1
|
Colbert BM, Smeal M, Cromar ZJ, Rosa P, Blanton SH, Lam BL, Liu XZ. Prevalence of Molecular Diagnoses for Usher Syndrome and the Need for Coordinated Care. Laryngoscope 2024. [PMID: 39560289 DOI: 10.1002/lary.31911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/06/2024] [Accepted: 09/25/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION Usher syndrome (USH) is a rare, autosomal-recessive genetic disorder and a leading cause of early onset deaf-blindness. A clinical diagnosis is made by the presence of retinitis pigmentosa (RP) with sensorineural hearing loss (SNHL). Subtype (USH1, USH2, USH3) is determined by severity and age of onset. Molecular testing is able to further distinguish USH subtypes by causative gene. As gene therapy strategies continue to be explored for USH, it is important to know the underlying genetic cause and to coordinate care among an interdisciplinary team. METHODS We reviewed charts of 198 individuals presenting to the RP clinic at Bascom Palmer Eye Institute (BPEI) for suspected USH. Demographic information, USH clinical diagnosis, molecular testing, molecular diagnosis, and audiological data were collected. RESULTS Of the 198 patients reviewed, 190 (96%) met clinical criteria for USH and received a clinical diagnosis. There were 67 (35%) that had a genetic test with a pathogenic molecular diagnosis. The average ages at molecular diagnosis were USH1B, 20 years old; USH2A, 37 years old; USH2C, 50 years old. Of the 67 with a molecular diagnosis, 23 (34%) established ophthalmic care and 8 of these (11%) established audiological care. DISCUSSION/CONCLUSION Molecular testing and diagnosis should be part of the routine care of USH individuals to facilitate earlier interventions and coordinated care between ophthalmology and audiology. LEVEL OF EVIDENCE 4 Laryngoscope, 2024.
Collapse
Affiliation(s)
- Brett M Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Molly Smeal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Zachary J Cromar
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Potyra Rosa
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Susan H Blanton
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Xue Z Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
- Department of Biochemistry, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| |
Collapse
|
2
|
Sbai O, Torrisi F, Fabrizio FP, Rabbeni G, Perrone L. Effect of the Mediterranean Diet (MeDi) on the Progression of Retinal Disease: A Narrative Review. Nutrients 2024; 16:3169. [PMID: 39339769 PMCID: PMC11434766 DOI: 10.3390/nu16183169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Worldwide, the number of individuals suffering from visual impairment, as well as those affected by blindness, is about 600 million and it will further increase in the coming decades. These diseases also seriously affect the quality of life in working-age individuals. Beyond the characterization of metabolic, genetic, and environmental factors related to ocular pathologies, it is important to verify how lifestyle may participate in the induction of the molecular pathways underlying these diseases. On the other hand, scientific studies are also contributing to investigations as to whether lifestyle could intervene in modulating pathophysiological cellular responses, including the production of metabolites and neurohormonal factors, through the intake of natural compounds capable of interfering with molecular mechanisms that lead to ocular diseases. Nutraceuticals are promising in ameliorating pathophysiological complications of ocular disease such as inflammation and neurodegeneration. Moreover, it is important to characterize the nutritional patterns and/or natural compounds that may be beneficial against certain ocular diseases. The adherence to the Mediterranean diet (MeDi) is proposed as a promising intervention for the prevention and amelioration of several eye diseases. Several characteristic compounds and micronutrients of MeDi, including vitamins, carotenoids, flavonoids, and omega-3 fatty acids, are proposed as adjuvants against several ocular diseases. In this review, we focus on studies that analyze the effects of MeDi in ameliorating diabetic retinopathy, macular degeneration, and glaucoma. The analysis of knowledge in this field is requested in order to provide direction on recommendations for nutritional interventions aimed to prevent and ameliorate ocular diseases.
Collapse
Affiliation(s)
- Oualid Sbai
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Institut Pasteur de Tunis, Tunis 1068, Tunisia
| | - Filippo Torrisi
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| | | | - Graziella Rabbeni
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| | - Lorena Perrone
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| |
Collapse
|
3
|
Trastulli G, Megalizzi D, Calvino G, Andreucci S, Zampatti S, Strafella C, Caltagirone C, Giardina E, Cascella R. RHO Variants and Autosomal Dominant Retinitis Pigmentosa: Insights from the Italian Genetic Landscape. Genes (Basel) 2024; 15:1158. [PMID: 39336749 PMCID: PMC11431160 DOI: 10.3390/genes15091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Autosomal dominant retinitis pigmentosa (AD-RP) is caused by several genes, among which RHO is one of the most investigated. This article will be focused on RHO and its role in explaining AD-RP cases in the Italian population, taking advantage of the experience of the Genomic Medicine Laboratory UILDM at the Santa Lucia Foundation IRCCS. The retrospective evaluation of the distribution of RHO variants in the Italian patients with a clinical suspicion of RP pointed out eight variants. Of them, four variants (c.632A>T, c.1040C>T, c.1030C>T, c.383_392del) were pathogenic and made it possible to confirm the diagnosis of AD-RP in nine affected patients, highlighting a lower frequency (17%) of RHO variants compared to previous studies (30-40%). In addition, this study identified four variants classified as Variants of Uncertain Significance (VUS). In conclusion, the experience of the Genomic Medicine Laboratory provides an overview of the distribution of RHO variants in the Italian population, highlighting a slightly lower frequency of these variants in our cases series compared to previous reports. However, further studies on RHO variants are essential to characterize peculiar RP phenotypes and extend the spectrum of disease associated with this gene.
Collapse
Affiliation(s)
- Giulia Trastulli
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Domenica Megalizzi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Giulia Calvino
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Sarah Andreucci
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, 1010 Tirana, Albania
| |
Collapse
|
4
|
Zeuli R, Karali M, de Bruijn SE, Rodenburg K, Scarpato M, Capasso D, Astuti GDN, Gilissen C, Rodríguez-Hidalgo M, Ruiz-Ederra J, Testa F, Simonelli F, Cremers FPM, Banfi S, Roosing S. Whole genome sequencing identifies elusive variants in genetically unsolved Italian inherited retinal disease patients. HGG ADVANCES 2024; 5:100314. [PMID: 38816995 PMCID: PMC11225895 DOI: 10.1016/j.xhgg.2024.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a group of rare monogenic diseases with high genetic heterogeneity (pathogenic variants identified in over 280 causative genes). The genetic diagnostic rate for IRDs is around 60%, mainly thanks to the routine application of next-generation sequencing (NGS) approaches such as extensive gene panels or whole exome analyses. Whole-genome sequencing (WGS) has been reported to improve this diagnostic rate by revealing elusive variants, such as structural variants (SVs) and deep intronic variants (DIVs). We performed WGS on 33 unsolved cases with suspected autosomal recessive IRD, aiming to identify causative genetic variants in non-coding regions or to detect SVs that were unexplored in the initial screening. Most of the selected cases (30 of 33, 90.9%) carried monoallelic pathogenic variants in genes associated with their clinical presentation, hence we first analyzed the non-coding regions of these candidate genes. Whenever additional pathogenic variants were not identified with this approach, we extended the search for SVs and DIVs to all IRD-associated genes. Overall, we identified the missing causative variants in 11 patients (11 of 33, 33.3%). These included three DIVs in ABCA4, CEP290 and RPGRIP1; one non-canonical splice site (NCSS) variant in PROM1 and three SVs (large deletions) in EYS, PCDH15 and USH2A. For the previously unreported DIV in CEP290 and for the NCCS variant in PROM1, we confirmed the effect on splicing by reverse transcription (RT)-PCR on patient-derived RNA. This study demonstrates the power and clinical utility of WGS as an all-in-one test to identify disease-causing variants missed by standard NGS diagnostic methodologies.
Collapse
Affiliation(s)
- Roberta Zeuli
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Marianthi Karali
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy; Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kim Rodenburg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Margherita Scarpato
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Dalila Capasso
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomic and Experimental Medicine Program, Naples, Italy
| | - Galuh D N Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - María Rodríguez-Hidalgo
- Department of Neuroscience, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Department of Dermatology, Ophthalmology, and Otorhinolaryngology, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Javier Ruiz-Ederra
- Department of Neuroscience, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Department of Dermatology, Ophthalmology, and Otorhinolaryngology, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sandro Banfi
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Goto K, Koyanagi Y, Akiyama M, Murakami Y, Fukushima M, Fujiwara K, Iijima H, Yamaguchi M, Endo M, Hashimoto K, Ishizu M, Hirakata T, Mizobuchi K, Takayama M, Ota J, Sajiki AF, Kominami T, Ushida H, Fujita K, Kaneko H, Ueno S, Hayashi T, Terao C, Hotta Y, Murakami A, Kuniyoshi K, Kusaka S, Wada Y, Abe T, Nakazawa T, Ikeda Y, Momozawa Y, Sonoda KH, Nishiguchi KM. Disease-specific variant interpretation highlighted the genetic findings in 2325 Japanese patients with retinitis pigmentosa and allied diseases. J Med Genet 2024; 61:613-620. [PMID: 38499336 DOI: 10.1136/jmg-2023-109750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND As gene-specific therapy for inherited retinal dystrophy (IRD) advances, unified variant interpretation across institutes is becoming increasingly important. This study aims to update the genetic findings of 86 retinitis pigmentosa (RP)-related genes in a large number of Japanese patients with RP by applying the standardised variant interpretation guidelines for Japanese patients with IRD (J-IRD-VI guidelines) built upon the American College of Medical Genetics and Genomics and the Association for Molecular Pathology rules, and assess the contribution of these genes in RP-allied diseases. METHODS We assessed 2325 probands with RP (n=2155, including n=1204 sequenced previously with the same sequencing panel) and allied diseases (n=170, newly analysed), including Usher syndrome, Leber congenital amaurosis and cone-rod dystrophy (CRD). Target sequencing using a panel of 86 genes was performed. The variants were interpreted according to the J-IRD-VI guidelines. RESULTS A total of 3564 variants were detected, of which 524 variants were interpreted as pathogenic or likely pathogenic. Among these 524 variants, 280 (53.4%) had been either undetected or interpreted as variants of unknown significance or benign variants in our earlier study of 1204 patients with RP. This led to a genetic diagnostic rate in 38.6% of patients with RP, with EYS accounting for 46.7% of the genetically solved patients, showing a 9% increase in diagnostic rate from our earlier study. The genetic diagnostic rate for patients with CRD was 28.2%, with RP-related genes significantly contributing over other allied diseases. CONCLUSION A large-scale genetic analysis using the J-IRD-VI guidelines highlighted the population-specific genetic findings for Japanese patients with IRD; these findings serve as a foundation for the clinical application of gene-specific therapies.
Collapse
Affiliation(s)
- Kensuke Goto
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masato Akiyama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Fukushima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hanae Iijima
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Mitsuyo Yamaguchi
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Mikiko Endo
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masataka Ishizu
- Department of Ophthalmology, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Toshiaki Hirakata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masakazu Takayama
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Junya Ota
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ai Fujita Sajiki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Ushida
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kosuke Fujita
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hisoraki, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | | | - Toshiaki Abe
- Division of Clinical Cell Therapy, Tohoku University Graduate School of Medicine United Centers for Advanced Research and Translational Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Mihalich A, Cammarata G, Tremolada G, Manfredini E, Bianchi Marzoli S, Di Blasio AM. Genetic Characterization of 191 Probands with Inherited Retinal Dystrophy by Targeted NGS Analysis. Genes (Basel) 2024; 15:766. [PMID: 38927702 PMCID: PMC11203276 DOI: 10.3390/genes15060766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a frequent cause of blindness in children and adults. As a consequence of the phenotype and genotype heterogeneity of the disease, it is difficult to have a specific diagnosis without molecular testing. To date, over 340 genes and loci have been associated with IRDs. We present the molecular finding of 191 individuals with IRD, analyzed by targeted next-generation sequencing (NGS). For 67 of them, we performed a family segregation study, considering a total of 126 relatives. A total of 359 variants were identified, 44 of which were novel. Genetic diagnostic yield was 41%. However, after stratifying the patients according to their clinical suspicion, diagnostic yield was higher for well-characterized diseases such as Stargardt disease (STGD), at 65%, and for congenital stationary night blindness 2 (CSNB2), at 64%. Diagnostic yield was higher in the patient group where family segregation analysis was possible (68%) and it was higher in younger (55%) than in older patients (33%). The results of this analysis demonstrated that targeted NGS is an effective method for establishing a molecular genetic diagnosis of IRDs. Furthermore, this study underlines the importance of segregation studies to understand the role of genetic variants with unknow pathogenic role.
Collapse
Affiliation(s)
- Alessandra Mihalich
- Molecular Biology Laboratory, Istituto Auxologico Italiano IRCCS, 20145 Milan, Italy; (E.M.); (A.M.D.B.)
- Neuro-Ophthalmology Center and Electrophysiology Laboratory, Department of Ophthalmology, Istituto Auxologico Italiano IRCCS, 20145 Milan, Italy; (G.C.); (G.T.); (S.B.M.)
| | - Gabriella Cammarata
- Neuro-Ophthalmology Center and Electrophysiology Laboratory, Department of Ophthalmology, Istituto Auxologico Italiano IRCCS, 20145 Milan, Italy; (G.C.); (G.T.); (S.B.M.)
| | - Gemma Tremolada
- Neuro-Ophthalmology Center and Electrophysiology Laboratory, Department of Ophthalmology, Istituto Auxologico Italiano IRCCS, 20145 Milan, Italy; (G.C.); (G.T.); (S.B.M.)
| | - Emanuela Manfredini
- Molecular Biology Laboratory, Istituto Auxologico Italiano IRCCS, 20145 Milan, Italy; (E.M.); (A.M.D.B.)
| | - Stefania Bianchi Marzoli
- Neuro-Ophthalmology Center and Electrophysiology Laboratory, Department of Ophthalmology, Istituto Auxologico Italiano IRCCS, 20145 Milan, Italy; (G.C.); (G.T.); (S.B.M.)
| | - Anna Maria Di Blasio
- Molecular Biology Laboratory, Istituto Auxologico Italiano IRCCS, 20145 Milan, Italy; (E.M.); (A.M.D.B.)
| |
Collapse
|
7
|
Cortinhal T, Santos C, Vaz-Pereira S, Marta A, Duarte L, Miranda V, Costa J, Sousa AB, Peter VG, Kaminska K, Rivolta C, Carvalho AL, Saraiva J, Soares CA, Silva R, Murta J, Santos LC, Marques JP. Genetic profile of syndromic retinitis pigmentosa in Portugal. Graefes Arch Clin Exp Ophthalmol 2024; 262:1883-1897. [PMID: 38189974 PMCID: PMC11106148 DOI: 10.1007/s00417-023-06360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) comprises a genetically and clinically heterogeneous group of inherited retinal degenerations, where 20-30% of patients exhibit extra-ocular manifestations (syndromic RP). Understanding the genetic profile of RP has important implications for disease prognosis and genetic counseling. This study aimed to characterize the genetic profile of syndromic RP in Portugal. METHODS Multicenter, retrospective cohort study. Six Portuguese healthcare providers identified patients with a clinical diagnosis of syndromic RP and available genetic testing results. All patients had been previously subjected to a detailed ophthalmologic examination and clinically oriented genetic testing. Genetic variants were classified according to the American College of Medical Genetics and Genomics; only likely pathogenic or pathogenic variants were considered relevant for disease etiology. RESULTS One hundred and twenty-two patients (53.3% males) from 100 families were included. Usher syndrome was the most frequent diagnosis (62.0%), followed by Bardet-Biedl (19.0%) and Senior-Løken syndromes (7.0%). Deleterious variants were identified in 86/100 families for a diagnostic yield of 86.0% (87.1% for Usher and 94.7% for Bardet-Biedl). A total of 81 genetic variants were identified in 25 different genes, 22 of which are novel. USH2A and MYO7A were responsible for most type II and type I Usher syndrome cases, respectively. BBS1 variants were the cause of Bardet-Biedl syndrome in 52.6% of families. Best-corrected visual acuity (BCVA) records were available at baseline and last visit for 99 patients (198 eyes), with a median follow-up of 62.0 months. The mean BCVA was 56.5 ETDRS letters at baseline (Snellen equivalent ~ 20/80), declining to 44.9 ETDRS letters (Snellen equivalent ~ 20/125) at the last available follow-up (p < 0.001). CONCLUSION This is the first multicenter study depicting the genetic profile of syndromic RP in Portugal, thus contributing toward a better understanding of this heterogeneous disease group. Usher and Bardet-Biedl syndromes were found to be the most common types of syndromic RP in this large Portuguese cohort. A high diagnostic yield was obtained, highlighting current genetic testing capabilities in providing a molecular diagnosis to most affected individuals. This has major implications in determining disease-related prognosis and providing targeted genetic counseling for syndromic RP patients in Portugal.
Collapse
Affiliation(s)
- Telmo Cortinhal
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Cristina Santos
- Instituto de Oftalmologia Dr. Gama Pinto (IOGP), Lisboa, Portugal
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Sara Vaz-Pereira
- Department of Ophthalmology, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisboa, Portugal
- Department of Ophthalmology, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Marta
- Department of Ophthalmology, Centro Hospitalar e Universitário de Santo António (CHUdSA), Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| | - Lilianne Duarte
- Department of Ophthalmology, Centro Hospitalar de Entre Douro e Vouga (CHEDV), Santa Maria da Feira, Portugal
| | - Vitor Miranda
- Department of Ophthalmology, Centro Hospitalar de Entre Douro e Vouga (CHEDV), Santa Maria da Feira, Portugal
| | - José Costa
- Department of Ophthalmology, Hospital de Braga (HB), Braga, Portugal
| | - Ana Berta Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Lisboa Norte (CHULN), Lisboa, Portugal
| | - Virginie G Peter
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland
- Department of Ophthalmology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Ana Luísa Carvalho
- Medical Genetics Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University Clinic of Medical Genetics, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Jorge Saraiva
- Medical Genetics Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Célia Azevedo Soares
- Medical Genetics Department, Centro de Genética Médica Jacinto Magalhães, Centro Hospitalar e Universitário do Porto (CHUP), Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Medical Science Department, Universidade de Aveiro, Aveiro, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rufino Silva
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Joaquim Murta
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | | | - João Pedro Marques
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
- University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.
| |
Collapse
|
8
|
Georgiou M, Hashem SA, Michaelides M, Chacko JG, Uwaydat SH. A patient with albinism and retinitis pigmentosa, a case report. Am J Ophthalmol Case Rep 2024; 34:102068. [PMID: 38745847 PMCID: PMC11092391 DOI: 10.1016/j.ajoc.2024.102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Purpose To present a case of molecularly confirmed oculocutaneous albinism (OCA) and retinitis pigmentosa (RP). Observations A 46-year-old male with a lifelong established diagnosis of OCA and baseline best corrected visual acuity (BCVA) of 20/200, presented for worsening visual acuity over the last few years. BCVA was light perception and hand motion at face for the right and left eye, respectively. Fundus exam showed hypopigmented fundi with visible choroidal vessels and blunted foveal reflexes in both eyes. Optical coherence tomography showed foveal hypoplasia and outer retinal degenerative changes not typical of OCA. Fundus autofluorescence (FAF) imaging showed focal areas of decreased signal at the fovea, similar to areas of atrophy in an age matched patient with PDE6A-RP. Genetic testing identified a homozygous disease-causing variant in TYR c.1467dup, p. (Ala490Cysfs*20) causing OCA, and a homozygous pathogenic variant c.304C > A, p. (Arg102Ser) in PDE6A causing autosomal recessive RP. Conclusions and importance This is the first report of a patient with OCA and RP. The lack of pigmentary changes can make the diagnosis of RP challenging in patients with albinism. FAF can show features suggestive of RP and genetic testing can establish the diagnosis. The findings described herein may help physicians diagnose an extremely rare phenotype.
Collapse
Affiliation(s)
- Michalis Georgiou
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, EC1V 2PD, UK
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Shaima Awadh Hashem
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, EC1V 2PD, UK
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, EC1V 2PD, UK
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Joseph G. Chacko
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sami H. Uwaydat
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
9
|
Colombo L, Bonetti G, Maltese PE, Iarossi G, Ziccardi L, Fogagnolo P, De Ruvo V, Murro V, Giorgio D, Falsini B, Placidi G, Martella S, Galantin E, Bertelli M, Rossetti L. Genotypic and Phenotypic Characterization of a Cohort of Patients Affected by Rod Cyclic Nucleotide Channel-Associated Retinitis Pigmentosa. Ophthalmic Res 2024; 67:301-310. [PMID: 38705136 DOI: 10.1159/000538746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/12/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Retinitis pigmentosa (RP), a heterogeneous inherited retinal disorder causing gradual vision loss, affects over 1 million people worldwide. Pathogenic variants in CNGA1 and CNGB1 genes, respectively, accounting for 1% and 4% of cases, impact the cyclic nucleotide-gated channel in rod photoreceptor cells. The aim of this study was to describe and compare genotypic and clinical characteristics of a cohort of patients with CNGA1- or CNGB1-related RP and to explore potential genotype-phenotype correlations. METHODS The following data from patients with CNGA1- or CNGB1-related RP, followed in five Italian inherited retinal degenerations services, were retrospectively collected: genetic variants in CNGA1 and CNGB1, best-corrected visual acuity (BCVA), ellipsoid zone (EZ) width, fundus photographs, and short-wavelength fundus autofluorescence (SW-AF) images. Comparisons and correlation analyses were performed by first dividing the cohort in two groups according to the gene responsible for the disease (CNGA1 and CNGB1 groups). In parallel, the whole cohort of RP patients was divided into two other groups, according to the expected impact of the variants at protein level (low and high group). RESULTS In total, 29 patients were recruited, 11 with CNGA1- and 18 with CNGB1-related RP. In both CNGA1 and CNGB1, 5 novel variants in CNGA1 and 5 in CNGB1 were found. BCVA was comparable between CNGA1 and CNGB1 groups, as well as between low and high groups. CNGA1 group had a larger mean EZ width compared to CNGB1 group, albeit not statistically significant, while EZ width did not differ between low and high groups A statistically significant correlation between EZ width and BCVA as well as between EZ width and age were observed in the whole cohort of RP patients. Fundus photographs of all patients in the cohort showed classic RP pattern, and in SW-AF images an hyperautofluorescent ring was observed in 14/21 patients. CONCLUSION Rod CNG channel-associated RP was demonstrated to be a slowly progressive disease in both CNGA1- and CNGB1-related forms, making it an ideal candidate for gene augmentation therapies.
Collapse
Affiliation(s)
- Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Gabriele Bonetti
- MAGI'S LAB S.R.L., Rovereto, Italy
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Paolo Fogagnolo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Valentino De Ruvo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Vittoria Murro
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Dario Giorgio
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Benedetto Falsini
- Department of Ophthalmology, Bambino Gesù Children's Hospital, Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS/Università Cattolica del S. Cuore, Rome, Italy
| | - Giorgio Placidi
- Ophthalmology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS/Università Cattolica del S. Cuore, Rome, Italy
| | - Salvatore Martella
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Eleonora Galantin
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Matteo Bertelli
- MAGI'S LAB S.R.L., Rovereto, Italy
- MAGI EUREGIO, Bolzano, Italy
- MAGISNAT, Atlanta Tech Park, Peachtree Corners, Georgia, USA
| | - Luca Rossetti
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Heath Jeffery RC, Thompson JA, Lo J, Chelva ES, Armstrong S, Pulido JS, Procopio R, Vincent AL, Bianco L, Battaglia Parodi M, Ziccardi L, Antonelli G, Barbano L, Marques JP, Geada S, Carvalho AL, Tang WC, Chan CM, Boon CJF, Hensman J, Chen TC, Lin CY, Chen PL, Vincent A, Tumber A, Heon E, Grigg JR, Jamieson RV, Cornish EE, Nash BM, Borooah S, Ayton LN, Britten-Jones AC, Edwards TL, Ruddle JB, Sharma A, Porter RG, Lamey TM, McLaren TL, McLenachan S, Roshandel D, Chen FK. Retinal Dystrophies Associated With Peripherin-2: Genetic Spectrum and Novel Clinical Observations in 241 Patients. Invest Ophthalmol Vis Sci 2024; 65:22. [PMID: 38743414 PMCID: PMC11098050 DOI: 10.1167/iovs.65.5.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Purpose To describe the clinical, electrophysiological and genetic spectrum of inherited retinal diseases associated with variants in the PRPH2 gene. Methods A total of 241 patients from 168 families across 15 sites in 9 countries with pathogenic or likely pathogenic variants in PRPH2 were included. Records were reviewed for age at symptom onset, visual acuity, full-field ERG, fundus colour photography, fundus autofluorescence (FAF), and SD-OCT. Images were graded into six phenotypes. Statistical analyses were performed to determine genotype-phenotype correlations. Results The median age at symptom onset was 40 years (range, 4-78 years). FAF phenotypes included normal (5%), butterfly pattern dystrophy, or vitelliform macular dystrophy (11%), central areolar choroidal dystrophy (28%), pseudo-Stargardt pattern dystrophy (41%), and retinitis pigmentosa (25%). Symptom onset was earlier in retinitis pigmentosa as compared with pseudo-Stargardt pattern dystrophy (34 vs 44 years; P = 0.004). The median visual acuity was 0.18 logMAR (interquartile range, 0-0.54 logMAR) and 0.18 logMAR (interquartile range 0-0.42 logMAR) in the right and left eyes, respectively. ERG showed a significantly reduced amplitude across all components (P < 0.001) and a peak time delay in the light-adapted 30-Hz flicker and single-flash b-wave (P < 0.001). Twenty-two variants were novel. The central areolar choroidal dystrophy phenotype was associated with 13 missense variants. The remaining variants showed marked phenotypic variability. Conclusions We described six distinct FAF phenotypes associated with variants in the PRPH2 gene. One FAF phenotype may have multiple ERG phenotypes, demonstrating a discordance between structure and function. Given the vast spectrum of PRPH2 disease our findings are useful for future clinical trials.
Collapse
Affiliation(s)
- Rachael C. Heath Jeffery
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Western Australia, Australia
- Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Jennifer A. Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Johnny Lo
- School of Science, Edith Cowan University, Perth, Western Australia, Australia
| | - Enid S. Chelva
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Sean Armstrong
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jose S. Pulido
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rebecca Procopio
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrea L. Vincent
- Department of Ophthalmology, FMHS, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | - Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | - João P. Marques
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Sara Geada
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Ana L. Carvalho
- Medical Genetics Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Wei C. Tang
- Singapore National Eye Centre, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Choi M. Chan
- Singapore National Eye Centre, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Camiel J. F. Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Jonathan Hensman
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Center of Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Yu Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Lung Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ajoy Vincent
- Department of Ophthalmology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anupreet Tumber
- Department of Ophthalmology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elise Heon
- Department of Ophthalmology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - John R. Grigg
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Robyn V. Jamieson
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Elisa E. Cornish
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Benjamin M. Nash
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Genome Diagnostics, Western Sydney Genetics Program, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Shyamanga Borooah
- University of California San Diego, La Jolla, California
- The Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, United States
| | - Lauren N. Ayton
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas L. Edwards
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan B. Ruddle
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Abhishek Sharma
- Ophthalmology Department, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | - Tina M. Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Terri L. McLaren
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Danial Roshandel
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Western Australia, Australia
- Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Clemente-Suárez VJ, Peris-Ramos HC, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A, David-Fernandez S, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Personalizing Nutrition Strategies: Bridging Research and Public Health. J Pers Med 2024; 14:305. [PMID: 38541047 PMCID: PMC10970995 DOI: 10.3390/jpm14030305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
In recent years, although life expectancy has increased significantly, non-communicable diseases (NCDs) continue to pose a significant threat to the health of the global population. Therefore, eating habits have been recognized as key modifiable factors that influence people's health and well-being. For this reason, it is interesting to study dietary patterns, since the human diet is a complex mixture of macronutrients, micronutrients, and bioactive compounds, and can modulate multiple physiological processes, including immune function, the metabolism, and inflammation. To ensure that the data we acquired were current and relevant, we searched primary and secondary sources, including scientific journals, bibliographic indexes, and databases in the last 15 years with the most relevant articles. After this search, we observed that all the recent research on NCDs suggests that diet is a critical factor in shaping an individual's health outcomes. Thus, cardiovascular, metabolic, mental, dental, and visual health depends largely on the intake, habits and patterns, and nutritional behaviors. A diet high in processed and refined foods, added sugars, and saturated fats can increase the risk of developing chronic diseases. On the other hand, a diet rich in whole, nutrient-dense foods, such as vegetables, fruits, nuts, legumes, and a high adherence to Mediterranean diet can improve health's people.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Helia Carmen Peris-Ramos
- Faculty of Biomedical and Health Sciences, Clinical Odontology Department, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street, s/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | - Susana David-Fernandez
- Faculty of Biomedical and Health Sciences, Clinical Odontology Department, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | |
Collapse
|
12
|
D’Esposito F, Randazzo V, Vega MI, Esposito G, Maltese PE, Torregrossa S, Scibetta P, Listì F, Gagliano C, Scalia L, Pioppo A, Marino A, Piergentili M, Malvone E, Fioretti T, Vitrano A, Piccione M, Avitabile T, Salvatore F, Bertelli M, Costagliola C, Cordeiro MF, Maggio A, D’Alcamo E. RP1 Dominant p.Ser740* Pathogenic Variant in 20 Knowingly Unrelated Families Affected by Rod-Cone Dystrophy: Potential Founder Effect in Western Sicily. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:254. [PMID: 38399542 PMCID: PMC10890639 DOI: 10.3390/medicina60020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives. Retinitis pigmentosa (RP) is the most common inherited rod-cone dystrophy (RCD), resulting in nyctalopia, progressive visual field, and visual acuity decay in the late stages. The autosomal dominant form (ADRP) accounts for about 20% of RPs. Among the over 30 genes found to date related to ADRP, RP1 pathogenic variants have been identified in 5-10% of cases. In a cohort of RCD patients from the Palermo province on the island of Sicily, we identified a prevalent nonsense variant in RP1, which was associated with ADRP. The objective of our study was to analyse the clinical and molecular data of this patient cohort and to evaluate the potential presence of a founder effect. Materials and Methods. From 2005 to January 2023, 84 probands originating from Western Sicily (Italy) with a diagnosis of RCD or RP and their relatives underwent deep phenotyping, which was performed in various Italian clinical institutions. Molecular characterisation of patients and familial segregation of pathogenic variants were carried out in different laboratories using Sanger and/or next-generation sequencing (NGS). Results. Among 84 probands with RCD/RP, we found 28 heterozygotes for the RP1 variant c.2219C>G, p.Ser740* ((NM_006269.2)*, which was therefore significantly prevalent in this patient cohort. After a careful interview process, we ascertained that some of these patients shared the same pedigree. Therefore, we were ultimately able to define 20 independent family groups with no traceable consanguinity. Lastly, analysis of clinical data showed, in our patients, that the p.Ser740* nonsense variant was often associated with a late-onset and relatively mild phenotype. Conclusions. The high prevalence of the p.Ser740* variant in ADRP patients from Western Sicily suggests the presence of a founder effect, which has useful implications for the molecular diagnosis of RCD in patients coming from this Italian region. This variant can be primarily searched for in RP-affected subjects displaying compatible modes of transmission and phenotypes, with an advantage in terms of the required costs and time for analysis. Moreover, given its high prevalence, the RP1 p.Ser740* variant could represent a potential candidate for the development of therapeutic strategies based on gene editing or translational read-through therapy for suppression of nonsense variants.
Collapse
Affiliation(s)
- Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London SW7 2AZ, UK;
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80100 Naples, Italy; (E.M.); (C.C.)
- Genofta s.r.l., Sant’Agnello, 80065 Naples, Italy
| | - Viviana Randazzo
- Eye Clinic, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (V.R.); (S.T.); (P.S.)
| | - Maria Igea Vega
- Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (M.I.V.); (F.L.); (A.V.); (M.P.); (A.M.); (E.D.)
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80100 Naples, Italy; (G.E.); (F.S.)
- CEINGE-Advanced Biotechnologies Franco Salvatore, 80100 Naples, Italy;
| | | | | | - Paola Scibetta
- Eye Clinic, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (V.R.); (S.T.); (P.S.)
| | - Florinda Listì
- Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (M.I.V.); (F.L.); (A.V.); (M.P.); (A.M.); (E.D.)
| | - Caterina Gagliano
- Department of Medicine and Surgery, School of Medicine, Kore University of Enna, 94100 Enna, Italy;
| | - Lucia Scalia
- Eye Clinic, Catania University, Policlinico “Rodolico”-San Marco, 95100 Catania, Italy; (L.S.); (T.A.)
| | | | - Antonio Marino
- Department of Ophthalmology, Garibaldi Hospital, 95100 Catania, Italy;
| | - Marco Piergentili
- Department of Ophthalmology, Careggi Teaching Hospital, 50100 Florence, Italy;
| | - Emanuele Malvone
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80100 Naples, Italy; (E.M.); (C.C.)
| | - Tiziana Fioretti
- CEINGE-Advanced Biotechnologies Franco Salvatore, 80100 Naples, Italy;
| | - Angela Vitrano
- Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (M.I.V.); (F.L.); (A.V.); (M.P.); (A.M.); (E.D.)
| | - Maria Piccione
- Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (M.I.V.); (F.L.); (A.V.); (M.P.); (A.M.); (E.D.)
| | - Teresio Avitabile
- Eye Clinic, Catania University, Policlinico “Rodolico”-San Marco, 95100 Catania, Italy; (L.S.); (T.A.)
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80100 Naples, Italy; (G.E.); (F.S.)
- CEINGE-Advanced Biotechnologies Franco Salvatore, 80100 Naples, Italy;
| | | | - Ciro Costagliola
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80100 Naples, Italy; (E.M.); (C.C.)
| | | | - Aurelio Maggio
- Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (M.I.V.); (F.L.); (A.V.); (M.P.); (A.M.); (E.D.)
| | - Elena D’Alcamo
- Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (M.I.V.); (F.L.); (A.V.); (M.P.); (A.M.); (E.D.)
| |
Collapse
|
13
|
Birtel J, Caswell R, De Silva SR, Herrmann P, Rehman S, Lotery AJ, Mahroo OA, Michaelides M, Webster AR, MacLaren RE, Charbel Issa P. IMPG2-Related Maculopathy. Am J Ophthalmol 2024; 258:32-42. [PMID: 37806544 DOI: 10.1016/j.ajo.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/01/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE To investigate the phenotype, variability, and penetrance of IMPG2-related maculopathy. DESIGN Retrospective observational case series. METHODS Clinical evaluation, multimodal retinal imaging, genetic testing, and molecular modeling. RESULTS A total of 25 individuals with a mono-allelic IMPG2 variant were included, 5 of whom were relatives of patients with IMPG2-associated retinitis pigmentosa. A distinct maculopathy was present in 17 individuals (median age, 52 years; range, 20-72 years), and included foveal elevation with or without subretinal vitelliform material or focal atrophy of the retinal pigment epithelium. Best-corrected visual acuity (BCVA) was ≥20/50 in the better eye (n = 15), and 5 patients were asymptomatic. Longitudinal observation (n = 8, up to 19 years) demonstrated stable maculopathy (n = 3), partial/complete resorption (n = 4) or increase (n = 1) of the subretinal material, with overall stable vision (n = 6). No manifest maculopathy was observed in 8 individuals (median age, 58 years; range, 43-83 years; BCVA ≥20/25), all were identified through segregation analysis. All 8 individuals were asymptomatic, with minimal foveal changes observed on optical coherence tomography in 3 cases. A total of 18 different variants were detected, 11 of them truncating. Molecular modeling of 5 missense variants [c.727G>C, c.1124C>A, c.2816T>A, c.3047T>C, and c.3193G>A] supported the hypothesis that these have a loss-of-function effect. CONCLUSIONS Mono-allelic IMPG2 variants may result in haploinsufficiency manifesting as a maculopathy with variable penetrance and expressivity. Family members of patients with IMPG2-related retinitis pigmentosa may present with vitelliform lesions. The maculopathy often remains limited to the fovea and is usually associated with moderate visual impairment.
Collapse
Affiliation(s)
- Johannes Birtel
- From the Oxford Eye Hospital (J.B., S.R.D.S., S.R., R.E.M., P.C.I.), Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology (J.B., S.R.D.S., S.R., R.E.M., P.C.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Ophthalmology (J.B.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Ophthalmology (J.B., P.H.), University of Bonn, Bonn, Germany
| | - Richard Caswell
- Exeter Genomics Laboratory (R.C.), Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Samantha R De Silva
- From the Oxford Eye Hospital (J.B., S.R.D.S., S.R., R.E.M., P.C.I.), Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology (J.B., S.R.D.S., S.R., R.E.M., P.C.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (S.R.D.S., O.A.M., M.M., A.R.W.), London, United Kingdom; UCL Institute of Ophthalmology (S.R.D.S., O.A.M., M.M., A.R.W.), University College London, London, United Kingdom
| | - Philipp Herrmann
- Department of Ophthalmology (J.B., P.H.), University of Bonn, Bonn, Germany
| | - Salwah Rehman
- From the Oxford Eye Hospital (J.B., S.R.D.S., S.R., R.E.M., P.C.I.), Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology (J.B., S.R.D.S., S.R., R.E.M., P.C.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Andrew J Lotery
- Clinical Neurosciences (A.J.L.), Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Southampton Eye Unit (A.J.L.), University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Omar A Mahroo
- Moorfields Eye Hospital NHS Foundation Trust (S.R.D.S., O.A.M., M.M., A.R.W.), London, United Kingdom; UCL Institute of Ophthalmology (S.R.D.S., O.A.M., M.M., A.R.W.), University College London, London, United Kingdom
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust (S.R.D.S., O.A.M., M.M., A.R.W.), London, United Kingdom; UCL Institute of Ophthalmology (S.R.D.S., O.A.M., M.M., A.R.W.), University College London, London, United Kingdom
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Foundation Trust (S.R.D.S., O.A.M., M.M., A.R.W.), London, United Kingdom; UCL Institute of Ophthalmology (S.R.D.S., O.A.M., M.M., A.R.W.), University College London, London, United Kingdom
| | - Robert E MacLaren
- From the Oxford Eye Hospital (J.B., S.R.D.S., S.R., R.E.M., P.C.I.), Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology (J.B., S.R.D.S., S.R., R.E.M., P.C.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Charbel Issa
- From the Oxford Eye Hospital (J.B., S.R.D.S., S.R., R.E.M., P.C.I.), Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology (J.B., S.R.D.S., S.R., R.E.M., P.C.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
14
|
Plaisancié J, Martinovic J, Chesneau B, Whalen S, Rodriguez D, Audebert-Bellanger S, Marzin P, Grotto S, Perthus I, Holt RJ, Bax DA, Ragge N, Chassaing N. Clinical, genetic and biochemical signatures of RBP4-related ocular malformations. J Med Genet 2023; 61:84-92. [PMID: 37586836 DOI: 10.1136/jmg-2023-109331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/16/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The retinoic acid (RA) pathway plays a crucial role in both eye morphogenesis and the visual cycle. Individuals with monoallelic and biallelic pathogenic variants in retinol-binding protein 4 (RBP4), encoding a serum retinol-specific transporter, display variable ocular phenotypes. Although few families have been reported worldwide, recessive inherited variants appear to be associated with retinal degeneration, while individuals with dominantly inherited variants manifest ocular development anomalies, mainly microphthalmia, anophthalmia and coloboma (MAC). METHODS We report here seven new families (13 patients) with isolated and syndromic MAC harbouring heterozygous RBP4 variants, of whom we performed biochemical analyses. RESULTS For the first time, malformations that overlap the clinical spectrum of vitamin A deficiency are reported, providing a link with other RA disorders. Our data support two distinct phenotypes, depending on the nature and mode of inheritance of the variants: dominantly inherited, almost exclusively missense, associated with ocular malformations, in contrast to recessive, mainly truncating, associated with retinal degeneration. Moreover, we also confirm the skewed inheritance and impact of maternal RBP4 genotypes on phenotypical expression in dominant forms, suggesting that maternal RBP4 genetic status and content of diet during pregnancy may modify MAC occurrence and severity. Furthermore, we demonstrate that retinol-binding protein blood dosage in patients could provide a biological signature crucial for classifying RBP4 variants. Finally, we propose a novel hypothesis to explain the mechanisms underlying the observed genotype-phenotype correlations in RBP4 mutational spectrum. CONCLUSION Dominant missense variants in RBP4 are associated with MAC of incomplete penetrance with maternal inheritance through a likely dominant-negative mechanism.
Collapse
Affiliation(s)
- Julie Plaisancié
- Laboratoire National de Référence (LBMR), Génétique des anomalies malformatives de l'œil, CHU Toulouse, Toulouse, France
- Unité ToNIC Inserm 1214, CHU Toulouse, Toulouse, France
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Jelena Martinovic
- Département de Génétique, Unité de Fœtopathologie, Hopital Necker-Enfants Malades, Paris, France
| | - Bertrand Chesneau
- Laboratoire National de Référence (LBMR), Génétique des anomalies malformatives de l'œil, CHU Toulouse, Toulouse, France
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Sandra Whalen
- Genetique Medicale, Hopital Armand-Trousseau, Paris, France
| | - Diana Rodriguez
- Département de Génétique, Hôpitaux Universitaires Paris Ile-de-France Ouest, Paris, France
| | | | - Pauline Marzin
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, Necker-Enfants Malades Hospitals, Paris, France
| | - Sarah Grotto
- Maternité Port-Royal, FHU PREMA, Hôpital Cochin, Paris, France
| | - Isabelle Perthus
- Centre d'Etude des Malformations Congénitales en Auvergne, Génétique Médicale, CHU Estaing, Clermont-Ferrand, France
| | - Richard James Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Dorine A Bax
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Nicola Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Nicolas Chassaing
- Laboratoire National de Référence (LBMR), Génétique des anomalies malformatives de l'œil, CHU Toulouse, Toulouse, France
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| |
Collapse
|
15
|
Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68:102967. [PMID: 38006824 PMCID: PMC10701459 DOI: 10.1016/j.redox.2023.102967] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Maria Voigt
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Bachmann
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tarek Safi
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
16
|
Bonetti G, Cozza W, Bernini A, Kaftalli J, Mareso C, Cristofoli F, Medori MC, Colombo L, Martella S, Staurenghi G, Salvetti AP, Falsini B, Placidi G, Attanasio M, Pertile G, Bengala M, Bosello F, Petracca A, D’Esposito F, Toschi B, Lanzetta P, Ricci F, Viola F, Marceddu G, Bertelli M. Towards a Long-Read Sequencing Approach for the Molecular Diagnosis of RPGR ORF15 Genetic Variants. Int J Mol Sci 2023; 24:16881. [PMID: 38069202 PMCID: PMC10706286 DOI: 10.3390/ijms242316881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Sequencing of the low-complexity ORF15 exon of RPGR, a gene correlated with retinitis pigmentosa and cone dystrophy, is difficult to achieve with NGS and Sanger sequencing. False results could lead to the inaccurate annotation of genetic variants in dbSNP and ClinVar databases, tools on which HGMD and Ensembl rely, finally resulting in incorrect genetic variants interpretation. This paper aims to propose PacBio sequencing as a feasible method to correctly detect genetic variants in low-complexity regions, such as the ORF15 exon of RPGR, and interpret their pathogenicity by structural studies. Biological samples from 75 patients affected by retinitis pigmentosa or cone dystrophy were analyzed with NGS and repeated with PacBio. The results showed that NGS has a low coverage of the ORF15 region, while PacBio was able to sequence the region of interest and detect eight genetic variants, of which four are likely pathogenic. Furthermore, molecular modeling and dynamics of the RPGR Glu-Gly repeats binding to TTLL5 allowed for the structural evaluation of the variants, providing a way to predict their pathogenicity. Therefore, we propose PacBio sequencing as a standard procedure in diagnostic research for sequencing low-complexity regions such as RPGRORF15, aiding in the correct annotation of genetic variants in online databases.
Collapse
Affiliation(s)
- Gabriele Bonetti
- MAGI’s LAB, 38068 Rovereto, Italy; (M.C.M.); (M.B.)
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - William Cozza
- MAGI Euregio, 39100 Bolzano, Italy; (W.C.); (J.K.); (C.M.); (F.D.); (G.M.)
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Jurgen Kaftalli
- MAGI Euregio, 39100 Bolzano, Italy; (W.C.); (J.K.); (C.M.); (F.D.); (G.M.)
| | - Chiara Mareso
- MAGI Euregio, 39100 Bolzano, Italy; (W.C.); (J.K.); (C.M.); (F.D.); (G.M.)
| | | | | | - Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (L.C.); (S.M.)
| | - Salvatore Martella
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (L.C.); (S.M.)
| | - Giovanni Staurenghi
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy; (G.S.); (A.P.S.)
| | - Anna Paola Salvetti
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy; (G.S.); (A.P.S.)
| | - Benedetto Falsini
- UOC Oculistica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Gemelli 8, 00168 Rome, Italy (G.P.)
- Istituto di Oftalmologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giorgio Placidi
- UOC Oculistica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Gemelli 8, 00168 Rome, Italy (G.P.)
| | - Marcella Attanasio
- Ospedale Sacrocuore Don Calabria, Viale Luigi Rizzardi, 4, 37024 Negrar di Valpolicella, Italy; (M.A.); (G.P.)
| | - Grazia Pertile
- Ospedale Sacrocuore Don Calabria, Viale Luigi Rizzardi, 4, 37024 Negrar di Valpolicella, Italy; (M.A.); (G.P.)
| | - Mario Bengala
- Medical Genetics Unit, Department of Oncohematology, Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Francesca Bosello
- Department of Surgical Sciences, Dentistry, Paediatrics and Gynaecology, Section of Ophthalmology, University of Verona, 37134 Verona, Italy;
| | - Antonio Petracca
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Fabiana D’Esposito
- MAGI Euregio, 39100 Bolzano, Italy; (W.C.); (J.K.); (C.M.); (F.D.); (G.M.)
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80138 Naples, Italy
| | - Benedetta Toschi
- Section of Medical Genetics, Department of Medical and Oncological Area, University Hospital of Pisa, 56126 Pisa, Italy;
| | - Paolo Lanzetta
- Department of Medicine-Ophthalmology, University of Udine, 33100 Udine, Italy;
- Istituto Europeo di Microchirurgia Oculare (IEMO), 33100 Udine, Italy
| | - Federico Ricci
- Department of Experimental Medicine, Tor Vergata University of Rome, Viale Oxford, 00133 Rome, Italy;
| | - Francesco Viola
- Department of Ophthalmology, Fondazione IRCCS Cà Granda, Clinica Regina Elena, 20122 Milan, Italy;
| | - Giuseppe Marceddu
- MAGI Euregio, 39100 Bolzano, Italy; (W.C.); (J.K.); (C.M.); (F.D.); (G.M.)
| | - Matteo Bertelli
- MAGI’s LAB, 38068 Rovereto, Italy; (M.C.M.); (M.B.)
- MAGI Euregio, 39100 Bolzano, Italy; (W.C.); (J.K.); (C.M.); (F.D.); (G.M.)
- MAGISNAT, Atlanta Tech Park, 107 Technology Parkway, Peachtree Corners, GA 30092, USA
| |
Collapse
|
17
|
Stepanova A, Ogorodova N, Kadyshev V, Shchagina O, Kutsev S, Polyakov A. A Molecular Genetic Analysis of RPE65-Associated Forms of Inherited Retinal Degenerations in the Russian Federation. Genes (Basel) 2023; 14:2056. [PMID: 38002999 PMCID: PMC10671290 DOI: 10.3390/genes14112056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogenic variants in the RPE65 gene cause the only known form of inherited retinal degenerations (IRDs) that are prone to gene therapy. The current study is aimed at the evaluation of the prevalence of RPE65-associated retinopathy in the Russian Federation, the characterization of known variants in the RPE65 gene, and the establishment of the specificities of the mutation spectrum in Russian patients. METHODS The analysis was carried out on blood samples obtained from 1053 non-related IRDs patients. The analysis, which consisted of 211 genes, was carried out based on the method of massive parallel sequencing (MPS) for all probands. Variant validation, as well as biallelic status verification, were carried out using direct automated Sanger sequencing. The number of copies of RPE65 exons 1-14 was analyzed with quantitative MLPA using an MRC-Holland SALSA MLPA probemix. RESULTS Out of 1053 non-related patients, a molecular genetic diagnosis of IRDs has been confirmed in 474 cases, including 25 (5.3%) patients with RPE65-associated retinopathy. We detected 26 variants in the RPE65 gene, nine of which have not been previously described in the literature. The most common mutations in the Russian population were c.304G>T/p.(Glu102*), c.370C>T/p.(Arg124*), and c.272G>A/p.(Arg91Gln), which comprised 41.8% of all affected chromosomes. CONCLUSIONS The current study shows that pathogenic variants in the RPE65 gene contribute significantly to the pathogenesis of IRDs and comprise 5.3% of all patients with a confirmed molecular genetic diagnosis. This study allowed for the formation of a cohort for target therapy of the disorder; such therapy has already been carried out for some patients.
Collapse
Affiliation(s)
- Anna Stepanova
- Research Centre for Medical Genetics, Moscow 115478, Russia
| | | | | | | | | | | |
Collapse
|
18
|
Guimaraes TACD, Arram E, Shakarchi AF, Georgiou M, Michaelides M. Inherited causes of combined vision and hearing loss: clinical features and molecular genetics. Br J Ophthalmol 2023; 107:1403-1414. [PMID: 36162969 DOI: 10.1136/bjo-2022-321790] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
Combined vision and hearing loss, also known as dual sensory impairment, can occur in several genetic conditions, including ciliopathies such as Usher and Bardet-Biedl syndrome, mitochondrial DNA disorders and systemic diseases, such as CHARGE, Stickler, Waardenburg, Alport and Alstrom syndrome. The retinal phenotype may point to the diagnosis of such disorders. Herein, we aim to provide a comprehensive review of the molecular genetics and clinical features of the most common non-chromosomal inherited disorders to cause dual sensory impairment.
Collapse
Affiliation(s)
| | - Elizabeth Arram
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Ahmed F Shakarchi
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michalis Georgiou
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
19
|
Sakti DH, Cornish EE, Nash BM, Jamieson RV, Grigg JR. IMPDH1-associated autosomal dominant retinitis pigmentosa: natural history of novel variant Lys314Gln and a comprehensive literature search. Ophthalmic Genet 2023; 44:437-455. [PMID: 37259572 DOI: 10.1080/13816810.2023.2215310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Inosine monophosphate dehydrogenase (IMPDH) is a key regulatory enzyme in the de novo synthesis of the purine base guanine. Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) are causative for RP10 autosomal dominant retinitis pigmentosa (adRP). This study reports a novel variant in a family with IMPDH1-associated retinopathy. We also performed a comprehensive review of all reported IMPDH1 disease causing variants with their associated phenotype. MATERIALS AND METHODS Multimodal imaging and functional studies documented the phenotype including best-corrected visual acuity (BCVA), fundus photograph, fundus autofluorescence (FAF), full field electroretinogram (ffERG), optical coherence tomography (OCT) and visual field (VF) data were collected. A literature search was performed in the PubMed and LOVD repositories. RESULTS We report 3 cases from a 2-generation family with a novel heterozygous likely pathogenic variant p. (Lys314Gln) (exon 10). The ophthalmic phenotype showed diffuse outer retinal atrophy with mild pigmentary changes with sparse pigmentary changes. FAF showed early macular involvement with macular hyperautofluorescence (hyperAF) surrounded by hypoAF. Foveal ellipsoid zone island can be found in the youngest patient but not in the older ones. The literature review identified a further 56 heterozygous, 1 compound heterozygous, and 2 homozygous variant. The heterozygous group included 43 missense, 3 in-frame, 1 nonsense, 2 frameshift, 1 synonymous, and 6 intronic variants. Exon 10 was noted as a hotspot harboring 18 variants. CONCLUSIONS We report a novel IMPDH1 variant. IMPDH1-associated retinopathy presents most frequently in the first decade of life with early macular involvement.
Collapse
Affiliation(s)
- Dhimas H Sakti
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Elisa E Cornish
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Benjamin M Nash
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Genome Diagnostics, Western Sydney Genetics Program, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Robyn V Jamieson
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - John R Grigg
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Kong L, Chu G, Ma W, Liang J, Liu D, Liu Q, Wei X, Jia S, Gu H, He Y, Luo W, Cao S, Zhou X, He R, Yuan Z. Mutations in VWA8 cause autosomal-dominant retinitis pigmentosa via aberrant mitophagy activation. J Med Genet 2023; 60:939-950. [PMID: 37012052 DOI: 10.1136/jmg-2022-108888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Although retinitis pigmentosa (RP) is the most common type of hereditary retinal dystrophy, approximately 25%-45% of cases remain without a molecular diagnosis. von Willebrand factor A domain containing 8 (VWA8) encodes a mitochondrial matrix-targeted protein; its molecular function and pathogenic mechanism in RP remain unexplained. METHODS Family members of patients with RP underwent ophthalmic examinations, and peripheral blood samples were collected for exome sequencing, ophthalmic targeted sequencing panel and Sanger sequencing. The importance of VWA8 in retinal development was demonstrated by a zebrafish knockdown model and cellular and molecular analysis. RESULTS This study recruited a Chinese family of 24 individuals with autosomal-dominant RP and conducted detailed ophthalmic examinations. Exome sequencing analysis of six patients revealed heterozygous variants in VWA8, namely, the missense variant c.3070G>A (p.Gly1024Arg) and nonsense c.4558C>T (p.Arg1520Ter). Furthermore, VWA8 expression was significantly decreased both at the mRNA and protein levels. The phenotypes of zebrafish with VWA8 knockdown are similar to those of clinical individuals harbouring VWA8 variants. Moreover, VWA8 defects led to severe mitochondrial damage, resulting in excessive mitophagy and the activation of apoptosis. CONCLUSIONS VWA8 plays a significant role in retinal development and visual function. This finding may provide new insights into RP pathogenesis and potential genes for molecular diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Linghui Kong
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guoming Chu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiajian Liang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiushi Liu
- Department of Ophthalmology, Fourth People's Hospital of Shenyang, Shenyang, Liaoning, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiwen He
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Songying Cao
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | | | - Rong He
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
21
|
Schlottmann PG, Luna JD, Labat N, Yadarola MB, Bainttein S, Esposito E, Ibañez A, Barbaro EI, Álvarez Mendiara A, Picotti CP, Chirino Misisian A, Andreussi L, Gras J, Capalbo L, Visotto M, Dipierri JE, Alcoba E, Fernández Gabrielli L, Ávila S, Aucar ME, Martin DM, Ormaechea GJ, Inga ME, Francone AA, Charles M, Zompa T, Pérez PJ, Lotersztein V, Nuova PJ, Canonero IB, Mahroo OA, Michaelides M, Arno G, Daich Varela M. Nationwide genetic analysis of more than 600 families with inherited eye diseases in Argentina. NPJ Genom Med 2023; 8:8. [PMID: 37217489 DOI: 10.1038/s41525-023-00352-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
This study corresponds to the first large-scale genetic analysis of inherited eye diseases (IED) in Argentina and describes the comprehensive genetic profile of a large cohort of patients. Medical records of 22 ophthalmology and genetics services throughout 13 Argentinian provinces were analyzed retrospectively. Patients with a clinical diagnosis of an ophthalmic genetic disease and a history of genetic testing were included. Medical, ophthalmological and family history was collected. A total of 773 patients from 637 families were included, with 98% having inherited retinal disease. The most common phenotype was retinitis pigmentosa (RP, 62%). Causative variants were detected in 379 (59%) patients. USH2A, RPGR, and ABCA4 were the most common disease-associated genes. USH2A was the most frequent gene associated with RP, RDH12 early-onset severe retinal dystrophy, ABCA4 Stargardt disease, PROM1 cone-rod dystrophy, and BEST1 macular dystrophy. The most frequent variants were RPGR c.1345 C > T, p.(Arg449*) and USH2A c.15089 C > A, p.(Ser5030*). The study revealed 156/448 (35%) previously unreported pathogenic/likely pathogenic variants and 8 possible founder mutations. We present the genetic landscape of IED in Argentina and the largest cohort in South America. This data will serve as a reference for future genetic studies, aid diagnosis, inform counseling, and assist in addressing the largely unmet need for clinical trials to be conducted in the region.
Collapse
Affiliation(s)
| | - José D Luna
- Centro Privado de Ojos Romagosa SA, Córdoba, Argentina
| | - Natalia Labat
- Centro Privado de Ojos Romagosa SA, Córdoba, Argentina
| | | | | | - Evangelina Esposito
- University Clinic Reina Fabiola, Córdoba, Córdoba, Argentina
- Catholic University of Cordoba, Cordoba, Argentina
| | - Agustina Ibañez
- University Clinic Reina Fabiola, Córdoba, Córdoba, Argentina
- Catholic University of Cordoba, Cordoba, Argentina
| | | | | | | | | | | | | | | | - Mauro Visotto
- Instituto Oftalmológico Trelew, Trelew, Chubut, Argentina
| | | | - Emilio Alcoba
- Hospital Materno Infantil Dr Héctor Quintana, Jujuy, Argentina
| | | | - Silvia Ávila
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Río Negro, Argentina
| | | | | | | | - M Eugenia Inga
- Organización Medica de Investigación, Buenos Aires, Argentina
| | | | | | - Tamara Zompa
- Charles Centro Oftalmológico, Buenos Aires, Argentina
| | | | | | - Pedro J Nuova
- Ocularyb Oftalmoclinica, Yerba Buena, Tucumán, Argentina
| | | | - Omar A Mahroo
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Michel Michaelides
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Gavin Arno
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Malena Daich Varela
- Moorfields Eye Hospital, London, UK.
- UCL Institute of Ophthalmology, University College London, London, UK.
| |
Collapse
|
22
|
Lee BJH, Tham YC, Tan TE, Bylstra Y, Lim WK, Jain K, Chan CM, Mathur R, Cheung CMG, Fenner BJ. Characterizing the genotypic spectrum of retinitis pigmentosa in East Asian populations: a systematic review. Ophthalmic Genet 2023; 44:109-118. [PMID: 36856324 DOI: 10.1080/13816810.2023.2182329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Ongoing trials for retinitis pigmentosa (RP) are genotype-specific, with most trials conducted on European cohorts. Due to genetic differences across diverse ancestries and populations, these therapies may not be efficacious in East Asians. MATERIALS AND METHODS A literature search was conducted from 1966 to September 2022 for cohort studies on East Asian populations reporting on non-syndromic RP genotypes and variants. Population-weighted prevalence was used to determine the genotypes and individual variants across the entire cohort. The carrier prevalence of common variants was compared against those in Europe. RESULTS A total of 12 articles describing 2,932 clinically diagnosed East Asian RP probands were included. We identified 876 variants across 54 genes. The most common genotypes included USH2A, EYS, RPGR, ABCA4, PRPF31, RHO, RP1, RP2, PDE6B and SNRNP200, with USH2A as the most common (17.1%). Overall, 60.5% of probands with clinically relevant variants were found to have one of the genotypes above, with 543/876 (62.0%) of the variants occurring in these genes. The most frequently reported variant was USH2A missense variant c.2802T>G/p.C934W (4.9%). Carrier prevalence of these variants was significantly different (p < 0.0001) than in Europe. CONCLUSIONS USH2A was the most commonly affected RP gene in this East Asian cohort, although sub-population analysis revealed distinct genotype prevalence patterns. While the genotypes are similar between East Asia and European cohorts, variants are specific to East Asia. The identification of several prevalent variants in USH2A and EYS provides an opportunity for the development of therapeutics that are relevant for East Asia patients.
Collapse
Affiliation(s)
- Brian Juin Hsien Lee
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Yih-Chung Tham
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Innovation & Precision Eye Health, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Tien-En Tan
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Yasmin Bylstra
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore Health Services, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore Health Services, Singapore
| | - Kanika Jain
- POLARIS, Genome Institute of Singapore, Singapore
| | - Choi Mun Chan
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Ranjana Mathur
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Chui Ming Gemmy Cheung
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Beau J Fenner
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| |
Collapse
|
23
|
Han J, Joo K, Kim US, Woo SJ, Lee EK, Lee JY, Park TK, Kim SJ, Byeon SH. Voretigene Neparvovec for the Treatment of RPE65-associated Retinal Dystrophy: Consensus and Recommendations from the Korea RPE65-IRD Consensus Paper Committee. KOREAN JOURNAL OF OPHTHALMOLOGY 2023; 37:166-186. [PMID: 36950921 PMCID: PMC10151174 DOI: 10.3341/kjo.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
Mutations in the RPE65 gene, associated with Leber congenital amaurosis, early-onset severe retinal dystrophy, and retinitis pigmentosa, gained growing attention since gene therapy for patients with RPE65-associated retinal dystrophy is available in clinical practice. RPE65 gene accounts for a very small proportion of patients with inherited retinal degeneration, especially Asian patients. Because RPE65-associated retinal dystrophy shares common clinical characteristics, such as early-onset severe nyctalopia, nystagmus, low vision, and progressive visual field constriction, with retinitis pigmentosa by other genetic mutations, appropriate genetic testing is essential to make a correct diagnosis. Also, fundus abnormalities can be minimal in early childhood, and the phenotype is highly variable depending on the type of mutations in RPE65-associated retinal dystrophy, which makes a diagnostic difficulty. The aim of this paper is to review the epidemiology of RPE65-associated retinal dystrophy, mutation spectrum, genetic diagnosis, clinical characteristics, and voretigene neparvovec, a gene therapy product for the treatment of RPE65-related retinal dystrophy.
Collapse
Affiliation(s)
- Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Ungsoo Samuel Kim
- Department of Ophthalmology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong,
Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon,
Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Suk Ho Byeon
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | | |
Collapse
|
24
|
Jung S, Park YC, Lee D, Kim S, Kim SM, Kim Y, Lee D, Hyun J, Koh I, Lee JY. Exome sequencing identified five novel USH2A variants in Korean patients with retinitis pigmentosa. Ophthalmic Genet 2023; 44:163-170. [PMID: 36314366 DOI: 10.1080/13816810.2022.2138456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Retinitis pigmentosa (RP) is an inherited disorder that causes progressive loss of vision. This study aimed to describe the possible causative variants of the USH2A gene in Korean RP families and their associated phenotypes. MATERIALS AND METHODS We recruited 94 RP families (220 subjects, including 94 probands and 126 family members) in a Korean cohort, and analyzed USH2A gene variants through whole-exome sequencing. The pathogenicity of the variants was classified according to American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines. RESULTS We found 14 USH2A disease-causing variants, including 5 novel variants. Disease causing variants were identified in 10 probands with RP, accounting for 10.6% (10/94) of the Korean RPs in the cohort. To visually represent the structural changes induced by novel variants, we modeled the three-dimensional structures of the wild-type and mutant proteins. CONCLUSIONS This study expands the spectrum of USH2A variants and provides information for future therapeutic strategies for RP.
Collapse
Affiliation(s)
- SeungHee Jung
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| | - Young Chan Park
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
- Oneomics Co, Ltd, Gyeonggi-do, Korea
| | - DongHee Lee
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
- Oneomics Co, Ltd, Gyeonggi-do, Korea
| | - SiYeon Kim
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| | | | | | | | | | - InSong Koh
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| | | |
Collapse
|
25
|
Peter VG, Kaminska K, Santos C, Quinodoz M, Cancellieri F, Cisarova K, Pescini Gobert R, Rodrigues R, Custódio S, Paris LP, Sousa AB, Coutinho Santos L, Rivolta C. The first genetic landscape of inherited retinal dystrophies in Portuguese patients identifies recurrent homozygous mutations as a frequent cause of pathogenesis. PNAS NEXUS 2023; 2:pgad043. [PMID: 36909829 PMCID: PMC10003751 DOI: 10.1093/pnasnexus/pgad043] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Inherited retinal diseases (IRDs) are a group of ocular conditions characterized by an elevated genetic and clinical heterogeneity. They are transmitted almost invariantly as monogenic traits. However, with more than 280 disease genes identified so far, association of clinical phenotypes with genotypes can be very challenging, and molecular diagnosis is essential for genetic counseling and correct management of the disease. In addition, the prevalence and the assortment of IRD mutations are often population-specific. In this work, we examined 230 families from Portugal, with individuals suffering from a variety of IRD diagnostic classes (270 subjects in total). Overall, we identified 157 unique mutations (34 previously unreported) in 57 distinct genes, with a diagnostic rate of 76%. The IRD mutational landscape was, to some extent, different from those reported in other European populations, including Spanish cohorts. For instance, the EYS gene appeared to be the most frequently mutated, with a prevalence of 10% among all IRD cases. This was, in part, due to the presence of a recurrent and seemingly founder mutation involving the deletion of exons 13 and 14 of this gene. Moreover, our analysis highlighted that as many as 51% of our cases had mutations in a homozygous state. To our knowledge, this is the first study assessing a cross-sectional genotype-phenotype landscape of IRDs in Portugal. Our data reveal a rather unique distribution of mutations, possibly shaped by a small number of rare ancestral events that have now become prevalent alleles in patients.
Collapse
Affiliation(s)
- Virginie G Peter
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel 4031, Switzerland.,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland.,Department of Ophthalmology, Inselspital, Bern University Hospital, Bern 3010, Switzerland
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel 4031, Switzerland.,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland
| | - Cristina Santos
- Department of Ophthalmology, Instituto de Oftalmologia Dr Gama Pinto (IOGP), Lisbon 1169-019, Portugal.,iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon 1169-056, Portugal
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel 4031, Switzerland.,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Francesca Cancellieri
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel 4031, Switzerland.,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland
| | - Katarina Cisarova
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Raquel Rodrigues
- Department of Medical Genetics, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon 1649-035, Portugal
| | - Sónia Custódio
- Department of Medical Genetics, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon 1649-035, Portugal
| | - Liliana P Paris
- Department of Ophthalmology, Instituto de Oftalmologia Dr Gama Pinto (IOGP), Lisbon 1169-019, Portugal
| | - Ana Berta Sousa
- Department of Medical Genetics, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon 1649-035, Portugal.,Laboratory of Basic Immunology, Faculty of Medicine, University of Lisbon, Lisbon 1649-028, Portugal
| | - Luisa Coutinho Santos
- Department of Ophthalmology, Instituto de Oftalmologia Dr Gama Pinto (IOGP), Lisbon 1169-019, Portugal
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel 4031, Switzerland.,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
26
|
Poli FE, Yusuf IH, Clouston P, Shanks M, Whitfield J, Charbel Issa P, MacLaren RE. MERTK missense variants in three patients with retinitis pigmentosa. Ophthalmic Genet 2023; 44:74-82. [PMID: 36036427 PMCID: PMC9615558 DOI: 10.1080/13816810.2022.2113541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND MERTK (MER proto-oncogene, tyrosine kinase) is a transmembrane protein essential in regulating photoreceptor outer segment phagocytosis. Biallelic mutations in MERTK cause retinal degeneration. Here we present the retinal phenotype of three patients with missense variants in MERTK. MATERIALS AND METHODS All patients underwent a full clinical examination, fundus photography, short-wavelength fundus autofluorescence and optical coherence tomography imaging. Two patients also underwent Goldmann visual field testing and electroretinography was undertaken for the third patient. Molecular genetic testing was undertaken using next generation or whole-exome sequencing with all variants confirmed by Sanger sequencing. RESULTS The first patient was a 29-year-old female heterozygous for a missense variant (c.1133C>T, p.Thr378 Met) and a nonsense variant (c.1744_1751delinsT, p.Ile582Ter) in MERTK. The second patient was a 26-year-old male homozygous for a c.2163T>A, p.His721Gln variant in MERTK. The third patient was an 11-year-old female heterozygous for a deletion of exons 5-19 and a missense variant (c.1866 G>C, p.Lys622Asn) in MERTK. Reduced night vision was the initial symptom in all patients. Fundoscopy revealed typical signs of retinitis pigmentosa (RP) with early-onset macular atrophy. All three MERTK missense variants affect highly conserved residues within functional domains, have low population frequencies and are predicted to be pathogenic in silico. CONCLUSIONS We report three missense variants in MERTK and present the associated phenotypic data, which are supportive of non-syndromic RP. MERTK is a promising candidate for viral-mediated gene replacement therapy. Moreover, one variant represents a single nucleotide transition, which is theoretically targetable with CRISPR-Cas9 base-editing.
Collapse
Affiliation(s)
- Federica E. Poli
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Imran H. Yusuf
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Penny Clouston
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Morag Shanks
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jennifer Whitfield
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Peter Charbel Issa
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
27
|
Bodenbender JP, Marino V, Bethge L, Stingl K, Haack TB, Biskup S, Kohl S, Kühlewein L, Dell’Orco D, Weisschuh N. Biallelic Variants in TULP1 Are Associated with Heterogeneous Phenotypes of Retinal Dystrophy. Int J Mol Sci 2023; 24:ijms24032709. [PMID: 36769033 PMCID: PMC9916573 DOI: 10.3390/ijms24032709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Biallelic pathogenic variants in TULP1 are mostly associated with severe rod-driven inherited retinal degeneration. In this study, we analyzed clinical heterogeneity in 17 patients and characterized the underlying biallelic variants in TULP1. All patients underwent thorough ophthalmological examinations. Minigene assays and structural analyses were performed to assess the consequences of splice variants and missense variants. Three patients were diagnosed with Leber congenital amaurosis, nine with early onset retinitis pigmentosa, two with retinitis pigmentosa with an onset in adulthood, one with cone dystrophy, and two with cone-rod dystrophy. Seventeen different alleles were identified, namely eight missense variants, six nonsense variants, one in-frame deletion variant, and two splice site variants. For the latter two, minigene assays revealed aberrant transcripts containing frameshifts and premature termination codons. Structural analysis and molecular modeling suggested different degrees of structural destabilization for the missense variants. In conclusion, we report the largest cohort of patients with TULP1-associated IRD published to date. Most of the patients exhibited rod-driven disease, yet a fraction of the patients exhibited cone-driven disease. Our data support the hypothesis that TULP1 variants do not fold properly and thus trigger unfolded protein response, resulting in photoreceptor death.
Collapse
Affiliation(s)
- Jan-Philipp Bodenbender
- Department for Ophthalmology, University Eye Hospital, University of Tübingen, 72076 Tübingen, Germany
- Correspondence: (J.-P.B.); (N.W.)
| | - Valerio Marino
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Leon Bethge
- Department for Ophthalmology, University Eye Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Katarina Stingl
- Department for Ophthalmology, University Eye Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Saskia Biskup
- Praxis für Humangenetik, 72076 Tübingen, Germany
- CeGaT GmbH, 72076 Tübingen, Germany
| | - Susanne Kohl
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Laura Kühlewein
- Department for Ophthalmology, University Eye Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Daniele Dell’Orco
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Nicole Weisschuh
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
- Correspondence: (J.-P.B.); (N.W.)
| |
Collapse
|
28
|
The Diagnostic Yield of Next Generation Sequencing in Inherited Retinal Diseases: A Systematic Review and Meta-analysis. Am J Ophthalmol 2022; 249:57-73. [PMID: 36592879 DOI: 10.1016/j.ajo.2022.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE Accurate genotyping of individuals with inherited retinal diseases (IRD) is essential for patient management and identifying suitable candidates for gene therapies. This study evaluated the diagnostic yield of next generation sequencing (NGS) in IRDs. DESIGN Systematic review and meta-analysis. METHODS This systematic review was prospectively registered (CRD42021293619). Ovid MEDLINE and Ovid Embase were searched on 6 June 2022. Clinical studies evaluating the diagnostic yield of NGS in individuals with IRDs were eligible for inclusion. Risk of bias assessment was performed. Studies were pooled using a random...effects inverse variance model. Sources of heterogeneity were explored using stratified analysis, meta-regression, and sensitivity analysis. RESULTS This study included 105 publications from 28 countries. Most studies (90 studies) used targeted gene panels. The diagnostic yield of NGS was 61.3% (95% confidence interval: 57.8-64.7%; 51 studies) in mixed IRD phenotypes, 58.2% (51.6-64.6%; 41 studies) in rod-cone dystrophies, 57.7% (46.8-68.3%; eight studies) in macular and cone/cone-rod dystrophies, and 47.6% (95% CI: 41.0-54.3%; four studies) in familial exudative vitreoretinopathy. For mixed IRD phenotypes, a higher diagnostic yield was achieved pooling studies published between 2018-2022 (64.2% [59.5-68.7%]), studies using exome sequencing (73.5% [58.9-86.1%]), and studies using the American College of Medical Genetics variant interpretation standards (65.6% [60.8-70.4%]). CONCLUSION The current diagnostic yield of NGS in IRDs is between 52-74%. The certainty of the evidence was judged as low or very low. A key limitation of the current evidence is the significant heterogeneity between studies. Adoption of standardized reporting guidelines could improve confidence in future meta-analyses.
Collapse
|
29
|
Lynn J, Raney A, Britton N, Ramoin J, Yang RW, Radojevic B, McClard CK, Kingsley R, Coussa RG, Bennett LD. Genetic Diagnosis for 64 Patients with Inherited Retinal Disease. Genes (Basel) 2022; 14:74. [PMID: 36672815 PMCID: PMC9859429 DOI: 10.3390/genes14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The overlapping genetic and clinical spectrum in inherited retinal degeneration (IRD) creates challenges for accurate diagnoses. The goal of this work was to determine the genetic diagnosis and clinical features for patients diagnosed with an IRD. After signing informed consent, peripheral blood or saliva was collected from 64 patients diagnosed with an IRD. Genetic testing was performed on each patient in a Clinical Laboratory Improvement Amendments of 1988 (CLIA) certified laboratory. Mutations were verified with Sanger sequencing and segregation analysis when possible. Visual acuity was measured with a traditional Snellen chart and converted to a logarithm of minimal angle of resolution (logMAR). Fundus images of dilated eyes were acquired with the Optos® camera (Dunfermline, UK). Horizontal line scans were obtained with spectral-domain optical coherence tomography (SDOCT; Spectralis, Heidelberg, Germany). Genetic testing combined with segregation analysis resolved molecular and clinical diagnoses for 75% of patients. Ten novel mutations were found and unique genotype phenotype associations were made for the genes RP2 and CEP83. Collective knowledge is thereby expanded of the genetic basis and phenotypic correlation in IRD.
Collapse
Affiliation(s)
- Jacob Lynn
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Austin Raney
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Nathaniel Britton
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Josh Ramoin
- College of Osteopathic Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ryan W. Yang
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bojana Radojevic
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| | - Cynthia K. McClard
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| | - Ronald Kingsley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| | - Razek Georges Coussa
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| | - Lea D. Bennett
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
30
|
Karali M, Testa F, Di Iorio V, Torella A, Zeuli R, Scarpato M, Romano F, Onore ME, Pizzo M, Melillo P, Brunetti-Pierri R, Passerini I, Pelo E, Cremers FPM, Esposito G, Nigro V, Simonelli F, Banfi S. Genetic epidemiology of inherited retinal diseases in a large patient cohort followed at a single center in Italy. Sci Rep 2022; 12:20815. [PMID: 36460718 PMCID: PMC9718770 DOI: 10.1038/s41598-022-24636-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Inherited retinal diseases (IRDs) are the leading cause of vision loss in the working-age population. We performed a retrospective epidemiological study to determine the genetic basis of IRDs in a large Italian cohort (n = 2790) followed at a single referral center. We provided, mainly by next generation sequencing, potentially conclusive molecular diagnosis for 2036 patients (from 1683 unrelated families). We identified a total of 1319 causative sequence variations in 132 genes, including 353 novel variants, and 866 possibly actionable genotypes for therapeutic approaches. ABCA4 was the most frequently mutated gene (n = 535; 26.3% of solved cases), followed by USH2A (n = 228; 11.2%) and RPGR (n = 102; 5.01%). The other 129 genes had a lower contribution to IRD pathogenesis (e.g. CHM 3.5%, RHO 3.5%; MYO7A 3.4%; CRB1 2.7%; RPE65 2%, RP1 1.8%; GUCY2D 1.7%). Seventy-eight genes were mutated in five patients or less. Mitochondrial DNA variants were responsible for 2.1% of cases. Our analysis confirms the complex genetic etiology of IRDs and reveals the high prevalence of ABCA4 and USH2A mutations. This study also uncovers genetic associations with a spectrum of clinical subgroups and highlights a valuable number of cases potentially eligible for clinical trials and, ultimately, for molecular therapies.
Collapse
Affiliation(s)
- Marianthi Karali
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy ,grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Francesco Testa
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Valentina Di Iorio
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Annalaura Torella
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy ,grid.410439.b0000 0004 1758 1171Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Roberta Zeuli
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Margherita Scarpato
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Francesca Romano
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Maria Elena Onore
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Mariateresa Pizzo
- grid.410439.b0000 0004 1758 1171Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Paolo Melillo
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Raffaella Brunetti-Pierri
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Ilaria Passerini
- grid.24704.350000 0004 1759 9494Department of Genetic Diagnosis, Careggi Teaching Hospital, Florence, Italy
| | - Elisabetta Pelo
- grid.24704.350000 0004 1759 9494Department of Genetic Diagnosis, Careggi Teaching Hospital, Florence, Italy
| | - Frans P. M. Cremers
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gabriella Esposito
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy ,CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Vincenzo Nigro
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy ,grid.410439.b0000 0004 1758 1171Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Francesca Simonelli
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Sandro Banfi
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy ,grid.410439.b0000 0004 1758 1171Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
31
|
Lin F, Xie M, Sheng X, Guo L, Jia J, Wang Y. Research trends in the field of retinitis pigmentosa from 2002 to 2021: a 20 years bibliometric analysis. Int Ophthalmol 2022; 43:1825-1833. [DOI: 10.1007/s10792-022-02581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
|
32
|
MEDORI MARIACHIARA, NAUREEN ZAKIRA, DHULI KRISTJANA, PLACIDI GIORGIO, FALSINI BENEDETTO, BERTELLI MATTEO. Dietary supplements in retinal diseases, glaucoma, and other ocular conditions. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E189-E199. [PMID: 36479474 PMCID: PMC9710404 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Environmental pollution, inadequate eating habits and unhealthy lifestyles have led to a tremendous increase in ocular diseases worldwide. Given the costly treatments that are currently available for the most common and threatening eye diseases (such as cataract, dry eye disorder, or diabetic retinopathy), curing these diseases or preventing refractive errors by taking nutraceuticals and natural compounds that are present in our daily diet is a very valuable intervention. The eyes are the most important part of our visual system and require micronutrients such as vitamins, carotenoids, trace metals, and omega-3 fatty acids in order to function properly and to protect themselves against light-induced and age-mediated degenerative disorders. The Mediterranean Diet (MedDiet) has been in the limelight since the 1980s because of the several health benefits it provides, including eye health. MedDiet is characterized by the consumption of small amounts of red meat, while emphasizing the intake of fish, eggs, nuts, legumes, citrus fruits, green vegetables, olives and their derivatives, especially olive oil, and dairy products in a proportionate manner, in order to achieve the maximum health benefits. The antioxidant, anti-inflammatory, and neuroprotective properties of these foods - both when used as an ingredient in the dietary regime or as a source of nutritional supplements - have shown promising results in the management of chronic degenerative ocular diseases, both in animal models and in human subjects. In this chapter, we will focus on the importance of MedDiet and natural compounds for the visual system and its role in slowing down age-related ocular degeneration.
Collapse
Affiliation(s)
- MARIA CHIARA MEDORI
- MAGI’S LAB, Rovereto (TN), Italy
- Correspondence: Maria Chiara Medori, MAGI’S LAB, Rovereto (TN), 38068, Italy. E-mail:
| | | | | | - GIORGIO PLACIDI
- Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - BENEDETTO FALSINI
- Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - MATTEO BERTELLI
- MAGI’S LAB, Rovereto (TN), Italy
- MAGI Euregio, Bolzano, Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
33
|
El Shamieh S, Maltese PE. Editorial: The genetics of inherited retinal diseases in understudied ethnic groups: Novel associations, challenges, and perspectives. Front Genet 2022; 13:990782. [PMID: 36081992 PMCID: PMC9445133 DOI: 10.3389/fgene.2022.990782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Said El Shamieh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
- *Correspondence: Said El Shamieh, ; Paolo Enrico Maltese,
| | - Paolo Enrico Maltese
- Magi’s Lab SRL, Rovereto, Italy
- *Correspondence: Said El Shamieh, ; Paolo Enrico Maltese,
| |
Collapse
|
34
|
Griffith J, Sioufi K, Wilbanks L, Magrath GN, Say EAT, Lyons MJ, Wilkes M, Pai GS, Peterseim MMW. Inherited Retinal Dystrophy in Southeastern United States: Characterization of South Carolina Patients and Comparative Literature Review. Genes (Basel) 2022; 13:genes13081490. [PMID: 36011402 PMCID: PMC9407983 DOI: 10.3390/genes13081490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of rare diseases involving more than 340 genes and a variety of clinical phenotypes that lead to significant visual impairment. The aim of this study is to evaluate the rates and genetic characteristics of IRDs in the southeastern region of the United States (US). A retrospective chart review was performed on 325 patients with a clinical diagnosis of retinal dystrophy. Data including presenting symptoms, visual acuity, retinal exam findings, imaging findings, and genetic test results were compiled and compared to national and international IRD cohorts. The known ethnic groups included White (64%), African American or Black (30%), Hispanic (3%), and Asian (2%). The most prevalent dystrophies identified clinically were non-syndromic retinitis pigmentosa (29.8%), Stargardt disease (8.3%), Usher syndrome (8.3%), cone-rod dystrophy (8.0%), cone dystrophy (4.9%), and Leber congenital amaurosis (4.3%). Of the 101 patients (31.1%) with genetic testing, 54 (53.5%) had causative genetic variants identified. The most common pathogenic genetic variants were USH2A (n = 11), ABCA4 (n = 8), CLN3 (n = 7), and CEP290 (n = 3). Our study provides initial information characterizing IRDs within the diverse population of the southeastern US, which differs from national and international genetic and diagnostic trends with a relatively high proportion of retinitis pigmentosa in our African American or Black population and a relatively high frequency of USH2A pathogenic variants.
Collapse
Affiliation(s)
- Joseph Griffith
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kareem Sioufi
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Laurie Wilbanks
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - George N. Magrath
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Emil A. T. Say
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Meg Wilkes
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Gurpur Shashidhar Pai
- Department of Genetics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mae Millicent Winfrey Peterseim
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
- Correspondence: ; Tel.: +1-843-792-3758
| |
Collapse
|
35
|
Wang J, Wang Y, Li S, Xiao X, Yi Z, Jiang Y, Li X, Jia X, Wang P, Jin C, Sun W, Zhang Q. Clinical and Genetic Analysis of RDH12-Associated Retinopathy in 27 Chinese Families: A Hypomorphic Allele Leads to Cone-Rod Dystrophy. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 35994252 PMCID: PMC9419460 DOI: 10.1167/iovs.63.9.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to elucidate the genetic basis of 2 distinct phenotypes associated with biallelic variants in RDH12. Methods Patients with biallelic variants in RDH12 were recruited from our genetic eye clinic. Ocular phenotypes were evaluated. Genotype-phenotype correlations were further clarified using in-house and existing databases. Results In total, 22 biallelic RDH12 variants, including 5 novel variants, were identified in 29 patients from 27 families. Two distinct phenotypes were observed: early-onset and generalized retinal dystrophy with severe impairment of rods and cones in 24 patients (82.8%, 24/29), and late-onset cone-rod dystrophy (CORD) with central macular atrophy in 5 patients from 5 unrelated families (17.2%, 5/29), in which a hypomorphic allele (c.806C>G/p.Ala269Gly) was shared by all 5 patients. During follow-up, patients with late-onset CORD were relatively stable and did not progress to the severe form, which was considered to be an independent manifestation of RDH12-associated retinopathy caused by specific genotypes. Conclusions The hypomorphic allele is responsible for the unique late-onset CORD in 5 families with recessive RDH12-associated retinopathy, in contrast to the well-known severe and generalized retinopathy. Determining the therapeutic value of interventions may depend on understanding the molecular mechanisms underlying manifestation of this hypomorphic variant only in the central macular region, with relative preservation of the peripheral retina.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
36
|
PacMAGI: A pipeline including accurate indel detection for the analysis of PacBio sequencing data applied to RPE65. Gene 2022; 832:146554. [PMID: 35569774 DOI: 10.1016/j.gene.2022.146554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/01/2022] [Accepted: 05/06/2022] [Indexed: 11/20/2022]
Abstract
Third generation sequencing methods, like PacBio, provide information about structural variants, introns, enhancers and promoters. We developed an automated pipeline, called PacMAGI, including quality control, alignment, SNV, INDELs, structural variant calling, phasing, annotation and variant interpretation, for the analysis of PacBio data for any target region. Bi-allelic mutations in the RPE65 gene are associated with different inherited retinal dystrophies, such as Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Diagnostic panel-based NGS analysis is performed on coding regions and intron/exon junctions of genes. To obtain a more conclusive diagnosis, we applied PacMAGI to obtain a second hit on RPE65 in LCA or RP patients who showed a single heterozygous variant by NGS. We used PacBio to sequence the full gene and identify putative second-hits in intronic, problematic and promoter regions. All variants identified in the diagnostic setting with NGS were correctly detected by the pipeline, and thanks to our custom algorithm for INDELs, a previously undetected 'Pathogenic' frameshift variant was found in a RP patient already identified to carry a 'Likely Pathogenic' variant.
Collapse
|
37
|
Maltese PE, Colombo L, Martella S, Rossetti L, El Shamieh S, Sinibaldi L, Passarelli C, Coppè AM, Buzzonetti L, Falsini B, Chiurazzi P, Placidi G, Tanzi B, Bertelli M, Iarossi G. Genetics of Inherited Retinal Diseases in Understudied Ethnic Groups in Italian Hospitals. Front Genet 2022; 13:914345. [PMID: 35836572 PMCID: PMC9274138 DOI: 10.3389/fgene.2022.914345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Describing the clinical and genetic features of an ethnically heterogeneous group of (inherited retinal diseases) IRD patients from different underrepresented countries, referring to specialized Italian Hospitals, and expanding the epidemiological spectrum of the IRD in understudied populations. Methods: The patients’ phenotypes underwent were characterized by exhaustive ophthalmological examinations, including morpho-functional testing. Genetic testing was performed using next-generation sequencing (NGS) and gene sequencing panels targeting a specific set of genes, Sanger sequencing and—when necessary—multiplex ligation-dependent probe amplification (MLPA) to better identify the genotype. When possible, segregation analysis was performed in order to confirm unsolved cases. Results: The article reports the results of the phenotypes and genotypes of 123 IRD probands, 69 males and 54 females, mean age 41 (IQR, 54–30) years, disease onset at 13 (IQR, 27.25–5) years. Thirty-three patients out of 123 (26.8%) were Africans (North/Northwest Africa), 21 (17.1%) Asians, 19 (15.4%) Americans (South/Central America) and 50 (40.7%) Europeans (Eastern Europe). Retinitis pigmentosa was the most represented phenotype (56%), followed by cone dystrophy (11%) and Leber congenital amaurosis (7%), while ABCA4 was the most frequently mutated gene (18%), followed by USH2A (9%) and RPGR (5%). About ABCA4 variants found in Stargardt disease, macular and cone dystrophies were predominant in Asian (42%) and European (21%) patients. The most represented inheritance pattern was autosomal recessive, while a higher frequency of homozygous patients versus compound heterozygotes as compared to previous studies on Italian IRD patients was evidenced, reflecting a possible higher frequency of inbreeding marriages. Conclusion: Though limited by the relatively low number of patients, the present paper paints a picture of the clinical and genetic features of IRD patients from understudied ethnic groups referred to Italian specialized hospitals and extended the epidemiological studies on underrepresented world regional areas.
Collapse
Affiliation(s)
| | - Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Salvatore Martella
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Luca Rossetti
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Said El Shamieh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Lorenzo Sinibaldi
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Rare Disease and Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Chiara Passarelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Maria Coppè
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Luca Buzzonetti
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Benedetto Falsini
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS/Universita’ Cattolica del S. Cuore, Ophthalmology Unit, Rome, Italy
| | - Pietro Chiurazzi
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS & Istituto di Medicina Genomica, Universita’ Cattolica del S. Cuore, Rome, Italy
| | - Giorgio Placidi
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS/Universita’ Cattolica del S. Cuore, Ophthalmology Unit, Rome, Italy
| | | | - Matteo Bertelli
- Magi’s Lab S.R.L., Rovereto, Italy
- MAGI Euregio s.c.s., Bolzano, Italy
| | - Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
38
|
Jaffal L, Akhdar H, Joumaa H, Ibrahim M, Chhouri Z, Assi A, Helou C, Lee H, Seo GH, Joumaa WH, El Shamieh S. Novel Missense and Splice Site Mutations in USH2A, CDH23, PCDH15, and ADGRV1 Are Associated With Usher Syndrome in Lebanon. Front Genet 2022; 13:864228. [PMID: 35651951 PMCID: PMC9149366 DOI: 10.3389/fgene.2022.864228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study was to expand the mutation spectrum by searching the causative mutations in nine Lebanese families with Usher syndrome (USH) using whole-exome sequencing. The pathogenicity of candidate mutations was first evaluated according to their frequency, conservation, and in silico prediction tools. Then, it was confirmed via Sanger sequencing, followed by segregation analysis. Finally, a meta-analysis was conducted to calculate the prevalence of USH genes in the Lebanese population. Three missense mutations, two splice site mutations, and one insertion/deletion were detected in eight of the families. Four of these variants were novel: c.5535C > A; p.(Asn1845Lys) in exon 41 of CDH23, c.7130G > A; p.(Arg2377Gln) in exon 32 of ADGRV1, c.11390-1G > A in USH2A, and c.3999–6A > G in PCDH15. All the identified mutations were shown to be likely disease-causing through our bioinformatics analysis and co-segregated with the USH phenotype. The mutations were classified according to the ACMG standards. Finally, our meta-analysis showed that the mutations in ADGRV1, USH2A, and CLRN1 are the most prevalent and responsible for approximately 75% of USH cases in Lebanon. Of note, the frequency USH type 3 showed a relatively high incidence (23%) compared to the worldwide prevalence, which is around 2–4%. In conclusion, our study has broadened the mutational spectrum of USH and showed a high heterogeneity of this disease in the Lebanese population.
Collapse
Affiliation(s)
- Lama Jaffal
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon.,Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Hanane Akhdar
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon.,Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Hawraa Joumaa
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Mariam Ibrahim
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Zahraa Chhouri
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Alexandre Assi
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut, Lebanon
| | - Charles Helou
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut, Lebanon
| | - Hane Lee
- Rare Genetic Disease Research Center, 3billion Inc, Seoul, South Korea
| | - Go Hun Seo
- Rare Genetic Disease Research Center, 3billion Inc, Seoul, South Korea
| | - Wissam H Joumaa
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Said El Shamieh
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
39
|
Wang J, Wang Y, Jiang Y, Li X, Xiao X, Li S, Jia X, Sun W, Wang P, Zhang Q. Autosomal Dominant Retinitis Pigmentosa-Associated TOPORS Protein Truncating Variants Are Exclusively Located in the Region of Amino Acid Residues 807 to 867. Invest Ophthalmol Vis Sci 2022; 63:19. [PMID: 35579903 PMCID: PMC9123486 DOI: 10.1167/iovs.63.5.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Heterozygous truncating variants of TOPORS have been reported to cause autosomal dominant retinitis pigmentosa (adRP). The purpose of this study was to investigate whether all heterozygous truncating variants, including copy number variants (CNVs), are pathogenic. Methods TOPORS truncating variants were collected and reviewed through an in-house dataset and existing databases. Individuals with truncating variants underwent ophthalmological evaluation. Results Six truncating variants were detected in seven families. Three N-terminus truncating variants were detected in three families without RP, and the other three were identified in four unrelated families with typical RP. Based on the in-house dataset and published literature, 17 truncating variants were identified in 47 families with RP. All RP-associated truncating alleles, except one, were distributed in the last exon of TOPORS and clustered in amino acid residues 807 to 867 (46/47, 97.9%). Conversely, in the gnomAD database, only one truncating allele (1/27, 3.7%) was in this region, and the others were outside (26/27, 96.3%), suggesting that the pathogenic truncating variants were significantly clustered in residues 807 to 867 (χ2 = 65.6, P = 1.1 × 10–17). Additionally, three CNVs involving the N-terminus of TOPORS were recorded in control populations but were absent in affected patients. Conclusions This study suggests that all pathogenic truncating variants of TOPORS were clustered in residues 807 to 867, whereas the truncating variants outside this region and the CNVs involving the N-terminus were not associated with RP. A dominant-negative effect, rather than haploinsufficiency, is speculated to be the underlying pathogenesis. These findings provide valuable information for interpreting variation in TOPORS and other genes in similar situations, especially for CNVs.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
40
|
Bedoukian EC, O'Neil EC, Aleman TS. RP1-associated recessive retinitis pigmentosa caused by paternal uniparental disomy. Ophthalmic Genet 2022; 43:555-560. [PMID: 35484846 DOI: 10.1080/13816810.2022.2062389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND We report on a patient with a juvenile-onset inherited retinal degeneration (IRD) associated with homozygous RP1 mutations inherited by uniparental disomy (UPD). MATERIAL AND METHODS A 6-year-old healthy girl failed school vision screening and was diagnosed with a bull's eye maculopathy. She underwent complete ophthalmic examination, full-field electroretinograms (ERG), kinetic fields, full-field sensitivity testing (FST), and retinal imaging with spectral domain optical coherence tomography (SD-OCT) and near-infrared (NIR) and short wavelength (SW) fundus autofluorescence (FAF). RESULTS Visual acuities were relatively preserved (20/30+). There was subtle foveal depigmentation but an otherwise normal fundus examination. SD-OCT revealed a relatively preserved fovea with thinning of the photoreceptor outer nuclear layer with increasing distance from the foveal center coinciding with marked attenuation of the NIR and less marked loss of the SW-FAF signal. ERGs were non-detectable. Kinetic visual fields were generally full to large (V-4e) target but constricted to ~10°of eccentricity to I-4e stimuli. Dark-adapted thresholds by FST were rod-mediated and elevated by ~2 log units. Homozygous pathogenic mutations in RP1 (c.1720_1721del; p.Ser574Asnfs*8) were identified. Family member testing revealed father and siblings to be unaffected carriers; the mother carried wild-type alleles. Further testing suggested UPD of chromosome 8. CONCLUSION This report adds support to UPD as a mechanism of inheritance in IRDs and stresses the importance of familial testing for genetic diagnosis and counseling. Consistent with earlier descriptions of autosomal recessive RP1-IRDs our patient showed an early rod and cone photoreceptor degeneration.
Collapse
Affiliation(s)
- Emma C Bedoukian
- Division of Ophthalmology, Children's Hospital of Philadelphia.,Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Pennsylvania, USA
| | - Erin C O'Neil
- Division of Ophthalmology, Children's Hospital of Philadelphia.,Center for Advanced Retinal and Ocular Therapeutics
| | - Tomas S Aleman
- Division of Ophthalmology, Children's Hospital of Philadelphia.,Center for Advanced Retinal and Ocular Therapeutics.,Scheie Eye Institute at the Perelman Center for Advanced Medicine, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Poncet AF, Grunewald O, Vaclavik V, Meunier I, Drumare I, Pelletier V, Bocquet B, Todorova MG, Le Moing AG, Devos A, Schorderet DF, Jobic F, Defoort-Dhellemmes S, Dollfus H, Smirnov VM, Dhaenens CM. Contribution of Whole-Genome Sequencing and Transcript Analysis to Decipher Retinal Diseases Associated with MFSD8 Variants. Int J Mol Sci 2022; 23:ijms23084294. [PMID: 35457110 PMCID: PMC9032189 DOI: 10.3390/ijms23084294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
Biallelic gene defects in MFSD8 are not only a cause of the late-infantile form of neuronal ceroid lipofuscinosis, but also of rare isolated retinal degeneration. We report clinical and genetic data of seven patients compound heterozygous or homozygous for variants in MFSD8, issued from a French cohort with inherited retinal degeneration, and two additional patients retrieved from a Swiss cohort. Next-generation sequencing of large panels combined with whole-genome sequencing allowed for the identification of twelve variants from which seven were novel. Among them were one deep intronic variant c.998+1669A>G, one large deletion encompassing exon 9 and 10, and a silent change c.750A>G. Transcript analysis performed on patients’ lymphoblastoid cell lines revealed the creation of a donor splice site by c.998+1669A>G, resulting in a 140 bp pseudoexon insertion in intron 10. Variant c.750A>G produced exon 8 skipping. In silico and in cellulo studies of these variants allowed us to assign the pathogenic effect, and showed that the combination of at least one severe variant with a moderate one leads to isolated retinal dystrophy, whereas the combination in trans of two severe variants is responsible for early onset severe retinal dystrophy in the context of late-infantile neuronal ceroid lipofuscinosis.
Collapse
Affiliation(s)
- Anaïs F. Poncet
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (A.F.P.); (O.G.); (A.D.)
| | - Olivier Grunewald
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (A.F.P.); (O.G.); (A.D.)
| | - Veronika Vaclavik
- University of Lausanne, Jules-Gonin Eye Hospital, 1004 Lausanne, Switzerland;
- Cantonal Hospital, Department of Ophthalmology, 1700 Fribourg, Switzerland
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Sensgene Care Network, ERN-EYE Network, F-34000 Montpellier, France; (I.M.); (B.B.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, F-34000 Montpellier, France
| | - Isabelle Drumare
- Exploration de la Vision et Neuro-Ophtalmology, CHU de Lille, F-59000 Lille, France; (I.D.); (S.D.-D.); (V.M.S.)
| | - Valérie Pelletier
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologiques, Hopitaux Universitaires de Strasbourg, F-67000 Strasbourg, France; (V.P.); (H.D.)
| | - Béatrice Bocquet
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Sensgene Care Network, ERN-EYE Network, F-34000 Montpellier, France; (I.M.); (B.B.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, F-34000 Montpellier, France
| | - Margarita G. Todorova
- Department of Ophthalmology, Cantonal Hospital, 9007 St. Gallen, Switzerland;
- Department of Ophthalmology, University of Zürich, 8091 Zürich, Switzerland
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland
| | - Anne-Gaëlle Le Moing
- Department of Child Neurology, Amiens-Picardy University Hospital, F-80000 Amiens, France;
| | - Aurore Devos
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (A.F.P.); (O.G.); (A.D.)
| | - Daniel F. Schorderet
- Faculty of Biology and Medicine, University of Lausanne and Faculty of Life Sciences, Ecole Polytechnique Fédérale of Lausanne, 1004 Lausanne, Switzerland;
| | - Florence Jobic
- Unité de Génétique Médicale et Oncogénétique, Centre Hospitalier Universitaire Amiens Picardie, F-80000 Amiens, France;
| | - Sabine Defoort-Dhellemmes
- Exploration de la Vision et Neuro-Ophtalmology, CHU de Lille, F-59000 Lille, France; (I.D.); (S.D.-D.); (V.M.S.)
| | - Hélène Dollfus
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologiques, Hopitaux Universitaires de Strasbourg, F-67000 Strasbourg, France; (V.P.); (H.D.)
| | - Vasily M. Smirnov
- Exploration de la Vision et Neuro-Ophtalmology, CHU de Lille, F-59000 Lille, France; (I.D.); (S.D.-D.); (V.M.S.)
- Université de Lille, Faculté de Médecine, F-59000 Lille, France
| | - Claire-Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (A.F.P.); (O.G.); (A.D.)
- Correspondence: ; Tel.: +33-320444953
| |
Collapse
|
42
|
Chen L, Wang N, Lai M, Hou F, He J, Fan X, Yao X, Wang R. Clinical and genetic investigations in Chinese families with retinitis pigmentosa. Exp Biol Med (Maywood) 2022; 247:1030-1038. [PMID: 35410501 DOI: 10.1177/15353702221085711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To describe clinical and genetic characteristics in a series of Chinese patients with non-syndromic retinitis pigmentosa, a total of 20 unrelated Chinese pedigrees with non-syndromic retinitis pigmentosa were evaluated. Complete ophthalmic examinations data including the Humphrey visual field, spectral domain-optical coherence tomography, full-field electroretinography, and fundus fluorescence were collected and analyzed. Targeted exome sequencing was utilized to investigate variations in 260 known genes of inherited retinal disease, including the 90 known causative retinitis pigmentosa genes. We initially identified the potential candidate variants in the pedigrees, then validated the variants using the Sanger sequencing and performed segregation analysis to verify that the variants constituted disease-causing mutations in these pedigrees. We detected three novel (likely) pathogenic and eight previously reported (likely) pathogenic variations in nine genes reported to be related to non-syndromic retinitis pigmentosa in nine of the pedigrees. We report clinical characteristics of Chinese patients with retinitis pigmentosa and novel mutations responsible for non-syndromic retinitis pigmentosa in Chinese pedigrees, expanding the number of gene mutations associated with this disorder and clarifying its genetic basis in the Chinese population. These data will help with rapid and efficient molecular diagnosis and the study of targeted treatment for retinitis pigmentosa in this population.
Collapse
Affiliation(s)
- Ling Chen
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen 518040, Guangdong, P.R. China
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing 100005, P.R. China
| | - Mingying Lai
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen 518040, Guangdong, P.R. China
| | - Fei Hou
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen 518040, Guangdong, P.R. China
| | - Jing He
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen 518040, Guangdong, P.R. China
| | - Xianming Fan
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen 518040, Guangdong, P.R. China
| | - Xue Yao
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen 518040, Guangdong, P.R. China
| | - Ruijuan Wang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen 518040, Guangdong, P.R. China
| |
Collapse
|
43
|
He K, Zhou Y, Li N. Mutations of TOPORS identified in families with retinitis pigmentosa. Ophthalmic Genet 2022; 43:371-377. [PMID: 35254173 DOI: 10.1080/13816810.2022.2039721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kaiwen He
- Department of Ophthalmology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, China 100045
| | - Yunyu Zhou
- Department of Ophthalmology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, China 100045
| | - Ningdong Li
- Department of Ophthalmology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, China 100045
| |
Collapse
|
44
|
Sallum JMF, Kaur VP, Shaikh J, Banhazi J, Spera C, Aouadj C, Viriato D, Fischer MD. Epidemiology of Mutations in the 65-kDa Retinal Pigment Epithelium (RPE65) Gene-Mediated Inherited Retinal Dystrophies: A Systematic Literature Review. Adv Ther 2022; 39:1179-1198. [PMID: 35098484 PMCID: PMC8918161 DOI: 10.1007/s12325-021-02036-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Inherited retinal dystrophies (IRDs) represent a genetically diverse group of progressive, visually debilitating diseases. Adult and paediatric patients with vision loss due to IRD caused by biallelic mutations in the 65-kDa retinal pigment epithelium (RPE65) gene are often clinically diagnosed as retinitis pigmentosa (RP), and Leber congenital amaurosis (LCA). This study aimed to understand the epidemiological landscape of RPE65 gene-mediated IRD through a systematic review of the literature, as the current evidence base for its epidemiology is very limited. METHODS Medline, Embase, and other databases were searched for articles on the epidemiology of RPE65 gene-mediated IRDs from inception until June 2021. Studies were included if they were original research articles reporting the epidemiology of RP and LCA and/or proportion of RPE65 gene mutations in these clinically diagnosed or molecularly confirmed IRDs patients. RESULTS A total of 100 studies with relevant data were included in this systematic review. The range for prevalence of LCA and RP in the literature was 1.20-2.37 and 11.09-26.43 per 100,000, respectively. The proportion of RPE65 mutations in clinically diagnosed patients with LCA was found to be between ~ 2-16% within the US and major European countries (France, Germany, Italy, Spain, and the UK). This range was also comparable to our findings in the Asian region for RPE65-LCA (1.26-16.67%). Similarly, for these European countries, RPE65-RP was estimated between 0.23 and 1.94%, and RPE65-IRD range was 1.2-14%. Further, in the Americas region, mutations in RPE65 were reported to cause 1-3% of RP and 0.8-3.7% of IRD cases. Lastly, the RPE65-IRD range was 4.81-8% in the Middle East region. CONCLUSIONS There are significant variations in reporting of RPE65 proportions within countries as well as regions. Generating robust epidemiological evidence on RPE65 gene-mediated IRDs would be fundamental to support rare disease awareness, timely therapeutic intervention, and public health decision-making.
Collapse
Affiliation(s)
- Juliana M F Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, São Paulo, Brazil
- Instituto de Genética Ocular, São Paulo, Brazil
| | | | | | | | | | | | | | - M Dominik Fischer
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
45
|
Testa F, Murro V, Signorini S, Colombo L, Iarossi G, Parmeggiani F, Falsini B, Salvetti AP, Brunetti-Pierri R, Aprile G, Bertone C, Suppiej A, Romano F, Karali M, Donati S, Melillo P, Sodi A, Quaranta L, Rossetti L, Buzzonetti L, Chizzolini M, Rizzo S, Staurenghi G, Banfi S, Azzolini C, Simonelli F. RPE65-Associated Retinopathies in the Italian Population: A Longitudinal Natural History Study. Invest Ophthalmol Vis Sci 2022; 63:13. [PMID: 35129589 PMCID: PMC8822366 DOI: 10.1167/iovs.63.2.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose To investigate the course of inherited retinal degenerations (IRD) due to mutations in the RPE65 gene. Methods This longitudinal multicentric retrospective chart-review study was designed to collect best corrected visual acuity (BCVA), Goldman visual field, optical coherence tomography (OCT), and electroretinography (ERG) measurements. The data, including imaging, were collected using an electronic clinical research form and were reviewed at a single center to improve consistency. Results From an overall cohort of 60 Italian patients with RPE65-associated IRD, 43 patients (mean age, 27.8 ± 19.7 years) were included and showed a mean BCVA of 2.0 ± 1.0 logMAR. Time-to-event analysis revealed a median age of 33.8 years and 41.4 years to reach low vision and blindness based on BCVA, respectively. ERG (available for 34 patients) showed undetectable responses in most patients (26; 76.5%). OCT (available for 31 patients) revealed epiretinal membranes in five patients (16.1%). Central foveal thickness significantly decreased with age at a mean annual rate of −0.6%/y (P = 0.044). We identified 43 different variants in the RPE65 gene in the entire cohort. Nine variants were novel. Finally, to assess genotype-phenotype correlations, patients were stratified according to the number of RPE65 loss-of-function (LoF) alleles. Patients without LoF variants showed significantly (P < 0.05) better BCVA compared to patients with one or two LoF alleles. Conclusions We described the natural course of RPE65-associated IRD in an Italian cohort showing for the first time a specific genotype-phenotype association. Our findings can contribute to a better management of RPE65-associated IRD patients.
Collapse
Affiliation(s)
- Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Vittoria Murro
- Eye Clinic, Neuromuscolar and Sense Organs Department, Careggi University Hospital, Florence, Italy
| | - Sabrina Signorini
- Developmental Neuro-ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Leonardo Colombo
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù IRCCS Children's Hospital, Rome, Italy
| | - Francesco Parmeggiani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy.,ERN-EYE Network-Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Padova, Italy
| | - Benedetto Falsini
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Paola Salvetti
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Raffaella Brunetti-Pierri
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giorgia Aprile
- Developmental Neuro-ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Bertone
- Department of Surgical and Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Agnese Suppiej
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Romano
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Marianthi Karali
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Simone Donati
- Unit of Ophthalmology, Azienda Socio-Sanitaria Territoriale (ASST) Dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Paolo Melillo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Andrea Sodi
- Eye Clinic, Neuromuscolar and Sense Organs Department, Careggi University Hospital, Florence, Italy
| | - Luciano Quaranta
- Department of Surgical and Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Luca Rossetti
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Luca Buzzonetti
- Department of Ophthalmology, Bambino Gesù IRCCS Children's Hospital, Rome, Italy
| | - Marzio Chizzolini
- ERN-EYE Network-Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Padova, Italy
| | - Stanislao Rizzo
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Staurenghi
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Claudio Azzolini
- Unit of Ophthalmology, Azienda Socio-Sanitaria Territoriale (ASST) Dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
46
|
Abstract
Usher syndrome (USH) is the most common genetic condition responsible for combined loss of hearing and vision. Balance disorders and bilateral vestibular areflexia are also observed in some cases. The syndrome was first described by Albrecht von Graefe in 1858, but later named by Charles Usher, who presented a large number of cases with hearing loss and retinopathy in 1914. USH has been grouped into three main clinical types: 1, 2, and 3, which are caused by mutations in different genes and are further divided into different subtypes. To date, nine causative genes have been identified and confirmed as responsible for the syndrome when mutated: MYO7A, USH1C, CDH23, PCDH15, and USH1G (SANS) for Usher type 1; USH2A, ADGRV1, and WHRN for Usher type 2; CLRN1 for Usher type 3. USH is inherited in an autosomal recessive pattern. Digenic, bi-allelic, and polygenic forms have also been reported, in addition to dominant or nonsyndromic forms of genetic mutations. This narrative review reports the causative forms, diagnosis, prognosis, epidemiology, rehabilitation, research, and new treatments of USH.
Collapse
|
47
|
Mansard L, Baux D, Vaché C, Blanchet C, Meunier I, Willems M, Faugère V, Baudoin C, Moclyn M, Bianchi J, Dollfus H, Gilbert-Dussardier B, Dupin-Deguine D, Bonneau D, Drumare I, Odent S, Zanlonghi X, Claustres M, Koenig M, Kalatzis V, Roux AF. The Study of a 231 French Patient Cohort Significantly Extends the Mutational Spectrum of the Two Major Usher Genes MYO7A and USH2A. Int J Mol Sci 2021; 22:ijms222413294. [PMID: 34948090 PMCID: PMC8703989 DOI: 10.3390/ijms222413294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/06/2023] Open
Abstract
Usher syndrome is an autosomal recessive disorder characterized by congenital hearing loss combined with retinitis pigmentosa, and in some cases, vestibular areflexia. Three clinical subtypes are distinguished, and MYO7A and USH2A represent the two major causal genes involved in Usher type I, the most severe form, and type II, the most frequent form, respectively. Massively parallel sequencing was performed on a cohort of patients in the context of a molecular diagnosis to confirm clinical suspicion of Usher syndrome. We report here 231 pathogenic MYO7A and USH2A genotypes identified in 73 Usher type I and 158 Usher type II patients. Furthermore, we present the ACMG classification of the variants, which comprise all types. Among them, 68 have not been previously reported in the literature, including 12 missense and 16 splice variants. We also report a new deep intronic variant in USH2A. Despite the important number of molecular studies published on these two genes, we show that during the course of routine genetic diagnosis, undescribed variants continue to be identified at a high rate. This is particularly pertinent in the current era, where therapeutic strategies based on DNA or RNA technologies are being developed.
Collapse
Affiliation(s)
- Luke Mansard
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - David Baux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
| | - Christel Vaché
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
| | - Catherine Blanchet
- National Reference Centre for Inherited Sensory Diseases, University Montpellier, CHU Montpellier, F-34000 Montpellier, France;
- Oto Laryngology Department, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
- National Reference Centre for Inherited Sensory Diseases, University Montpellier, CHU Montpellier, F-34000 Montpellier, France;
| | - Marjolaine Willems
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
- Medical Genetics Department, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France
| | - Valérie Faugère
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Corinne Baudoin
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Melody Moclyn
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Julie Bianchi
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Helene Dollfus
- Reference Center for Rare Affections in Ophthalmology Genetics (CARGO), Institute of Medical Genetics of Alsace, University of Strasbourg, CHU Strasbourg, F-67000 Strasbourg, France;
| | | | - Delphine Dupin-Deguine
- Medical Genetics Department, University of Toulouse, CHU Purpan, F-31000 Toulouse, France;
| | - Dominique Bonneau
- Medical Genetics Department, University of Angers, CHU Angers, F-49000 Angers, France;
| | - Isabelle Drumare
- Vision and Neuro-Ophthalmology Department, University of Lille, CHU Lille, F-59000 Lille, France;
| | - Sylvie Odent
- Clinical Genetics Service, University Hospital, Genetics and Development Institute of Rennes IDGDR, UMR6290 University of Rennes, F-35000 Rennes, France;
| | - Xavier Zanlonghi
- Center of Competence for Rare Diseases, Jules Verne Clinic, F-44000 Nantes, France;
| | - Mireille Claustres
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Michel Koenig
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
| | - Anne-Françoise Roux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
- Correspondence:
| |
Collapse
|
48
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
49
|
Marques JP, Marta A, Geada S, Carvalho AL, Menéres P, Murta J, Saraiva J, Silva R. Clinical/Demographic Functional Testing and Multimodal Imaging Differences between Genetically Solved and Unsolved Retinitis Pigmentosa. Ophthalmologica 2021; 245:134-143. [PMID: 34695833 DOI: 10.1159/000520305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The purpose of this study was to compare clinical/demographic functional testing and multimodal imaging features between genetically solved and genetically unsolved nonsyndromic retinitis pigmentosa (nsRP) patients. METHODS A cross-sectional study was conducted at an inherited retinal dystrophies reference center. Consecutive patients with nsRP and available genetic testing results performed between 2018 and 2020 were included. Genetic testing was clinically oriented, and variants were classified according to the American College of Medical Genetics and Genomics. Only class IV or V variants were considered disease-causing. Clinical/demographic, functional, and imaging features were compared between genetically unsolved (G1) and genetically solved (G2) patients. RESULTS A total of 175 patients (146 families) were included: 68 patients (59 families) in G1 and 107 patients (87 families) in G2. First symptoms <25 years, consanguinity, evidence for a particular inheritance pattern, and the absence of indicators for phenocopies were significantly more prevalent in G2. No significant differences were observed on best-corrected visual acuity. The visual field index and mean central retinal layer thickness were significantly higher in G1. The frequency of atypical features on multimodal imaging did not differ between groups. CONCLUSION Individual clinical/demographic functional testing and multimodal imaging features should be considered when counseling patients about the probability of identifying disease-causing variants.
Collapse
Affiliation(s)
- João Pedro Marques
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Ana Marta
- Department of Ophthalmology, Centro Hospitalar e Universitário do Porto (CHUP), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| | - Sara Geada
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Ana Luísa Carvalho
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Medical Genetics, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,University Clinic of Medical Genetics, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Pedro Menéres
- Department of Ophthalmology, Centro Hospitalar e Universitário do Porto (CHUP), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| | - Joaquim Murta
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Jorge Saraiva
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Medical Genetics, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Rufino Silva
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| |
Collapse
|
50
|
Aoun M, Passerini I, Chiurazzi P, Karali M, De Rienzo I, Sartor G, Murro V, Filimonova N, Seri M, Banfi S. Inherited Retinal Diseases Due to RPE65 Variants: From Genetic Diagnostic Management to Therapy. Int J Mol Sci 2021; 22:7207. [PMID: 34281261 PMCID: PMC8268668 DOI: 10.3390/ijms22137207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a heterogeneous group of conditions that include retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) and early-onset severe retinal dystrophy (EO[S]RD), which differ in severity and age of onset. IRDs are caused by mutations in >250 genes. Variants in the RPE65 gene account for 0.6-6% of RP and 3-16% of LCA/EORD cases. Voretigene neparvovec is a gene therapy approved for the treatment of patients with an autosomal recessive retinal dystrophy due to confirmed biallelic RPE65 variants (RPE65-IRDs). Therefore, the accurate molecular diagnosis of RPE65-IRDs is crucial to identify 'actionable' genotypes-i.e., genotypes that may benefit from the treatment-and is an integral part of patient management. To date, hundreds of RPE65 variants have been identified, some of which are classified as pathogenic or likely pathogenic, while the significance of others is yet to be established. In this review, we provide an overview of the genetic diagnostic workup needed to select patients that could be eligible for voretigene neparvovec treatment. Careful clinical characterization of patients by multidisciplinary teams of experts, combined with the availability of next-generation sequencing approaches, can accelerate patients' access to available therapeutic options.
Collapse
Affiliation(s)
- Manar Aoun
- Novartis Farma, Largo Boccioni 1, 21040 Origgio, Italy;
| | - Ilaria Passerini
- Department of Genetic Diagnosis, Careggi Teaching Hospital, 50134 Florence, Italy;
| | - Pietro Chiurazzi
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, UOC Genetica Medica, 00168 Roma, Italy
| | - Marianthi Karali
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Irene De Rienzo
- Department of Ophthalmology, AOU-Careggi, 50234 Florence, Italy;
| | - Giovanna Sartor
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Vittoria Murro
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Eye Clinic Careggi Teaching Hospital, 50234 Florence, Italy;
| | | | - Marco Seri
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Surgical and Medical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Medical Genetics, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|