1
|
Rodarte KE, Heyman SN, Guo L, Flores L, Savage TK, Villarreal J, Deng S, Xu L, Shah RB, Oliver TG, Johnson JE. Neuroendocrine Differentiation in Prostate Cancer Requires ASCL1. Cancer Res 2024; 84:3522-3537. [PMID: 39264686 PMCID: PMC11534540 DOI: 10.1158/0008-5472.can-24-1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Most patients with prostate adenocarcinoma develop resistance to therapies targeting the androgen receptor (AR). Consequently, a portion of these patients develop AR-independent neuroendocrine (NE) prostate cancer (NEPC), a rapidly progressing cancer with limited therapies and poor survival outcomes. Current research to understand the progression to NEPC suggests a model of lineage plasticity whereby AR-dependent luminal-like tumors progress toward an AR-independent NEPC state. Genetic analysis of human NEPC identified frequent loss of RB1 and TP53, and the loss of both genes in experimental models mediates the transition to a NE lineage. Transcriptomics studies have shown that lineage transcription factors ASCL1 and NEUROD1 are present in NEPC. In this study, we modeled the progression of prostate adenocarcinoma to NEPC by establishing prostate organoids and subsequently generating subcutaneous allograft tumors from genetically engineered mouse models harboring Cre-induced loss of Rb1 and Trp53 with Myc overexpression (RPM). These tumors were heterogeneous and displayed adenocarcinoma, squamous, and NE features. ASCL1 and NEUROD1 were expressed within NE-defined regions, with ASCL1 being predominant. Genetic loss of Ascl1 in this model did not decrease tumor incidence, growth, or metastasis; however, there was a notable decrease in NE identity and an increase in basal-like identity. This study provides an in vivo model to study progression to NEPC and establishes the requirement for ASCL1 in driving NE differentiation in prostate cancer. Significance: Modeling lineage transitions in prostate cancer and testing dependencies of lineage transcription factors have therapeutic implications, given the emergence of treatment-resistant, aggressive forms of neuroendocrine prostate cancer. See related commentary by McQuillen and Brady, p. 3499.
Collapse
Affiliation(s)
- Kathia E. Rodarte
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shaked Nir Heyman
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lydia Flores
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trisha K. Savage
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan Villarreal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rajal B. Shah
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, NC 27708, USA
| | - Jane E. Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Seuthe IMC, Krause L, Ruwe M, Silling S, Ehrhardt A, Eichhorn S, Ehrke-Schulz E, Park JJH. Expression and prognosis of DSG-2, CXADR, CD46 in head and neck squamous cell carcinoma. Pathol Res Pract 2024; 262:155541. [PMID: 39173463 DOI: 10.1016/j.prp.2024.155541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Investigating the expression and prognostic significance of adenovirus receptors DSG-2, CXADR and CD46 in head and neck cancer. METHODS 104 patients with HNSCC (77 OPSCC, 27 LSCC) were retrospectively included in the study. Immunohistochemical staining was performed on all selected slides to detect the expression of DSG-2, CXADR, CD46 and the immunoreactive score (IRS) was determined from the number of positively stained tumor cells and their staining intensity. Furthermore, the respective HPV status was determined by immunohistochemical staining against p16 and HPV-PCR. RESULTS 81.7 % of the tumors showed DSG-2, 34.6 % of the tumors showed CXADR and 57.7 % of the tumors showed CD46 expression. A high DSG-2 IRS correlated significantly with an advanced tumor size (p= 0.003), increased grading (p=0.012) and positive HPV status (p=0.024) in OPSCC. A high CXADR IRS was significantly associated with a positive lymph node status (p= 0.041) in LSCC and an advanced AJCC stage (p= 0.012) and a positive HPV status (p= 0.009) in OPSCC. No significant correlation could be shown regarding CD46 expression and clinical tumor data. There was no effect of DSG-2, CXADR, and CD46 expression on 5-year overall and on 5-year disease-free survival. CONCLUSION No prognostic significance of the expression of DSG-2, CXADR or CD46 in HNSCC was seen. DSG-2, CXADR and CD46 are expressed in HNSCC, so that optimization of oncotherapy with adenoviral vectors appears promising. Due to the significantly increased expression of DSG-2 and CXADR in advanced OPSCC tumors, there is potential for optimizing oncotherapy here in particular.
Collapse
Affiliation(s)
- Inga Marte Charlott Seuthe
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Witten/Herdecke, Catholic Hospital Hagen, Dreieckstraße 15, Hagen 58097, Germany.
| | - Lea Krause
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Witten/Herdecke, Catholic Hospital Hagen, Dreieckstraße 15, Hagen 58097, Germany
| | - Markus Ruwe
- Institute for Pathology Hagen, Grünstraße 35, Hagen 58095, Germany
| | - Steffi Silling
- Institute of Virology, National Reference Center for Papilloma, and Polyomaviruses, Faculty of Medicine, University Hospital Cologne, Fürst-Pückler-Straße 56, Cologne 50935, Germany
| | - Anja Ehrhardt
- Department of Human Medicine, Faculty of Health, Center of Biomedical Education and Research (ZBAF), Institute for Virology and Microbiology, University of Witten/Herdecke, Stockumer Straße 10, Witten 58453, Germany
| | - Sabine Eichhorn
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Witten/Herdecke, Catholic Hospital Hagen, Dreieckstraße 15, Hagen 58097, Germany
| | - Eric Ehrke-Schulz
- Department of Human Medicine, Faculty of Health, Center of Biomedical Education and Research (ZBAF), Institute for Virology and Microbiology, University of Witten/Herdecke, Stockumer Straße 10, Witten 58453, Germany
| | - Jonas Jae-Hyun Park
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Witten/Herdecke, Catholic Hospital Hagen, Dreieckstraße 15, Hagen 58097, Germany
| |
Collapse
|
3
|
Zheng XY, Lv Y, Xu LY, Zhou DM, Yu L, Zhao ZY. A novel approach for breast cancer treatment: the multifaceted antitumor effects of rMeV-Hu191. Hereditas 2024; 161:36. [PMID: 39342391 PMCID: PMC11439206 DOI: 10.1186/s41065-024-00337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The therapeutic potential of oncolytic measles virotherapy has been demonstrated across various malignancies. However, the effectiveness against human breast cancer (BC) and the underlying mechanisms of the recombinant measles virus vaccine strain Hu191 (rMeV-Hu191) remain unclear. METHODS We utilized a range of methods, including cell viability assay, Western blot, flow cytometry, immunofluorescence, SA-β-gal staining, reverse transcription quantitative real-time PCR, transcriptome sequencing, BC xenograft mouse models, and immunohistochemistry to evaluate the antitumor efficacy of rMeV-Hu191 against BC and elucidate the underlying mechanism. Additionally, we employed transcriptomics and gene set enrichment analysis to analyze the lipid metabolism status of BC cells following rMeV-Hu191 infection. RESULTS Our study revealed the multifaceted antitumor effects of rMeV-Hu191 against BC. rMeV-Hu191 induced apoptosis, inhibited proliferation, and promoted senescence in BC cells. Furthermore, rMeV-Hu191 was associated with changes in oxidative stress and lipid homeostasis in infected BC cells. In vivo, studies using a BC xenograft mouse model confirmed a significant reduction in tumor growth following local injection of rMeV-Hu191. CONCLUSIONS The findings highlight the potential of rMeV-Hu191 as a promising treatment for BC and provide valuable insights into the mechanisms underlying its oncolytic effect.
Collapse
Affiliation(s)
- Xiao-Yu Zheng
- Department of Ophthalmology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yao Lv
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ling-Yan Xu
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Dong-Ming Zhou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lan Yu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zheng-Yan Zhao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
- , No. 3333 Binsheng Road, Hangzhou, Zhejiang Province, 310052, China.
| |
Collapse
|
4
|
Peter R, Bidkar AP, Bobba KN, Zerefa L, Dasari C, Meher N, Wadhwa A, Oskowitz A, Liu B, Miller BW, Vetter K, Flavell RR, Seo Y. 3D small-scale dosimetry and tumor control of 225Ac radiopharmaceuticals for prostate cancer. Sci Rep 2024; 14:19938. [PMID: 39198676 PMCID: PMC11358493 DOI: 10.1038/s41598-024-70417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Radiopharmaceutical therapy using α -emitting225 Ac is an emerging treatment for patients with advanced metastatic cancers. Measurement of the spatial dose distribution in organs and tumors is needed to inform treatment dose prescription and reduce off-target toxicity, at not only organ but also sub-organ scales. Digital autoradiography with α -sensitive detection devices can measure radioactivity distributions at 20-40 μ m resolution, but anatomical characterization is typically limited to 2D. We collected digital autoradiographs across whole tissues to generate 3D dose volumes and used them to evaluate the simultaneous tumor control and regional kidney dosimetry of a novel therapeutic radiopharmaceutical for prostate cancer, [225Ac]Ac-Macropa-PEG4-YS5, in mice. 22Rv1 xenograft-bearing mice treated with 18.5 kBq of [225Ac]Ac-Macropa-PEG4-YS5 were sacrificed at 24 h and 168 h post-injection for quantitative α -particle digital autoradiography and hematoxylin and eosin staining. Gamma-ray spectroscopy of biodistribution data was used to determine temporal dynamics and213 Bi redistribution. Tumor control probability and sub-kidney dosimetry were assessed. Heterogeneous225 Ac spatial distribution was observed in both tumors and kidneys. Tumor control was maintained despite heterogeneity if cold spots coincided with necrotic regions.225 Ac dose-rate was highest in the cortex and renal vasculature. Extrapolation of tumor control suggested that kidney absorbed dose could be reduced by 41% while maintaining 90% TCP. The 3D dosimetry methods described allow for whole tumor and organ dose measurements following225 Ac radiopharmaceutical therapy, which correlate to tumor control and toxicity outcomes.
Collapse
Affiliation(s)
- Robin Peter
- Department of Nuclear Engineering, University of California, Berkeley, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Anil P Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Luann Zerefa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Chandrashekhar Dasari
- Department of Surgery, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Adam Oskowitz
- Department of Surgery, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, CA, USA
| | - Brian W Miller
- Departments of Radiation Oncology and Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Kai Vetter
- Department of Nuclear Engineering, University of California, Berkeley, CA, USA
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
| | - Youngho Seo
- Department of Nuclear Engineering, University of California, Berkeley, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| |
Collapse
|
5
|
Wang X, Qi L, Chen M, Zhang Y, Gao X, Cai Y. Feasibility study of ADCs targeting TROP-2, HER2, and CD46 in Ductal Adenocarcinoma and Intraductal Carcinoma of the prostate. World J Urol 2024; 42:404. [PMID: 38990246 DOI: 10.1007/s00345-024-05109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Ductal Adenocarcinoma (DAC) and Intraductal Carcinoma of the Prostate (IDC-P) respond poorly to all the currently available conventional therapies. Given their accurate and efficient elimination of cancer cells, Antibody-Drug Conjugates (ADCs) have become one of the most promising anticancer treatments. However, no ADCs have so far been approved for Prostate Cancer (PCa) treatment. This study investigated TROP-2, HER2, and CD46 expression in DAC/IDC-P samples, indirectly analyzing their preliminary feasibility as therapeutic targets for future treatment of the two conditions. PATIENTS AND METHODS We conducted a retrospective study involving 184 participants (87 DAC/IDC-P patients and 97 Prostatic Acinar Adenocarcinoma (PAC) patients with a Gleason score ≥ 8) without prior treatment between August 2017 and August 2022. Immunohistochemical staining was employed to detect the differential protein expressions of TROP-2, HER2, and CD46 in DAC/IDC-P, PAC, and normal prostate tissues. RESULTS Compared to pure PAC tissues, TROP-2 expression was significantly higher in DAC/IDC-P and DAC/IDC-P-adjacent PAC tissues (H-score 68.8 vs. 43.8, p < 0.001, and 59.8 vs. 43.8, p = 0.022, respectively). No significant differences in HER2 expression were observed across different cancer tissues. Compared to both DAC/IDC-P-adjacent PAC and pure PAC tissues, CD46 expression was significantly higher in DAC/IDC-P tissues (42.3 vs. 28.6, p = 0.041, and 42.3 vs. 24.3, p = 0.0035, respectively). CONCLUSIONS Herein, TROP-2 and CD46 expression was higher in DAC/IDC-P tissues than in pure PAC and normal prostate tissues. This finding implies that ADCs targeting the two proteins hold significant promise as potential future treatments for DAC/IDC-P.
Collapse
Affiliation(s)
- Xingming Wang
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, Hunan Province, 410008, P.R. China
| | - Lin Qi
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, Hunan Province, 410008, P.R. China
| | - Minfeng Chen
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, Hunan Province, 410008, P.R. China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaomei Gao
- Department of Pathology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, 410008, P.R. China.
| | - Yi Cai
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, Hunan Province, 410008, P.R. China.
| |
Collapse
|
6
|
Yu JH, Yuan HB, Yan ZY, Zhang X, Xu HH. The complement regulatory protein CD46 serves as a novel biomarker for cervical cancer diagnosis and prognosis evaluation. Front Immunol 2024; 15:1421778. [PMID: 38919630 PMCID: PMC11196419 DOI: 10.3389/fimmu.2024.1421778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Background CD46 has been revealed to be a key factor in malignant transformation and cancer treatment. However, the clinical significance of CD46 in cervical cancer remains unclear, and this study aimed to evaluate its role in cervical cancer diagnosis and prognosis evaluation. Methods A total of 180 patients with an initial diagnosis of cervical cancer were enrolled at Taizhou Hospital of Zhejiang Province, China. The plasma levels of soluble CD46 (sCD46) and the expression of membrane-bound CD46 (mCD46) were detected by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC), respectively. Results CD46 was found to be significantly upregulated in cervical cancer tissues vs. normal tissues, while no CD46 staining was detected in paired adjacent noncancerous tissues. CD46 staining was more pronounced in cancer cells than in stromal cells in situ (in tissues). Moreover, the plasma levels of sCD46 were able to some extent discriminate between cancer patients and healthy women (AUC=0.6847, 95% CI:0.6152-0.7541). Analysis of Kaplan-Meier survival curves revealed that patients with low CD46 expression had slightly longer overall survival (OS) than patients with high CD46 expression in the tumor microenvironment, but no significant difference. Univariate Cox regression analysis revealed that CD46 (P=0.034) is an independent risk factor for OS in cervical cancer patients. Conclusion The present study demonstrated that cervical cancer patients exhibit aberrant expression of CD46, which is closely associated with a poor prognosis, suggesting that CD46 plays a key role in promoting cervical carcinogenesis and that CD46 could serve as a promising potential target for precision therapy for cervical cancer.
Collapse
Affiliation(s)
- Jun-Hui Yu
- Department of Gynecology and Obstetrics, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Hao-Bo Yuan
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Zi-Yi Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xia Zhang
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Hui-Hui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
7
|
Bidkar AP, Zerefa L, Yadav S, VanBrocklin HF, Flavell RR. Actinium-225 targeted alpha particle therapy for prostate cancer. Theranostics 2024; 14:2969-2992. [PMID: 38773983 PMCID: PMC11103494 DOI: 10.7150/thno.96403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
Targeted alpha particle therapy (TAT) has emerged as a promising strategy for the treatment of prostate cancer (PCa). Actinium-225 (225Ac), a potent alpha-emitting radionuclide, may be incorporated into targeting vectors, causing robust and in some cases sustained antitumor responses. The development of radiolabeling techniques involving EDTA, DOTA, DOTPA, and Macropa chelators has laid the groundwork for advancements in this field. At the forefront of clinical trials with 225Ac in PCa are PSMA-targeted TAT agents, notably [225Ac]Ac-PSMA-617, [225Ac]Ac-PSMA-I&T and [225Ac]Ac-J591. Ongoing investigations spotlight [225Ac]Ac-hu11B6, [225Ac]Ac-YS5, and [225Ac]Ac-SibuDAB, targeting hK2, CD46, and PSMA, respectively. Despite these efforts, hurdles in 225Ac production, daughter redistribution, and a lack of suitable imaging techniques hinder the development of TAT. To address these challenges and additional advantages, researchers are exploring alpha-emitting isotopes including 227Th, 223Ra, 211At, 213Bi, 212Pb or 149Tb, providing viable alternatives for TAT.
Collapse
Affiliation(s)
- Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Luann Zerefa
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Surekha Yadav
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA-94107, USA
| |
Collapse
|
8
|
Wadhwa A, Wang S, Patiño-Escobar B, Bidkar AP, Bobba KN, Chan E, Meher N, Bidlingmaier S, Su Y, Dhrona S, Geng H, Sarin V, VanBrocklin HF, Wilson DM, He J, Zhang L, Steri V, Wong SW, Martin TG, Seo Y, Liu B, Wiita AP, Flavell RR. CD46-Targeted Theranostics for PET and 225Ac-Radiopharmaceutical Therapy of Multiple Myeloma. Clin Cancer Res 2024; 30:1009-1021. [PMID: 38109209 PMCID: PMC10905524 DOI: 10.1158/1078-0432.ccr-23-2130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/26/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE Multiple myeloma is a plasma cell malignancy with an unmet clinical need for improved imaging methods and therapeutics. Recently, we identified CD46 as an overexpressed therapeutic target in multiple myeloma and developed the antibody YS5, which targets a cancer-specific epitope on this protein. We further developed the CD46-targeting PET probe [89Zr]Zr-DFO-YS5 for imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of prostate cancer. These prior studies suggested the feasibility of the CD46 antigen as a theranostic target in multiple myeloma. Herein, we validate [89Zr]Zr-DFO-YS5 for immunoPET imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of multiple myeloma in murine models. EXPERIMENTAL DESIGN In vitro saturation binding was performed using the CD46 expressing MM.1S multiple myeloma cell line. ImmunoPET imaging using [89Zr]Zr-DFO-YS5 was performed in immunodeficient (NSG) mice bearing subcutaneous and systemic multiple myeloma xenografts. For radioligand therapy, [225Ac]Ac-DOTA-YS5 was prepared, and both dose escalation and fractionated dose treatment studies were performed in mice bearing MM1.S-Luc systemic xenografts. Tumor burden was analyzed using BLI, and body weight and overall survival were recorded to assess antitumor effect and toxicity. RESULTS [89Zr]Zr-DFO-YS5 demonstrated high affinity for CD46 expressing MM.1S multiple myeloma cells (Kd = 16.3 nmol/L). In vitro assays in multiple myeloma cell lines demonstrated high binding, and bioinformatics analysis of human multiple myeloma samples revealed high CD46 expression. [89Zr]Zr-DFO-YS5 PET/CT specifically detected multiple myeloma lesions in a variety of models, with low uptake in controls, including CD46 knockout (KO) mice or multiple myeloma mice using a nontargeted antibody. In the MM.1S systemic model, localization of uptake on PET imaging correlated well with the luciferase expression from tumor cells. A treatment study using [225Ac]Ac-DOTA-YS5 in the MM.1S systemic model demonstrated a clear tumor volume and survival benefit in the treated groups. CONCLUSIONS Our study showed that the CD46-targeted probe [89Zr]Zr-DFO-YS5 can successfully image CD46-expressing multiple myeloma xenografts in murine models, and [225Ac]Ac-DOTA-YS5 can effectively inhibit the growth of multiple myeloma. These results demonstrate that CD46 is a promising theranostic target for multiple myeloma, with the potential for clinical translation.
Collapse
Affiliation(s)
- Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Sinan Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Bonell Patiño-Escobar
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Emily Chan
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Scott Bidlingmaier
- Department of Anesthesia, University of California, San Francisco, California
| | - Yang Su
- Department of Anesthesia, University of California, San Francisco, California
| | - Suchi Dhrona
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Vishesh Sarin
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Li Zhang
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Medicine, Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Veronica Steri
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Sandy W. Wong
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Thomas G. Martin
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Bin Liu
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Anesthesia, University of California, San Francisco, California
| | - Arun P. Wiita
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, California
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
- Chan Zuckerberg Biohub, San Francisco, California
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California
| |
Collapse
|
9
|
Kao TW, Chen HH, Lin J, Wang TL, Shen YA. PBX1 as a novel master regulator in cancer: Its regulation, molecular biology, and therapeutic applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189085. [PMID: 38341110 DOI: 10.1016/j.bbcan.2024.189085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
PBX1 is a critical transcription factor at the top of various cell fate-determining pathways. In cancer, PBX1 stands at the crossroads of multiple oncogenic signaling pathways and mediates responses by recruiting a broad repertoire of downstream targets. Research thus far has corroborated the involvement of PBX1 in cancer proliferation, resisting apoptosis, tumor-associated neoangiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, immune evasion, genome instability, and dysregulating cellular metabolism. Recently, our understanding of the functional regulation of the PBX1 protein has advanced, as increasing evidence has depicted a regulatory network consisting of transcriptional, post-transcriptional, and post-translational levels of control mechanisms. Furthermore, accumulating studies have supported the clinical utilization of PBX1 as a prognostic or therapeutic target in cancer. Preliminary results showed that PBX1 entails vast potential as a targetable master regulator in the treatment of cancer, particularly in those with high-risk features and resistance to other therapeutic strategies. In this review, we will explore the regulation, protein-protein interactions, molecular pathways, clinical application, and future challenges of PBX1.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsiao-Han Chen
- Department of General Medicine, National Taiwan University Hospital, Taipei 100224, Taiwan
| | - James Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| |
Collapse
|
10
|
Miyahira AK, Soule HR. The 29th Annual Prostate Cancer Foundation Scientific Retreat Report. Prostate 2024; 84:113-130. [PMID: 37915138 DOI: 10.1002/pros.24640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND The 29th Annual Prostate Cancer Foundation (PCF) Scientific Retreat was held from October 27 to 29, 2022, at the Omni La Costa Resort in Carlsbad, CA. This was the first-ever hybrid PCF Retreat. METHODS The Annual PCF Scientific Retreat is a prominent international scientific gathering centered on groundbreaking, unpublished, and influential studies in basic, translational, and clinical prostate cancer research. It also covers research from related fields with a strong potential for influencing prostate cancer research and patient care. RESULTS Key areas of research that were focused on at the 2022 PCF Retreat included: (i) the contributions of molecular and genomic factors to prostate cancer disparities; (ii) novel clinical trial updates; (iii) lessons from primary prostate cancer; (iv) lessons from single-cell studies; (v) genetic, epigenetic, epitranscriptomic and posttranslational mechanisms and clinical heterogeneity in prostate cancer; (vi) biology of neuroendocrine and lineage-plastic prostate cancer; (vii) next generation prostate cancer theranostics and combination therapies; (viii) the biology and therapeutic potential of targeting phosphoinositide 3-kinases pathways; (ix) combining immunomodulatory treatments for prostate cancer; (x) novel gamma delta (γδ) T-cell therapy platforms for oncology; and (xi) lessons from other cancers. CONCLUSIONS This article provides a summary of the presentations from the 2022 PCF Scientific Retreat. By disseminating this knowledge, we hope to enhance our understanding of the present research landscape and guide future strides in both prostate cancer research and patient care.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Howard R Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
11
|
Bobba KN, Bidkar AP, Wadhwa A, Meher N, Drona S, Sorlin AM, Bidlingmaier S, Zhang L, Wilson DM, Chan E, Greenland NY, Aggarwal R, VanBrocklin HF, He J, Chou J, Seo Y, Liu B, Flavell RR. Development of CD46 targeted alpha theranostics in prostate cancer using 134Ce/ 225Ac-Macropa-PEG 4-YS5. Theranostics 2024; 14:1344-1360. [PMID: 38389832 PMCID: PMC10879874 DOI: 10.7150/thno.92742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: 225Ac, a long-lived α-emitter with a half-life of 9.92 days, has garnered significant attention as a therapeutic radionuclide when coupled with monoclonal antibodies and other targeting vectors. Nevertheless, its clinical utility has been hampered by potential off-target toxicity, a lack of optimized chelators for 225Ac, and limitations in radiolabeling methods. In a prior study evaluating the effectiveness of CD46-targeted radioimmunotherapy, we found great therapeutic efficacy but also significant toxicity at higher doses. To address these challenges, we have developed a radioimmunoconjugate called 225Ac-Macropa-PEG4-YS5, incorporating a stable PEGylated linker to maximize tumoral uptake and increase tumor-to-background ratios. Our research demonstrates that this conjugate exhibits greater anti-tumor efficacy while minimizing toxicity in prostate cancer 22Rv1 tumors. Methods: We synthesized Macropa.NCS and Macropa-PEG4/8-TFP esters and prepared Macropa-PEG0/4/8-YS5 (with nearly ~1:1 ratio of macropa chelator to antibody YS5) as well as DOTA-YS5 conjugates. These conjugates were then radiolabeled with 225Ac in a 2 M NH4OAc solution at 30 °C, followed by purification using YM30K centrifugal purification. Subsequently, we conducted biodistribution studies and evaluated antitumor activity in nude mice (nu/nu) bearing prostate 22Rv1 xenografts in both single-dose and fractionated dosing studies. Micro-PET imaging studies were performed with 134Ce-Macropa-PEG0/4/8-YS5 in 22Rv1 xenografts for 7 days. Toxicity studies were also performed in healthy athymic nude mice. Results: As expected, we achieved a >95% radiochemical yield when labeling Macropa-PEG0/4/8-YS5 with 225Ac, regardless of the chelator ratios (ranging from 1 to 7.76 per YS5 antibody). The isolated yield exceeded 60% after purification. Such high conversions were not observed with the DOTA-YS5 conjugate, even at a higher ratio of 8.5 chelators per antibody (RCY of 83%, an isolated yield of 40%). Biodistribution analysis at 7 days post-injection revealed higher tumor uptake for the 225Ac-Macropa-PEG4-YS5 (82.82 ± 38.27 %ID/g) compared to other conjugates, namely 225Ac-Macropa-PEG0/8-YS5 (38.2 ± 14.4/36.39 ± 12.4 %ID/g) and 225Ac-DOTA-YS5 (29.35 ± 7.76 %ID/g). The PET Imaging of 134Ce-Macropa-PEG0/4/8-YS5 conjugates resulted in a high tumor uptake, and tumor to background ratios. In terms of antitumor activity, 225Ac-Macropa-PEG4-YS5 exhibited a substantial response, leading to prolonged survival compared to 225Ac-DOTA-YS5, particularly when administered at 4.625 kBq doses, in single or fractionated dose regimens. Chronic toxicity studies observed mild to moderate renal toxicity at 4.625 and 9.25 kBq doses. Conclusions: Our study highlights the promise of 225Ac-Macropa-PEG4-YS5 for targeted alpha particle therapy. The 225Ac-Macropa-PEG4-YS5 conjugate demonstrates improved biodistribution, reduced off-target binding, and enhanced therapeutic efficacy, particularly at lower doses, compared to 225Ac-DOTA-YS5. Incorporating theranostic 134Ce PET imaging further enhances the versatility of macropa-PEG conjugates, offering a more effective and safer approach to cancer treatment. Overall, this methodology has a high potential for broader clinical applications.
Collapse
Affiliation(s)
- Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States
| | - Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States
| | - Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States
| | - Suchi Drona
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States
| | - Alexandre M. Sorlin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States
| | - Scott Bidlingmaier
- Department of Anesthesia, University of California, San Francisco, California 94110, United States
| | - Li Zhang
- Department of Medicine and the Department of Epidemiology and Biostatistics, University of California, Berkeley, California, United States
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0981, United States
| | - Emily Chan
- Department of Pathology, University of California, San Francisco, California 94110, United States
| | - Nancy Y. Greenland
- Department of Pathology, University of California, San Francisco, California 94110, United States
| | - Rahul Aggarwal
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0981, United States
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California, United States
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0981, United States
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, 22908, United States
| | - Jonathan Chou
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0981, United States
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California, United States
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0981, United States
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, California 94110, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0981, United States
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0981, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, United States
| |
Collapse
|
12
|
Hongo H, Kosaka T, Takayama KI, Baba Y, Yasumizu Y, Ueda K, Suzuki Y, Inoue S, Beltran H, Oya M. G-protein signaling of oxytocin receptor as a potential target for cabazitaxel-resistant prostate cancer. PNAS NEXUS 2024; 3:pgae002. [PMID: 38250514 PMCID: PMC10799637 DOI: 10.1093/pnasnexus/pgae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Although the treatment armamentarium for patients with metastatic prostate cancer has improved recently, treatment options after progression on cabazitaxel (CBZ) are limited. To identify the mechanisms underlying CBZ resistance and therapeutic targets, we performed single-cell RNA sequencing of circulating tumor cells (CTCs) from patients with CBZ-resistant prostate cancer. Cells were clustered based on gene expression profiles. In silico screening was used to nominate candidate drugs for overcoming CBZ resistance in castration-resistant prostate cancer. CTCs were divided into three to four clusters, reflecting intrapatient tumor heterogeneity in refractory prostate cancer. Pathway analysis revealed that clusters in two cases showed up-regulation of the oxytocin (OXT) receptor-signaling pathway. Spatial gene expression analysis of CBZ-resistant prostate cancer tissues confirmed the heterogeneous expression of OXT-signaling molecules. Cloperastine (CLO) had significant antitumor activity against CBZ-resistant prostate cancer cells. Mass spectrometric phosphoproteome analysis revealed the suppression of OXT signaling specific to CBZ-resistant models. These results support the potential of CLO as a candidate drug for overcoming CBZ-resistant prostate cancer via the inhibition of OXT signaling.
Collapse
Affiliation(s)
- Hiroshi Hongo
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-001, Japan
| | - Yuto Baba
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yota Yasumizu
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-001, Japan
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1298, Japan
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
13
|
VanWyngarden MJ, Walker ZJ, Su Y, Perez de Acha O, Stevens BM, Forsberg PA, Mark TM, Matsui W, Liu B, Sherbenou DW. CD46-ADC Reduces the Engraftment of Multiple Myeloma Patient-Derived Xenografts. Cancers (Basel) 2023; 15:5335. [PMID: 38001595 PMCID: PMC10670432 DOI: 10.3390/cancers15225335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
An antibody-drug conjugate (ADC) targeting CD46 conjugated to monomethyl auristatin has a potent anti-myeloma effect in cell lines in vitro and in vivo, and patient samples treated ex vivo. Here, we tested if CD46-ADC may have the potential to target MM-initiating cells (MM-ICs). CD46 expression was measured on primary MM cells with a stem-like phenotype. A patient-derived xenograft (PDX) model was implemented utilizing implanted fetal bone fragments to provide a humanized microenvironment. Engraftment was monitored via serum human light chain ELISA, and at sacrifice via bone marrow and bone fragment flow cytometry. We then tested MM regeneration in PDX by treating mice with CD46-ADC or the nonbinding control-ADC. MM progenitor cells from patients that exhibit high aldehyde dehydrogenase activity also have a high expression of CD46. In PDX, newly diagnosed MM patient samples engrafted significantly more compared to relapsed/refractory samples. In mice transplanted with newly diagnosed samples, CD46-ADC treatment showed significantly decreased engraftment compared to control-ADC treatment. Our data further support the targeting of CD46 in MM. To our knowledge, this is the first study to show preclinical drug efficacy in a PDX model of MM. This is an important area for future study, as patient samples but not cell lines accurately represent intratumoral heterogeneity.
Collapse
Affiliation(s)
- Michael J. VanWyngarden
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.V.); (Z.J.W.); (O.P.d.A.); (B.M.S.); (P.A.F.); (T.M.M.)
| | - Zachary J. Walker
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.V.); (Z.J.W.); (O.P.d.A.); (B.M.S.); (P.A.F.); (T.M.M.)
| | - Yang Su
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Olivia Perez de Acha
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.V.); (Z.J.W.); (O.P.d.A.); (B.M.S.); (P.A.F.); (T.M.M.)
| | - Brett M. Stevens
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.V.); (Z.J.W.); (O.P.d.A.); (B.M.S.); (P.A.F.); (T.M.M.)
| | - Peter A. Forsberg
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.V.); (Z.J.W.); (O.P.d.A.); (B.M.S.); (P.A.F.); (T.M.M.)
| | - Tomer M. Mark
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.V.); (Z.J.W.); (O.P.d.A.); (B.M.S.); (P.A.F.); (T.M.M.)
| | - William Matsui
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78705, USA;
| | - Bin Liu
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Daniel W. Sherbenou
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.V.); (Z.J.W.); (O.P.d.A.); (B.M.S.); (P.A.F.); (T.M.M.)
| |
Collapse
|
14
|
Echavidre W, Fagret D, Faraggi M, Picco V, Montemagno C. Recent Pre-Clinical Advancements in Nuclear Medicine: Pioneering the Path to a Limitless Future. Cancers (Basel) 2023; 15:4839. [PMID: 37835533 PMCID: PMC10572076 DOI: 10.3390/cancers15194839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The theranostic approach in oncology holds significant importance in personalized medicine and stands as an exciting field of molecular medicine. Significant achievements have been made in this field in recent decades, particularly in treating neuroendocrine tumors using 177-Lu-radiolabeled somatostatin analogs and, more recently, in addressing prostate cancer through prostate-specific-membrane-antigen targeted radionuclide therapy. The promising clinical results obtained in these indications paved the way for the further development of this approach. With the continuous discovery of new molecular players in tumorigenesis, the development of novel radiopharmaceuticals, and the potential combination of theranostics agents with immunotherapy, nuclear medicine is poised for significant advancements. The strategy of theranostics in oncology can be categorized into (1) repurposing nuclear medicine agents for other indications, (2) improving existing radiopharmaceuticals, and (3) developing new theranostics agents for tumor-specific antigens. In this review, we provide an overview of theranostic development and shed light on its potential integration into combined treatment strategies.
Collapse
Affiliation(s)
- William Echavidre
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Daniel Fagret
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, CHU Grenoble Alpes, Inserm, 38000 Grenoble, France;
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Christopher Montemagno
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| |
Collapse
|
15
|
Alati S, Singh R, Pomper MG, Rowe SP, Banerjee SR. Preclinical Development in Radiopharmaceutical Therapy for Prostate Cancer. Semin Nucl Med 2023; 53:663-686. [PMID: 37468417 DOI: 10.1053/j.semnuclmed.2023.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Prostate cancer is a leading cause of cancer death in men worldwide. Among the various treatment options, radiopharmaceutical therapy has shown notable success in metastatic, castration-resistant disease. Radiopharmaceutical therapy is a systemic approach that delivers cytotoxic radiation doses precisely to the malignant tumors and/or tumor microenvironment. Therapeutic radiopharmaceuticals are composed of a therapeutic radionuclide and a high-affinity, tumor-targeting carrier molecule. Therapeutic radionuclides used in preclinical prostate cancer studies are primarily α-, β--, or Auger-electron-emitting radiometals or radiohalogens. Monoclonal antibodies, antibody-derived fragments, peptides, and small molecules are frequently used as tumor-targeting molecules. Over the years, several important membrane-associated proteases and receptors have been identified, validated, and subsequently used for preclinical radiotherapeutic development for prostate cancer. Prostate-specific membrane antigen (PSMA) is the most well-studied prostate cancer-associated protease in preclinical literature. PSMA-targeting radiotherapeutic agents are being investigated using high-affinity antibody- and small-molecule-based agents for safety and efficacy. Early generations of such agents were developed simply by replacing radionuclides of the imaging agents with therapeutic ones. Later, extensive structure-activity relationship studies were conducted to address the safety and efficacy issues obtained from initial patient data. Recent regulatory approval of the 177Lu-labeled low-molecular-weight agent, 177Lu-PSMA-617, is a significant accomplishment. Current preclinical experiments are focused on the structural modification of 177Lu-PSMA-617 and relevant investigational agents to increase tumor targeting and reduce off-target binding and toxicity in healthy organs. While lutetium-177 (177Lu) remains the most widely used radionuclide, radiolabeled analogs with iodine-131 (128I), yttrium-90 (89Y), copper-67 (67Cu), and terbium-161 (161Tb) have been evaluated as potential alternatives in recent years. In addition, agents carrying the α-particle-emitting radiohalogen, astatine-211 (211At), or radiometals, actinium-225 (225Ac), lead-212 (212Pb), radium-223 (223Ra), and thorium-227 (227Th), have been increasingly investigated in preclinical research. Besides PSMA-based radiotherapeutics, other prominent prostate cancer-related proteases, for example, human kallikrein peptidases (HK2 and HK3), have been explored using monoclonal-antibody-(mAb)-based targeting platforms. Several promising mAbs targeting receptors overexpressed on the different stages of prostate cancer have also been developed for radiopharmaceutical therapy, for example, Delta-like ligand 3 (DLL-3), CD46, and CUB domain-containing protein 1 (CDCP1). Progress is also being made using peptide-based targeting platforms for the gastrin-releasing peptide receptor (GRPR), a well-established membrane-associated receptor expressed in localized and metastatic prostate cancers. Furthermore, mechanism-driven combination therapies appear to be a burgeoning area in the context of preclinical prostate cancer radiotherapeutics. Here, we review the current developments related to the preclinical radiopharmaceutical therapy of prostate cancer. These are summarized in two major topics: (1) therapeutic radionuclides and (2) tumor-targeting approaches using monoclonal antibodies, small molecules, and peptides.
Collapse
Affiliation(s)
- Suresh Alati
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Rajan Singh
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD.
| |
Collapse
|
16
|
Bobba KN, Bidkar AP, Meher N, Fong C, Wadhwa A, Dhrona S, Sorlin A, Bidlingmaier S, Shuere B, He J, Wilson DM, Liu B, Seo Y, VanBrocklin HF, Flavell RR. Evaluation of 134Ce/ 134La as a PET Imaging Theranostic Pair for 225Ac α-Radiotherapeutics. J Nucl Med 2023; 64:1076-1082. [PMID: 37201957 PMCID: PMC10315697 DOI: 10.2967/jnumed.122.265355] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/07/2023] [Indexed: 05/20/2023] Open
Abstract
225Ac-targeted α-radiotherapy is a promising approach to treating malignancies, including prostate cancer. However, α-emitting isotopes are difficult to image because of low administered activities and a low fraction of suitable γ-emissions. The in vivo generator 134Ce/134La has been proposed as a potential PET imaging surrogate for the therapeutic nuclides 225Ac and 227Th. In this report, we detail efficient radiolabeling methods using the 225Ac-chelators DOTA and MACROPA. These methods were applied to radiolabeling of prostate cancer imaging agents, including PSMA-617 and MACROPA-PEG4-YS5, for evaluation of their in vivo pharmacokinetic characteristics and comparison to the corresponding 225Ac analogs. Methods: Radiolabeling was performed by mixing DOTA/MACROPA chelates with 134Ce/134La in NH4OAc, pH 8.0, at room temperature, and radiochemical yields were monitored by radio-thin-layer chromatography. In vivo biodistributions of 134Ce-DOTA/MACROPA.NH2 complexes were assayed through dynamic small-animal PET/CT imaging and ex vivo biodistribution studies over 1 h in healthy C57BL/6 mice, compared with free 134CeCl3 In vivo, preclinical imaging of 134Ce-PSMA-617 and 134Ce-MACROPA-PEG4-YS5 was performed on 22Rv1 tumor-bearing male nu/nu-mice. Ex vivo biodistribution was performed for 134Ce/225Ac-MACROPA-PEG4-YS5 conjugates. Results: 134Ce-MACROPA.NH2 demonstrated near-quantitative labeling with 1:1 ligand-to-metal ratios at room temperature, whereas a 10:1 ligand-to-metal ratio and elevated temperatures were required for DOTA. Rapid urinary excretion and low liver and bone uptake were seen for 134Ce/225Ac-DOTA/MACROPA. NH2 conjugates in comparison to free 134CeCl3 confirmed high in vivo stability. An interesting observation during the radiolabeling of tumor-targeting vectors PSMA-617 and MACROPA-PEG4-YS5-that the daughter 134La was expelled from the chelate after the decay of parent 134Ce-was confirmed through radio-thin-layer chromatography and reverse-phase high-performance liquid chromatography. Both conjugates, 134Ce-PSMA-617 and 134Ce-MACROPA-PEG4-YS5, displayed tumor uptake in 22Rv1 tumor-bearing mice. The ex vivo biodistribution of 134Ce-MACROPA.NH2, 134Ce-DOTA and 134Ce-MACROPA-PEG4-YS5 corroborated well with the respective 225Ac-conjugates. Conclusion: These results demonstrate the PET imaging potential for 134Ce/134La-labeled small-molecule and antibody agents. The similar 225Ac and 134Ce/134La-chemical and pharmacokinetic characteristics suggest that the 134Ce/134La pair may act as a PET imaging surrogate for 225Ac-based radioligand therapies.
Collapse
Affiliation(s)
- Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Anil P Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Cyril Fong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Suchi Dhrona
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Alex Sorlin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Scott Bidlingmaier
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Becka Shuere
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia;
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California; and
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California;
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California; and
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California; and
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| |
Collapse
|
17
|
Jang A, Lanka SM, Ruan HT, Kumar HLS, Jia AY, Garcia JA, Mian OY, Barata PC. Novel therapies for metastatic prostate cancer. Expert Rev Anticancer Ther 2023; 23:1251-1263. [PMID: 38030394 DOI: 10.1080/14737140.2023.2290197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Patients with metastatic prostate cancer, especially in the castrate-resistant setting, have a poor prognosis. Many agents have been approved for metastatic prostate cancer, such as androgen receptor pathway inhibitors, taxane-based chemotherapy, radiopharmaceuticals, and immunotherapy. However, prostate cancer remains the leading cause of cancer deaths in nonsmoking men. Fortunately, many more novel agents are under investigation. AREAS COVERED We provide an overview of the broad group of novel therapies for metastatic prostate cancer, with an emphasis on active and recruiting clinical trials that have been recently published and/or presented at national or international meetings. EXPERT OPINION The future for patients with metastatic prostate cancer is promising, with further development of novel therapies such as radiopharmaceuticals. Based on a growing understanding of prostate cancer biology, novel agents are being designed to overcome resistance to approved therapies. There are many trials using novel agents either as monotherapy or in combination with already approved agents with potential to further improve outcomes for men with advanced prostate cancer.
Collapse
Affiliation(s)
- Albert Jang
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Sree M Lanka
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hui Ting Ruan
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Hamsa L S Kumar
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Angela Y Jia
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Jorge A Garcia
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Omar Y Mian
- Translational Hematology and Oncology Research, Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Pedro C Barata
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
18
|
Bidkar AP, Wang S, Bobba KN, Chan E, Bidlingmaier S, Egusa EA, Peter R, Ali U, Meher N, Wadhwa A, Dhrona S, Dasari C, Beckford-Vera D, Su Y, Tang R, Zhang L, He J, Wilson DM, Aggarwal R, VanBrocklin HF, Seo Y, Chou J, Liu B, Flavell RR. Treatment of Prostate Cancer with CD46-targeted 225Ac Alpha Particle Radioimmunotherapy. Clin Cancer Res 2023; 29:1916-1928. [PMID: 36917693 PMCID: PMC10183825 DOI: 10.1158/1078-0432.ccr-22-3291] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
PURPOSE Radiopharmaceutical therapy is changing the standard of care in prostate cancer and other malignancies. We previously reported high CD46 expression in prostate cancer and developed an antibody-drug conjugate and immunoPET agent based on the YS5 antibody, which targets a tumor-selective CD46 epitope. Here, we present the preparation, preclinical efficacy, and toxicity evaluation of [225Ac]DOTA-YS5, a radioimmunotherapy agent based on the YS5 antibody. EXPERIMENTAL DESIGN [225Ac]DOTA-YS5 was developed, and its therapeutic efficiency was tested on cell-derived (22Rv1, DU145), and patient-derived (LTL-545, LTL484) prostate cancer xenograft models. Biodistribution studies were carried out on 22Rv1 tumor xenograft models to confirm the targeting efficacy. Toxicity analysis of the [225Ac]DOTA-YS5 was carried out on nu/nu mice to study short-term (acute) and long-term (chronic) toxicity. RESULTS Biodistribution study shows that [225Ac]DOTA-YS5 agent delivers high levels of radiation to the tumor tissue (11.64% ± 1.37%ID/g, 28.58% ± 10.88%ID/g, 29.35% ± 7.76%ID/g, and 31.78% ± 5.89%ID/g at 24, 96, 168, and 408 hours, respectively), compared with the healthy organs. [225Ac]DOTA-YS5 suppressed tumor size and prolonged survival in cell line-derived and patient-derived xenograft models. Toxicity analysis revealed that the 0.5 μCi activity levels showed toxicity to the kidneys, likely due to redistribution of daughter isotope 213Bi. CONCLUSIONS [225Ac]DOTA-YS5 suppressed the growth of cell-derived and patient-derived xenografts, including prostate-specific membrane antigen-positive and prostate-specific membrane antigen-deficient models. Overall, this preclinical study confirms that [225Ac]DOTA-YS5 is a highly effective treatment and suggests feasibility for clinical translation of CD46-targeted radioligand therapy in prostate cancer.
Collapse
Affiliation(s)
- Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Sinan Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Emily Chan
- Department of Pathology, University of California, San Francisco, California
| | - Scott Bidlingmaier
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Emily A. Egusa
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Robin Peter
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- Department of Nuclear Engineering, University of California, Berkeley, California
| | - Umama Ali
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Suchi Dhrona
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Chandrashekhar Dasari
- Department of Surgery, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Denis Beckford-Vera
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Yang Su
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Ryan Tang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Li Zhang
- Department of Medicine and the Department of Epidemiology and Biostatistics, University of California, Berkeley, California
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Rahul Aggarwal
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Jonathan Chou
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California
| |
Collapse
|
19
|
Ancheta LR, Shramm PA, Bouajram R, Higgins D, Lappi DA. Streptavidin-Saporin: Converting Biotinylated Materials into Targeted Toxins. Toxins (Basel) 2023; 15:toxins15030181. [PMID: 36977072 PMCID: PMC10059012 DOI: 10.3390/toxins15030181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023] Open
Abstract
Streptavidin-Saporin can be considered a type of ‘secondary’ targeted toxin. The scientific community has taken advantage of this conjugate in clever and fruitful ways using many kinds of biotinylated targeting agents to send saporin into a cell selected for elimination. Saporin is a ribosome-inactivating protein that causes inhibition of protein synthesis and cell death when delivered inside a cell. Streptavidin-Saporin, mixed with biotinylated molecules to cell surface markers, results in powerful conjugates that are used both in vitro and in vivo for behavior and disease research. Streptavidin-Saporin harnesses the ‘Molecular Surgery’ capability of saporin, creating a modular arsenal of targeted toxins used in applications ranging from the screening of potential therapeutics to behavioral studies and animal models. The reagent has become a well-published and validated resource in academia and industry. The ease of use and diverse functionality of Streptavidin-Saporin continues to have a significant impact on the life science industry.
Collapse
|
20
|
Mjaess G, Aoun F, Rassy E, Diamand R, Albisinni S, Roumeguère T. Antibody-Drug Conjugates in Prostate Cancer: Where Are we? Clin Genitourin Cancer 2023; 21:171-174. [PMID: 35999150 DOI: 10.1016/j.clgc.2022.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023]
Abstract
Antibody-drug conjugates (ADCs) reflect a new promising approach in prostate cancer, even more so after the practice-changing results in other malignancies, either hematologic or solid. ADCs consist of monoclonal antibodies (mAb) targeted at specific antigens overly expressed on cancer cells compared to normal cells. A cytotoxic payload is attached to the mAb using a stable linker. In prostate cancer, PSMA, STEAP1, TROP2, CD46 and B7-H3 are antigens currently being studied as targets for ADCs. In this paper, we discuss the composition of ADCs and focus on their application and challenges as treatment options in prostate cancer.
Collapse
Affiliation(s)
- Georges Mjaess
- Department of Urology, Hôpital Universitaire de Bruxelles, Brussels, Belgium.
| | - Fouad Aoun
- Department of Urology, Hotel-Dieu de France, Beirut, Lebanon
| | - Elie Rassy
- Department of Oncology, Gustave Roussy Institute, Paris, France
| | - Romain Diamand
- Department of Urology, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Simone Albisinni
- Department of Urology, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Thierry Roumeguère
- Department of Urology, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| |
Collapse
|
21
|
Martin FC, Dorff TB, Tran B. The new era of prostate-specific membrane antigen-directed immunotherapies and beyond in advanced prostate cancer: a review. Ther Adv Med Oncol 2023; 15:17588359231170474. [PMID: 37152424 PMCID: PMC10155011 DOI: 10.1177/17588359231170474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
The lack of success in prostate cancer from immune checkpoint inhibitors, which is likely multifactorial, has led to the development and investigation of a number of other novel immunotherapeutic techniques, including antibody-drug conjugates, T-cell redirected bispecific therapies, cancer vaccines and chimeric antigen receptor T-cell therapies. Prostate-specific membrane antigen (PSMA) is a tumour-associated antigen (TAA) that is highly expressed in metastatic prostate cancer and has been validated as an effective target for radionuclide treatment. But while PSMA has thus far been the 'front runner' target for these novel immunotherapeutic techniques, it may not be the ideal target for immunotherapy and there are other potential targetable TAAs that will require further exploration. This review will focus on these various PSMA-directed therapies, as well as other potential targets for immunotherapy beyond PSMA.
Collapse
Affiliation(s)
- Felicity C. Martin
- Department of Medical Oncology, Peter MacCallum Cancer
Centre, Melbourne, VIC, Australia
| | - Tanya B. Dorff
- Department of Medical Oncology and Therapeutics Research,
City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | |
Collapse
|
22
|
Wang Y, Wu N, Wang K, Liao Y, Guo J, Zhong B, Guo T, Liang J, Jiang N. Specific classification and new therapeutic targets for neuroendocrine prostate cancer: A patient-based, diagnostic study. Front Genet 2022; 13:955133. [PMID: 36118857 PMCID: PMC9479159 DOI: 10.3389/fgene.2022.955133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Neuroendocrine prostate cancer (NEPC) is an aggressive variant of prostate cancer (PC) that may arise de novo or in patients previously treated with hormonal therapies for prostate adenocarcinoma as a mechanism of resistance. In our investigation, there appeared to be a strong correlation between neuroendocrine differentiation prostate cancer (NEDPC) and NEPC. The objectives of this study included exploring whether NEDPC is an intermediate stage in the progression of high-risk prostate cancer (HRPC) to NEPC and identifying risk factors and new targets associated with survival in the treatment of NEPC.Methods: The selected prostate cancer patients were progressed to high-risk and characterized by neuroendocrine. We collected the clinical data and characteristics of patients with three types of cancer: the incidence of metastasis, site and time of metastasis, recurrence rate, related treatment methods, etc. The similarity and differences of the three groups were compared through experiment and database.Results: By analyzing the clinical data and immunohistochemical results, we found that there seems to be a clinical feature of neuroendocrine differentiation (NED) status in between when patients progress from PC to NEPC. Finding novel treatment targets would therefore be beneficial by taking into account NEDPC as the stage of PC progression prior to NEPC. The metastasis-free survival curve and the immunohistochemical results are informing us that NEDPC can be a pre-state for diagnosing NEPC.Conclusion: NEPC is a late PC symptom that is frequently disregarded and has a bad prognosis. Finding novel treatment targets would therefore be beneficial by taking into account NEDPC as the stage of PC progression prior to NEPC.
Collapse
Affiliation(s)
- YouZhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ning Wu
- Key Laboratory of Breast Cancer Prevention and Therapy, State Ministry of Education, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Hospital and Institute, Tianjin, China
| | - KeKe Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - YiHao Liao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - JiaNing Guo
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - BoQiang Zhong
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tao Guo
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - JiaMing Liang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: Ning Jiang,
| |
Collapse
|
23
|
Hayashi T, Hinata N. Current status and future prospects of antibody-drug conjugates in urological malignancies. Int J Urol 2022; 29:1100-1108. [PMID: 35581739 DOI: 10.1111/iju.14925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022]
Abstract
Antibody-drug conjugates represent a promising new treatment option that uses the targeting ability of an antibody to deliver cytotoxic drugs directly to tumors. Antibody-drug conjugates provide the opportunity to deliver drugs to antigen-expressing cancer cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows. To date, three antibody-drug conjugates have been approved by the US Food and Drug Administration, and many antibody-drug conjugates are under clinical development for urological malignancies. In this paper, we review the mechanism, history, and development of antibody-drug conjugates, and review the current landscape of antibody-drug conjugates in urological malignancies including 12 targets and 18 antibody-drug conjugates in prostate cancer, renal cancer, and urothelial cancer. Furthermore, we review the rational combination of antibody-drug conjugates with immune checkpoint inhibitors and consider future prospects to enhance the therapeutic activity of antibody-drug conjugates in urological malignancies.
Collapse
Affiliation(s)
- Tetsutaro Hayashi
- Department of Urology, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Nobuyuki Hinata
- Department of Urology, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| |
Collapse
|
24
|
Teicher BA, Morris J. Antibody-Drug Conjugate Targets, Drugs and Linkers. Curr Cancer Drug Targets 2022; 22:463-529. [PMID: 35209819 DOI: 10.2174/1568009622666220224110538] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates offer the possibility of directing powerful cytotoxic agents to a malignant tumor while sparing normal tissue. The challenge is to select an antibody target expressed exclusively or at highly elevated levels on the surface of tumor cells and either not all or at low levels on normal cells. The current review explores 78 targets that have been explored as antibody-drug conjugate targets. Some of these targets have been abandoned, 9 or more are the targets of FDA-approved drugs, and most remain active clinical interest. Antibody-drug conjugates require potent cytotoxic drug payloads, several of these small molecules are discussed, as are the linkers between the protein component and small molecule components of the conjugates. Finally, conclusions regarding the elements for the successful antibody-drug conjugate are discussed.
Collapse
Affiliation(s)
- Beverly A Teicher
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| | - Joel Morris
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| |
Collapse
|
25
|
Meng Q, Li B, Huang N, Wei S, Ren Q, Wu S, Li X, Chen R. Folic acid targets splenic extramedullary hemopoiesis to attenuate carbon black-induced coagulation-thrombosis potential. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127354. [PMID: 34634699 DOI: 10.1016/j.jhazmat.2021.127354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Due to its wide applications in tire and rubber products, carbon black (CB) implicates concerns on its safety during production, collection, and handling. Here we report that exposure CB, increases coagulation-thrombosis potential in a splenic extramedullary hemopoiesis (EMH)-dependent manner. Adult C57BL/6 mice are kept in whole-body inhalation chambers, and exposed to filtered room air (FRA) or CB for 28 consecutive days. CB exposure resulted in splenic EMH characterized with platelet precursor cells, megakaryocytes (MKs), hyperplasia and enhanced in vivo blood coagulation ability. Metabolomics analysis suggests significant enhance in PGE2 production but reduction in folic acid (FA) levels in murine serum following CB exposure. Mechanistically, activation of COX-dependent PGE2 production promotes IL-6 expression in splenic macrophages, which subsequently results in splenic EMH and increased platelet counts in circulation. Administration of FA protects the mice against CB-induced splenic EMH through inhibiting prostaglandin-endoperoxide synthase 2 (Ptgs2 or Cox2) and prostaglandin E synthase (Ptges) expression in splenic macrophages, eventually recover the coagulation capacity to normal level. The results strongly suggest the involvement of splenic EMH in response to CB exposure and subsequently increased coagulation-thrombosis potential. Supplementation with FA may be a candidate to prevent thrombosis potential attributable to CB exposure.
Collapse
Affiliation(s)
- Qingtao Meng
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, PR China
| | - Bin Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Nannan Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Shengnan Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Quanzhong Ren
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, PR China
| | - Shenshen Wu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, PR China
| | - Xiaobo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, PR China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
26
|
Veiga RN, de Oliveira JC, Gradia DF. PBX1: a key character of the hallmarks of cancer. J Mol Med (Berl) 2021; 99:1667-1680. [PMID: 34529123 DOI: 10.1007/s00109-021-02139-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Pre-B-cell leukemia homeobox transcription factor 1 (PBX1) was first identified as part of a fusion protein resulting from the chromosomal translocation t(1;19) in pre-B cell acute lymphoblastic leukemias. Since then, PBX1 has been associated with important developmental programs, and its expression dysregulation has been related to multifactorial disorders, including cancer. As PBX1 overexpression in many cancers is correlated to poor prognosis, we sought to understand how this transcription factor contributes to carcinogenesis, and to organize PBX1's roles in the hallmarks of cancer. There is enough evidence to associate PBX1 with at least five hallmarks: sustaining proliferative signaling, activating invasion and metastasis, inducing angiogenesis, resisting cell death, and deregulating cellular energetics. The lack of studies investigating a possible role for PBX1 on the remaining hallmarks made it impossible to defend or refute its contribution on them. However, the functions of some of the PBX1's transcription targets indicate a potential engagement of PBX1 in the avoidance of immune destruction and in the tumor-promoting inflammation hallmarks. Interestingly, PBX1 might be a player in tumor suppression by activating the transcription of some DNA damage response genes. This is the first review organizing PBX1 roles into the hallmarks of cancer. Thus, we encourage future studies to uncover the PBX1's underlying mechanisms to promote carcinogenesis, for it is a promising diagnostic and prognostic biomarker, as well as a potential target in cancer treatment.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
27
|
Liszewski MK, Atkinson JP. Membrane cofactor protein (MCP; CD46): deficiency states and pathogen connections. Curr Opin Immunol 2021; 72:126-134. [PMID: 34004375 PMCID: PMC8123722 DOI: 10.1016/j.coi.2021.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Membrane cofactor protein (MCP; CD46), a ubiquitously expressed complement regulatory protein, serves as a cofactor for serine protease factor I to cleave and inactivate C3b and C4b deposited on host cells. However, CD46 also plays roles in human reproduction, autophagy, modulating T cell activation and effector functions and is a member of the newly identified intracellular complement system (complosome). CD46 also is a receptor for 11 pathogens ('pathogen magnet'). While CD46 deficiencies contribute to inflammatory disorders, its overexpression in cancers and role as a receptor for some adenoviruses has led to its targeting by oncolytic agents and adenoviral-based therapeutic vectors, including coronavirus disease of 2019 (COVID-19) vaccines. This review focuses on recent advances in identifying disease-causing CD46 variants and its pathogen connections.
Collapse
Affiliation(s)
- M Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
28
|
Netti GS, Franzin R, Stasi A, Spadaccino F, Dello Strologo A, Infante B, Gesualdo L, Castellano G, Ranieri E, Stallone G. Role of Complement in Regulating Inflammation Processes in Renal and Prostate Cancers. Cells 2021; 10:cells10092426. [PMID: 34572075 PMCID: PMC8471315 DOI: 10.3390/cells10092426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/10/2023] Open
Abstract
For decades, the complement system, the central pillar of innate immune response, was recognized as a protective mechanism against cancer cells and the manipulation of complement effector functions in cancer setting offered a great opportunity to improve monoclonal antibody-based cancer immunotherapies. Similarly, cellular senescence, the process of cell cycle arrest that allow DNA and tissue repair has been traditionally thought to be able to suppress tumor progression. However, in recent years, extensive research has identified the complement system and cellular senescence as two main inducers of tumour growth in the context of chronic, persistent inflammation named inflammaging. Here, we discuss the data describing the ambivalent role of senescence in cancer with a particular focus on tumors that are strongly dependent on complement activation and can be understood by a new, senescence-related point of view: prostate cancer and renal cell carcinoma.
Collapse
Affiliation(s)
- Giuseppe Stefano Netti
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (F.S.)
| | - Rossana Franzin
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy; (R.F.); (A.S.); (L.G.)
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy; (R.F.); (A.S.); (L.G.)
| | - Federica Spadaccino
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (F.S.)
| | - Andrea Dello Strologo
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
| | - Barbara Infante
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy; (R.F.); (A.S.); (L.G.)
| | - Giuseppe Castellano
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
| | - Elena Ranieri
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (F.S.)
- Correspondence: (E.R.); (G.S.); Tel.: +39-0881-732611 (E.R.); +39-0881-736002 (G.S.)
| | - Giovanni Stallone
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
- Correspondence: (E.R.); (G.S.); Tel.: +39-0881-732611 (E.R.); +39-0881-736002 (G.S.)
| |
Collapse
|
29
|
Lu P, Ma Y, Wei S, Liang X. The dual role of complement in cancers, from destroying tumors to promoting tumor development. Cytokine 2021; 143:155522. [PMID: 33849765 DOI: 10.1016/j.cyto.2021.155522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022]
Abstract
Complement is an important branch of innate immunity; however, its biological significance goes far beyond the scope of simple nonspecific defense and involves a variety of physiological functions, including the adaptive immune response. In this review, to unravel the complex relationship between complement and tumors, we reviewed the high diversity of complement components in cancer and the heterogeneity of their production and activation pathways. In the tumor microenvironment, complement plays a dual regulatory role in the occurrence and development of tumors, affecting the outcomes of the immune response. We explored the differential expression levels of various complement components in human cancers via the Oncomine database. The gene expression profiling interactive analysis (GEPIA) tool and Kaplan-Meier plotter (K-M plotter) confirmed the correlation between differentially expressed complement genes and tumor prognosis. The tumor immune estimation resource (TIMER) database was used to statistically analyze the effect of complement on tumor immune infiltration. Finally, with a view to the role of complement in regulating T cell metabolism, complement could be a potential target for immunotherapies. Targeting complement to regulate the antitumor immune response seems to have potential for future treatment strategies. However, there are still many complex problems, such as who will benefit from this therapy and how to select the right therapeutic target and determine the appropriate drug concentration. The solutions to these problems depend on a deeper understanding of complement generation, activation, and regulatory and control mechanisms.
Collapse
Affiliation(s)
- Ping Lu
- Department of Medical Oncology, Hubei Cancer Hospital, the Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China
| | - Yifei Ma
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, the Seventh Clinical School Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China
| | - Shaozhong Wei
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, the Seventh Clinical School Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China.
| | - Xinjun Liang
- Department of Medical Oncology, Hubei Cancer Hospital, the Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China.
| |
Collapse
|
30
|
Rosellini M, Santoni M, Mollica V, Rizzo A, Cimadamore A, Scarpelli M, Storti N, Battelli N, Montironi R, Massari F. Treating Prostate Cancer by Antibody-Drug Conjugates. Int J Mol Sci 2021; 22:ijms22041551. [PMID: 33557050 PMCID: PMC7913806 DOI: 10.3390/ijms22041551] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is the most frequent malignancy in the worldwide male population; it is also one of the most common among all the leading cancer-related death causes. In the last two decades, the therapeutic scenario of metastatic castration-resistant prostate cancer has been enriched by the use of chemotherapy and androgen receptor signaling inhibitors (ARSI) and, more recently, by immunotherapy and poly(ADP–ribose) polymerase (PARP) inhibitors. At the same time, several trials have shown the survival benefits related to the administration of novel ARSIs among patients with non-castration-resistant metastatic disease along with nonmetastatic castration-resistant cancer too. Consequently, the therapeutic course of this malignancy has been radically expanded, ensuring survival benefits never seen before. Among the more recently emerging agents, the so-called “antibody–drug conjugates” (ADCs) are noteworthy because of their clinical practice changing outcomes obtained in the management of other malignancies (including breast cancer). The ADCs are novel compounds consisting of cytotoxic agents (also known as the payload) linked to specific antibodies able to recognize antigens expressed over cancer cells’ surfaces. As for prostate cancer, researchers are focusing on STEAP1, TROP2, PSMA, CD46 and B7-H3 as optimal antigens which may be targeted by ADCs. In this paper, we review the pivotal trials that have currently changed the therapeutic approach to prostate cancer, both in the nonmetastatic castration-resistant and metastatic settings. Therefore, we focus on recently published and ongoing trials designed to investigate the clinical activity of ADCs against prostate malignancy, characterizing these agents. Lastly, we briefly discuss some ADCs-related issues with corresponding strategies to overwhelm them, along with future perspectives for these promising novel compounds.
Collapse
Affiliation(s)
- Matteo Rosellini
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.R.); (V.M.); (A.R.)
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
- Correspondence: (M.S.); (F.M.)
| | - Veronica Mollica
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.R.); (V.M.); (A.R.)
| | - Alessandro Rizzo
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.R.); (V.M.); (A.R.)
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Marina Scarpelli
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Nadia Storti
- Direzione Sanitaria Azienda Sanitaria Unica Regionale, 60122 Ancona, Italy;
| | | | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Francesco Massari
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.R.); (V.M.); (A.R.)
- Correspondence: (M.S.); (F.M.)
| |
Collapse
|
31
|
Wang S, Li J, Hua J, Su Y, Beckford-Vera DR, Zhao W, Jayaraman M, Huynh TL, Zhao N, Wang YH, Huang Y, Qin F, Shen S, Gioeli D, Dreicer R, Sriram R, Egusa EA, Chou J, Feng FY, Aggarwal R, Evans MJ, Seo Y, Liu B, Flavell RR, He J. Molecular Imaging of Prostate Cancer Targeting CD46 Using ImmunoPET. Clin Cancer Res 2020; 27:1305-1315. [PMID: 33293372 DOI: 10.1158/1078-0432.ccr-20-3310] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE We recently identified CD46 as a novel therapeutic target in prostate cancer. In this study, we developed a CD46-targeted PET radiopharmaceutical, [89Zr]DFO-YS5, and evaluated its performance for immunoPET imaging in murine prostate cancer models. EXPERIMENTAL DESIGN [89Zr]DFO-YS5 was prepared and its in vitro binding affinity for CD46 was measured. ImmunoPET imaging was conducted in male athymic nu/nu mice bearing DU145 [AR-, CD46+, prostate-specific membrane antigen-negative (PSMA-)] or 22Rv1 (AR+, CD46+, PSMA+) tumors, and in NOD/SCID gamma mice bearing patient-derived adenocarcinoma xenograft, LTL-331, and neuroendocrine prostate cancers, LTL-331R and LTL-545. RESULTS [89Zr]DFO-YS5 binds specifically to the CD46-positive human prostate cancer DU145 and 22Rv1 xenografts. In biodistribution studies, the tumor uptake of [89Zr]DFO-YS5 was 13.3 ± 3.9 and 11.2 ± 2.5 %ID/g, respectively, in DU145 and 22Rv1 xenografts, 4 days postinjection. Notably, [89Zr]DFO-YS5 demonstrated specific uptake in the PSMA- and AR-negative DU145 model. [89Zr]DFO-YS5 also showed uptake in the patient-derived LTL-331 and -331R models, with particularly high uptake in the LTL-545 neuroendocrine prostate cancer tumors (18.8 ± 5.3, 12.5 ± 1.8, and 32 ± 5.3 %ID/g in LTL-331, LTL-331R, and LTL-545, respectively, at 4 days postinjection). CONCLUSIONS [89Zr]DFO-YS5 is an excellent PET imaging agent across a panel of prostate cancer models, including in both adenocarcinoma and neuroendocrine prostate cancer, both cell line- and patient-derived xenografts, and both PSMA-positive and -negative tumors. It demonstrates potential for clinical translation as an imaging agent, theranostic platform, and companion biomarker in prostate cancer.
Collapse
Affiliation(s)
- Sinan Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Jun Li
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia.,Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jun Hua
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia.,Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Yang Su
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Denis R Beckford-Vera
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Walter Zhao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Mayuri Jayaraman
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Ning Zhao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Yung-Hua Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Yangjie Huang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Fujun Qin
- Department of Pathology, University of Virginia, Charlottesville, Virginia
| | - Sui Shen
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia.,University of Virginia Cancer Center, Charlottesville, Virginia
| | - Robert Dreicer
- University of Virginia Cancer Center, Charlottesville, Virginia.,Departments of Medicine and Urology, University of Virginia, Charlottesville, Virginia
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Emily A Egusa
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Jonathan Chou
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Felix Y Feng
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Rahul Aggarwal
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Division of Hematology and Oncology, University of California, San Francisco, San Francisco, California
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, San Francisco, California. .,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California. .,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia. .,University of Virginia Cancer Center, Charlottesville, Virginia
| |
Collapse
|
32
|
Sherbenou DW, Su Y, Behrens CR, Aftab BT, Perez de Acha O, Murnane M, Bearrows SC, Hann BC, Wolf JL, Martin TG, Liu B. Potent Activity of an Anti-ICAM1 Antibody-Drug Conjugate against Multiple Myeloma. Clin Cancer Res 2020; 26:6028-6038. [PMID: 32917735 PMCID: PMC7669584 DOI: 10.1158/1078-0432.ccr-20-0400] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE New therapies have changed the outlook for patients with multiple myeloma, but novel agents are needed for patients who are refractory or relapsed on currently approved drug classes. Novel targets other than CD38 and BCMA are needed for new immunotherapy development, as resistance to daratumumab and emerging anti-BCMA approaches appears inevitable. One potential target of interest in myeloma is ICAM1. Naked anti-ICAM1 antibodies were active in preclinical models of myeloma and safe in patients, but showed limited clinical efficacy. Here, we sought to achieve improved targeting of multiple myeloma with an anti-ICAM1 antibody-drug conjugate (ADC). EXPERIMENTAL DESIGN Our anti-ICAM1 human mAb was conjugated to an auristatin derivative, and tested against multiple myeloma cell lines in vitro, orthotopic xenografts in vivo, and patient samples ex vivo. The expression of ICAM1 was also measured by quantitative flow cytometry in patients spanning from diagnosis to the daratumumab-refractory state. RESULTS The anti-ICAM1 ADC displayed potent anti-myeloma cytotoxicity in vitro and in vivo. In addition, we have verified that ICAM1 is highly expressed on myeloma cells and shown that its expression is further accentuated by the presence of bone marrow microenvironmental factors. In primary samples, ICAM1 is differentially overexpressed on multiple myeloma cells compared with normal cells, including daratumumab-refractory patients with decreased CD38. In addition, ICAM1-ADC showed selective cytotoxicity in multiple myeloma primary samples. CONCLUSIONS We propose that anti-ICAM1 ADC should be further studied for toxicity, and if safe, tested for clinical efficacy in patients with relapsed or refractory multiple myeloma.
Collapse
Affiliation(s)
- Daniel W Sherbenou
- Department of Medicine, University of California at San Francisco, California
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Yang Su
- Department of Anesthesia, University of California at San Francisco, California
| | | | - Blake T Aftab
- Department of Medicine, University of California at San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Olivia Perez de Acha
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Megan Murnane
- Department of Medicine, University of California at San Francisco, California
| | - Shelby C Bearrows
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Byron C Hann
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Jeffery L Wolf
- Department of Medicine, University of California at San Francisco, California
| | - Thomas G Martin
- Department of Medicine, University of California at San Francisco, California
| | - Bin Liu
- Department of Anesthesia, University of California at San Francisco, California.
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| |
Collapse
|
33
|
CD46 and Oncologic Interactions: Friendly Fire against Cancer. Antibodies (Basel) 2020; 9:antib9040059. [PMID: 33147799 PMCID: PMC7709105 DOI: 10.3390/antib9040059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/14/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022] Open
Abstract
One of the most challenging aspects of cancer therapeutics is target selection. Recently, CD46 (membrane cofactor protein; MCP) has emerged as a key player in both malignant transformation as well as in cancer treatments. Normally a regulator of complement activation, CD46 is co-expressed as four predominant isoforms on almost all cell types. CD46 is highly overexpressed on a variety of human tumor cells. Clinical and experimental data support an association between increased CD46 expression and malignant transformation and metastasizing potential. Further, CD46 is a newly discovered driver of metabolic processes and plays a role in the intracellular complement system (complosome). CD46 is also known as a pathogen magnet due to its role as a receptor for numerous microbes, including several species of measles virus and adenoviruses. Strains of these two viruses have been exploited as vectors for the therapeutic development of oncolytic agents targeting CD46. In addition, monoclonal antibody-drug conjugates against CD46 also are being clinically evaluated. As a result, there are multiple early-phase clinical trials targeting CD46 to treat a variety of cancers. Here, we review CD46 relative to these oncologic connections.
Collapse
|
34
|
Su Y, Zhang X, Bidlingmaier S, Behrens CR, Lee NK, Liu B. ALPPL2 Is a Highly Specific and Targetable Tumor Cell Surface Antigen. Cancer Res 2020; 80:4552-4564. [PMID: 32868383 PMCID: PMC7572689 DOI: 10.1158/0008-5472.can-20-1418] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022]
Abstract
Identification of tumor-specific cell surface antigens has proven challenging, as the vast majority of tumor-associated antigens are also expressed in normal tissues. In mesothelioma, we identified a highly specific tumor cell surface antigen that can be targeted for therapy development. Mesothelioma is caused by malignant transformation of the mesothelium, is incurable, and can be categorized into three histologic subtypes: epithelioid, biphasic, and sarcomatoid. To identity novel mesothelioma cell surface antigens with broad subtype coverage and high tissue specificity, we have previously selected phage antibody display libraries on live mesothelioma cells and tissues following counterselection on normal cells and identified a panel of human antibodies that bind all subtypes of mesothelioma, but not normal mesothelium. One of the antibodies, M25, showed high specificity against an antigen we identify here as ALPPL2. IHC on normal human tissues found that ALPPL2 is expressed only on placental trophoblasts, but not on any other normal tissues. This significant tissue specificity and broad tumor type coverage suggest that ALPPL2 could be an excellent cell surface target for therapeutic development against mesothelioma. To evaluate therapeutic potential of ALPPL2 targeting, an ALPPL2-targeted antibody-drug conjugate was developed and demonstrated potent and specific tumor killing in vitro and in vivo against both epithelioid and sarcomatoid mesothelioma. Thus, ALPPL2 belongs to a rare class of cell surface antigens classified as truly tumor specific and is well suited for therapy development against ALPPL2-expressing tumors. SIGNIFICANCE: These findings identify ALPP2 as a true tumor-specific cell surface antigen whose tissue specificity enables the development of novel therapies.
Collapse
Affiliation(s)
- Yang Su
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Xin Zhang
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Scott Bidlingmaier
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Christopher R Behrens
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Nam-Kyung Lee
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, San Francisco, California.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
35
|
Adenovirus Receptor Expression in Cancer and Its Multifaceted Role in Oncolytic Adenovirus Therapy. Int J Mol Sci 2020; 21:ijms21186828. [PMID: 32957644 PMCID: PMC7554712 DOI: 10.3390/ijms21186828] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic adenovirus therapy is believed to be a promising way to treat cancer patients. To be able to target tumor cells with an oncolytic adenovirus, expression of the adenovirus receptor on the tumor cell is essential. Different adenovirus types bind to different receptors on the cell, of which the expression can vary between tumor types. Pre-existing neutralizing immunity to human adenovirus species C type 5 (HAdV-C5) has hampered its therapeutic efficacy in clinical trials, hence several adenoviral vectors from different species are currently being developed as a means to evade pre-existing immunity. Therefore, knowledge on the expression of appropriate adenovirus receptors on tumor cells is important. This could aid in determining which tumor types would benefit most from treatment with a certain oncolytic adenovirus type. This review provides an overview of the known receptors for human adenoviruses and how their expression on tumor cells might be differentially regulated compared to healthy tissue, before and after standardized anticancer treatments. Mechanisms behind the up- or downregulation of adenovirus receptor expression are discussed, which could be used to find new targets for combination therapy to enhance the efficacy of oncolytic adenovirus therapy. Additionally, the utility of the adenovirus receptors in oncolytic virotherapy is examined, including their role in viral spread, which might even surpass their function as primary entry receptors. Finally, future directions are offered regarding the selection of adenovirus types to be used in oncolytic adenovirus therapy in the fight against cancer.
Collapse
|
36
|
He J, Feng J, Su Y, Seo Y, Liu B. Quantitative 99mTc Labeling Kit for HYNIC-Conjugated Single Chain Antibody Fragments Targeting Malignant Mesothelioma. Bioconjug Chem 2020; 31:1750-1755. [PMID: 32628464 DOI: 10.1021/acs.bioconjchem.0c00319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Single chain antibody fragment (scFv) is a promising agent for imaging and targeted therapy. The objective of the study is to evaluate a kit formulation for 99mTc labeling of scFv for tumor imaging. The scFv was engineered to contain a cysteine tag to accommodate the specific conjugation of HYNIC and subsequent 99mTc labeling. The labeling conditions were formulated to allow instantaneous one-pot quantitative labeling. The reproducibility of labeling was evaluated at various time points during kit storage at -20 °C. In vitro cell binding experiments and HPLC analysis were performed to assess binding affinity and radiolabel stability, respectively. In vivo tumor targeting study was performed in xenograft models with biodistribution studied at 1, 3, and 24 h post-injection. The optimized kit with 5 μg SnF2, pH 5.5, and 50 μg GH along with as low as 15 μg of HYNIC-cys-scFv provided high labeling yield (>95%), high specific activity (1.8 × 107 Ci/Mol), and robust reproducibility with shelf life up to 90 days when stored at -20 °C. The in vitro cell binding study showed the labeled scFv maintained the binding capability with an apparent KD of ∼27 nM. The animal study using tumor-bearing mice showed high tumor uptake at 16.9%ID/g 24 h post-injection along with rapid blood clearance (0.18%ID/g) and kidney excretion (44%ID/g), resulting in very high contrast (tumor/muscle >200:1). A kit formulation for 99mTc labeling of scFvs targeting mesothelioma was developed based on specific HYNIC conjugation and GH (Glucoheptonate) as a coligand, producing not only high specific activity, but also improved tumor uptake. This convenient one-pot labeling method has the potential for translation into clinical use and is applicable to other scFvs as well.
Collapse
Affiliation(s)
- Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States
| | - Jinjin Feng
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States
| | - Yang Su
- Department of Anesthesia, University of California, San Francisco, California 94143, United States
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143, United States
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, California 94143, United States.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143, United States
| |
Collapse
|
37
|
Kumar D, Romero Y, Schuck KN, Smalley H, Subedi B, Fleming SD. Drivers and regulators of humoral innate immune responses to infection and cancer. Mol Immunol 2020; 121:99-110. [PMID: 32199212 PMCID: PMC7207242 DOI: 10.1016/j.molimm.2020.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
The complement cascade consists of cell bound and serum proteins acting together to protect the host from pathogens, remove cancerous cells and effectively links innate and adaptive immune responses. Despite its usefulness in microbial neutralization and clearance of cancerous cells, excessive complement activation causes an immune imbalance and tissue damage in the host. Hence, a series of complement regulatory proteins present at a higher concentration in blood plasma and on cell surfaces tightly regulate the cascade. The complement cascade can be initiated by B-1 B cell production of natural antibodies. Natural antibodies arise spontaneously without any known exogenous antigenic or microbial stimulus and protect against invading pathogens, clear apoptotic cells, provide tissue homeostasis, and modulate adaptive immune functions. Natural IgM antibodies recognize microbial and cancer antigens and serve as an activator of complement mediated lysis. This review will discuss advances in complement activation and regulation in bacterial and viral infections, and cancer. We will also explore the crosstalk of natural antibodies with bacterial populations and cancer.
Collapse
MESH Headings
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Apoptosis/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Bacterial Infections/immunology
- Complement Activation
- Complement System Proteins/immunology
- Complement System Proteins/metabolism
- Humans
- Immunity, Humoral
- Immunity, Innate
- Immunoglobulin M/immunology
- Immunoglobulin M/metabolism
- Neoplasms/immunology
- Receptors, Complement/immunology
- Receptors, Complement/metabolism
- Tumor Escape
- Virus Diseases/immunology
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yeni Romero
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Kaitlynn N Schuck
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Haley Smalley
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Bibek Subedi
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
38
|
Idris M, Harmston N, Petretto E, Madan B, Virshup DM. Broad regulation of gene isoform expression by Wnt signaling in cancer. RNA (NEW YORK, N.Y.) 2019; 25:1696-1713. [PMID: 31506381 PMCID: PMC6859862 DOI: 10.1261/rna.071506.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/06/2019] [Indexed: 05/08/2023]
Abstract
Differential gene isoform expression is a ubiquitous mechanism to enhance proteome diversity and maintain cell homeostasis. Mechanisms such as splicing that drive gene isoform variability are highly dynamic and responsive to changes in cell signaling pathways. Wnt/β-catenin signaling has profound effects on cell activity and cell fate and is known to modify several splicing events by altering the expression of individual splicing factors. However, a global assessment of how extensively Wnt signaling regulates splicing and other mechanisms that determine mRNA isoform composition in cancer is lacking. We used deep time-resolved RNA-seq in two independent in vivo Wnt-addicted tumor models during treatment with the potent Wnt inhibitor ETC-159 and examined Wnt regulated splicing events and splicing regulators. We found 1025 genes that underwent Wnt regulated variable exon usage leading to isoform expression changes. This was accompanied by extensive Wnt regulated changes in the expression of splicing regulators. Many of these Wnt regulated events were conserved in multiple human cancers, and many were linked to previously defined cancer-associated splicing quantitative trait loci. This suggests that the Wnt regulated splicing events are components of fundamental oncogenic processes. These findings demonstrate the wide-ranging effects of Wnt signaling on the isoform composition of the cell and provides an extensive resource of expression changes of splicing regulators and gene isoforms regulated by Wnt signaling.
Collapse
Affiliation(s)
- Muhammad Idris
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857
| | - Nathan Harmston
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857
- Science Division, Yale-NUS College, Singapore, 138527
| | - Enrico Petretto
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857
| | - Babita Madan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857
| | - David M Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina 27705, USA
| |
Collapse
|
39
|
Li C, Lieber A. Adenovirus vectors in hematopoietic stem cell genome editing. FEBS Lett 2019; 593:3623-3648. [PMID: 31705806 PMCID: PMC10473235 DOI: 10.1002/1873-3468.13668] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022]
Abstract
Genome editing of hematopoietic stem cells (HSCs) represents a therapeutic option for a number of hematological genetic diseases, as HSCs have the potential for self-renewal and differentiation into all blood cell lineages. This review presents advances of genome editing in HSCs utilizing adenovirus vectors as delivery vehicles. We focus on capsid-modified, helper-dependent adenovirus vectors that are devoid of all viral genes and therefore exhibit an improved safety profile. We discuss HSC genome engineering for several inherited disorders and infectious diseases including hemoglobinopathies, Fanconi anemia, hemophilia, and HIV-1 infection by ex vivo and in vivo editing in transgenic mice, nonhuman primates, as well as in human CD34+ cells. Mechanisms of therapeutic gene transfer including episomal expression of designer nucleases and base editors, transposase-mediated random integration, and targeted homology-directed repair triggered integration into selected genomic safe harbor loci are also reviewed.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
40
|
Patel GK, Chugh N, Tripathi M. Neuroendocrine Differentiation of Prostate Cancer-An Intriguing Example of Tumor Evolution at Play. Cancers (Basel) 2019; 11:E1405. [PMID: 31547070 PMCID: PMC6826557 DOI: 10.3390/cancers11101405] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Our understanding of neuroendocrine prostate cancer (NEPC) has assumed a new perspective in light of the recent advances in research. Although classical NEPC is rarely seen in the clinic, focal neuroendocrine trans-differentiation of prostate adenocarcinoma occurs in about 30% of advanced prostate cancer (PCa) cases, and represents a therapeutic challenge. Even though our knowledge of the mechanisms that mediate neuroendocrine differentiation (NED) is still evolving, the role of androgen deprivation therapy (ADT) as a key driver of this phenomenon is increasingly becoming evident. In this review, we discuss the molecular, cellular, and therapeutic mediators of NED, and emphasize the role of the tumor microenvironment (TME) in orchestrating the phenotype. Understanding the role of the TME in mediating NED could provide us with valuable insights into the plasticity associated with the phenotype, and reveal potential therapeutic targets against this aggressive form of PCa.
Collapse
Affiliation(s)
- Girijesh Kumar Patel
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Natasha Chugh
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Manisha Tripathi
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
41
|
Geller A, Yan J. The Role of Membrane Bound Complement Regulatory Proteins in Tumor Development and Cancer Immunotherapy. Front Immunol 2019; 10:1074. [PMID: 31164885 PMCID: PMC6536589 DOI: 10.3389/fimmu.2019.01074] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
It has long been understood that the control and surveillance of tumors within the body involves an intricate dance between the adaptive and innate immune systems. At the center of the interplay between the adaptive and innate immune response sits the complement system—an evolutionarily ancient response that aids in the destruction of microorganisms and damaged cells, including cancer cells. Membrane-bound complement regulatory proteins (mCRPs), such as CD46, CD55, and CD59, are expressed throughout the body in order to prevent over-activation of the complement system. These mCRPs act as a double-edged sword however, as they can also over-regulate the complement system to the extent that it is no longer effective at eliminating cancerous cells. Recent studies are now indicating that mCRPs may function as a biomarker of a malignant transformation in numerous cancer types, and further, are being shown to interfere with anti-tumor treatments. This highlights the critical roles that therapeutic blockade of mCRPs can play in cancer treatment. Furthermore, with the complement system having the ability to both directly and indirectly control adaptive T-cell responses, the use of a combinatorial approach of complement-related therapy along with other T-cell activating therapies becomes a logical approach to treatment. This review will highlight the biomarker-related role that mCRP expression may have in the classification of tumor phenotype and predicted response to different anti-cancer treatments in the context of an emerging understanding that complement activation within the Tumor Microenvironment (TME) is actually harmful for tumor control. We will discuss what is known about complement activation and mCRPs relating to cancer and immunotherapy, and will examine the potential for combinatorial approaches of anti-mCRP therapy with other anti-tumor therapies, especially checkpoint inhibitors such as anti PD-1 and PD-L1 monoclonal antibodies (mAbs). Overall, mCRPs play an essential role in the immune response to tumors, and understanding their role in the immune response, particularly in modulating currently used cancer therapeutics may lead to better clinical outcomes in patients with diverse cancer types.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jun Yan
- Immuno-Oncology Program, Department of Medicine, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
42
|
Pio R, Ajona D, Ortiz-Espinosa S, Mantovani A, Lambris JD. Complementing the Cancer-Immunity Cycle. Front Immunol 2019; 10:774. [PMID: 31031765 PMCID: PMC6473060 DOI: 10.3389/fimmu.2019.00774] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Reactivation of cytotoxic CD8+ T-cell responses has set a new direction for cancer immunotherapy. Neutralizing antibodies targeting immune checkpoint programmed cell death protein 1 (PD-1) or its ligand (PD-L1) have been particularly successful for tumor types with limited therapeutic options such as melanoma and lung cancer. However, reactivation of T cells is only one step toward tumor elimination, and a substantial fraction of patients fails to respond to these therapies. In this context, combination therapies targeting more than one of the steps of the cancer-immune cycle may provide significant benefits. To find the best combinations, it is of upmost importance to understand the interplay between cancer cells and all the components of the immune response. This review focuses on the elements of the complement system that come into play in the cancer-immunity cycle. The complement system, an essential part of innate immunity, has emerged as a major regulator of cancer immunity. Complement effectors such as C1q, anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1, have been associated with tolerogenic cell death and inhibition of antitumor T-cell responses through the recruitment and/or activation of immunosuppressive cell subpopulations such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), or M2 tumor-associated macrophages (TAMs). Evidence is provided to support the idea that complement blocks many of the effector routes associated with the cancer-immunity cycle, providing the rationale for new therapeutic combinations aimed to enhance the antitumor efficacy of anti-PD-1/PD-L1 checkpoint inhibitors.
Collapse
Affiliation(s)
- Ruben Pio
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Daniel Ajona
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sergio Ortiz-Espinosa
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
43
|
Lee NK, Su Y, Bidlingmaier S, Liu B. Manipulation of Cell-Type Selective Antibody Internalization by a Guide-Effector Bispecific Design. Mol Cancer Ther 2019; 18:1092-1103. [PMID: 30962321 DOI: 10.1158/1535-7163.mct-18-1313] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
Cell-type-specific intracellular payload delivery is desired for antibody-based-targeted therapy development. However, tumor-specific internalizing antigens are rare to find, and even rarer for those that are expressed at uniformly high levels. We constructed a bispecific antibody that is composed of a rapidly internalizing antibody binding to a tumor-associated antigen, ephrin receptor A2 (EphA2), and a noninternalizing antibody binding to a highly expressed tumor-associated antigen, activated leukocyte cell adhesion molecule (ALCAM). We found that the overall internalization property of the bispecific is profoundly impacted by the relative surface expression level (antigen density ratio) of EphA2 versus ALCAM. When the EphA2-to-ALCAM ratio is greater than a threshold level (1:5), the amount of the bispecific taken into the tumor cell exceeds what is achieved by either the monoclonal internalizing antibody or a mixture of the two antibodies, showing a bispecific-dependent amplification effect where a small amount of the internalizing antigen EphA2 induces internalization of a larger amount of the noninternalizing antigen ALCAM. When the ratio is below the threshold, EphA2 can be rendered noninternalizing by the presence of excess ALCAM on the same cell surface. We constructed a bispecific antibody-drug conjugate (ADC) based on the above bispecific design and found that the bispecific ADC is more potent than monospecific ADCs in tumor cell killing both in vitro and in vivo Thus, the internalizing property of a cell surface antigen can be manipulated in either direction by a neighboring antigen, and this phenomenon can be exploited for therapeutic targeting.
Collapse
Affiliation(s)
- Nam-Kyung Lee
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Yang Su
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Bin Liu
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.
| |
Collapse
|