrM) acts as a barrier between the retina/RPE and choroid, hindering complement protein diffusion. This impediment increases with age and AMD, leading to compartmentalisation of complement activation. In this review, we comprehensively examine the structure and function of BrM, including its age-related changes visible through in vivo imaging, and the consequences of complement dysfunction on AMD pathogenesis. We also explore the potential and limitations of various delivery routes (systemic, intravitreal, subretinal, and suprachoroidal) for safe and effective delivery of conventional and gene therapy-based complement inhibitors to treat AMD. Further research is needed to understand the diffusion of complement proteins across BrM and optimise therapeutic delivery to the retina.
Collapse
Affiliation(s)
- Sarah Hammadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nikolaos Tzoumas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| | | | - Ingrid Porpino Meschede
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Katharina Lo
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Claire Harris
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David H. Steel
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| |
Collapse
|
13
|
Gotfredsen K, Liisborg C, Skov V, Kjær L, Hasselbalch HC, Sørensen TL. Serum levels of IL-4, IL-13 and IL-33 in patients with age-related macular degeneration and myeloproliferative neoplasms. Sci Rep 2023; 13:4077. [PMID: 36906669 PMCID: PMC10008625 DOI: 10.1038/s41598-023-31078-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
Immune responses play a key role in the pathogenesis and progression of myeloproliferative neoplasms (MPN) and age-related macular degeneration (AMD). Recent studies suggested using MPNs as a "Human Inflammation Model" of drusen development and previous results showed interleukin-4 (IL-4) dysregulation in MPN and AMD. IL-4, IL-13 and IL-33 are all cytokines involved in the type 2 inflammatory response. This study investigated the cytokine levels of IL-4, IL-13 and IL-33 in serum of MPN and AMD patients. This cross-sectional study included 35 patients with MPN with drusen (MPNd) and 27 with MPN and normal retinas (MPNn), 28 patients with intermediate AMD (iAMD) and 29 with neovascular AMD (nAMD). With immunoassays, we quantified and compared levels of IL-4, IL-13 and IL-33 in serum between the groups. The study was conducted at Zealand University Hospital, Roskilde, Denmark, between July 2018 and November 2020. The serum levels of IL-4 were significantly higher in the MPNd group than in the MPNn group (p = 0.003). In regard to IL-33, the difference between MPNd and MPNn was not significant (p = 0.069), however, when subdivided into subgroups, a significant difference was found between polycythemia vera patients with drusen and those without drusen (p = 0.005). We found no IL-13 difference between the MPNd and MPNn groups. Our data didn't show any significant IL-4 or IL-13 serum level difference between the MPNd and iAMD groups but in regard to IL-33, data recorded a significant serum level difference between the two groups. There was no statistically significant difference between the MPNn, iAMD and nAMD groups in levels of IL-4, IL-13 and IL-33. These findings suggested that the serum levels of IL-4 and IL-33 might play a role in drusen development in MPN patients. The results might represent the type 2 inflammatory arm of the disease. The findings support the association between chronic inflammation and drusen.
Collapse
Affiliation(s)
- Kathrine Gotfredsen
- The Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark.
| | - Charlotte Liisborg
- The Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- The Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- The Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | | |
Collapse
|
14
|
Zhang X, Xu J, Marshall B, Dong Z, Liu Y, Espinosa-Heidmann DG, Zhang M. Transcriptome Analysis of Retinal and Choroidal Pathologies in Aged BALB/c Mice Following Systemic Neonatal Murine Cytomegalovirus Infection. Int J Mol Sci 2023; 24:4322. [PMID: 36901754 PMCID: PMC10001583 DOI: 10.3390/ijms24054322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Our previous studies have shown that systemic neonatal murine cytomegalovirus (MCMV) infection of BALB/c mice spread to the eye with subsequent establishment of latency in choroid/RPE. In this study, RNA sequencing (RNA-Seq) analysis was used to determine the molecular genetic changes and pathways affected by ocular MCMV latency. MCMV (50 pfu per mouse) or medium as control were injected intra-peritoneally (i.p.) into BALB/c mice at <3 days after birth. At 18 months post injection, the mice were euthanized, and the eyes were collected and prepared for RNA-Seq. Compared to three uninfected control eyes, we identified 321 differentially expressed genes (DEGs) in six infected eyes. Using the QIAGEN Ingenuity Pathway Analysis (QIAGEN IPA), we identified 17 affected canonical pathways, 10 of which function in neuroretinal signaling, with the majority of DEGs being downregulated, while 7 pathways function in upregulated immune/inflammatory responses. Retinal and epithelial cell death pathways involving both apoptosis and necroptosis were also activated. MCMV ocular latency is associated with upregulation of immune and inflammatory responses and downregulation of multiple neuroretinal signaling pathways. Cell death signaling pathways are also activated and contribute to the degeneration of photoreceptors, RPE, and choroidal capillaries.
Collapse
Affiliation(s)
- Xinyan Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jinxian Xu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Diego G. Espinosa-Heidmann
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthamology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
15
|
Dos Santos FM, Ciordia S, Mesquita J, de Sousa JPC, Paradela A, Tomaz CT, Passarinha LAP. Vitreous humor proteome: unraveling the molecular mechanisms underlying proliferative and neovascular vitreoretinal diseases. Cell Mol Life Sci 2022; 80:22. [PMID: 36585968 PMCID: PMC11072707 DOI: 10.1007/s00018-022-04670-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and neovascular age-related macular degeneration (nAMD) are among the leading causes of blindness. Due to the multifactorial nature of these vitreoretinal diseases, omics approaches are essential for a deeper understanding of the pathophysiologic processes underlying the evolution to a proliferative or neovascular etiology, in which patients suffer from an abrupt loss of vision. For many years, it was thought that the function of the vitreous was merely structural, supporting and protecting the surrounding ocular tissues. Proteomics studies proved that vitreous is more complex and biologically active than initially thought, and its changes reflect the physiological and pathological state of the eye. The vitreous is the scenario of a complex interplay between inflammation, fibrosis, oxidative stress, neurodegeneration, and extracellular matrix remodeling. Vitreous proteome not only reflects the pathological events that occur in the retina, but the changes in the vitreous itself play a central role in the onset and progression of vitreoretinal diseases. Therefore, this review offers an overview of the studies on the vitreous proteome that could help to elucidate some of the pathological mechanisms underlying proliferative and/or neovascular vitreoretinal diseases and to find new potential pharmaceutical targets.
Collapse
Affiliation(s)
- Fátima Milhano Dos Santos
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Joana Mesquita
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - João Paulo Castro de Sousa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197, Leiria, Portugal
| | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Cândida Teixeira Tomaz
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - Luís António Paulino Passarinha
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Associate Laboratory i4HB, Faculdade de Ciências e Tecnologia, Institute for Health and Bioeconomy, Universidade NOVA, 2819-516, Caparica, Portugal.
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- Pharmaco-Toxicology Laboratory, UBIMedical, Universidade da Beira Interior, 6200-000, Covilhã, Portugal.
| |
Collapse
|
16
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 305] [Impact Index Per Article: 152.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
17
|
Nashine S, Cohen P, Wan J, Kenney C. Effect of Humanin G (HNG) on inflammation in age-related macular degeneration (AMD). Aging (Albany NY) 2022; 14:4247-4269. [PMID: 35576057 PMCID: PMC9186758 DOI: 10.18632/aging.204074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Inflammation plays a crucial role in the etiology and pathogenesis of AMD (Age-related Macular Degeneration). Humanin G (HNG) is a Mitochondrial Derived Peptide (MDP) that is cytoprotective in AMD and can protect against mitochondrial and cellular stress induced by damaged AMD mitochondria. The goal of this study was to test our hypothesis that inflammation-associated marker protein levels are increased in AMD and treatment with HNG leads to reduction in their protein levels. Humanin protein levels were measured in the plasma of AMD patients and normal subjects using ELISA assay. Humanin G was added to AMD and normal (control) cybrids which had identical nuclei from mitochondria-deficient ARPE-19 cells but differed in mitochondrial DNA (mtDNA) content derived from clinically characterized AMD patients and normal (control) subjects. Cell lysates were extracted from untreated and HNG-treated AMD and normal cybrids, and the Luminex XMAP multiplex assay was used to measure the levels of inflammatory proteins. AMD plasma showed reduced Humanin protein levels, but higher protein levels of inflammation markers compared to control plasma samples. In AMD RPE cybrid cells, Humanin G reduced the CD62E/ E-Selectin, CD62P/ P-Selectin, ICAM-1, TNF-α, MIP-1α, IFN–γ, IL-1β, IL-13, and IL-17A protein levels, thereby suggesting that Humanin G may rescue from mtDNA-mediated inflammation in AMD cybrids. In conclusion, we present novel findings that: A) show reduced Humanin protein levels in AMD plasma vs. normal plasma; B) suggest the role of inflammatory markers in AMD pathogenesis, and C) highlight the positive effects of Humanin G in reducing inflammation in AMD.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - Pinchas Cohen
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Junxiang Wan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA.,Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Tzoumas N, Kavanagh D, Cordell HJ, Lotery AJ, Patel PJ, Steel DH. Rare complement factor I variants associated with reduced macular thickness and age-related macular degeneration in the UK biobank. Hum Mol Genet 2022; 31:2678-2692. [PMID: 35285476 PMCID: PMC9402241 DOI: 10.1093/hmg/ddac060] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
To evaluate potential diagnostic and therapeutic biomarkers for age-related macular degeneration (AMD), we identified 8433 UK Biobank participants with rare complement Factor I gene (CFI) variants, 579 with optical coherence tomography-derived macular thickness data. We stratified these variants by predicted gene expression and measured their association with retinal pigment epithelium-Bruch’s membrane (RPE-BM) complex and retinal thicknesses at nine macular subfields, as well as AMD risk, using multivariable regression models adjusted for the common complement Factor H gene (CFH) p.Y402H and age-related maculopathy susceptibility protein 2 gene (ARMS2) p.A69S risk genotypes. CFI variants associated with low Factor I levels predicted a thinner mean RPE-BM (95% confidence interval [CI] −1.66 to −0.37 μm, P = 0.002) and retina (95% CI −5.88 to −0.13 μm, P = 0.04) and a higher AMD risk (odds ratio [OR] = 2.26, 95% CI 1.56 to 3.27, P < 0.001). CFI variants associated with normal Factor I levels did not impact mean RPE-BM/retinal thickness (P = 0.28; P = 0.99) or AMD risk (P = 0.97). CFH p.Y402H was associated with a thinner RPE-BM (95% CI −0.31 to −0.18 μm, P < 0.001 heterozygous; 95% CI −0.62 to −0.42 μm, P < 0.001 homozygous) and retina (95% CI −0.73 to −0.12 μm, P = 0.007 heterozygous; 95% CI −1.08 to −0.21 μm, P = 0.004 homozygous). ARMS2 p.A69S did not influence RPE-BM (P = 0.80 heterozygous; P = 0.12 homozygous) or retinal thickness (P = 0.75 heterozygous; P = 0.07 homozygous). p.Y402H and p.A69S exhibited a significant allele–dose response with AMD risk. Thus, CFI rare variants associated with low Factor I levels are robust predictors of reduced macular thickness and AMD. The observed association between macular thickness and CFH p.Y402H, but not ARMS2 p.A69S, highlights the importance of complement dysregulation in early pathogenesis.
Collapse
Affiliation(s)
- Nikolaos Tzoumas
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Kavanagh
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Heather J Cordell
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew J Lotery
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Praveen J Patel
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - David H Steel
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Sunderland Eye Infirmary, Sunderland, United Kingdom
| |
Collapse
|
19
|
Ou K, Li Y, Liu L, Li H, Cox K, Wu J, Liu J, Dick AD. Recent developments of neuroprotective agents for degenerative retinal disorders. Neural Regen Res 2022; 17:1919-1928. [PMID: 35142668 PMCID: PMC8848613 DOI: 10.4103/1673-5374.335140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Retinal degeneration is a debilitating ocular complication characterized by the progressive loss of photoreceptors and other retinal neurons, which are caused by a group of retinal diseases affecting various age groups, and increasingly prevalent in the elderly. Age-related macular degeneration, diabetic retinopathy and glaucoma are among the most common complex degenerative retinal disorders, posing significant public health problems worldwide largely due to the aging society and the lack of effective therapeutics. Whilst pathoetiologies vary, if left untreated, loss of retinal neurons can result in an acquired degeneration and ultimately severe visual impairment. Irrespective of underlined etiology, loss of neurons and supporting cells including retinal pigment epithelium, microvascular endothelium, and glia, converges as the common endpoint of retinal degeneration and therefore discovery or repurposing of therapies to protect retinal neurons directly or indirectly are under intensive investigation. This review overviews recent developments of potential neuroprotectants including neuropeptides, exosomes, mitochondrial-derived peptides, complement inhibitors, senolytics, autophagy enhancers and antioxidants either still experimentally or in clinical trials. Effective treatments that possess direct or indirect neuroprotective properties would significantly lift the burden of visual handicap.
Collapse
Affiliation(s)
- Kepeng Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Youjian Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ling Liu
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Li
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Katherine Cox
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jiahui Wu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Liu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew D Dick
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol; Institute of Ophthalmology, University College London, London; National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| |
Collapse
|
20
|
Clare AJ, Liu J, Copland DA, Theodoropoulou S, Dick AD. Unravelling the therapeutic potential of IL-33 for atrophic AMD. Eye (Lond) 2022; 36:266-272. [PMID: 34531552 PMCID: PMC8807696 DOI: 10.1038/s41433-021-01725-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023] Open
Abstract
Age-related macular degeneration (AMD), a degenerative disease affecting the retinal pigment epithelium (RPE) and photoreceptors in the macula, is the leading cause of central blindness in the elderly. AMD progresses to advanced stages of the disease, atrophic AMD (aAMD), or in 15% of cases "wet" or neovascular AMD (nAMD), associated with substantial vision loss. Whilst there has been advancement in therapies treating nAMD, to date, there are no licenced effective treatments for the 85% affected by aAMD, with disease managed by changes to diet, vitamin supplements, and regular monitoring. AMD has a complex pathogenesis, involving highly integrated and common age-related disease pathways, including dysregulated complement/inflammation, impaired autophagy, and oxidative stress. The intricacy of AMD pathogenesis makes therapeutic development challenging and identifying a target that combats the converging disease pathways is essential to provide a globally effective treatment. Interleukin-33 is a cytokine, classically known for the proinflammatory role it plays in allergic disease. Recent evidence across degenerative and inflammatory disease conditions reveals a diverse immune-modulatory role for IL-33, with promising therapeutic potential. Here, we will review IL-33 function in disease and discuss the future potential for this homeostatic cytokine in treating AMD.
Collapse
Affiliation(s)
- Alison J. Clare
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Jian Liu
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David A. Copland
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Sofia Theodoropoulou
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Andrew D. Dick
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK ,grid.439257.e0000 0000 8726 5837NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK ,grid.83440.3b0000000121901201UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
21
|
Landowski M, Bhute VJ, Takimoto T, Grindel S, Shahi PK, Pattnaik BR, Ikeda S, Ikeda A. A mutation in transmembrane protein 135 impairs lipid metabolism in mouse eyecups. Sci Rep 2022; 12:756. [PMID: 35031662 PMCID: PMC8760256 DOI: 10.1038/s41598-021-04644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is a significant factor in the development of age-related diseases but how aging disrupts cellular homeostasis to cause age-related retinal disease is unknown. Here, we further our studies on transmembrane protein 135 (Tmem135), a gene involved in retinal aging, by examining the transcriptomic profiles of wild-type, heterozygous and homozygous Tmem135 mutant posterior eyecup samples through RNA sequencing (RNA-Seq). We found significant gene expression changes in both heterozygous and homozygous Tmem135 mutant mouse eyecups that correlate with visual function deficits. Further analysis revealed that expression of many genes involved in lipid metabolism are changed due to the Tmem135 mutation. Consistent with these changes, we found increased lipid accumulation in mutant Tmem135 eyecup samples. Since mutant Tmem135 mice have similar ocular pathologies as human age-related macular degeneration (AMD) eyes, we compared our homozygous Tmem135 mutant eyecup RNA-Seq dataset with transcriptomic datasets of human AMD donor eyes. We found similar changes in genes involved in lipid metabolism between the homozygous Tmem135 mutant eyecups and AMD donor eyes. Our study suggests that the Tmem135 mutation affects lipid metabolism as similarly observed in human AMD eyes, thus Tmem135 mutant mice can serve as a good model for the role of dysregulated lipid metabolism in AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Vijesh J Bhute
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Tetsuya Takimoto
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel Grindel
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Pawan K Shahi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Bikash R Pattnaik
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Kaur G, Singh NK. The Role of Inflammation in Retinal Neurodegeneration and Degenerative Diseases. Int J Mol Sci 2021; 23:ijms23010386. [PMID: 35008812 PMCID: PMC8745623 DOI: 10.3390/ijms23010386] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Retinal neurodegeneration is predominantly reported as the apoptosis or impaired function of the photoreceptors. Retinal degeneration is a major causative factor of irreversible vision loss leading to blindness. In recent years, retinal degenerative diseases have been investigated and many genes and genetic defects have been elucidated by many of the causative factors. An enormous amount of research has been performed to determine the pathogenesis of retinal degenerative conditions and to formulate the treatment modalities that are the critical requirements in this current scenario. Encouraging results have been obtained using gene therapy. We provide a narrative review of the various studies performed to date on the role of inflammation in human retinal degenerative diseases such as age-related macular degeneration, inherited retinal dystrophies, retinitis pigmentosa, Stargardt macular dystrophy, and Leber congenital amaurosis. In addition, we have highlighted the pivotal role of various inflammatory mechanisms in the progress of retinal degeneration. This review also offers an assessment of various therapeutic approaches, including gene-therapies and stem-cell-based therapies, for degenerative retinal diseases.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Correspondence:
| |
Collapse
|
23
|
Xu J, Liu X, Zhang X, Marshall B, Dong Z, Smith SB, Espinosa-Heidmann DG, Zhang M. Retinal and Choroidal Pathologies in Aged BALB/c Mice Following Systemic Neonatal Murine Cytomegalovirus Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1787-1804. [PMID: 34197777 PMCID: PMC8485058 DOI: 10.1016/j.ajpath.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
Although pathologies associated with acute virus infections have been extensively studied, the effects of long-term latent virus infections are less well understood. Human cytomegalovirus, which infects 50% to 80% of humans, is usually acquired during early life and persists in a latent state for the lifetime. The purpose of this study was to determine whether systemic murine cytomegalovirus (MCMV) infection acquired early in life disseminates to and becomes latent in the eye and if ocular MCMV can trigger in situ inflammation and occurrence of ocular pathology. This study found that neonatal infection of BALB/c mice with MCMV resulted in dissemination of virus to the eye, where it localized principally to choroidal endothelia and pericytes and less frequently to the retinal pigment epithelium (RPE) cells. MCMV underwent ocular latency, which was associated with expression of multiple virus genes and from which MCMV could be reactivated by immunosuppression. Latent ocular infection was associated with significant up-regulation of several inflammatory/angiogenic factors. Retinal and choroidal pathologies developed in a progressive manner, with deposits appearing at both basal and apical aspects of the RPE, RPE/choroidal atrophy, photoreceptor degeneration, and neovascularization. The pathologies induced by long-term ocular MCMV latency share features of previously described human ocular diseases, such as age-related macular degeneration.
Collapse
Affiliation(s)
- Jinxian Xu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xinglou Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xinyan Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Ophthamology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Diego G Espinosa-Heidmann
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Ophthamology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
24
|
Chan YK, Dick AD, Hall SM, Langmann T, Scribner CL, Mansfield BC. Inflammation in Viral Vector-Mediated Ocular Gene Therapy: A Review and Report From a Workshop Hosted by the Foundation Fighting Blindness, 9/2020. Transl Vis Sci Technol 2021; 10:3. [PMID: 34003982 PMCID: PMC8024774 DOI: 10.1167/tvst.10.4.3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
On September 14–15, 2020, the Foundation Fighting Blindness convened a virtual workshop to discuss intraocular inflammation during viral vector-mediated gene therapy for inherited retinal diseases. The workshop's goals were to understand immune activation's nature and significance during ocular gene therapy, consider whether ocular inflammation limits gene therapy's potential, and identify knowledge gaps for future research. The event brought together a small group of experienced researchers in the field to present and discuss current data. Collectively, participants agreed that clinical, as well as subclinical, inflammation during ocular gene therapy is common. The severity of inflammation in both animal and clinical studies varied widely but is generally related to vector dose. Severe inflammation was associated with reduced gene therapy efficacy. However, the relationship between outcomes and subclinical inflammation, pre-existing antivector antibodies, or induced adaptive immune responses is still unclear. Uncertainties about the contribution of vector manufacturing issues to inflammation were also noted. Importantly, various immunosuppressive treatment protocols are being used, and this heterogeneity confounds conclusions about optimal strategies. Proposed near-term next steps include establishing an immunological consultant directory, establishing a data repository for pertinent animal and clinical data, and developing a larger meeting. Priority areas for future research include deeper understanding of immune activation during retinal diseases and during ocular gene therapy; better, harmonized application of animal models; and identifying best practices for managing gene therapy vector-related ocular inflammation.
Collapse
Affiliation(s)
| | - Andrew D Dick
- UCL Institute of Ophthalmology, London, UK.,University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
25
|
Identification of Diagnostic Biomarkers and Their Correlation with Immune Infiltration in Age-Related Macular Degeneration. Diagnostics (Basel) 2021; 11:diagnostics11061079. [PMID: 34204836 PMCID: PMC8231534 DOI: 10.3390/diagnostics11061079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegenerative disease of the central retina, with no suitable biomarkers for early diagnosis and treatment. This study aimed to find potential diagnostic biomarker candidates for AMD and investigate their immune-related roles in this pathology. Weight gene correlation analysis was first performed based on data from the Gene Expression Omnibus database and 20 hub genes were identified. The functional enrichment analyses showed that the innate immune response, inflammatory response, and complement activation were key pathways associated with AMD. Complement C1s (C1S), adrenomedullin (ADM), and immediate early response 5 like (IER5L) were identified as the crucial genes with favorable diagnostic values for AMD by using LASSO analysis and multiple logistic regression. Furthermore, a 3-gene model was constructed and proved to be of good diagnostic and predictive performance for AMD (AUC = 0.785, 0.840, and 0.810 in training, test, and validation set, respectively). Finally, CIBERSORT was used to evaluate the infiltration of immune cells in AMD tissues. The results showed that the NK cells, CD4 memory T cell activation, and macrophage polarization may be involved in the AMD process. C1S, ADM, and IER5L were correlated with the infiltration of the above immune cells. In conclusion, our study suggests that C1S, ADM, and IER5L are promising diagnostic biomarker candidates for AMD and may regulate the infiltration of immune cells in the occurrence and progression of AMD.
Collapse
|
26
|
Krueger K, Boehme E, Klettner AK, Zille M. The potential of marine resources for retinal diseases: a systematic review of the molecular mechanisms. Crit Rev Food Sci Nutr 2021; 62:7518-7560. [PMID: 33970706 DOI: 10.1080/10408398.2021.1915242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We rely on vision more than on any other sense to obtain information about our environment. Hence, the loss or even impairment of vision profoundly affects our quality of life. Diet or food components have already demonstrated beneficial effects on the development of retinal diseases. Recently, there has been a growing interest in resources from marine animals and plants for the prevention of retinal diseases through nutrition. Especially fish intake and omega-3 fatty acids have already led to promising results, including associations with a reduced incidence of retinal diseases. However, the underlying molecular mechanisms are insufficiently explained. The aim of this review was to summarize the known mechanistic effects of marine resources on the pathophysiological processes in retinal diseases. We performed a systematic literature review following the PRISMA guidelines and identified 107 studies investigating marine resources in the context of retinal diseases. Of these, 46 studies described the underlying mechanisms including anti-inflammatory, antioxidant, antiangiogenic/vasoprotective, cytoprotective, metabolic, and retinal function effects, which we critically summarize. We further discuss perspectives on the use of marine resources for human nutrition to prevent retinal diseases with a particular focus on regulatory aspects, health claims, safety, and bioavailability.
Collapse
Affiliation(s)
- Kristin Krueger
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany
| | - Elke Boehme
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany
| | - Alexa Karina Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Quincke Research Center, Kiel, Germany
| | - Marietta Zille
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
27
|
Van Hove I, Van Bergen T, Etienne I, Holgado A, Afonina IS, Beyaert R, Feyen JH, Hu TT. IL-33trap-mediated IL-33 neutralization does not exacerbate choroidal neovascularization, but fails to protect against retinal degeneration in a dry age-related macular degeneration model. Exp Eye Res 2021; 207:108608. [PMID: 33930400 DOI: 10.1016/j.exer.2021.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 09/30/2022]
Abstract
The progressive and sight-threatening disease, age-related macular degeneration (AMD), is a growing public health concern due to ageing demographics, with the highest unmet medical need for the advanced stage of dry AMD, geographic atrophy. The pathogenesis underlying AMD is driven by a complex interplay of genetic and environmental factors. There is ample evidence that inflammation is strongly involved in AMD development. Interleukin-33 (IL-33) has been proposed to be critically involved in retinal degeneration, but a protective role in eye pathophysiology was also demonstrated. The current study investigated the therapeutic potential of IL-33trap, a novel IL-33-neutralizing biologic, in dry AMD/geographic atrophy and, based on controversial data regarding the protective versus detrimental functions of IL-33 in neovascularization, evaluated the risk of progression to wet AMD by IL-33 neutralization. Repeated intravitreal (IVT) injections of IL-33trap in the mouse laser-induced choroidal neovascularization model did not exacerbate neovascularization or leakage, while it significantly inhibited inflammatory cell infiltration in the retinal pigment epithelium and choroid. On the contrary, IVT treatment with IL-33trap significantly induced retinal inflammation and could not prevent retinopathy induction in the mouse sodium iodate (NaIO3) model. Overall, these data suggest a complex and dichotomous role of IL-33 in eye pathology and indicate that IL-33 neutralization is not able to prevent onset and progression of dry AMD pathogenesis.
Collapse
Affiliation(s)
- Inge Van Hove
- Oxurion NV, Gaston Geenslaan 1, 3001, Heverlee, Belgium.
| | | | | | - Aurora Holgado
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Inna S Afonina
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jean Hm Feyen
- Oxurion NV, Gaston Geenslaan 1, 3001, Heverlee, Belgium
| | | |
Collapse
|
28
|
Thomas CN, Sim DA, Lee WH, Alfahad N, Dick AD, Denniston AK, Hill LJ. Emerging therapies and their delivery for treating age-related macular degeneration. Br J Pharmacol 2021; 179:1908-1937. [PMID: 33769566 DOI: 10.1111/bph.15459] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness in the Western world and is characterised in its latter stages by retinal cell death and neovascularisation and earlier stages with the loss of parainflammatory homeostasis. Patients with neovascular AMD (nAMD) are treated with frequent intraocular injections of anti-vascular endothelial growth factor (VEGF) therapies, which are not only unpopular with patients but carry risks of sight-threatening complications. A minority of patients are unresponsive with no alternative treatment available, and some patients who respond initially eventually develop a tolerance to treatment. New therapeutics with improved delivery methods and sustainability of clinical effects are required, in particular for non-neovascular AMD (90% of cases and no current approved treatments). There are age-related and disease-related changes that occur which can affect ocular drug delivery. Here, we review the latest emerging therapies for AMD, their delivery routes and implications for translating to clinical practice.
Collapse
Affiliation(s)
- Chloe N Thomas
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dawn A Sim
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK
| | - Wen Hwa Lee
- Action Against AMD, London, UK.,Affordable Medicines Programme, Oxford Martin School, University of Oxford, Oxford, UK
| | - Nada Alfahad
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew D Dick
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK.,Academic Unit of Ophthalmology, Bristol Medical School and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Alastair K Denniston
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK.,Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Centre for Patient Reported Outcome Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK.,Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK.,Health Data Research UK, London, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
Lee KS, Lin S, Copland DA, Dick AD, Liu J. Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. J Neuroinflammation 2021; 18:32. [PMID: 33482879 PMCID: PMC7821689 DOI: 10.1186/s12974-021-02088-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD), a degenerative disease in the central macula area of the neuroretina and the supporting retinal pigment epithelium, is the most common cause of vision loss in the elderly. Although advances have been made, treatment to prevent the progressive degeneration is lacking. Besides the association of innate immune pathway genes with AMD susceptibility, environmental stress- and cellular senescence-induced alterations in pathways such as metabolic functions and inflammatory responses are also implicated in the pathophysiology of AMD. Cellular senescence is an adaptive cell process in response to noxious stimuli in both mitotic and postmitotic cells, activated by tumor suppressor proteins and prosecuted via an inflammatory secretome. In addition to physiological roles in embryogenesis and tissue regeneration, cellular senescence is augmented with age and contributes to a variety of age-related chronic conditions. Accumulation of senescent cells accompanied by an impairment in the immune-mediated elimination mechanisms results in increased frequency of senescent cells, termed “chronic” senescence. Age-associated senescent cells exhibit abnormal metabolism, increased generation of reactive oxygen species, and a heightened senescence-associated secretory phenotype that nurture a proinflammatory milieu detrimental to neighboring cells. Senescent changes in various retinal and choroidal tissue cells including the retinal pigment epithelium, microglia, neurons, and endothelial cells, contemporaneous with systemic immune aging in both innate and adaptive cells, have emerged as important contributors to the onset and development of AMD. The repertoire of senotherapeutic strategies such as senolytics, senomorphics, cell cycle regulation, and restoring cell homeostasis targeted both at tissue and systemic levels is expanding with the potential to treat a spectrum of age-related diseases, including AMD.
Collapse
Affiliation(s)
- Keng Siang Lee
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Shuxiao Lin
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - David A Copland
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Andrew D Dick
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK. .,Institute of Ophthalmology, University College London, London, EC1V 9EL, UK. .,National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, EC1V 2QH, UK.
| | - Jian Liu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
30
|
Beyond AREDS Formulations, What Is Next for Intermediate Age-Related Macular Degeneration (iAMD) Treatment? Potential Benefits of Antioxidant and Anti-inflammatory Apocarotenoids as Neuroprotectors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4984927. [PMID: 33520083 PMCID: PMC7803142 DOI: 10.1155/2020/4984927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Age-related macular degeneration (AMD) is the commonest cause of severe visual loss and blindness in developed countries among individuals aged 60 and older. AMD slowly progresses from early AMD to intermediate AMD (iAMD) and ultimately late-stage AMD. Late AMD encompasses either neovascular AMD (nAMD) or geographic atrophy (GA). nAMD is defined by choroidal neovascularization (CNV) and hemorrhage in the subretinal space at the level of the macula. This induces a rapid visual impairment caused by the death of photoreceptor cells. Intravitreal injection of anti-vascular endothelial growth factor (VEGF) antibodies is the standard treatment of nAMD but adds to the burden of patient care. GA is characterized by slowly expanding photoreceptor, and retinal pigment epithelium (RPE) degeneration patches progressively leading to blindness. There is currently no therapy to cure GA. Late AMD continues to be an unmet medical need representing a major health problem with millions of patients worldwide. Oxidative stress and inflammation are recognized as some of the main risk factors to developing late AMD. The antioxidant formulation AREDS (Age-Related Eye Disease Studies), contains β-carotene, which has been replaced by lutein and zeaxanthin in AREDS2, are given to patients with iAMD but have a limited effect on the incidence of nAMD and GA. Thus, to avoid or slowdown the development of late stages of AMD (nAMD or GA), new therapies targeting iAMD are needed such as crocetin obtained through hydrolysis of crocin, an important component of saffron (Crocus sativus L.), and norbixin derived from bixin extracted from Bixa orellana seeds. We have shown that these apocarotenoids preserved more effectively RPE cells against apoptosis following blue light exposure in the presence of A2E than lutein and zeaxanthin. In this review, we will discuss the potential use of apocarotenoids to slowdown the progression of iAMD, to reduce the incidence of both forms of late AMD.
Collapse
|
31
|
Karlen SJ, Miller EB, Burns ME. Microglia Activation and Inflammation During the Death of Mammalian Photoreceptors. Annu Rev Vis Sci 2020; 6:149-169. [PMID: 32936734 PMCID: PMC10135402 DOI: 10.1146/annurev-vision-121219-081730] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoreceptors are highly specialized sensory neurons with unique metabolic and physiological requirements. These requirements are partially met by Müller glia and cells of the retinal pigment epithelium (RPE), which provide essential metabolites, phagocytose waste, and control the composition of the surrounding microenvironment. A third vital supporting cell type, the retinal microglia, can provide photoreceptors with neurotrophic support or exacerbate neuroinflammation and hasten neuronal cell death. Understanding the physiological requirements for photoreceptor homeostasis and the factors that drive microglia to best promote photoreceptor survival has important implications for the treatment and prevention of blinding degenerative diseases like retinitis pigmentosa and age-related macular degeneration.
Collapse
Affiliation(s)
- Sarah J. Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616, USA
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, Davis, California 95616, USA
| | - Marie E. Burns
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616, USA
- Center for Neuroscience, University of California, Davis, Davis, California 95616, USA
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
32
|
Ramsay E, Raviña M, Sarkhel S, Hehir S, Cameron NR, Ilmarinen T, Skottman H, Kjems J, Urtti A, Ruponen M, Subrizi A. Avoiding the Pitfalls of siRNA Delivery to the Retinal Pigment Epithelium with Physiologically Relevant Cell Models. Pharmaceutics 2020; 12:pharmaceutics12070667. [PMID: 32708811 PMCID: PMC7407886 DOI: 10.3390/pharmaceutics12070667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammation is involved in the pathogenesis of several age-related ocular diseases, such as macular degeneration (AMD), diabetic retinopathy, and glaucoma. The delivery of anti-inflammatory siRNA to the retinal pigment epithelium (RPE) may become a promising therapeutic option for the treatment of inflammation, if the efficient delivery of siRNA to target cells is accomplished. Unfortunately, so far, the siRNA delivery system selection performed in dividing RPE cells in vitro has been a poor predictor of the in vivo efficacy. Our study evaluates the silencing efficiency of polyplexes, lipoplexes, and lipidoid-siRNA complexes in dividing RPE cells as well as in physiologically relevant RPE cell models. We find that RPE cell differentiation alters their endocytic activity and causes a decrease in the uptake of siRNA complexes. In addition, we determine that melanosomal sequestration is another significant and previously unexplored barrier to gene silencing in pigmented cells. In summary, this study highlights the importance of choosing a physiologically relevant RPE cell model for the selection of siRNA delivery systems. Such cell models are expected to enable the identification of carriers with a high probability of success in vivo, and thus propel the development of siRNA therapeutics for ocular disease.
Collapse
Affiliation(s)
- Eva Ramsay
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (E.R.); (M.R.); (S.S.); (A.U.)
| | - Manuela Raviña
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (E.R.); (M.R.); (S.S.); (A.U.)
| | - Sanjay Sarkhel
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (E.R.); (M.R.); (S.S.); (A.U.)
| | - Sarah Hehir
- Department of Life Sciences, Institute of Technology Sligo, F91 YW50 Sligo, Ireland;
| | - Neil R. Cameron
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK;
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Tanja Ilmarinen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, 33014 Tampere, Finland; (T.I.); (H.S.)
| | - Heli Skottman
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, 33014 Tampere, Finland; (T.I.); (H.S.)
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark;
| | - Arto Urtti
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (E.R.); (M.R.); (S.S.); (A.U.)
- Laboratory of Biohybrid Technologies, Institute of Chemistry, St. Petersburg State University, 198504 Peterhoff, Russia
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Astrid Subrizi
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark;
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland;
- Correspondence: ; Tel.: +358-40-016-3407
| |
Collapse
|
33
|
Kenney MC, Nashine S. Further understanding of epigenetic dysfunction of the retinal pigment epithelium in AMD. EXPERT REVIEW OF OPHTHALMOLOGY 2020; 15:221-231. [PMID: 33732291 DOI: 10.1080/17469899.2020.1767597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction Modulation of epigenetic mechanisms that contribute to retinal development may render the eye susceptible to age-related macular degeneration (AMD). Progression of AMD involves alterations of epigenome such as CpG methylation and histone modifications, and study of the epigenetic regulation of molecular/ cellular pathways associated with AMD might identify target epigenetic markers for treatment of AMD. Areas covered In this review, we provide an overview of the influence of epigenetic factors on signaling pathways/ related genes associated with AMD, mainly hypoxia, angiogenesis, inflammation, complement, and oxidative stress; and discuss the critical role of microRNAs in AMD. Expert Opinion Better understanding of epigenetic-mediated and microRNA-mediated regulation of the AMD disease-related pathways would help to assess the risk of developing AMD besides providing valuable insight on potential target candidates for AMD therapy.
Collapse
Affiliation(s)
- Maria Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA.,Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
34
|
Curcio CA, McGwin G, Sadda SR, Hu Z, Clark ME, Sloan KR, Swain T, Crosson JN, Owsley C. Functionally validated imaging endpoints in the Alabama study on early age-related macular degeneration 2 (ALSTAR2): design and methods. BMC Ophthalmol 2020; 20:196. [PMID: 32429847 PMCID: PMC7236516 DOI: 10.1186/s12886-020-01467-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/08/2020] [Indexed: 12/29/2022] Open
Abstract
Background Age-related macular degeneration (AMD), a leading cause of irreversible vision impairment in the United States and globally, is a disease of the photoreceptor support system involving the retinal pigment epithelium (RPE), Bruch’s membrane, and the choriocapillaris in the setting of characteristic extracellular deposits between outer retinal cells and their blood supply. Research has clearly documented the selective vulnerability of rod photoreceptors and rod-mediated (scotopic) vision in early AMD, including delayed rod-mediated dark adaptation (RMDA) and impaired rod-mediated light and pattern sensitivity. The unifying hypothesis of the Alabama Study on Early Macular Degeneration (ALSTAR2) is that early AMD is a disease of micronutrient deficiency and vascular insufficiency, due to detectable structural changes in the retinoid re-supply route from the choriocapillaris to the photoreceptors. Functionally this is manifest as delayed rod-mediated dark adaptation and eventually as rod-mediated visual dysfunction in general. Methods A cohort of 480 older adults either in normal macular health or with early AMD will be enrolled and followed for 3 years to examine cross-sectional and longitudinal associations between structural and functional characteristics of AMD. Using spectral domain optical coherence tomography, the association between (1) subretinal drusenoid deposits and drusen, (2) RPE cell bodies, and (3) the choriocapillaris’ vascular density and rod- and cone-mediated vision will be examined. An accurate map and timeline of structure-function relationships in aging and early AMD gained from ALSTAR2, especially the critical transition from aging to disease, will identify major characteristics relevant to future treatments and preventative measures. Discussion A major barrier to developing treatments and prevention strategies for early AMD is a limited understanding of the temporal interrelationships among structural and functional characteristics while transitioning from aging to early AMD. ALSTAR2 will enable the development of functionally valid, structural biomarkers for early AMD, suitable for use in forthcoming clinical trials as endpoint/outcome measures. The comprehensive dataset will also allow hypothesis-testing for mechanisms that underlie the transition from aging to AMD, one of which is a newly developed Center-Surround model of cone resilience and rod vulnerability. Trial registration ClinicalTrials.gov Identifier NCT04112667, October 7, 2019.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Srinivas R Sadda
- Doheny Eye Institute, P.O. Box 86228, Los Angeles, CA, 90033, USA
| | - Zhihong Hu
- Doheny Eye Institute, P.O. Box 86228, Los Angeles, CA, 90033, USA
| | - Mark E Clark
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA
| | - Kenneth R Sloan
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA.,Department of Computer Science, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Thomas Swain
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA
| | - Jason N Crosson
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA.,Retina Consultants of Alabama, Birmingham, AL, 35233, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA.
| |
Collapse
|
35
|
Baba T, Miyazaki D, Inata K, Uotani R, Miyake H, Sasaki SI, Shimizu Y, Inoue Y, Nakamura K. Role of IL-4 in bone marrow driven dysregulated angiogenesis and age-related macular degeneration. eLife 2020; 9:54257. [PMID: 32366355 PMCID: PMC7200155 DOI: 10.7554/elife.54257] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/19/2020] [Indexed: 12/15/2022] Open
Abstract
Age-associated sterile inflammation can cause dysregulated choroidal neovascularization (CNV) as age-related macular degeneration (AMD). Intraocular fluid screening of 234 AMD patients identified high levels of IL-4. The purpose of this study was to determine the functional role of IL-4 in CNV formation using murine CNV model. Our results indicate that the IL-4/IL-4 receptors (IL4Rs) controlled tube formation and global proangiogenic responses of bone marrow cells. CCR2+ bone marrow cells were recruited to form very early CNV lesions. IL-4 rapidly induces CCL2, which enhances recruitment of CCR2+ bone marrow cells. This in vivo communication, like quorum-sensing, was followed by the induction of IL-4 by the bone marrow cells during the formation of mature CNVs. For CNV development, IL-4 in bone marrow cells are critically required, and IL-4 directly promotes CNV formation mainly by IL-4R. The IL-4/IL-4Rα axis contributes to pathological angiogenesis through communications with bone marrow cells leading to retinal degeneration.
Collapse
Affiliation(s)
- Takashi Baba
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Dai Miyazaki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kodai Inata
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Ryu Uotani
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hitomi Miyake
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Shin-Ichi Sasaki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yumiko Shimizu
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshitsugu Inoue
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kazuomi Nakamura
- Division of Pathological Biochemistry, Department of Biomedical Sciences, Faculty of Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
36
|
Matsubara JA, Tian Y, Cui JZ, Zeglinski MR, Hiroyasu S, Turner CT, Granville DJ. Retinal Distribution and Extracellular Activity of Granzyme B: A Serine Protease That Degrades Retinal Pigment Epithelial Tight Junctions and Extracellular Matrix Proteins. Front Immunol 2020; 11:574. [PMID: 32318066 PMCID: PMC7155911 DOI: 10.3389/fimmu.2020.00574] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
Granzymes are a family of serine proteases first shown to be intracellular initiators of immune-mediated cell death in target pathogenic cells. In addition to its intracellular role, Granzyme B (GzmB) has important extracellular functions in immune regulation and extracellular matrix (ECM) degradation. Verified substrates of extracellular GzmB activity include tight junctional and ECM proteins. Interestingly, little is known about the activity of GzmB in the outer human retina, a tissue in which the degradation of the tight junctional contacts of retinal pigment epithelial (RPE) cells and within the external limiting membrane, as well as remodeling of the ECM in Bruch's membrane, cause the breakdown of the blood-retinal barrier and slowing of metabolite transport between neuroretina and choroidal blood supply. Such pathological changes in outer retina signal early events in the development of age-related macular degeneration (AMD), a multifactorial, chronic inflammatory eye disease. This study is the first to focus on the distribution of GzmB in the outer retina of the healthy and diseased post-mortem human eye. Our results revealed that GzmB is present in RPE and choroidal mast cells. More immunoreactive cells are present in older (>65 years) compared to younger (<55 years) donor eyes, and choroidal immunoreactive cells are more numerous in eyes with choroidal neovascularization (CNV), while RPE immunoreactive cells are more numerous in eyes with soft drusen, an early AMD event. In vitro studies demonstrated that RPE-derived tight junctional and ECM proteins are cleaved by exogenous GzmB stimulation. These results suggest that the increased presence of GzmB immunoreactive cells in outer retina of older (healthy) eyes as well as in diseased eyes with CNV (from AMD) and eyes with soft drusen exacerbate ECM remodeling in the Bruch's membrane and degradation of the blood-retinal barrier. Currently there are no treatments that prevent remodeling of the Bruch's membrane and/or the loss of function of the outer blood-retinal barrier, known to promote early AMD changes, such as drusen deposition, RPE dysfunction and pro-inflammation. Specific inhibitors of GzmB, already in preclinical studies for non-ocular diseases, may provide new strategies to stop these early events associated with the development of AMD.
Collapse
Affiliation(s)
- Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Yuan Tian
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Jing Z Cui
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Matthew R Zeglinski
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Sho Hiroyasu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Christopher T Turner
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
37
|
Kauppinen A. Introduction to the multi-author review on macular degeneration. Cell Mol Life Sci 2020; 77:779-780. [PMID: 31897540 PMCID: PMC7058669 DOI: 10.1007/s00018-019-03418-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 02/04/2023]
Abstract
Prolonged life expectancies contribute to the increasing prevalence of age-related macular degeneration (AMD) that is already the leading cause of severe vision loss among the elderly in developed countries. In dry AMD, the disease culminates into vast retinal atrophy, whereas the wet form is characterized by retinal edema and sudden vision loss due to neovascularization originating from the choroid beneath the Bruch's membrane. There is no treatment for dry AMD and despite intravitreal injections of anti-vascular endothelial growth factor (VEGF) that suppress the neovessel formation, also wet AMD needs new therapies to prevent the disease progression and to serve patients lacking of positive response to current medicines. Knowledge on disease mechanisms is a prerequisite for the drug development, which is hindered by the multifactorial nature of AMD. Numerous distinguished publications have revealed AMD mechanisms at the cellular and molecular level and in this multi-author review, we take a bit broader look at the topic with some novel aspects.
Collapse
Affiliation(s)
- Anu Kauppinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, 1627, 70211, Kuopio, Finland.
| |
Collapse
|
38
|
Yiu G, Chung SH, Mollhoff IN, Wang Y, Nguyen UT, Shibata B, Cunefare D, Farsiu S, Roberts J, Thomasy SM. Long-term Evolution and Remodeling of Soft Drusen in Rhesus Macaques. Invest Ophthalmol Vis Sci 2020; 61:32. [PMID: 32084273 PMCID: PMC7326602 DOI: 10.1167/iovs.61.2.32] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 01/30/2023] Open
Abstract
Purpose To characterize the evolution and structure of soft drusen in aged rhesus macaques using in vivo multimodal retinal imaging and ex vivo histologic and ultrastructural analyses as a nonhuman primate model of early age-related macular degeneration (AMD). Methods Multimodal imaging including fundus photography, spectral domain optical coherence tomography (SD-OCT), and fundus autofluorescence (FAF) were used to characterize and track individual drusen lesions in 20 aged rhesus macaques (mean age 23.3 ± 2.7 years) with drusenoid lesions over 2 years, followed by semithin histologic analysis and transmission electron microscopy (TEM). Results Although most drusen gradually increased in size, a portion spontaneously regressed or collapsed over 2 years. Histologic analyses showed that soft drusen exhibit hypertrophy and dysmorphia of overlying retinal pigment epithelium (RPE), as seen in early and intermediate AMD, but do not exhibit RPE atrophy, RPE migration, or photoreceptor degeneration characteristic of advanced AMD. Ultrastructure of soft drusen showed abundant lipid particles within Bruch's membrane and AMD-related basal linear deposits (BlinD) resembling those in human drusen. Conclusions The dynamic remodeling, histologic findings, and ultrastructural features of soft drusen in aged rhesus macaques support nonhuman primates as an animal model of early AMD and reveal important insights into drusen biogenesis and AMD development.
Collapse
Affiliation(s)
- Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
| | - Sook Hyun Chung
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
| | - Iris Natalie Mollhoff
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
| | - Yinwen Wang
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
| | - Uyen Tu Nguyen
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
| | - Bradley Shibata
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
| | - David Cunefare
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Jeffrey Roberts
- California National Primate Research Center, Davis, California, United States
| | - Sara M. Thomasy
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, United States
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| |
Collapse
|
39
|
Fletcher EL. Contribution of microglia and monocytes to the development and progression of age related macular degeneration. Ophthalmic Physiol Opt 2020; 40:128-139. [PMID: 32017190 DOI: 10.1111/opo.12671] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Age related macular degeneration (AMD) is the leading cause of irreversible vision loss in industrialised nations. Based on genetics, as well as proteome analysis of drusen, the role the innate immune system in the development and/or progression of the disease is well established. Mononuclear phagocytes, such as microglia and monocytes, play critical roles in innate immunity. Here, the role of retinal microglia in mediating normal retinal function, and how these cells change with age is discussed, so as to understand their role in the development and progression of AMD. RECENT FINDINGS It is now known that microglia dynamically survey the neural environment, responding rapidly to even the most subtle neural injury. The dynamic and phagocytic roles of microglia can change with age contributing to alteration in the response of these cells to damage with age. Accumulation of innate immune cells in the subretinal space is a hallmark feature of the development of AMD, reflecting either an increase in migration of monocytes into the retina, or a failure of immune cell elimination from the retina. Furthermore, changes in phagocytic ability of immune cells could contribute to the accumulation of drusen deposits in the posterior eye. SUMMARY An overview of how retinal microglia maintain retinal homeostasis under normal conditions is provided, and then how they contribute to each stage of AMD. In addition, circulating monocytes are altered in those with AMD, contributing to the overall inflammatory state. Understanding the role of cells of the innate immune system in AMD may uncover novel therapeutic targets with which to reduce either the development or progression of disease.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
40
|
Ghosh S, Padmanabhan A, Vaidya T, Watson AM, Bhutto IA, Hose S, Shang P, Stepicheva N, Yazdankhah M, Weiss J, Das M, Gopikrishna S, Aishwarya, Yadav N, Berger T, Mak TW, Xia S, Qian J, Lutty GA, Jayagopal A, Zigler JS, Sethu S, Handa JT, Watkins SC, Ghosh A, Sinha D. Neutrophils homing into the retina trigger pathology in early age-related macular degeneration. Commun Biol 2019; 2:348. [PMID: 31552301 PMCID: PMC6754381 DOI: 10.1038/s42003-019-0588-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is an expanding problem as longevity increases worldwide. While inflammation clearly contributes to vision loss in AMD, the mechanism remains controversial. Here we show that neutrophils are important in this inflammatory process. In the retinas of both early AMD patients and in a mouse model with an early AMD-like phenotype, we show neutrophil infiltration. Such infiltration was confirmed experimentally using ribbon-scanning confocal microscopy (RSCM) and IFNλ- activated dye labeled normal neutrophils. With neutrophils lacking lipocalin-2 (LCN-2), infiltration was greatly reduced. Further, increased levels of IFNλ in early AMD trigger neutrophil activation and LCN-2 upregulation. LCN-2 promotes inflammation by modulating integrin β1 levels to stimulate adhesion and transmigration of activated neutrophils into the retina. We show that in the mouse model, inhibiting AKT2 neutralizes IFNλ inflammatory signals, reduces LCN-2-mediated neutrophil infiltration, and reverses early AMD-like phenotype changes. Thus, AKT2 inhibitors may have therapeutic potential in early, dry AMD.
Collapse
Affiliation(s)
- Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | | | | | - Alan M. Watson
- Center for Biologic Imaging and Department of Cellular Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Imran A. Bhutto
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Nadezda Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Joseph Weiss
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | | | | | - Aishwarya
- Narayana Nethralaya Foundation, Bengaluru, India
| | - Naresh Yadav
- Narayana Nethralaya Foundation, Bengaluru, India
| | - Thorsten Berger
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute, University Health Network, Toronto, ON Canada
| | - Tak W. Mak
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute, University Health Network, Toronto, ON Canada
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jiang Qian
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Gerard A. Lutty
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Ashwath Jayagopal
- Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche, Ltd, Basel, Switzerland
- Present Address: Kodiak Sciences, Palo Alto, CA USA
| | - J. Samuel Zigler
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | | | - James T. Handa
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Simon C. Watkins
- Center for Biologic Imaging and Department of Cellular Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | | | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
41
|
Rohwer K, Neupane S, Bittkau KS, Pérez MG, Dörschmann P, Roider J, Alban S, Klettner A. Effects of Crude Fucus distichus Subspecies evanescens Fucoidan Extract on Retinal Pigment Epithelium Cells-Implications for Use in Age-Related Macular Degeneration. Mar Drugs 2019; 17:E538. [PMID: 31527536 PMCID: PMC6780902 DOI: 10.3390/md17090538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
Fucoidan extracts may have beneficial effects in age-related macular degeneration(AMD). Over-the-counter fucoidan preparations are generally undefined, crude extracts. In thisstudy, we investigated the effect of a crude fucoidan extract from Fucus distichus subspeciesevanescens (Fe) on the retinal pigment epithelium (RPE). Fe extract was investigated for chemicalcomposition and molar mass. It was tested in primary RPE and RPE cell line ARPE19. Oxidativestress was induced with tert-butyl hydroperoxide, cell viability evaluated with MTT assay, VEGFsecretion assessed in ELISA. Phagocytosis was evaluated in a fluorescence microscopic assay.Wound healing ability was tested in a scratch assay. Additionally, the inhibition of elastase andcomplement system by Fe extract was studied. The Fe extract contained about 61.9% fucose andhigh amounts of uronic acids (26.2%). The sulfate content was not as high as expected (6.9%). It wasnot toxic and not protective against oxidative stress. However, Fe extract was able to reduce VEGFsecretion in ARPE19. Phagocytosis was also reduced. Concerning wound healing, a delay could beobserved in higher concentrations. While some beneficial effects could be found, it seems tointerfere with RPE function, which may reduce its beneficial effects in AMD treatment.
Collapse
Affiliation(s)
- Kevin Rohwer
- Department of Ophthalmology, University Medical Center, University of Kiel, 24105 Kiel, Germany; (K.R.); (P.D.); (J.R.)
| | - Sandesh Neupane
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Kiel, 24105 Kiel, Germany; (S.N.); (K.S.B.); (M.G.P.); (S.A.)
| | - Kaya Saskia Bittkau
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Kiel, 24105 Kiel, Germany; (S.N.); (K.S.B.); (M.G.P.); (S.A.)
| | - Mayra Galarza Pérez
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Kiel, 24105 Kiel, Germany; (S.N.); (K.S.B.); (M.G.P.); (S.A.)
| | - Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, 24105 Kiel, Germany; (K.R.); (P.D.); (J.R.)
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, 24105 Kiel, Germany; (K.R.); (P.D.); (J.R.)
| | - Susanne Alban
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Kiel, 24105 Kiel, Germany; (S.N.); (K.S.B.); (M.G.P.); (S.A.)
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, 24105 Kiel, Germany; (K.R.); (P.D.); (J.R.)
| |
Collapse
|
42
|
Dörschmann P, Bittkau KS, Neupane S, Roider J, Alban S, Klettner A. Effects of Fucoidans from Five Different Brown Algae on Oxidative Stress and VEGF Interference in Ocular Cells. Mar Drugs 2019; 17:E258. [PMID: 31052228 PMCID: PMC6562460 DOI: 10.3390/md17050258] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fucoidans are interesting for potential usage in ophthalmology, and especially age-related macular degeneration. However, fucoidans from different species may vary in their effects. Here, we compare fucoidans from five algal species in terms of oxidative stress protection and vascular endothelial growth factor (VEGF) interference in ocular cells. METHODS Brown algae (Fucus vesiculosus, Fucus distichus subsp. evanescens, Fucus serratus, Laminaria digitata, Saccharina latissima) were harvested and fucoidans isolated by hot-water extraction. Fucoidans were tested in several concentrations (1, 10, 50, and 100 µg/mL). Effects were measured on a uveal melanoma cell line (OMM-1) (oxidative stress), retinal pigment epithelium (RPE) cell line ARPE19 (oxidative stress and VEGF), and primary RPE cells (VEGF). Oxidative stress was induced by H2O2 or tert-Butyl hydroperoxide (TBHP). Cell viability was investigated with methyl thiazolyl tetrazolium (MTT or MTS) assay, and VEGF secretion with ELISA. Affinity to VEGF was determined by a competitive binding assay. RESULTS All fucoidans protected OMM-1 from oxidative stress. However, in ARPE19, only fucoidan from Saccharina latissima was protective. The affinity to VEGF of all fucoidans was stronger than that of heparin, and all reduced VEGF secretion in ARPE19. In primary RPE, only the fucoidan from Saccharina latissima was effective. CONCLUSION Among the fucoidans from five different species, Saccharina latissima displayed the most promising results concerning oxidative stress protection and reduction of VEGF secretion.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany.
| | - Kaya Saskia Bittkau
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Sandesh Neupane
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany.
| | - Susanne Alban
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany.
| |
Collapse
|
43
|
Brantley MA, Handa JT. Foreword: Dry Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2019; 59:AMDi. [PMID: 30576399 DOI: 10.1167/iovs.18-26218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
44
|
Curcio CA. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Invest Ophthalmol Vis Sci 2018; 59:AMD160-AMD181. [PMID: 30357336 PMCID: PMC6733535 DOI: 10.1167/iovs.18-24882] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AMD is a major cause of legal blindness in older adults approachable through multidisciplinary research involving human tissues and patients. AMD is a vascular-metabolic-inflammatory disease, in which two sets of extracellular deposits, soft drusen/basal linear deposit (BLinD) and subretinal drusenoid deposit (SDD), confer risk for end-stages of atrophy and neovascularization. Understanding how deposits form can lead to insights for new preventions and therapy. The topographic correspondence of BLinD and SDD with cones and rods, respectively, suggest newly realized exchange pathways among outer retinal cells and across Bruch's membrane and the subretinal space, in service of highly evolved, eye-specific physiology. This review focuses on soft drusen/BLinD, summarizing evidence that a major ultrastructural component is large apolipoprotein B,E-containing, cholesterol-rich lipoproteins secreted by the retinal pigment epithelium (RPE) that offload unneeded lipids of dietary and outer segment origin to create an atherosclerosis-like progression in the subRPE-basal lamina space. Clinical observations and an RPE cell culture system combine to suggest that soft drusen/BLinD form when secretions of functional RPE back up in the subRPE-basal lamina space by impaired egress across aged Bruch's membrane-choriocapillary endothelium. The soft drusen lifecycle includes growth, anterior migration of RPE atop drusen, then collapse, and atrophy. Proof-of-concept studies in humans and animal models suggest that targeting the “Oil Spill in Bruch's membrane” offers promise of treating a process in early AMD that underlies progression to both end-stages. A companion article addresses the antecedents of soft drusen within the biology of the macula.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|