1
|
Saikia B, Dhanushkodi A. Engineered exosome therapeutics for neurodegenerative diseases. Life Sci 2024; 356:123019. [PMID: 39209250 DOI: 10.1016/j.lfs.2024.123019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
An increase in life expectancy comes with a higher risk for age-related neurological and cognitive dysfunctions. Given the psycho-socioeconomic burden due to unhealthy aging in the coming decades, the United Nations has declared 2021-2030 as a decade of healthy aging. In this line, multipotent mesenchymal stromal cell-based therapeutics received special interest from the research community. Based on decades of research on cell therapy, a consensus has emerged that the therapeutic effects of cell therapy are due to the paracrine mechanisms rather than cell replacement. Exosomes, a constituent of the secretome, are nano-sized vesicles that have been a focus of intense research in recent years as a possible therapeutic agent or as a cargo to deliver drugs of interest into the central nervous system to induce neurogenesis, reduce neuroinflammation, confer neuroregeneration/neuroprotection, and improve cognitive and motor functions. In this review, we have discussed the neuroprotective properties of exosomes derived from adult mesenchymal stem cells, with a special focus on the role of exosomal miRNAs. We also reviewed various strategies to improve exosome production and their content for better therapeutic effects. Further, we discussed the utilization of ectomesenchymal stem cells like dental pulp stem cells and their exosomes in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Biplob Saikia
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, India
| | - Anandh Dhanushkodi
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
2
|
Xu S, Zhang M, Wang R, Zhang J, Wang C, Xie L, Zhao W. Spatial dimension cues derived from fibrous scaffolds trigger mechanical activation to potentiate the paracrine and regenerative functions of MSCs via the FAK-PI3K/AKT axis. Acta Biomater 2024:S1742-7061(24)00631-7. [PMID: 39461692 DOI: 10.1016/j.actbio.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Secretomes from mesenchymal stem cells (MSCs) have significant therapeutic potential and could be the basis for future MSCs treatments. Innovative design of the topology of biomaterials, which mechanically regulate cell behavior and function, can tremendously improve the efficacy of stem cell therapy. However, how spatial dimension cues derived from specific topology command cell mechanotransduction to regulate the paracrine function of MSCs remains unknown. In this study, the three-dimensional (3D) fibrous constructs with box-like pores and precise strand spacing from 150 µm down to only 40 µm were manufactured using melt electrowriting (MEW), which were used to systematically investigate the spatial dimension cues-triggered mechanotransduction of adipose-derived mesenchymal stem cells (Ad-MSCs) and their impact on the paracrine and regeneration function of Ad-MSCs. The results demonstrated that spatial instructions from the 3D fibrous constructs could influence the spatial reorganization of the cytoskeleton, resulting in cell elongation and augmented immunomodulatory and angiogenic paracrine effects of Ad-MSCs, which was most pronounced at a minimum strand spacing of 40 µm. Besides, mechanical activation of the FAK-PI3K/AKT axis significantly enhanced the paracrine function of Ad-MSCs. In vivo experiments demonstrated that the Ad-MSCs trained using well-defined 3D fibrous constructs with a strand spacing of 40 µm significantly promoted skin regeneration via paracrine signals. In conclusion, this study provides a new horizon for deciphering space dimension insights into the interactional mechanisms of mechanotransduction in regulating cell function, which has inspired innovations in biomaterials for improving tissue regeneration. STATEMENT OF SIGNIFICANCE: This study emphasized that designing cell-scale spatial dimension cues to command mechanical activation via the FAK-PI3K/AKT axis could significantly enhance the paracrine and regenerative functions of Ad-MSCs. Paracrine signals of Ad-MSCs triggered by mechanical activation promoted skin repair and regeneration via the immunomodulation and angiogenesis. The proposed mechanobiological signal transduction triggered by spatial dimensional cues, which potentiates the paracrine and regenerative functions of Ad-MSCs, is a promising engineering strategy and is expected to provide new inspirations for the development of biomaterials based on biophysical signals for cellular behavior modulation.
Collapse
Affiliation(s)
- Shixin Xu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Miaomiao Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ruoying Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jinxin Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chengwei Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Li Xie
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
3
|
Tolstova T, Dotsenko E, Luzgina N, Rusanov A. Preconditioning of Mesenchymal Stem Cells Enhances the Neuroprotective Effects of Their Conditioned Medium in an Alzheimer's Disease In Vitro Model. Biomedicines 2024; 12:2243. [PMID: 39457556 PMCID: PMC11504366 DOI: 10.3390/biomedicines12102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) develops as a result of oxidative damage to neurons and chronic inflammation of microglia. These processes can be influenced by the use of a conditioned medium (CM) derived from mesenchymal stem cells (MSCs). The CM contains a wide range of factors that have neurotrophic, antioxidant, and anti-inflammatory effects. In addition, the therapeutic potential of the CM can be further enhanced by pretreating the MSCs to increase their paracrine activity. The current study aimed to investigate the neuroprotective effects of CM derived from MSCs, which were either activated by a TLR3 ligand or exposed to CoCl2, a hypoxia mimetic (pCM or hCM, respectively), in an in vitro model of AD. METHODS We have developed a novel in vitro model of AD that allows us to investigate the neuroprotective and anti-inflammatory effects of MSCs on induced neurodegeneration in the PC12 cell line and the activation of microglia using THP-1 cells. RESULTS This study demonstrates for the first time that pCM and hCM exhibit more pronounced immunosuppressive effects on proinflammatory M1 macrophages compared to CM derived from untreated MSCs (cCM). This may help prevent the development of neuroinflammation by balancing the M1 and M2 microglial phenotypes via the decreased secretion of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and increased secretion of IL-4, as well as the expression of IL-10 and TGF-β by macrophages. Moreover, a previously unknown increase in the neurotrophic properties of hCM was discovered, which led to an increase in the viability of neuron-like PC12 cells under H2O2-induced oxidative-stress conditions. These results are likely associated with an increase in the production of growth factors, including vascular endothelial growth factor (VEGF). In addition, the neuroprotective effects of CM from preconditioned MSCs are also mediated by the activation of the Nrf2/ARE pathway in PC12 cells. CONCLUSIONS TLR3 activation in MSCs leads to more potent immunosuppressive effects of the CM against pro-inflammatory M1 macrophages, while the use of hCM led to increased neurotrophic effects after H2O2-induced damage to neuronal cells. These results are of interest for the potential treatment of AD with CM from preactivated MSCs.
Collapse
Affiliation(s)
- Tatiana Tolstova
- Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | | | | | - Alexander Rusanov
- Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| |
Collapse
|
4
|
Durmaz E, Dribika L, Kutnyanszky M, Mead B. Utilizing extracellular vesicles as a drug delivery system in glaucoma and RGC degeneration. J Control Release 2024; 372:209-220. [PMID: 38880332 DOI: 10.1016/j.jconrel.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Retinal diseases are the leading cause of blindness, resulting in irreversible degeneration and death of retinal neurons. One such cell type, the retinal ganglion cell (RGC), is responsible for connecting the retina to the rest of the brain through its axons that make up the optic nerve and is the primary cell lost in glaucoma and traumatic optic neuropathy. To date, different therapeutic strategies have been investigated to protect RGCs from death and preserve vision, yet currently available strategies are restricted to treating neuron loss by reducing intraocular pressure. A major barrier identified by these studies is drug delivery to RGCs, which is in large part due to drug stability, short duration time at target, low delivery efficiency, and undesired off-target effects. Therefore, a delivery system to deal with these problems is needed to ensure maximum benefit from the candidate therapeutic material. Extracellular vesicles (EV), nanocarriers released by all cells, are lipid membranes encapsulating RNAs, proteins, and lipids. As they naturally shuttle these encapsulated compounds between cells for communicative purposes, they may be exploitable and offer opportunities to overcome hurdles in retinal drug delivery, including drug stability, drug molecular weight, barriers in the retina, and drug adverse effects. Here, we summarize the potential of an EV drug delivery system, discussing their superiorities and potential application to target RGCs.
Collapse
Affiliation(s)
- Esmahan Durmaz
- Cardiff University, School of Optometry & Vision Sciences, Cardiff, UK.
| | | | | | - Ben Mead
- Cardiff University, School of Optometry & Vision Sciences, Cardiff, UK.
| |
Collapse
|
5
|
Hu BY, Xin M, Chen M, Yu P, Zeng LZ. Mesenchymal stem cells for repairing glaucomatous optic nerve. Int J Ophthalmol 2024; 17:748-760. [PMID: 38638254 PMCID: PMC10988077 DOI: 10.18240/ijo.2024.04.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/09/2024] [Indexed: 04/20/2024] Open
Abstract
Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells (RGCs) and axons. Currently, there is no effective method to address the cause of RGCs degeneration. However, studies on neuroprotective strategies for optic neuropathy have increased in recent years. Cell replacement and neuroprotection are major strategies for treating glaucoma and optic neuropathy. Regenerative medicine research into the repair of optic nerve damage using stem cells has received considerable attention. Stem cells possess the potential for multidirectional differentiation abilities and are capable of producing RGC-friendly microenvironments through paracrine effects. This article reviews a thorough researches of recent advances and approaches in stem cell repair of optic nerve injury, raising the controversies and unresolved issues surrounding the future of stem cells.
Collapse
Affiliation(s)
- Bai-Yu Hu
- Eye School of Chengdu University of TCM, Chengdu 610000, Sichuan Province, China
| | - Mei Xin
- Department of Ophthalmology, Chengdu First People's Hospital, Chengdu 610095, Sichuan Province, China
| | - Ming Chen
- Department of Ophthalmology, Chengdu First People's Hospital, Chengdu 610095, Sichuan Province, China
| | - Ping Yu
- Eye School of Chengdu University of TCM, Chengdu 610000, Sichuan Province, China
| | - Liu-Zhi Zeng
- Department of Ophthalmology, Chengdu First People's Hospital, Chengdu 610095, Sichuan Province, China
| |
Collapse
|
6
|
Shanbhag S, Al-Sharabi N, Kampleitner C, Mohamed-Ahmed S, Kristoffersen EK, Tangl S, Mustafa K, Gruber R, Sanz M. The use of mesenchymal stromal cell secretome to enhance guided bone regeneration in comparison with leukocyte and platelet-rich fibrin. Clin Oral Implants Res 2024; 35:141-154. [PMID: 37964421 DOI: 10.1111/clr.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVES Secretomes of mesenchymal stromal cells (MSC) represent a novel strategy for growth-factor delivery for tissue regeneration. The objective of this study was to compare the efficacy of adjunctive use of conditioned media of bone-marrow MSC (MSC-CM) with collagen barrier membranes vs. adjunctive use of conditioned media of leukocyte- and platelet-rich fibrin (PRF-CM), a current growth-factor therapy, for guided bone regeneration (GBR). METHODS MSC-CM and PRF-CM prepared from healthy human donors were subjected to proteomic analysis using mass spectrometry and multiplex immunoassay. Collagen membranes functionalized with MSC-CM or PRF-CM were applied on critical-size rat calvaria defects and new bone formation was assessed via three-dimensional (3D) micro-CT analysis of total defect volume (2 and 4 weeks) and 2D histomorphometric analysis of central defect regions (4 weeks). RESULTS While both MSC-CM and PRF-CM revealed several bone-related proteins, differentially expressed proteins, especially extracellular matrix components, were increased in MSC-CM. In rat calvaria defects, micro-CT revealed greater total bone coverage in the MSC-CM group after 2 and 4 weeks. Histologically, both groups showed a combination of regular new bone and 'hybrid' new bone, which was formed within the membrane compartment and characterized by incorporation of mineralized collagen fibers. Histomorphometry in central defect sections revealed greater hybrid bone area in the MSC-CM group, while the total new bone area was similar between groups. CONCLUSION Based on the in vitro and in vivo investigations herein, functionalization of membranes with MSC-CM represents a promising strategy to enhance GBR.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Einar K Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Yang Q, Xu Y, Bin X, Chan KP, Chen S, Qian Z, Yao Y, Yuan XL, Qiu K, Huang Y, Ng TK. Combined treatment of human mesenchymal stem cells and green tea extract on retinal ganglion cell regeneration in rats after optic nerve injury. Exp Eye Res 2024; 239:109787. [PMID: 38211683 DOI: 10.1016/j.exer.2024.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Retinal ganglion cell (RGC) death and axonal loss cause irreversible vision loss upon optic nerve (ON) injury. We have independently demonstrated that mesenchymal stem cells (MSCs) and green tea extract (GTE) promote RGC survival and axonal regeneration in rats with ON injury. Here we aimed to evaluate the combined treatment effect of human bone marrow-derived MSCs (hBM-MSCs) and GTE on RGC survival and axonal regeneration after ON injury. Combined treatment of hBM-MSCs and GTE promoted RGC survival and neurite outgrowth/axonal regeneration in ex vivo retinal explant culture and in rats after ON injury. GTE increased Stat3 activation in the retina after combined treatment, and enhanced brain-derived neurotrophic factor secretion from hBM-MSCs. Treatment of 10 μg/mL GTE would not induce hBM-MSC apoptosis, but inhibited their proliferation, migration, and adipogenic and osteogenic differentiation in vitro with reducing matrix metalloproteinase secretions. In summary, this study revealed that GTE can enhance RGC protective effect of hBM-MSCs, suggesting that stem cell priming could be a prospective strategy enhancing the properties of stem cells for ON injury treatment.
Collapse
Affiliation(s)
- Qichen Yang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xin Bin
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Kwok Ping Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shaowan Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Zhen Qian
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yao Yao
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Kunliang Qiu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yuqiang Huang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Manai F, Smedowski A, Kaarniranta K, Comincini S, Amadio M. Extracellular vesicles in degenerative retinal diseases: A new therapeutic paradigm. J Control Release 2024; 365:448-468. [PMID: 38013069 DOI: 10.1016/j.jconrel.2023.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Nanoscale extracellular vesicles (EVs), consisting of exomers, exosomes and microvesicles/ectosomes, have been extensively investigated in the last 20 years, although their biological role is still something of a mystery. EVs are involved in the transfer of lipids, nucleic acids and proteins from donor to recipient cells or distant organs as well as regulating cell-cell communication and signaling. Thus, EVs are important in intercellular communication and this is not limited to sister cells, but may also mediate the crosstalk between different cell types even over long distances. EVs play crucial functions in both cellular homeostasis and the pathogenesis of diseases, and since their contents reflect the status of the donor cell, they represent an additional valuable source of information for characterizing complex biological processes. Recent advances in isolation and analytical methods have led to substantial improvements in both characterizing and engineering EVs, leading to their use either as novel biomarkers for disease diagnosis/prognosis or even as novel therapies. Due to their capacity to carry biomolecules, various EV-based therapeutic applications have been devised for several pathological conditions, including eye diseases. In the eye, EVs have been detected in the retina, aqueous humor, vitreous body and also in tears. Experiences with other forms of intraocular drug applications have opened new ways to use EVs in the treatment of retinal diseases. We here provide a comprehensive summary of the main in vitro, in vivo, and ex vivo literature-based studies on EVs' role in ocular physiological and pathological conditions. We have focused on age-related macular degeneration, diabetic retinopathy, glaucoma, which are common eye diseases leading to permanent blindness, if not treated properly. In addition, the putative use of EVs in retinitis pigmentosa and other retinopathies is discussed. Finally, we have reviewed the potential of EVs as therapeutic tools and/or biomarkers in the above-mentioned retinal disorders. Evidence emerging from experimental disease models and human material strongly suggests future diagnostic and/or therapeutic exploitation of these biological agents in various ocular disorders with a good possibility to improve the patient's quality of life.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Adrian Smedowski
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland; GlaucoTech Co., Katowice, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Sergio Comincini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | |
Collapse
|
9
|
Wang J, Donohoe E, Canning A, Moosavizadeh S, Buckley F, Brennan MÁ, Ryan AE, Ritter T. Immunomodulatory function of licensed human bone marrow mesenchymal stromal cell-derived apoptotic bodies. Int Immunopharmacol 2023; 125:111096. [PMID: 37871378 DOI: 10.1016/j.intimp.2023.111096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) show great potential for immunomodulatory and anti-inflammatory treatments. Clinical trials have been performed for the treatment of Type 1 diabetes, graft-versus-host disease and organ transplantation, which offer a promise of MSCs as an immunomodulatory therapy. Nevertheless, their unstable efficacy and immunogenicity concerns present challenges to clinical translation. It has emerged that the MSC-derived secretome, which includes secreted proteins, exosomes, apoptotic bodies (ABs) and other macromolecules, may have similar therapeutic effects to parent MSCs. Among all of the components of the MSC-derived secretome, most interest thus far has been garnered by exosomes for their therapeutic potential. However, since MSCs were reported to undergo apoptosis after in vivo transplantation and release ABs, we speculated as to whether ABs have immunomodulatory effects. In this study, cytokine licensing was used to enhance the immunomodulatory potency of MSCs and ABs derived from licensed MSCs in vitro were isolated to explore their immunomodulatory effects as an effective non-viable cell therapy. RESULTS IFN-γ and IFN-γ/TGF-β1 licensing enhanced the immunomodulatory effect of MSCs on T cell proliferation. Further, TGF-β1 and IFN-γ licensing strengthened the immunomodulatory effect of MSC on reducing the TNF-α and IL-1β expression by M1 macrophage-like THP-1 cells. Additionally, we discovered the immunomodulatory effect mediated by MSC-derived apoptotic bodies. Licensing impacted the uptake of ABs by recipient immune cells and importantly altered their phenotypes. CONCLUSION ABs derived from IFN-γ/TGF-β1-licensed apoptotic MSCs significantly inhibited T cell proliferation, induced more regulatory T cells, and maintained immunomodulatory T cells but reduced pro-inflammatory T cells.
Collapse
Affiliation(s)
- Jiemin Wang
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Ellen Donohoe
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Aoife Canning
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Seyedmohammad Moosavizadeh
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Fiona Buckley
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Meadhbh Á Brennan
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland; Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
10
|
Wan Z, Chen YF, Pan Q, Wang Y, Yuan S, Chin HY, Wu HH, Lin WT, Cheng PY, Yang YJ, Wang YF, Kumta SM, Lee CW, Lee OKS. Single-cell transcriptome analysis reveals the effectiveness of cytokine priming irrespective of heterogeneity in mesenchymal stromal cells. Cytotherapy 2023; 25:1155-1166. [PMID: 37715776 DOI: 10.1016/j.jcyt.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are recognized as a potential cell-based therapy for regenerative medicine. Short-term inflammatory cytokine pre-stimulation (cytokine priming) is a promising approach to enhance regenerative efficacy of MSCs. However, it is unclear whether their intrinsic heterogenic nature causes an unequal response to cytokine priming, which might blunt the accessibility of clinical applications. METHODS In this study, by analyzing the single-cell transcriptomic landscape of human bone marrow MSCs from a naïve to cytokine-primed state, we elucidated the potential mechanism of superior therapeutic potential in cytokine-primed MSCs. RESULTS We found that cytokine-primed MSCs had a distinct transcriptome landscape. Although substantial heterogeneity was identified within the population in both naïve and primed states, cytokine priming enhanced the several characteristics of MSCs associated with therapeutic efficacy irrespective of heterogeneity. After cytokine-priming, all sub-clusters of MSCs possessed high levels of immunoregulatory molecules, trophic factors, stemness-related genes, anti-apoptosis markers and low levels of multi-lineage and senescence signatures, which are critical for their therapeutic potency. CONCLUSIONS In conclusion, our results provide new insights into MSC heterogeneity under cytokine stimulation and suggest that cytokine priming reprogrammed MSCs independent of heterogeneity.
Collapse
Affiliation(s)
- Zihao Wan
- Department of Orthopaedics and Limb Reconstruction/Paediatric Orthopaedics, South China Hospital of Shenzhen University, Shenzhen, China; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Hospital Authority, Hong Kong SAR, China
| | - Yu-Fan Chen
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan; Department of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Qi Pan
- Department of Orthopaedics and Limb Reconstruction/Paediatric Orthopaedics, South China Hospital of Shenzhen University, Shenzhen, China
| | - Yiwei Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hui Yen Chin
- Hong Kong Hub of Paediatric Excellence, Hong Kong Children's Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao-Hsiang Wu
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Ting Lin
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Po-Yu Cheng
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
| | - Yun-Jung Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Fan Wang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shekhar Madhukar Kumta
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chien-Wei Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan; Department of Biomedical Engineering, China Medical University, Taichung, Taiwan.
| | - Oscar Kuang-Sheng Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan; Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
11
|
Zhu S, Chen L, Wang M, Zhang J, Chen G, Yao Y, Song S, Li T, Xu S, Yu Z, Shen B, Xu D, Chi ZL, Wu W. Schwann cell-derived extracellular vesicles as a potential therapy for retinal ganglion cell degeneration. J Control Release 2023; 363:641-656. [PMID: 37820984 DOI: 10.1016/j.jconrel.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Optic neuropathy is the leading cause of irreversible blindness and is characterized by progressive degeneration of retinal ganglion cells (RGCs). Several studies have demonstrated that transplantation of Schwann cells (SCs) is a promising candidate therapy for optic neuropathy and that intravitreally transplanted cells exert their effect via paracrine actions. Extracellular vesicle (EV)-based therapies are increasingly recognized as a potential strategy for cell replacement therapy. In this study, we aimed to investigate the neuroprotective and regenerative effects of SC-EVs following optic nerve injury. We found that SC-EVs were internalized by RGCs in vitro and in vivo without any transfection reagents. Intriguingly, SC-EVs significantly enhanced the survival and axonal growth of primary RGCs in a coculture system. In a rat optic nerve crush model, SC-EVs mitigated RGC degeneration, prevented RGC loss, and preserved the thickness of the ganglion cell complex, as demonstrated by the statistically significant improvement in RGC counts and thickness measurements. Mechanistically, SC-EVs activated the cAMP-response element binding protein (CREB) signaling pathway and regulated reactive gliosis in ONC rats, which is crucial for RGC protection and axonal regeneration. These findings provide novel insights into the neuroprotective and regenerative properties of SC-EVs, suggesting their potential as a cell-free therapeutic strategy and natural biomaterials for neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Senmiao Zhu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Lili Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Min Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Gang Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yinghao Yao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325027, China
| | - Shihan Song
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Tong Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shenglan Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhonghao Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Bingyan Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Duogang Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Zai-Long Chi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
12
|
Bouche Djatche WH, Zhu H, Ma W, Li Y, Li Z, Zhao H, Liu Z, Qiao H. Potential of mesenchymal stem cell-derived conditioned medium/secretome as a therapeutic option for ocular diseases. Regen Med 2023; 18:795-807. [PMID: 37702008 DOI: 10.2217/rme-2023-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Research has shown that the therapeutic effect of mesenchymal stem cells (MSCs) is partially due to its secreted factors as opposed to the implantation of the cells into the treated tissue or tissue replacement. MSC secretome, especially in the form of conditioned medium (MSC-CM) is now being explored as an alternative to MSCs transplantation. Despite the observed benefits of MSC-CM, only a few clinical trials have evaluated it and other secretome components in the treatment of eye diseases. This review provides insight into the potential therapeutic use of MSC-CM in eye conditions, such as corneal diseases, dry eye, glaucoma, retinal diseases and uveitis. We discuss the current evidence, some limitations, and the progress that remains to be achieved before clinical translation becomes possible.
Collapse
Affiliation(s)
| | - Huimin Zhu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Wenlei Ma
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Yue Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Ziang Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Zhao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhizhen Liu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hua Qiao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
13
|
Al-Sharabi N, Gruber R, Sanz M, Mohamed-Ahmed S, Kristoffersen EK, Mustafa K, Shanbhag S. Proteomic Analysis of Mesenchymal Stromal Cells Secretome in Comparison to Leukocyte- and Platelet-Rich Fibrin. Int J Mol Sci 2023; 24:13057. [PMID: 37685865 PMCID: PMC10487446 DOI: 10.3390/ijms241713057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Secretomes of mesenchymal stromal cells (MSCs) are emerging as a novel growth factor (GF)-based strategy for periodontal and bone regeneration. The objective of this study was to compare the secretome of human bone marrow MSC (BMSC) to that of leukocyte- and platelet-rich fibrin (L-PRF), an established GF-based therapy, in the context of wound healing and regeneration. Conditioned media from human BMSCs (BMSC-CM) and L-PRF (LPRF-CM) were subjected to quantitative proteomic analysis using liquid chromatography with tandem mass spectrometry. Global profiles, gene ontology (GO) categories, differentially expressed proteins (DEPs), and gene set enrichment (GSEA) were identified using bioinformatic methods. Concentrations of selected proteins were determined using a multiplex immunoassay. Among the proteins identified in BMSC-CM (2157 proteins) and LPRF-CM (1420 proteins), 1283 proteins were common. GO analysis revealed similarities between the groups in terms of biological processes (cellular organization, protein metabolism) and molecular functions (cellular/protein-binding). Notably, more DEPs were identified in BMSC-CM (n = 550) compared to LPRF-CM (n = 118); these included several key GF, cytokines, and extracellular matrix (ECM) proteins involved in wound healing. GSEA revealed enrichment of ECM (especially bone ECM)-related processes in BMSC-CM and immune-related processes in LPRF-CM. Similar trends for intergroup differences in protein detection were observed in the multiplex analysis. Thus, the secretome of BMSC is enriched for proteins/processes relevant for periodontal and bone regeneration. The in vivo efficacy of this therapy should be evaluated in future studies.
Collapse
Affiliation(s)
- Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| |
Collapse
|
14
|
Ma Z, Xie W, Luo T, Hu Z, Hua J, Zhou J, Yang T, Wang W, Song Z, Yu X, Xu J, Shi S. Exosomes from TNF-α preconditioned human umbilical cord mesenchymal stromal cells inhibit the autophagy of acinar cells of severe acute pancreatitis via shuttling bioactive metabolites. Cell Mol Life Sci 2023; 80:257. [PMID: 37594573 PMCID: PMC11073291 DOI: 10.1007/s00018-023-04861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/16/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023]
Abstract
Severe acute pancreatitis (SAP) is a common critical disease of the digestive system, with high mortality and a lack of effective prevention and treatment measures. Despite mesenchymal stromal cell transplantation having the potential to treat SAP, its clinical application prospect is limited, and the mechanism is unclear. Here, we reveal the therapeutic role of exosomes from TNF-α-preconditioned human umbilical cord mesenchymal stromal cells (HUCMSCs) in attenuating SAP and show that it is partly dependent on exosomal metabolites. Bioactive metabolomics analysis showed that 48 metabolites be significantly differentially expressed between the two groups (Exo-Ctrl group versus Exo-TNF-α group). Then, the further functional experiments indicated that 3,4-dihydroxyphenylglycol could be a key molecule mediating the therapeutic effect of TNF-α-preconditioned HUCMSCs. The animal experiments showed that 3,4-dihydroxyphenylglycol reduced inflammation and oxidative stress in the pancreatic tissue and inhibited acinar cell autophagy in a rat model of SAP. Mechanistically, we revealed that 3,4-dihydroxyphenylglycol activated the mTOR pathway to inhibit acinar cell autophagy and alleviate SAP. In summary, our study demonstrated that exosomes from TNF-α-preconditioned HUMSCs inhibit the autophagy of acinar cells of SAP by shuttling 3,4-dihydroxyphenylglycol and inhibiting the mTOR pathway. This study revealed the vital role and therapeutic potential of metabolite-derived exosomes in SAP, providing a new promising method to prevent and therapy SAP.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200050, China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tingyi Luo
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhengyu Hu
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
| | - Jia Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200050, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
| |
Collapse
|
15
|
Zhang C, Xiao J, Fa L, Jiang F, Jiang H, Zhou L, Xu Z. Advances in the applications of mesenchymal stem cell-conditioned medium in ocular diseases. Exp Eye Res 2023:109560. [PMID: 37385531 DOI: 10.1016/j.exer.2023.109560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Mesenchymal stem cell-conditioned medium (MSC-CM), also known as secretome, is secreted by MSC and contains a variety of bioactive factors with anti-inflammatory, anti-apoptotic, neuroprotection, and proliferation effects. Increasing evidence proved that MSC-CM plays an important role in various diseases, including skin, bone, muscle, and dental diseases. However, the role of MSC-CM in ocular diseases is not quite clear, Therefore, this article reviewed the composition, biological functions, preparation, and characterization of MSC-CM and summarized current research advances in different sources of MSC-CM in corneal and retinal diseases, including dry eye, corneal epithelial damage, chemical corneal injury, retinitis pigmentosa (RP), anterior ischemic optic neuropathy (AION), diabetic retinopathy (DR), and other retinal degenerative changes. For these diseases, MSC-CM can promote cell proliferation, reduce inflammation and vascular leakage, inhibit retinal cell degeneration and apoptosis, protect corneal and retinal structures, and further improves visual function. Hence, we summarize the production, composition and biological functions of MSC-CM and focus on describing its mechanisms in the treatment of ocular diseases. Furthermore, we look at the unexplored mechanisms and further research directions for MSC-CM based therapy in ocular diseases.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Luzhong Fa
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Fanwen Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lin Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
16
|
Devi A, Pahuja I, Singh SP, Verma A, Bhattacharya D, Bhaskar A, Dwivedi VP, Das G. Revisiting the role of mesenchymal stem cells in tuberculosis and other infectious diseases. Cell Mol Immunol 2023; 20:600-612. [PMID: 37173422 PMCID: PMC10176304 DOI: 10.1038/s41423-023-01028-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play diverse roles ranging from regeneration and wound healing to immune signaling. Recent investigations have indicated the crucial role of these multipotent stem cells in regulating various aspects of the immune system. MSCs express unique signaling molecules and secrete various soluble factors that play critical roles in modulating and shaping immune responses, and in some other cases, MSCs can also exert direct antimicrobial effects, thereby helping with the eradication of invading organisms. Recently, it has been demonstrated that MSCs are recruited at the periphery of the granuloma containing Mycobacterium tuberculosis and exert "Janus"-like functions by harboring pathogens and mediating host protective immune responses. This leads to the establishment of a dynamic balance between the host and the pathogen. MSCs function through various immunomodulatory factors such as nitric oxide (NO), IDO, and immunosuppressive cytokines. Recently, our group has shown that M.tb uses MSCs as a niche to evade host protective immune surveillance mechanisms and establish dormancy. MSCs also express a large number of ABC efflux pumps; therefore, dormant M.tb residing in MSCs are exposed to a suboptimal dose of drugs. Therefore, it is highly likely that drug resistance is coupled with dormancy and originates within MSCs. In this review, we discussed various immunomodulatory properties of MSCs, their interactions with important immune cells, and soluble factors. We also discussed the possible roles of MSCs in the outcome of multiple infections and in shaping the immune system, which may provide insight into therapeutic approaches using these cells in different infection models.
Collapse
Affiliation(s)
- Annu Devi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Shashi Prakash Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akanksha Verma
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
17
|
Wu KY, Ahmad H, Lin G, Carbonneau M, Tran SD. Mesenchymal Stem Cell-Derived Exosomes in Ophthalmology: A Comprehensive Review. Pharmaceutics 2023; 15:1167. [PMID: 37111652 PMCID: PMC10142951 DOI: 10.3390/pharmaceutics15041167] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Over the past decade, the field of mesenchymal stem cell (MSC) therapy has exhibited rapid growth. Due to their regenerative, reparatory, and immunomodulatory capacities, MSCs have been widely investigated as therapeutic agents in the cell-based treatment of chronic ophthalmic pathologies. However, the applicability of MSC-based therapy is limited by suboptimal biocompatibility, penetration, and delivery to the target ocular tissues. An emerging body of research has elucidated the role of exosomes in the biological functions of MSCs, and that MSC-derived extracellular vesicles (EVs) possess anti-inflammatory, anti-apoptotic, tissue repairing, neuroprotective, and immunomodulatory properties similar to MSCs. The recent advances in MSCs-derived exosomes can serve as solutions to the challenges faced by MSCs-therapy. Due to their nano-dimensions, MSC-derived exosomes can rapidly penetrate biological barriers and reach immune-privileged organs, allowing for efficient delivery of therapeutic factors such as trophic and immunomodulatory agents to ocular tissues that are typically challenging to target by conventional therapy and MSCs transplantation. In addition, the use of EVs minimizes the risks associated with mesenchymal stem cell transplantation. In this literature review, we focus on the studies published between 2017 and 2022, highlighting the characteristics of EVs derived from MSCs and their biological functions in treating anterior and posterior segment ocular diseases. Additionally, we discuss the potential use of EVs in clinical settings. Rapid advancements in regenerative medicine and exosome-based drug delivery, in conjunction with an increased understanding of ocular pathology and pharmacology, hold great promise for the treatment of ocular diseases. The potential of exosome-based therapies is exciting and can revolutionize the way we approach these ocular conditions.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Hamza Ahmad
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Grace Lin
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Marjorie Carbonneau
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
18
|
Lu Y, Mai Z, Cui L, Zhao X. Engineering exosomes and biomaterial-assisted exosomes as therapeutic carriers for bone regeneration. Stem Cell Res Ther 2023; 14:55. [PMID: 36978165 PMCID: PMC10053084 DOI: 10.1186/s13287-023-03275-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Mesenchymal stem cell-based therapy has become an effective therapeutic approach for bone regeneration. However, there are still limitations in successful clinical translation. Recently, the secretome of mesenchymal stem cells, especially exosome, plays a critical role in promoting bone repair and regeneration. Exosomes are nanosized, lipid bilayer-enclosed structures carrying proteins, lipids, RNAs, metabolites, growth factors, and cytokines and have attracted great attention for their potential application in bone regenerative medicine. In addition, preconditioning of parental cells and exosome engineering can enhance the regenerative potential of exosomes for treating bone defects. Moreover, with recent advancements in various biomaterials to enhance the therapeutic functions of exosomes, biomaterial-assisted exosomes have become a promising strategy for bone regeneration. This review discusses different insights regarding the roles of exosomes in bone regeneration and summarizes the applications of engineering exosomes and biomaterial-assisted exosomes as safe and versatile bone regeneration agent delivery platforms. The current hurdles of transitioning exosomes from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China.
| |
Collapse
|
19
|
Tao Y, Zhang Q, Meng M, Huang J. A bibliometric analysis of the application of stem cells in glaucoma research from 1999 to 2022. Front Cell Dev Biol 2023; 11:1081898. [PMID: 36743419 PMCID: PMC9889543 DOI: 10.3389/fcell.2023.1081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Glaucoma, a neurodegenerative disease of the retina, is the leading cause of irreversible blindness. Stem cells have therapeutic potential for glaucoma. However, few bibliometric studies have been published in this field. Concerning a visual map, this article aims to characterize the research context, cooperation relationship, hotspots, and trends concerning the application of stem cells in glaucoma research. Methods: Publications focusing on stem cell research and glaucoma were retrieved from the Web of Science Core Collection. VOSviewer, CiteSpace, Microsoft Excel, and Scimago Graphica were used to map the contributions of countries or regions, authors, organizations, and journals. Journal Impact Factor data were obtained from the Web of Science Core Collection. We analyzed the tendencies, hotspots, and knowledge networks using VOSviewer, and CiteSpace. Results: We analyzed 518 articles published from 1999 through 2022. In the first decade, the number of articles in this field increased slowly, and there was a marked acceleration in publication frequency after 2010. The United States, China, and England were the main contributors. Yiqin Du was the most prolific author, and among the top 10 prolific writers, Keith R. Martin's work was cited most frequently. Investigative Ophthalmology and Visual Science, Experimental Eye Research, and Cornea published the most articles in this domain. The three most commonly co-cited journals were Investigative Ophthalmology and Visual Science, Experimental Eye Research, and Proceedings of the National Academy of Sciences of the United States of America. The Central South University, the University of Pittsburgh, and the National Institutes of Health National Eye Institute were highly prolific institutions in this research area. Our keywords analysis with VOSviewer suggested directions of future research and yielded the following recent key themes, extracellular vesicles, exosomes, mitochondria, growth factors, oxidative stress, and ocular diseases. Four co-cited references had a citation burst duration until 2022. Conclusion: With improvements in overall quality of life and demographic transitions toward population aging, research and clinical focus on eye care has increased, with glaucoma as a key area of emphasis. This study added to our understanding of the global landscape and Frontier hotspots in this field.
Collapse
Affiliation(s)
- Yuanyuan Tao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Meng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
20
|
Li J, Pan Y, Yang J, Wang J, Jiang Q, Dou H, Hou Y. Tumor necrosis factor-α-primed mesenchymal stem cell-derived exosomes promote M2 macrophage polarization via Galectin-1 and modify intrauterine adhesion on a novel murine model. Front Immunol 2022; 13:945234. [PMID: 36591221 PMCID: PMC9800892 DOI: 10.3389/fimmu.2022.945234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Intrauterine adhesion (IUA) is a condition caused due to damage or infection of the endometrium. It is characterized by continuous inflammation and following fibrosis and dysfunction. However, the current animal IUA models have several disadvantages, including complex operation, high mortality, and many extra distractions owing to opening of the abdominal cavity to expose the uterus. Mesenchymal stem cells (MSCs), which have been used in treatment of IUA, are heterogeneous and immunosuppressive. However, their therapeutic effect is not as good as expected. Methods Here, we successfully built a new murine IUA model, called electric tool-scratching IUA model, and applied it in our experiments to investigate the efficacy of tumor necrosis factor-α (TNF-α) primed MSCs (T-MSCs). In the new model, we used a self-made electric tool that can cause mechanical damage to the endometrium without opening the abdominal cavity. ELISA and histological staining analysis were performed to evaluate pathological features of IUA. qRT-PCR, flow cytometry and immunofluoresence staining were performed to detect the phenotypes of macrophages. TMT proteomics quantification and western blotting assay were performed to analyze the differentially expressed proteins of MSC exosomes. Results Based on the new IUA model, we found TNF-α pretreatment could enhance the ability of MSCs to relieve inflammation and reduce endometrium fibrosis. Mechanistically, T-MSC promoted macrophage polarization to M2 phenotype through exosomes. Subsequently, we found the expression of Galectin-1 was increased in T-MSC exosomes. Finally, we analyzed the gene expression pattern of Galectin-1 treated macrophages and found Galectin-1 promoted macrophage polarization to M2 phenotype mainly through the Jak-STAT signaling pathway. Conclusions Our studies proposed an innovative mouse model and a better MSC treatment strategy for IUA.
Collapse
Affiliation(s)
- Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China,Jiangsu International Laboratory of Immunity and Metabolism, The Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jingjing Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Qi Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China,*Correspondence: Yayi Hou, ; Huan Dou,
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China,*Correspondence: Yayi Hou, ; Huan Dou,
| |
Collapse
|
21
|
Liu Z, Zeng F, Zhang Y, Liu Y, Li Z, Liu X. Future perspective of stem cell-derived exosomes: Cell-free therapeutic strategies for retinal degeneration. Front Bioeng Biotechnol 2022; 10:905516. [PMID: 36452207 PMCID: PMC9702331 DOI: 10.3389/fbioe.2022.905516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/25/2022] [Indexed: 04/26/2024] Open
Abstract
With continued expansion of the aged population, the number of patients with retinal degeneration, which is a leading cause of vision loss worldwide, is growing. Stem cell therapies offer hope for regeneration and repair of damaged retinal tissue. Recent reports have highlighted stem cell-derived paracrine mediators, such as exosomes, which appear to exert a therapeutic benefit similar to their cell of origin and do not carry the risk of cell transplantation. One speculated role is that exosomes likely mediate intercellular communication and material exchange. This review depicts the molecular mechanisms underlying exosome-based therapy, especially in retina degeneration diseases. In the future, the use of stem cell-derived exosomes could be considered a novel and cell-free therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Zibin Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Fang Zeng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yao Zhang
- Department of Neurology, Hunan Provincial People’s Hospital, Hunan Normal University, Changsha, China
| | - Yongqing Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Zhuo Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Xiao Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| |
Collapse
|
22
|
Sarsenova M, Kim Y, Raziyeva K, Kazybay B, Ogay V, Saparov A. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front Immunol 2022; 13:1010399. [PMID: 36211399 PMCID: PMC9537745 DOI: 10.3389/fimmu.2022.1010399] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Considering the unique therapeutic potential of mesenchymal stem cells (MSCs), including their immunosuppressive and immunomodulatory properties as well as their ability to improve tissue regeneration, these cells have attracted the attention of scientists and clinicians for the treatment of different inflammatory and immune system mediated disorders. However, various clinical trials using MSCs for the therapeutic purpose are conflicting and differ from the results of promising preclinical studies. This inconsistency is caused by several factors such as poor migration and homing capacities, low survival rate, low level of proliferation and differentiation, and donor-dependent variation of the cells. Enhancement and retention of persistent therapeutic effects of the cells remain a challenge to overcome in MSC-based therapy. In this review, we summarized various approaches to enhance the clinical outcomes of MSC-based therapy as well as revised current and future perspectives for the creation of cellular products with improved potential for diverse clinical applications.
Collapse
Affiliation(s)
- Madina Sarsenova
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bexultan Kazybay
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Vyacheslav Ogay
- Laboratory of Stem Cells, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: Arman Saparov,
| |
Collapse
|
23
|
Kim HY, Kwon S, Um W, Shin S, Kim CH, Park JH, Kim BS. Functional Extracellular Vesicles for Regenerative Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106569. [PMID: 35322545 DOI: 10.1002/smll.202106569] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The unique biological characteristics and promising clinical potential of extracellular vesicles (EVs) have galvanized EV applications for regenerative medicine. Recognized as important mediators of intercellular communication, naturally secreted EVs have the potential, as innate biotherapeutics, to promote tissue regeneration. Although EVs have emerged as novel therapeutic agents, challenges related to the clinical transition have led to further functionalization. In recent years, various engineering approaches such as preconditioning, drug loading, and surface modification have been developed to potentiate the therapeutic outcomes of EVs. Also, limitations of natural EVs have been addressed by the development of artificial EVs that offer advantages in terms of production yield and isolation methodologies. In this review, an updated overview of current techniques is provided for the functionalization of natural EVs and recent advances in artificial EVs, particularly in the scope of regenerative medicine.
Collapse
Affiliation(s)
- Han Young Kim
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Seunglee Kwon
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wooram Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Interdisciplinary Program of Bioengineering, Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
24
|
Curcumin-laden ECM-mimicking microfibers assemble with mesenchymal stem cells to generate heterospheroids and enhance cell viability and function. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Jalilian E, Massoumi H, Bigit B, Amin S, Katz EA, Guaiquil VH, Anwar KN, Hematti P, Rosenblatt MI, Djalilian AR. Bone marrow mesenchymal stromal cells in a 3D system produce higher concentration of extracellular vesicles (EVs) with increased complexity and enhanced neuronal growth properties. Stem Cell Res Ther 2022; 13:425. [PMID: 35986305 PMCID: PMC9389821 DOI: 10.1186/s13287-022-03128-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have been demonstrated to possess great potential in preclinical models. An efficient biomanufacturing platform is necessary for scale up production for clinical therapeutic applications. The aim of this study is to investigate the potential differences in neuro-regenerative properties of MSC-derived EVs generated in 2D versus 3D culture systems. METHOD Human bone marrow MSCs (BM-MSCs) were cultured in 2D monolayer and 3D bioreactor systems. EVs were isolated using ultracentrifugation followed by size and concentration measurements utilizing dynamic light scattering (NanoSight) and by fluorescence staining (ExoView). Mouse trigeminal ganglia (TG) neurons were isolated from BALB/c mice and cultured in the presence or absence of EVs derived from 2D or 3D culture systems. Neuronal growth and morphology were monitored over 5 days followed by immunostaining for β3 tubulin. Confocal images were analyzed by Neurolucida software to obtain the density and length of the neurites. RESULTS The NanoSight tracking analysis revealed a remarkable increase (24-fold change) in the concentration of EVs obtained from the 3D versus 2D culture condition. ExoView analysis showed a significantly higher concentration of CD63, CD81, and CD9 markers in the EVs derived from 3D versus 2D conditions. Furthermore, a notable shift toward a more heterogeneous phenotype was observed in the 3D-derived EVs compared to those from 2D culture systems. EVs derived from both culture conditions remarkably induced neurite growth and elongation after 5 days in culture compared to untreated control. Neurolucida analysis of the immunostaining images (β3 tubulin) showed a significant increase in neurite length in TG neurons treated with 3D- versus 2D-derived EVs (3301.5 μm vs. 1860.5 μm, P < 0.05). Finally, Sholl analysis demonstrated a significant increase in complexity of the neuronal growth in neurons treated with 3D- versus 2D-derived EVs (P < 0.05). CONCLUSION This study highlights considerable differences in EVs obtained from different culture microenvironments, which could have implications for their therapeutic effects and potency. The 3D culture system seems to provide a preferred environment that modulates the paracrine function of the cells and the release of a higher number of EVs with enhanced biophysical properties and functions in the context of neurite elongation and growth.
Collapse
Affiliation(s)
- Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA.
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Hamed Massoumi
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Bianca Bigit
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA
| | - Sohil Amin
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA
| | - Eitan A Katz
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA
| | - Peiman Hematti
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA.
| |
Collapse
|
26
|
Manukonda R, Attem J, Yenuganti VR, Kaliki S, Vemuganti GK. Exosomes in the visual system: New avenues in ocular diseases. Tumour Biol 2022; 44:129-152. [PMID: 35964221 DOI: 10.3233/tub-211543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Exosomes are a subgroup of membrane-bound extracellular vesicles secreted by all cell types and present virtually in all biological fluids. The composition of exosomes in the same cell type varies in healthy and disease conditions. Hence, exosomes research is a prime focus area for clinical research in cancer and numerous age-related metabolic syndromes. Functions of exosomes include crucial cell-to-cell communication that mediates complex cellular processes, such as antigen presentation, stem cell differentiation, and angiogenesis. However, very few studies reported the presence and role of exosomes in normal physiological and pathological conditions of specialized ocular tissues of the eye and ocular cancers. The eye being a protected sense organ with unique connectivity with the rest of the body through the blood and natural passages, we believe that the role of exosomes in ocular tissues will significantly improve our understanding of ocular diseases and their interactions with the rest of the body. We present a review that highlights the existence and function of exosomes in various ocular tissues, their role in the progression of some of the neoplastic and non-neoplastic conditions of the eyes.
Collapse
Affiliation(s)
- Radhika Manukonda
- School of Medical Sciences, University of Hyderabad, Hyderabad, India.,The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Jyothi Attem
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Vengala Rao Yenuganti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
27
|
Preconditioning and Engineering Strategies for Improving the Efficacy of Mesenchymal Stem Cell-Derived Exosomes in Cell-Free Therapy. Stem Cells Int 2022; 2022:1779346. [PMID: 35607400 PMCID: PMC9124131 DOI: 10.1155/2022/1779346] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely applied to regenerative medicine owing to their multiple differentiation, self-renewal, and immunomodulatory abilities. Exosomes are cell-secreted natural nanovesicles and thought to be mediators of intercellular communication and material transport. The therapeutic potential of MSCs can be largely attributed to MSC-derived exosomes (MSC-exosomes). Emerging evidence suggests that the therapeutic efficacy of MSC-exosomes is highly dependent on the status of MSCs, and optimization of the extracellular environment affects the exosomal content. Pretreatment methods including three-dimensional cultures, hypoxia, and other biochemical cues have been shown to potentially enhance the biological activity of MSC-exosomes while maintaining or enhancing their production. On the other hand, engineering means to enhance the desired function of MSC-exosomes has been rapidly gaining attention. In particular, biologically active molecule encapsulation and membrane modification can alter or enhance biological functions and targeting of MSC-exosomes. In this review, we summarize two possible strategies to improve the therapeutic activity of MSC-exosomes: preconditioning approaches and engineering exosomes. We also explore the underlying mechanisms of different strategies and discuss their advantages and limitations of the upcoming clinical applications.
Collapse
|
28
|
Sanghani A, Andriesei P, Kafetzis KN, Tagalakis AD, Yu‐Wai‐Man C. Advances in exosome therapies in ophthalmology-From bench to clinical trial. Acta Ophthalmol 2022; 100:243-252. [PMID: 34114746 DOI: 10.1111/aos.14932] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
During the last decade, the fields of advanced and personalized therapeutics have been constantly evolving, utilizing novel techniques such as gene editing and RNA therapeutic approaches. However, the method of delivery and tissue specificity remain the main hurdles of these approaches. Exosomes are natural carriers of functional small RNAs and proteins, representing an area of increasing interest in the field of drug delivery. It has been demonstrated that the exosome cargo, especially miRNAs, is at least partially responsible for the therapeutic effects of exosomes. Exosomes deliver their luminal content to the recipient cells and can be used as vesicles for the therapeutic delivery of RNAs and proteins. Synthetic therapeutic drugs can also be encapsulated into exosomes as they have a hydrophilic core, which makes them suitable to carry water-soluble drugs. In addition, engineered exosomes can display a variety of surface molecules, such as peptides, to target specific cells in tissues. The exosome properties present an added advantage to the targeted delivery of therapeutics, leading to increased efficacy and minimizing the adverse side effects. Furthermore, exosomes are natural nanoparticles found in all cell types and as a result, they do not elicit an immune response when administered. Exosomes have also demonstrated decreased long-term accumulation in tissues and organs and thus carry a low risk of systemic toxicity. This review aims to discuss all the advances in exosome therapies in ophthalmology and to give insight into the challenges that would need to be overcome before exosome therapies can be translated into clinical practice.
Collapse
Affiliation(s)
- Amisha Sanghani
- Faculty of Life Sciences & Medicine King’s College London London UK
- Department of Ophthalmology St Thomas’ Hospital London UK
| | - Petru Andriesei
- Faculty of Life Sciences & Medicine King’s College London London UK
- Department of Ophthalmology St Thomas’ Hospital London UK
| | | | | | - Cynthia Yu‐Wai‐Man
- Faculty of Life Sciences & Medicine King’s College London London UK
- Department of Ophthalmology St Thomas’ Hospital London UK
| |
Collapse
|
29
|
Bonilla-Pons SÀ, Nakagawa S, Bahima EG, Fernández-Blanco Á, Pesaresi M, D'Antin JC, Sebastian-Perez R, Greco D, Domínguez-Sala E, Gómez-Riera R, Compte RIB, Dierssen M, Pulido NM, Cosma MP. Müller glia fused with adult stem cells undergo neural differentiation in human retinal models. EBioMedicine 2022; 77:103914. [PMID: 35278743 PMCID: PMC8917309 DOI: 10.1016/j.ebiom.2022.103914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons. Methods We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation. Findings We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids. Interpretation We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies. Funding This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).
Collapse
Affiliation(s)
- Sergi Àngel Bonilla-Pons
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat de Barcelona (UB), Barcelona, Spain
| | - Shoma Nakagawa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Elena Garreta Bahima
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Justin Christopher D'Antin
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniela Greco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Eduardo Domínguez-Sala
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Raúl Gómez-Riera
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Rafael Ignacio Barraquer Compte
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Biomedical Research Networking Centre On Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Nuria Montserrat Pulido
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell an Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China.
| |
Collapse
|
30
|
Exosomes, extracellular vesicles and the eye. Exp Eye Res 2021; 214:108892. [PMID: 34896308 DOI: 10.1016/j.exer.2021.108892] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Exosomes are a subset of extracellular vesicles which accommodate a cargo of bioactive biomolecules that generally includes proteins, nucleic acids, lipids, sugars, and related conjugates depicting the cellular environment and are known to mediate a wide array of biological functions, like cellular communication, cellular differentiation, immunomodulation, neovascularization, and cellular waste management. The exponential implication of exosomes in the pathological development and progression of various disorders including neurodegenerative diseases, cardiovascular diseases, and cancer has offered a tremendous opportunity for exploring their role in ocular conditions. Ocular diseases such as age-related macular disease, glaucoma, infectious endophthalmitis, diabetic retinopathy, autoimmune uveitis etc face various challenges in their early diagnosis and treatments due to contributing factors such as delay in the onset of symptoms, microbial identification, difficulty in obtaining samples for biopsy or being diagnosed as masquerade syndromes. Studies have reported unique exosomal cargos that are involved in successful delivery of miRNA or proteins to recipient cells to express desired expression or exploited as a diagnostic marker for various diseases. Furthermore, engineered exosomes can be used for targeted delivery of therapeutics and exosomes being natural nanoparticles found in all types of cells, host may not elicit an immune response against it. With the rapid advancement of opting personalized therapeutics, extending exosomal research to sight-threatening ocular infections can possibly advance the current diagnostic and therapeutic approaches. This review briefs about the current knowledge of exosomes in visual systems, advancements in exosomal and ophthalmic research, participation of exosomes in the pathogenesis of common ocular diseases, the challenges for exosomal therapies along with the future of this promising domain of research for diseases that fatally threaten billions of people worldwide.
Collapse
|
31
|
de Pedro MÁ, Gómez-Serrano M, Marinaro F, López E, Pulido M, Preußer C, Pogge von Strandmann E, Sánchez-Margallo FM, Álvarez V, Casado JG. IFN-Gamma and TNF-Alpha as a Priming Strategy to Enhance the Immunomodulatory Capacity of Secretomes from Menstrual Blood-Derived Stromal Cells. Int J Mol Sci 2021; 22:12177. [PMID: 34830067 PMCID: PMC8618369 DOI: 10.3390/ijms222212177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells isolated from menstrual blood (MenSCs) exhibit a potent pro-angiogenic and immunomodulatory capacity. Their therapeutic effect is mediated by paracrine mediators released by their secretomes. In this work, we aimed to evaluate the effect of a specific priming condition on the phenotype and secretome content of MenSCs. Our results revealed that the optimal condition for priming MenSCs was the combination of interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) that produced a synergistic and additive effect on IDO1 release and immune-related molecule expression. The analyses of MenSC-derived secretomes after IFNγ and TNFα priming also revealed an increase in EV release and in the differentially expressed miRNAs involved in the immune response and inflammation. Proliferation assays on lymphocyte subsets demonstrated a decrease in CD4+ T cells and CD8+ T cells co-cultured with secretomes, especially in the lymphocytes co-cultured with secretomes from primed cells. Additionally, the expression of immune checkpoints (PD-1 and CTLA-4) was increased in the CD4+ T cells co-cultured with MenSC-derived secretomes. These findings demonstrate that the combination of IFNγ and TNFα represents an excellent priming strategy to enhance the immunomodulatory capacity of MenSCs. Moreover, the secretome derived from primed MenSCs may be postulated as a therapeutic option for the regulation of adverse inflammatory reactions.
Collapse
Affiliation(s)
- María Ángeles de Pedro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany; (M.G.-S.); (C.P.); (E.P.v.S.)
| | - Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - María Pulido
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - Christian Preußer
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany; (M.G.-S.); (C.P.); (E.P.v.S.)
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany; (M.G.-S.); (C.P.); (E.P.v.S.)
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - Javier G. Casado
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| |
Collapse
|
32
|
Demystifying the long noncoding RNA landscape of small EVs derived from human mesenchymal stromal cells. J Adv Res 2021; 39:73-88. [PMID: 35777918 PMCID: PMC9263655 DOI: 10.1016/j.jare.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/01/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022] Open
|
33
|
Nicoară SD, Brie I, Jurj A, Sorițău O. The Future of Stem Cells and Their Derivates in the Treatment of Glaucoma. A Critical Point of View. Int J Mol Sci 2021; 22:ijms222011077. [PMID: 34681739 PMCID: PMC8540760 DOI: 10.3390/ijms222011077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022] Open
Abstract
This review focuses on the clinical translation of preclinical studies, especially those that have used stem cells in the treatment of glaucoma, with an emphasis on optic nerve regeneration. The studies referred to in the review aim to treat optic nerve atrophy, while cell therapies targeting other sites in the eye, such as the trabecular meshwork, have not been addressed. Such complex and varied pathophysiological mechanisms that lead to glaucoma may explain the fact that although stem cells have a high capacity of neuronal regeneration, the treatments performed did not have the expected results and the promise offered by animal studies was not achieved. By analyzing the facts associated with failure, important lessons are to be learned: the type of stem cells that are used, the route of administration, the selection of patients eligible for these treatments, additional therapies that support stem cells transplantation and their mode of action, methods of avoiding the host’s immune response. Many of these problems could be solved using exosomes (EV), but also miRNA, which allows more targeted approaches with minimal side effects.
Collapse
Affiliation(s)
- Simona Delia Nicoară
- Department of Ophthalmology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
- Clinic of Ophthalmology, Emergency County Hospital, 3–5 Clinicilor Street, 40006 Cluj-Napoca, Romania
- Correspondence: or ; Tel.: +40-264592771
| | - Ioana Brie
- “Ion Chiricuță” Institute of Oncology, Laboratory of Cell Biology and Radiobiology, 34–36 Republicii Street, 400010 Cluj-Napoca, Romania; (I.B.); (O.S.)
| | - Ancuța Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Olga Sorițău
- “Ion Chiricuță” Institute of Oncology, Laboratory of Cell Biology and Radiobiology, 34–36 Republicii Street, 400010 Cluj-Napoca, Romania; (I.B.); (O.S.)
| |
Collapse
|
34
|
Tezel G. Multiplex protein analysis for the study of glaucoma. Expert Rev Proteomics 2021; 18:911-924. [PMID: 34672220 PMCID: PMC8712406 DOI: 10.1080/14789450.2021.1996232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Glaucoma, a leading cause of irreversible blindness in the world, is a chronic neurodegenerative disease of multifactorial origin. Extensive research is ongoing to better understand, prevent, and treat progressive degeneration of retinal ganglion cells in glaucoma. While experimental models of glaucoma and postmortem tissues of human donors are analyzed for pathophysiological comprehension and improved treatment of this blinding disease, clinical samples of intraocular biofluids and blood collected from glaucoma patients are analyzed to identify predictive, diagnostic, and prognostic biomarkers. Multiplexing techniques for protein analysis offer a valuable approach for translational glaucoma research. AREAS COVERED This review provides an overview of the increasing applications of multiplex protein analysis for glaucoma research and also highlights current research challenges in the field and expected solutions from emerging technological advances. EXPERT OPINION Analytical techniques for multiplex analysis of proteins can help uncover neurodegenerative processes for enhanced treatment of glaucoma and can help identify molecular biomarkers for improved clinical testing and monitoring of this complex disease. This evolving field and continuously growing availability of new technologies are expected to broaden the comprehension of this complex neurodegenerative disease and speed up the progress toward new therapeutics and personalized patient care to prevent blindness from glaucoma.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, Edward S. Harkness Eye Institute, New York, NY, USA
| |
Collapse
|
35
|
Forsberg MH, Kink JA, Thickens AS, Lewis BM, Childs CJ, Hematti P, Capitini CM. Exosomes from primed MSCs can educate monocytes as a cellular therapy for hematopoietic acute radiation syndrome. Stem Cell Res Ther 2021; 12:459. [PMID: 34407878 PMCID: PMC8371870 DOI: 10.1186/s13287-021-02491-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Acute radiation syndrome (ARS) is caused by acute exposure to ionizing radiation that damages multiple organ systems but especially the bone marrow (BM). We have previously shown that human macrophages educated with exosomes from human BM-derived mesenchymal stromal cells (MSCs) primed with lipopolysaccharide (LPS) prolonged survival in a xenogeneic lethal ARS model. The purpose of this study was to determine if exosomes from LPS-primed MSCs could directly educate human monocytes (LPS-EEMos) for the treatment of ARS. METHODS Human monocytes were educated by exosomes from LPS-primed MSCs and compared to monocytes educated by unprimed MSCs (EEMos) and uneducated monocytes to assess survival and clinical improvement in a xenogeneic mouse model of ARS. Changes in surface molecule expression of exosomes and monocytes after education were determined by flow cytometry, while gene expression was determined by qPCR. Irradiated human CD34+ hematopoietic stem cells (HSCs) were co-cultured with LPS-EEMos, EEMos, or uneducated monocytes to assess effects on HSC survival and proliferation. RESULTS LPS priming of MSCs led to the production of exosomes with increased expression of CD9, CD29, CD44, CD146, and MCSP. LPS-EEMos showed increases in gene expression of IL-6, IL-10, IL-15, IDO, and FGF-2 as compared to EEMos generated from unprimed MSCs. Generation of LPS-EEMos induced a lower percentage of CD14+ monocyte subsets that were CD16+, CD73+, CD86+, or CD206+ but a higher percentage of PD-L1+ cells. LPS-EEMos infused 4 h after lethal irradiation significantly prolonged survival, reducing clinical scores and weight loss as compared to controls. Complete blood counts from LPS-EEMo-treated mice showed enhanced hematopoietic recovery post-nadir. IL-6 receptor blockade completely abrogated the radioprotective survival benefit of LPS-EEMos in vivo in female NSG mice, but only loss of hematopoietic recovery was noted in male NSG mice. PD-1 blockade had no effect on survival. Furthermore, LPS-EEMos also showed benefits in vivo when administered 24 h, but not 48 h, after lethal irradiation. Co-culture of unprimed EEMos or LPS-EEMos with irradiated human CD34+ HSCs led to increased CD34+ proliferation and survival, suggesting hematopoietic recovery may be seen clinically. CONCLUSION LPS-EEMos are a potential counter-measure for hematopoietic ARS, with a reduced biomanufacturing time that facilitates hematopoiesis.
Collapse
Affiliation(s)
- Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4137, Madison, WI, 53705, USA
| | - John A Kink
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA
| | - Anna S Thickens
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA
| | - Bryson M Lewis
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA
| | - Charlie J Childs
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA
| | - Peiman Hematti
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA. .,Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA.
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4137, Madison, WI, 53705, USA. .,University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
36
|
Nasirishargh A, Kumar P, Ramasubramanian L, Clark K, Hao D, Lazar SV, Wang A. Exosomal microRNAs from mesenchymal stem/stromal cells: Biology and applications in neuroprotection. World J Stem Cells 2021; 13:776-794. [PMID: 34367477 PMCID: PMC8316862 DOI: 10.4252/wjsc.v13.i7.776] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are extensively studied as cell-therapy agents for neurological diseases. Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’ neuroprotective functions. Exosomes transfer functional molecules including proteins, lipids, metabolites, DNAs, and coding and non-coding RNAs from MSCs to their target cells. Emerging evidence shows that exosomal microRNAs (miRNAs) play a key role in the neuroprotective properties of these exosomes by targeting several genes and regulating various biological processes. Multiple exosomal miRNAs have been identified to have neuroprotective effects by promoting neurogenesis, neurite remodeling and survival, and neuroplasticity. Thus, exosomal miRNAs have significant therapeutic potential for neurological disorders such as stroke, traumatic brain injury, and neuroinflammatory or neurodegenerative diseases and disorders. This review discusses the neuroprotective effects of selected miRNAs (miR-21, miR-17-92, miR-133, miR-138, miR-124, miR-30, miR146a, and miR-29b) and explores their mechanisms of action and applications for the treatment of various neurological disease and disorders. It also provides an overview of state-of-the-art bioengineering approaches for isolating exosomes, optimizing their yield and manipulating the miRNA content of their cargo to improve their therapeutic potential.
Collapse
Affiliation(s)
- Aida Nasirishargh
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Lalithasri Ramasubramanian
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Kaitlin Clark
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Sabrina V Lazar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
37
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
38
|
Yeo GEC, Ng MH, Nordin FB, Law JX. Potential of Mesenchymal Stem Cells in the Rejuvenation of the Aging Immune System. Int J Mol Sci 2021; 22:5749. [PMID: 34072224 PMCID: PMC8198707 DOI: 10.3390/ijms22115749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Rapid growth of the geriatric population has been made possible with advancements in pharmaceutical and health sciences. Hence, age-associated diseases are becoming more common. Aging encompasses deterioration of the immune system, known as immunosenescence. Dysregulation of the immune cell production, differentiation, and functioning lead to a chronic subclinical inflammatory state termed inflammaging. The hallmarks of the aging immune system are decreased naïve cells, increased memory cells, and increased serum levels of pro-inflammatory cytokines. Mesenchymal stem cell (MSC) transplantation is a promising solution to halt immunosenescence as the cells have excellent immunomodulatory functions and low immunogenicity. This review compiles the present knowledge of the causes and changes of the aging immune system and the potential of MSC transplantation as a regenerative therapy for immunosenescence.
Collapse
Affiliation(s)
| | | | | | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras 56000, Malaysia; (G.E.C.Y.); (M.H.N.); (F.B.N.)
| |
Collapse
|
39
|
Kuwahara Y, Yoshizaki K, Nishida H, Kamishina H, Maeda S, Takano K, Fujita N, Nishimura R, Jo JI, Tabata Y, Akiyoshi H. Extracellular Vesicles Derived From Canine Mesenchymal Stromal Cells in Serum Free Culture Medium Have Anti-inflammatory Effect on Microglial Cells. Front Vet Sci 2021; 8:633426. [PMID: 33996963 PMCID: PMC8113404 DOI: 10.3389/fvets.2021.633426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been used as cell sources for treating dogs with naturally-occurring diseases. Extracellular vesicles (EVs) derived from MSCs are now recognized as pivotal to modulating the immune response and supporting tissue repair. Manufacture of MSC-EVs for clinical application mandates removal of the xeno-proteins, including fetal bovine serum. The objective of this study was to examine whether canine MSCs survived and secreted EVs in serum-free medium (SFM) conditions and to assess the immunomodulatory effect of EVs in vitro. Canine MSCs were found to survive and secrete EVs under SFM conditions. The surface markers of MSCs in the SFM were similar to MSCs in complete culture medium. Canine MSC-EVs had a diameter of ~300 nm and were positive for EV markers. MSC-derived EVs from the serum-free condition reduced the levels of IL-1β by BV-2 cells in response to LPS stimulation. These results warrant further studies of the use of SFM for producing EVs derived from canine MSCs.
Collapse
Affiliation(s)
- Yukina Kuwahara
- Joint Department of Veterinary Medicine, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Karin Yoshizaki
- Department of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Hidetaka Nishida
- Department of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Hiroaki Kamishina
- Joint Department of Veterinary Medicine, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Sadatoshi Maeda
- Joint Department of Veterinary Medicine, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Katsura Takano
- Department of Integrative Physiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Naoki Fujita
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Nishimura
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hideo Akiyoshi
- Department of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| |
Collapse
|
40
|
Extracellular Vesicles from Human Adipose-Derived Mesenchymal Stem Cells: A Review of Common Cargos. Stem Cell Rev Rep 2021; 18:854-901. [PMID: 33904115 PMCID: PMC8942954 DOI: 10.1007/s12015-021-10155-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/14/2022]
Abstract
In recent years, the interest in adipose tissue mesenchymal cell–derived extracellular vesicles (AT-MSC-EVs) has increasingly grown. Numerous articles support the potential of human AT-MSC-EVs as a new therapeutic option for treatment of diverse diseases in the musculoskeletal and cardiovascular systems, kidney, skin, and immune system, among others. This approach makes use of the molecules transported inside of EVs, which play an important role in cell communication and in transmission of macromolecules. However, to our knowledge, there is no database where essential information about AT-MSC-EVs cargo molecules is gathered for easy reference. The aim of this study is to describe the different molecules reported so far in AT-MSC- EVs, their main molecular functions, and biological processes in which they are involved. Recently, the presence of 591 proteins and 604 microRNAs (miRNAs) has been described in human AT-MSC-EVs. The main molecular function enabled by both proteins and miRNAs present in human AT-MSC-EVs is the binding function. Signal transduction and gene silencing are the biological processes in which a greater number of proteins and miRNAs from human AT-MSC-EVs are involved, respectively. In this review we highlight the therapeutics effects of AT-MSC-EVs related with their participation in relevant biological processes including inflammation, angiogenesis, cell proliferation, apoptosis and migration, among others.
Collapse
|
41
|
Harman RM, Marx C, Van de Walle GR. Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy. Front Cell Dev Biol 2021; 9:654885. [PMID: 33869217 PMCID: PMC8044970 DOI: 10.3389/fcell.2021.654885] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of the mesenchymal stromal cell (MSC) secretome, consisting of all molecules secreted by MSCs, is intensively studied. MSCs can be readily isolated, expanded, and manipulated in culture, and few people argue with the ethics of their collection. Despite promising pre-clinical studies, most MSC secretome-based therapies have not been implemented in human medicine, in part because the complexity of bioactive factors secreted by MSCs is not completely understood. In addition, the MSC secretome is variable, influenced by individual donor, tissue source of origin, culture conditions, and passage. An increased understanding of the factors that make up the secretome and the ability to manipulate MSCs to consistently secrete factors of biologic importance will improve MSC therapy. To aid in this goal, we can draw from the wealth of information available on secreted factors from MSC isolated from veterinary species. These translational animal models will inspire efforts to move human MSC secretome therapy from bench to bedside.
Collapse
Affiliation(s)
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
42
|
Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol 2021; 14:24. [PMID: 33579329 PMCID: PMC7880217 DOI: 10.1186/s13045-021-01037-x] [Citation(s) in RCA: 303] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have been intensely investigated for clinical applications within the last decades. However, the majority of registered clinical trials applying MSC therapy for diverse human diseases have fallen short of expectations, despite the encouraging pre-clinical outcomes in varied animal disease models. This can be attributable to inconsistent criteria for MSCs identity across studies and their inherited heterogeneity. Nowadays, with the emergence of advanced biological techniques and substantial improvements in bio-engineered materials, strategies have been developed to overcome clinical challenges in MSC application. Here in this review, we will discuss the major challenges of MSC therapies in clinical application, the factors impacting the diversity of MSCs, the potential approaches that modify MSC products with the highest therapeutic potential, and finally the usage of MSCs for COVID-19 pandemic disease.
Collapse
|
43
|
Elshaer SL, Park HS, Pearson L, Hill WD, Longo FM, El-Remessy AB. Modulation of p75 NTR on Mesenchymal Stem Cells Increases Their Vascular Protection in Retinal Ischemia-Reperfusion Mouse Model. Int J Mol Sci 2021; 22:E829. [PMID: 33467640 PMCID: PMC7830385 DOI: 10.3390/ijms22020829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising therapy to improve vascular repair, yet their role in ischemic retinopathy is not fully understood. The aim of this study is to investigate the impact of modulating the neurotrophin receptor; p75NTR on the vascular protection of MSCs in an acute model of retinal ischemia/reperfusion (I/R). Wild type (WT) and p75NTR-/- mice were subjected to I/R injury by increasing intra-ocular pressure to 120 mmHg for 45 min, followed by perfusion. Murine GFP-labeled MSCs (100,000 cells/eye) were injected intravitreally 2 days post-I/R and vascular homing was assessed 1 week later. Acellular capillaries were counted using trypsin digest 10-days post-I/R. In vitro, MSC-p75NTR was modulated either genetically using siRNA or pharmacologically using the p75NTR modulator; LM11A-31, and conditioned media were co-cultured with human retinal endothelial cells (HREs) to examine the angiogenic response. Finally, visual function in mice undergoing retinal I/R and receiving LM11A-31 was assessed by visual-clue water-maze test. I/R significantly increased the number of acellular capillaries (3.2-Fold) in WT retinas, which was partially ameliorated in p75NTR-/- retinas. GFP-MSCs were successfully incorporated and engrafted into retinal vasculature 1 week post injection and normalized the number of acellular capillaries in p75NTR-/- retinas, yet ischemic WT retinas maintained a 2-Fold increase. Silencing p75NTR on GFP-MSCs coincided with a higher number of cells homing to the ischemic WT retinal vasculature and normalized the number of acellular capillaries when compared to ischemic WT retinas receiving scrambled-GFP-MSCs. In vitro, silencing p75NTR-MSCs enhanced their secretome, as evidenced by significant increases in SDF-1, VEGF and NGF release in MSCs conditioned medium; improved paracrine angiogenic response in HREs, where HREs showed enhanced migration (1.4-Fold) and tube formation (2-Fold) compared to controls. In parallel, modulating MSCs-p75NTR using LM11A-31 resulted in a similar improvement in MSCs secretome and the enhanced paracrine angiogenic potential of HREs. Further, intervention with LM11A-31 significantly mitigated the decline in visual acuity post retinal I/R injury. In conclusion, p75NTR modulation can potentiate the therapeutic potential of MSCs to harness vascular repair in ischemic retinopathy diseases.
Collapse
Affiliation(s)
- Sally L. Elshaer
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA; (S.L.E.); (L.P.); (W.D.H.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hang-soo Park
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Laura Pearson
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA; (S.L.E.); (L.P.); (W.D.H.)
| | - William D. Hill
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA; (S.L.E.); (L.P.); (W.D.H.)
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94304, USA;
| | - Azza B. El-Remessy
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA; (S.L.E.); (L.P.); (W.D.H.)
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of the Pharmacy, Doctors Hospital of Augusta, Augusta, GA 30909, USA
| |
Collapse
|
44
|
Kwon S, Shin S, Do M, Oh BH, Song Y, Bui VD, Lee ES, Jo DG, Cho YW, Kim DH, Park JH. Engineering approaches for effective therapeutic applications based on extracellular vesicles. J Control Release 2020; 330:15-30. [PMID: 33278480 DOI: 10.1016/j.jconrel.2020.11.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
The biological significance of extracellular vesicles (EVs) as intercellular communication mediators has been increasingly revealed in a wide range of normal physiological processes and disease pathogenesis. In particular, regenerative and immunomodulatory EVs hold potential as innate biotherapeutics, whereas pathological EVs are considered therapeutic targets for inhibiting their bioactivity. Given their ability to transport functional cargos originating from the source cells to target cells, EVs can also be used as a therapeutic means to deliver drug molecules. This review aims to provide an updated overview of the key engineering approaches for better exploiting EVs in disease intervention. The emphasis is lying on the preconditioning methods for therapeutic EVs, drug loading and targeting technologies for carrier EVs, and activity control strategies for pathological EVs.
Collapse
Affiliation(s)
- Seunglee Kwon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Minjae Do
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Byeong Hoon Oh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yeari Song
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Dat Bui
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun Sook Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Dong-Gyu Jo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; ExoStemTech Inc., Ansan 15588, Republic of Korea
| | - Yong Woo Cho
- ExoStemTech Inc., Ansan 15588, Republic of Korea; Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea; ExoStemTech Inc., Ansan 15588, Republic of Korea.
| |
Collapse
|
45
|
Puig-Pijuan T, de Godoy MA, Pinheiro Carvalho LR, Bodart-Santos V, Lindoso RS, Pimentel-Coelho PM, Mendez-Otero R. Human Wharton's jelly mesenchymal stem cells protect neural cells from oxidative stress through paracrine mechanisms. Future Sci OA 2020; 6:FSO627. [PMID: 33235812 PMCID: PMC7668126 DOI: 10.2144/fsoa-2020-0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim Mesenchymal stem cells (MSCs) have neuroprotective and immunomodulatory properties, which are partly mediated by extracellular vesicles (EVs) secretion. We aimed to evaluate the effects of human Wharton's jelly-derived MSCs (WJ-MSCs) and their EVs on rat hippocampal cultures subjected to hydrogen peroxide (H2O2). Materials & methods Hippocampal dissociated cultures were either co-cultured with WJ-MSCs or treated with their EVs prior to H2O2 exposure and reactive oxygen species levels and cell viability were evaluated. Results Coculture with WJ-MSCs or pre-incubation with EVs prior to the insult reduced reactive oxygen species after H2O2 exposure. Cell viability was improved only when coculture was maintained following the insult, while EVs did not significantly improve cell viability. Conclusion WJ-MSCs have potential antioxidant and neuroprotective effects on hippocampal cultures which might be partially mediated by EVs.
Collapse
Affiliation(s)
- Teresa Puig-Pijuan
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Mariana A de Godoy
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Luiza Rachel Pinheiro Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Victor Bodart-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Rafael Soares Lindoso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| |
Collapse
|