1
|
Stewart CG, Hilkin BM, Gansemer ND, Adam RJ, Dick DW, Sunderland JJ, Stoltz DA, Zabner J, Abou Alaiwa MH. Mucociliary clearance is impaired in small airways of cystic fibrosis pigs. Am J Physiol Lung Cell Mol Physiol 2024; 327:L415-L422. [PMID: 39104314 PMCID: PMC11482522 DOI: 10.1152/ajplung.00010.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder characterized by recurrent airway infections, inflammation, impaired mucociliary clearance, and progressive decline in lung function. The disease may start in the small airways; however, this is difficult to prove due to the limited accessibility of the small airways with the current single-photon mucociliary clearance assay. Here, we developed a dynamic positron emission tomography assay with high spatial and temporal resolution. We tested that mucociliary clearance is abnormal in the small airways of newborn cystic fibrosis pigs. Clearance of [68Ga]-tagged macroaggregated albumin from small airways started immediately after delivery and continued for the duration of the study. Initial clearance was fast but slowed down a few minutes after delivery. Cystic fibrosis pigs' small airways cleared significantly less than non-CF pigs' small airways (non-CF 25.1 ± 3.1% vs. CF 14.6 ± 0.1%). Stimulation of the cystic fibrosis airways with the purinergic secretagogue uridine-5'-triphosphate (UTP) further impaired clearance (non-CF with UTP 20.9 ± 0.3% vs. CF with UTP 13.0 ± 1.8%). None of the cystic fibrosis pigs treated with UTP (n = 6) cleared more than 20% of the delivered dose. These data indicate that mucociliary clearance in the small airways is fast and can easily be missed if the assay is not sensitive enough. The data also indicate that mucociliary clearance is impaired in the small airways of cystic fibrosis pigs. This defect is exacerbated by stimulation of mucus secretions with purinergic agonists.NEW & NOTEWORTHY We developed a novel positron emission tomography scan assay with unprecedented temporal and spatial resolution to measure mucociliary clearance in the small airways. We proved a long-standing but unproven assertion that mucociliary clearance is inherently abnormal in the small airways of newborn cystic fibrosis piglets that are otherwise free of infection or inflammation. This technique can be easily extended to other airway diseases such as asthma, idiopathic pulmonary fibrosis, or chronic obstructive pulmonary disease.
Collapse
Grants
- HL136813 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL135433 NHLBI NIH HHS
- P30 CA086862 NCI NIH HHS
- HL051670 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL091842 NHLBI NIH HHS
- R01 HL136813 NHLBI NIH HHS
- HL167025 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL051670 NHLBI NIH HHS
- R01 HL167025 NHLBI NIH HHS
- HL135433 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ABOU20A0-KB Cystic Fibrosis Foundation (CFF)
- HL091842 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Carley G Stewart
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Brieanna M Hilkin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Nicholas D Gansemer
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ryan J Adam
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - David W Dick
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - John J Sunderland
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - David A Stoltz
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Joseph Zabner
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Mahmoud H Abou Alaiwa
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
2
|
Mall MA, Burgel PR, Castellani C, Davies JC, Salathe M, Taylor-Cousar JL. Cystic fibrosis. Nat Rev Dis Primers 2024; 10:53. [PMID: 39117676 DOI: 10.1038/s41572-024-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Cystic fibrosis is a rare genetic disease caused by mutations in CFTR, the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). The discovery of CFTR in 1989 has enabled the unravelling of disease mechanisms and, more recently, the development of CFTR-directed therapeutics that target the underlying molecular defect. The CFTR protein functions as an ion channel that is crucial for correct ion and fluid transport across epithelial cells lining the airways and other organs. Consequently, CFTR dysfunction causes a complex multi-organ disease but, to date, most of the morbidity and mortality in people with cystic fibrosis is due to muco-obstructive lung disease. Cystic fibrosis care has long been limited to treating symptoms using nutritional support, airway clearance techniques and antibiotics to suppress airway infection. The widespread implementation of newborn screening for cystic fibrosis and the introduction of a highly effective triple combination CFTR modulator therapy that has unprecedented clinical benefits in up to 90% of genetically eligible people with cystic fibrosis has fundamentally changed the therapeutic landscape and improved prognosis. However, people with cystic fibrosis who are not eligible based on their CFTR genotype or who live in countries where they do not have access to this breakthrough therapy remain with a high unmet medical need.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany.
- German Centre for Lung Research (DZL), Associated Partner Site Berlin, Berlin, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany.
| | - Pierre-Régis Burgel
- Université Paris Cité and Institut Cochin, Inserm U1016, Paris, France
- Department of Respiratory Medicine and National Reference Center for Cystic Fibrosis, Cochin Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Carlo Castellani
- IRCCS Istituto Giannina Gaslini, Cystic Fibrosis Center, Genoa, Italy
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, London, UK
- St Thomas' NHS Trust, London, UK
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Jennifer L Taylor-Cousar
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
- Division of Paediatric Pulmonary Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
3
|
Stewart CG, Hilkin BM, Gansemer ND, Dick DW, Sunderland JJ, Stoltz DA, Abou Alaiwa MH, Zabner J. Mucociliary Clearance is Impaired in Small Airways of Cystic Fibrosis Pigs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595427. [PMID: 38826411 PMCID: PMC11142153 DOI: 10.1101/2024.05.22.595427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Rationale Cystic fibrosis is a genetic disorder characterized by recurrent airway infections, inflammation, and progressive decline in lung function. Autopsy and spirometry data suggest that cystic fibrosis may start in the small airways which, due to the fractal nature of the airways, account for most of the airway tree surface area. However, they are not easily accessible for testing. Objectives Here, we tested the hypothesis that mucociliary clearance is abnormal in the small airways of newborn cystic fibrosis pigs. Methods Current mucociliary clearance assays are limited therefore we developed a dynamic positron emission tomography scan assay with high spatial and temporal resolution. Each study was accompanied by a high-resolution computed tomography scan that helped identify the thin outer region of the lung that contained small airways. Measurements and Main Results Clearance of aerosolized [ 68 Ga]macro aggregated albumin from distal airways occurred within minutes after delivery and followed a two-phase process. In cystic fibrosis pigs, both early and late clearance rates were slower. Stimulation of the cystic fibrosis airways with the purinergic agonist UTP further impaired late clearance. Only 1 cystic fibrosis pig treated with UTP out of 6 cleared more than 20% of the delivered dose. Conclusions These data indicate that mucociliary transport in the small airways is fast and can easily be missed if the acquisition is not fast enough. The data also indicate that mucociliary transport is impaired in small airways of cystic fibrosis pigs. This defect is exacerbated by stimulation of mucus secretions with purinergic agonists.
Collapse
|
4
|
Gangadharan Nambiar G, Gonzalez Szachowicz S, Zirbes CF, Hill JJ, Powers LS, Meyerholz DK, Thornell IM, Stoltz DA, Fischer AJ. Pancreatic enzymes digest obstructive meconium from cystic fibrosis pig intestines. Front Pediatr 2024; 12:1387171. [PMID: 38665380 PMCID: PMC11043547 DOI: 10.3389/fped.2024.1387171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Meconium ileus (MI) is a life-threatening obstruction of the intestines affecting ∼15% of newborns with cystic fibrosis (CF). Current medical treatments for MI often fail, requiring surgical intervention. MI typically occurs in newborns with pancreatic insufficiency from CF. Meconium contains mucin glycoprotein, a potential substrate for pancreatic enzymes or mucolytics. Our study aim was to determine whether pancreatic enzymes in combination with mucolytic treatments dissolve obstructive meconium using the CF pig model. Methods We collected meconium from CF pigs at birth and submerged it in solutions with and without pancreatic enzymes, including normal saline, 7% hypertonic saline, and the reducing agents N-acetylcysteine (NAC) and dithiothreitol (DTT). We digested meconium at 37 °C with agitation, and measured meconium pigment release by spectrophotometry and residual meconium solids by filtration. Results and discussion In CF pigs, meconium appeared as a solid pigmented mass obstructing the ileum. Meconium microscopically contained mucus glycoprotein, cellular debris, and bile pigments. Meconium fragments released pigments with maximal absorption at 405 nm after submersion in saline over approximately 8 h. Pancreatic enzymes significantly increased pigment release and decreased residual meconium solids. DTT did not improve meconium digestion and the acidic reducing agent NAC worsened digestion. Pancreatic enzymes digested CF meconium best at neutral pH in isotonic saline. We conclude that pancreatic enzymes digest obstructive meconium from CF pigs, while hydrating or reducing agents alone were less effective. This work suggests a potential role for pancreatic enzymes in relieving obstruction due to MI in newborns with CF.
Collapse
Affiliation(s)
- Gopinathan Gangadharan Nambiar
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States
- Department of Pediatrics, East Tennessee State University, Johnson City, TN, United States
| | | | - Christian F. Zirbes
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Jared J. Hill
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Linda S. Powers
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - David K. Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Ian M. Thornell
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - David A. Stoltz
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Anthony J. Fischer
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
5
|
STOLTZ DAVIDA. INSIGHTS INTO THE ORIGINS OF CYSTIC FIBROSIS LUNG DISEASE. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2024; 134:29-36. [PMID: 39135587 PMCID: PMC11316882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this paper, I will discuss recent studies using a cystic fibrosis pig model to better understand the origins of cystic fibrosis lung disease. Specifically, I will review our work investigating how loss of the cystic fibrosis transmembrane conductance regulator function (CFTR) impairs mucociliary transport in the cystic fibrosis airway. These studies reveal new insights into the early, underlying mechanisms of cystic fibrosis lung disease and could lead to novel therapeutic interventions.
Collapse
|
6
|
Nouri HR, Schaunaman N, Kraft M, Li L, Numata M, Chu HW. Tollip deficiency exaggerates airway type 2 inflammation in mice exposed to allergen and influenza A virus: role of the ATP/IL-33 signaling axis. Front Immunol 2023; 14:1304758. [PMID: 38124753 PMCID: PMC10731025 DOI: 10.3389/fimmu.2023.1304758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Toll-interacting protein (Tollip) is a negative regulator of the pro-inflammatory response to viruses, including influenza A virus (IAV). Genetic variation of Tollip has been associated with reduced airway epithelial Tollip expression and poor lung function in patients with asthma. Whether Tollip deficiency exaggerates type 2 inflammation (e.g., eosinophils) and viral infection in asthma remains unclear. We sought to address this critical, but unanswered question by using a Tollip deficient mouse asthma model with IAV infection. Further, we determined the underlying mechanisms by focusing on the role of the ATP/IL-33 signaling axis. Wild-type and Tollip KO mice were intranasally exposed to house dust mite (HDM) and IAV with or without inhibitors for IL-33 (i.e., soluble ST2, an IL-33 decoy receptor) and ATP signaling (i.e., an antagonist of the ATP receptor P2Y13). Tollip deficiency amplified airway type 2 inflammation (eosinophils, IL-5, IL-13 and mucins), and the release of ATP and IL-33. Blocking ATP receptor P2Y13 decreased IL-33 release during IAV infection in HDM-challenged Tollip KO mice. Furthermore, soluble ST2 attenuated airway eosinophilic inflammation in Tollip KO mice treated with HDM and IAV. HDM challenges decreased lung viral load in wild-type mice, but Tollip deficiency reduced the protective effects of HDM challenges on viral load. Our data suggests that during IAV infection, Tollip deficiency amplified type 2 inflammation and delayed viral clearance, in part by promoting ATP signaling and subsequent IL-33 release. Our findings may provide several therapeutic targets, including ATP and IL-33 signaling inhibition for attenuating excessive airway type 2 inflammation in human subjects with Tollip deficiency and IAV infection.
Collapse
Affiliation(s)
- Hamid Reza Nouri
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | | | - Monica Kraft
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Liwu Li
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States
| | - Mari Numata
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
7
|
Bos MF, Ermund A, Hansson GC, de Graaf J. Goblet cell interactions reorient bundled mucus strands for efficient airway clearance. PNAS NEXUS 2023; 2:pgad388. [PMID: 38024407 PMCID: PMC10661087 DOI: 10.1093/pnasnexus/pgad388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
The respiratory tract of larger animals is cleared by sweeping bundled strands along the airway surface. These bundled strands can be millimetric in length and consist of MUC5B mucin. They are produced by submucosal glands, and upon emerging from these glands, the long axis of the bundled strands is oriented along the cilia-mediated flow toward the oral cavity. However, after release, the bundled strands are found to have turned orthogonal to the flow, which maximizes their clearance potential. How this unexpected reorientation is accomplished is presently not well understood. Recent experiments suggest that the reorientation process involves bundled strands sticking to MUC5AC mucus threads, which are tethered to the goblet cells. Such goblet cells are present in small numbers throughout the airway epithelium. Here, we develop a minimal model for reorientation of bundled mucus strands through adhesive interactions with surface goblet cells. Our simulations reveal that goblet cell interactions can reorient the bundled strands within 10 mm of release-making reorientation on the length scale of the tracheal tube feasible-and can stabilize the orthogonal orientation. Our model also reproduces other experimental observations such as strong velocity fluctuations and significant slow-down of the bundled strand with respect to the cilia-mediated flow. We further provide insight into the strand turning mechanism by examining the effect of strand shape on the impulse exerted by a single goblet cell. We conclude that goblet cell-mediated reorientation is a viable route for bundled strand reorientation, which should be further validated in future experiment.
Collapse
Affiliation(s)
- Meike F Bos
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden
| | - Joost de Graaf
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| |
Collapse
|
8
|
Shah VS, Hou J, Vinarsky V, Xu J, Surve MV, Lin CP, Rajagopal J. Autofluorescence imaging permits label-free cell type assignment and reveals the dynamic formation of airway secretory cell associated antigen passages (SAPs). eLife 2023; 12:e84375. [PMID: 36994985 PMCID: PMC10154029 DOI: 10.7554/elife.84375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
The specific functional properties of a tissue are distributed amongst its component cell types. The various cells act coherently, as an ensemble, in order to execute a physiologic response. Modern approaches for identifying and dissecting novel physiologic mechanisms would benefit from an ability to identify specific cell types in live tissues that could then be imaged in real time. Current techniques require the use of fluorescent genetic reporters that are not only cumbersome, but which only allow the study of three or four cell types at a time. We report a non-invasive imaging modality that capitalizes on the endogenous autofluorescence signatures of the metabolic cofactors NAD(P)H and FAD. By marrying morphological characteristics with autofluorescence signatures, all seven of the airway epithelial cell types can be distinguished simultaneously in mouse tracheal explants in real time. Furthermore, we find that this methodology for direct cell type-specific identification avoids pitfalls associated with the use of ostensibly cell type-specific markers that are, in fact, altered by clinically relevant physiologic stimuli. Finally, we utilize this methodology to interrogate real-time physiology and identify dynamic secretory cell associated antigen passages (SAPs) that form in response to cholinergic stimulus. The identical process has been well documented in the intestine where the dynamic formation of SAPs and goblet cell associated antigen passages (GAPs) enable luminal antigen sampling. Airway secretory cells with SAPs are frequently juxtaposed to antigen presenting cells, suggesting that airway SAPs, like their intestinal counterparts, not only sample antigen but convey their cargo for immune cell processing.
Collapse
Affiliation(s)
- Viral S Shah
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General HospitalBostonUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Jue Hou
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Vladimir Vinarsky
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Jiajie Xu
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Manalee V Surve
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Jayaraj Rajagopal
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General HospitalBostonUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Klarman Cell Observatory, Broad InstituteCambridgeUnited States
| |
Collapse
|
9
|
Rodriguez-Piñeiro AM, Jaudas F, Klymiuk N, Bähr A, Hansson GC, Ermund A. Proteome of airway surface liquid and mucus in newborn wildtype and cystic fibrosis piglets. Respir Res 2023; 24:83. [PMID: 36927357 PMCID: PMC10022022 DOI: 10.1186/s12931-023-02381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The respiratory tract is protected from inhaled particles and microbes by mucociliary clearance, mediated by the mucus and the cilia creating a flow to move the mucus cephalad. Submucosal glands secrete linear MUC5B mucin polymers and because they pass through the gland duct before reaching the airway surface, bundled strands of 1000-5000 parallel molecules exit the glands. In contrast, the surface goblet cells secrete both MUC5AC and MUC5B. METHODS We used mass-spectrometry based proteomic analysis of unstimulated and carbachol stimulated newborn wild-type (WT) and cystic fibrosis transmembrane conductance regulator (CFTR) null (CF) piglet airways to study proteins in the airway surface liquid and mucus, to investigate if levels of MUC5AC and MUC5B were affected by carbachol stimulation and whether the proteins clustered according to function. RESULTS Proteins in the first four extracted fractions clustered together and the fifth fraction contained the mucus cluster, mucins and other proteins known to associate with mucins, whereas the traditional airway surface liquid proteins clustered to fraction 1-4 and were absent from the mucus fraction. Carbachol stimulation resulted in increased MUC5AC and MUC5B. CONCLUSIONS These results indicate a distinct separation between proteins in the washable surface liquid and the mucus fraction. In fractions 1-4 from newborn CF piglets an additional cluster containing acute phase proteins was observed, suggesting an early inflammatory response in CF piglets. Alternatively, increased levels of these proteins could indicate altered lung development in the CF piglets. This observation suggests that CF airway disease is present at birth and thus, treatment should commence directly after diagnosis.
Collapse
Affiliation(s)
- Ana M Rodriguez-Piñeiro
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Florian Jaudas
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Nikolai Klymiuk
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Andrea Bähr
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
10
|
Fundamental and translational research in Cystic Fibrosis - why we still need it. J Cyst Fibros 2023; 22 Suppl 1:S1-S4. [PMID: 36577595 DOI: 10.1016/j.jcf.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Clinical treatments for cystic fibrosis (CF) underwent significant changes in the last decade as therapies targeting the basic defect in the CFTR protein were approved. Significant scientific progress has also been made in several other areas that may lead in the future to novel therapeutic approaches that can help fight CF in all individuals living with this disease. Thus, focusing on fundamental research in the CF field has and will continue to be of great importance. This has been one of the aims of the European Cystic Fibrosis Society (ECFS), which has promoted the ECFS Basic Science Conference (BSC) every year since 2004. This special issue covers the topics featured and discussed at the 17th ECFS BSC, held in Albufeira (Portugal) in March 2022, and highlights advances in understanding CFTR, in using personalized medicine, and in developing innovative strategies to identify breakthrough therapies. This introduction highlights the topics presented throughout this special issue, thereby underscoring the relevance of fundamental research in CF.
Collapse
|
11
|
Ehre C, Hansson GC, Thornton DJ, Ostedgaard LS. Mucus aberrant properties in CF: Insights from cells and animal models. J Cyst Fibros 2023; 22 Suppl 1:S23-S26. [PMID: 36117114 PMCID: PMC10018425 DOI: 10.1016/j.jcf.2022.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Cystic fibrosis (CF), an autosomal genetic disorder caused by the dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, is characterized by mucus accumulation in the lungs, the intestinal tract, and the pancreatic ducts. Mucins are high-molecular-weight glycoproteins that govern the biochemical and biophysical properties of mucus. In the CF lung, increased mucus viscoelasticity is associated with decreased mucociliary clearance and defects in host defense mechanisms. The link between defective ion channel and abnormal mucus properties has been investigated in studies involving cell and animal models. In this review article, we discuss recent progress toward understanding the different regions and cells that express CFTR in the airways and how mucus is produced and cleared from the lungs. In addition, we reflect on animal models that provided insights into the organization and the role of the mucin network and how mucus and antimicrobial activities act in concert to protect the lungs from invading pathogens.
Collapse
Affiliation(s)
- Camille Ehre
- University of North Carolina at Chapel Hill, Department of Pediatrics, Marsico Lung Institute, Chapel Hill, NC, USA
| | - Gunnar C Hansson
- Department Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - David J Thornton
- The Wellcome Trust Centre for Cell-Matrix Research, and The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lynda S Ostedgaard
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
12
|
Baumlin N, Silswal N, Dennis JS, Niloy AJ, Kim MD, Salathe M. Nebulized Menthol Impairs Mucociliary Clearance via TRPM8 and MUC5AC/MUC5B in Primary Airway Epithelial Cells. Int J Mol Sci 2023; 24:1694. [PMID: 36675209 PMCID: PMC9865048 DOI: 10.3390/ijms24021694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Flavorings enhance the palatability of e-cigarettes (e-cigs), with menthol remaining a popular choice among e-cig users. Menthol flavor remains one of the only flavors approved by the United States FDA for use in commercially available, pod-based e-cigs. However, the safety of inhaled menthol at the high concentrations used in e-cigs remains unclear. Here, we tested the effects of menthol on parameters of mucociliary clearance (MCC) in air-liquid interface (ALI) cultures of primary airway epithelial cells. ALI cultures treated with basolateral menthol (1 mM) showed a significant decrease in ciliary beat frequency (CBF) and airway surface liquid (ASL) volumes after 24 h. Menthol nebulized onto the surface of ALI cultures similarly reduced CBF and increased mucus concentrations, resulting in decreased rates of mucociliary transport. Nebulized menthol further increased the expression of mucin 5AC (MUC5AC) and mRNA expression of the inflammatory cytokines IL1B and TNFA. Menthol activated TRPM8, and the effects of menthol on MCC and inflammation could be blocked by a specific TRPM8 antagonist. These data provide further evidence that menthol at the concentrations used in e-cigs could cause harm to the airways.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthias Salathe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
13
|
Song D, Iverson E, Kaler L, Boboltz A, Scull MA, Duncan GA. MUC5B mobilizes and MUC5AC spatially aligns mucociliary transport on human airway epithelium. SCIENCE ADVANCES 2022; 8:eabq5049. [PMID: 36427316 PMCID: PMC9699686 DOI: 10.1126/sciadv.abq5049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Secreted mucus is a frontline defense against respiratory infection, enabling the capture and swift removal of infectious or irritating agents from the lungs. Airway mucus is composed of two mucins: mucin 5B (MUC5B) and 5AC (MUC5AC). Together, they form a hydrogel that can be actively transported by cilia along the airway surface. In chronic respiratory diseases, abnormal expression of these mucins is directly implicated in dysfunctional mucus clearance. Yet, the role of each mucin in supporting normal mucus transport remains unclear. Here, we generate human airway epithelial tissue cultures deficient in either MUC5B or MUC5AC to understand their individual contributions to mucus transport. We find that MUC5B and MUC5AC deficiency results in impaired and discoordinated mucociliary transport, respectively, demonstrating the importance of each mucin to airway clearance.
Collapse
Affiliation(s)
- Daniel Song
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Ethan Iverson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Logan Kaler
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
| | - Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Margaret A. Scull
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Gregg A. Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
14
|
Hoang ON, Ermund A, Jaramillo AM, Fakih D, French CB, Flores JR, Karmouty-Quintana H, Magnusson JM, Fois G, Fauler M, Frick M, Braubach P, Hales JB, Kurten RC, Panettieri R, Vergara L, Ehre C, Adachi R, Tuvim MJ, Hansson GC, Dickey BF. Mucins MUC5AC and MUC5B Are Variably Packaged in the Same and in Separate Secretory Granules. Am J Respir Crit Care Med 2022; 206:1081-1095. [PMID: 35776514 PMCID: PMC9704839 DOI: 10.1164/rccm.202202-0309oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/01/2022] [Indexed: 01/27/2023] Open
Abstract
Rationale: MUC5AC (mucin 5AC, oligomeric gel-forming) and MUC5B (mucin 5B, oligomeric gel-forming) are the predominant secreted polymeric mucins in mammalian airways. They contribute differently to the pathogenesis of various muco-obstructive and interstitial lung diseases, and their genes are separately regulated, but whether they are packaged together or in separate secretory granules is not known. Objectives: To determine the packaging of MUC5AC and MUC5B within individual secretory granules in mouse and human airways under varying conditions of inflammation and along the proximal-distal axis. Methods: Lung tissue was obtained from mice stimulated to upregulate mucin production by the cytokines IL-1β and IL-13 or by porcine pancreatic elastase. Human lung tissue was obtained from donated normal lungs, biopsy samples of transplanted lungs, and explanted lungs from subjects with chronic obstructive pulmonary disease. MUC5AC and MUC5B were labeled with antibodies from different animal species or, in mice only, by transgenic chimeric mucin-fluorescent proteins and imaged using widefield deconvolution or Airyscan fluorescence microscopy. Measurements and Main Results: In both mouse and human airways, most secretory granules contained both mucins interdigitating within the granules. Smaller numbers of granules contained MUC5B alone, and even fewer contained MUC5AC alone. Conclusions: MUC5AC and MUC5B are variably stored both in the same and in separate secretory granules of both mice and humans. The high fraction of granules containing both mucins under a variety of conditions makes it unlikely that their secretion can be differentially controlled as a therapeutic strategy. This work also advances knowledge of the packaging of mucins within secretory granules to understand mechanisms of epithelial stress in the pathogenesis of chronic lung diseases.
Collapse
Affiliation(s)
- Oanh N. Hoang
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ana M. Jaramillo
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dalia Fakih
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Cory B. French
- Washington University School of Medicine, St. Louis, Missouri
| | - Jose R. Flores
- Washington University School of Medicine, St. Louis, Missouri
| | - Harry Karmouty-Quintana
- Division of Critical Care, Pulmonary, and Sleep Medicine, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jesper M. Magnusson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Joshua B. Hales
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Leoncio Vergara
- Institute of Biosciences and Technology, Texas A&M School of Medicine, Houston, Texas; and
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Roberto Adachi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J. Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Burton F. Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
16
|
Okuda K, Shaffer KM, Ehre C. Mucins and CFTR: Their Close Relationship. Int J Mol Sci 2022; 23:10232. [PMID: 36142171 PMCID: PMC9499620 DOI: 10.3390/ijms231810232] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023] Open
Abstract
Mucociliary clearance is a critical defense mechanism for the lungs governed by regionally coordinated epithelial cellular activities, including mucin secretion, cilia beating, and transepithelial ion transport. Cystic fibrosis (CF), an autosomal genetic disorder caused by the dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) channel, is characterized by failed mucociliary clearance due to abnormal mucus biophysical properties. In recent years, with the development of highly effective modulator therapies, the quality of life of a significant number of people living with CF has greatly improved; however, further understanding the cellular biology relevant to CFTR and airway mucus biochemical interactions are necessary to develop novel therapies aimed at restoring CFTR gene expression in the lungs. In this article, we discuss recent advances of transcriptome analysis at single-cell levels that revealed a heretofore unanticipated close relationship between secretory MUC5AC and MUC5B mucins and CFTR in the lungs. In addition, we review recent findings on airway mucus biochemical and biophysical properties, focusing on how mucin secretion and CFTR-mediated ion transport are integrated to maintain airway mucus homeostasis in health and how CFTR dysfunction and restoration of function affect mucus properties.
Collapse
Affiliation(s)
- Kenichi Okuda
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kendall M. Shaffer
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Camille Ehre
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Ash JJ, Hilkin BM, Gansemer ND, Hoffman EA, Zabner J, Stoltz DA, Abou Alaiwa MH. Tromethamine improves mucociliary clearance in cystic fibrosis pigs. Physiol Rep 2022; 10:e15340. [PMID: 36073059 PMCID: PMC9453173 DOI: 10.14814/phy2.15340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023] Open
Abstract
In cystic fibrosis (CF), the loss of cystic fibrosis transmembrane conductance regulator (CFTR) mediated Cl- and HCO3 - secretion across the epithelium acidifies the airway surface liquid (ASL). Acidic ASL alters two key host defense mechanisms: Rapid ASL bacterial killing and mucociliary transport (MCT). Aerosolized tromethamine (Tham) increases ASL pH and restores the ability of ASL to rapidly kill bacteria in CF pigs. In CF pigs, clearance of insufflated microdisks is interrupted due to abnormal mucus causing microdisks to abruptly recoil. Aerosolizing a reducing agent to break disulfide bonds that link mucins improves MCT. Here, we are interested in restoring MCT in CF by aerosolizing Tham, a buffer with a pH of 8.4. Because Tham is hypertonic to serum, we use an acidified formulation as a control. We measure MCT by tracking the caudal movement of individual tantalum microdisks with serial chest computed tomography scans. Alkaline Tham improves microdisk clearance to within the range of that seen in non-CF pigs. It also partially reverses MCT defects, including reduced microdisk recoil and elapse time until they start moving after methacholine stimulation in CF pig airways. The effect is not due to hypertonicity, as it is not seen with acidified Tham or hypertonic saline. This finding indicates acidic ASL impairs CF MCT and suggests that alkalinization of ASL pH with inhaled Tham may improve CF airway disease.
Collapse
Affiliation(s)
- Jamison J. Ash
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Brieanna M. Hilkin
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Nicholas D. Gansemer
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Eric A. Hoffman
- Department of RadiologyRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Joseph Zabner
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - David A. Stoltz
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
- Department of Molecular Physiology and BiophysicsRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Mahmoud H. Abou Alaiwa
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
18
|
Zhao D, Li D, Cheng X, Zou Z, Chen X, He C. Mucoadhesive, Antibacterial, and Reductive Nanogels as a Mucolytic Agent for Efficient Nebulized Therapy to Combat Allergic Asthma. ACS NANO 2022; 16:11161-11173. [PMID: 35762830 DOI: 10.1021/acsnano.2c03993] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asthma is an intractable disease involving the infiltration of inflammatory cells and mucus plugging. Despite small molecular mucolytics having the ability to break the disulfide bonds of mucins, offering a potential way to overcome the airflow obstruction and airway infection, these mucolytics have limited therapeutic effects in vivo. Therefore, in this work, arginine-grafted chitosan (CS-Arg) is ionically cross-linked with tris(2-carboxyethyl)phosphine (TCEP) to obtain nanogels as a mucolytic agent. The positively charged nanogels effectively inhibit the formation of large aggregates of mucin in vitro, probably thanks to the formation of an ionic interaction between CS-Arg and mucin, as well as the breakage of disulfide bonds in mucin by the reductive TCEP. Moreover, the nanogels show good cytocompatibility at concentrations up to 5 mg mL-1, exhibiting effective inhibitory effects against the proliferation of both Staphylococcus aureus and Escherichia coli at 5 mg mL-1. After the administration of the nanogels by nebulization into a Balb/c mouse model with allergic asthma, they can efficiently reduce the mucus obstruction in bronchioles and alveoli and relieve airway inflammation. Therefore, these CS-Arg/TCEP nanogels potentially represent a promising mucolytic agent for the efficient treatment of allergic asthma and other muco-obstructive diseases.
Collapse
Affiliation(s)
- Dan Zhao
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Dong Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xueliang Cheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130014, P. R. China
| | - Zheng Zou
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
19
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
20
|
Keith JD, Henderson AG, Fernandez-Petty CM, Davis JM, Oden AM, Birket SE. Muc5b Contributes to Mucus Abnormality in Rat Models of Cystic Fibrosis. Front Physiol 2022; 13:884166. [PMID: 35574458 PMCID: PMC9096080 DOI: 10.3389/fphys.2022.884166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) airway disease is characterized by excessive and accumulative mucus in the airways. Mucociliary clearance becomes defective as mucus secretions become hyperconcentrated and viscosity increases. The CFTR-knockout (KO) rat has been previously shown to progressively develop delayed mucociliary transport, secondary to increased viscoelasticity of airway secretions. The humanized-G551D CFTR rat model has demonstrated that abnormal mucociliary clearance and hyperviscosity is reversed by ivacaftor treatment. In this study, we sought to identify the components of mucus that changes as the rat ages to contribute to these abnormalities. We found that Muc5b concentrations, and to a lesser extent Muc5ac, in the airway were increased in the KO rat compared to WT, and that Muc5b concentration was directly related to the viscosity of the mucus. Additionally, we found that methacholine administration to the airway exacerbates these characteristics of disease in the KO, but not WT rat trachea. Lastly we determined that at 6 months of age, CF rats had mucus that was adherent to the airway epithelium, a process that is reversed by ivacaftor therapy in the hG551D rat. Overall, these data indicate that accumulation of Muc5b initiates the muco-obstructive process in the CF lung prior to infection.
Collapse
Affiliation(s)
- Johnathan D Keith
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alexander G Henderson
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney M Fernandez-Petty
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joy M Davis
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ashley M Oden
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan E Birket
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
Kato T, Radicioni G, Papanikolas MJ, Stoychev GV, Markovetz MR, Aoki K, Porterfield M, Okuda K, Barbosa Cardenas SM, Gilmore RC, Morrison CB, Ehre C, Burns KA, White KK, Brennan TA, Goodell HP, Thacker H, Loznev HT, Forsberg LJ, Nagase T, Rubinstein M, Randell SH, Tiemeyer M, Hill DB, Kesimer M, O’Neal WK, Ballard ST, Freeman R, Button B, Boucher RC. Mucus concentration-dependent biophysical abnormalities unify submucosal gland and superficial airway dysfunction in cystic fibrosis. SCIENCE ADVANCES 2022; 8:eabm9718. [PMID: 35363522 PMCID: PMC10938572 DOI: 10.1126/sciadv.abm9718] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Cystic fibrosis (CF) is characterized by abnormal transepithelial ion transport. However, a description of CF lung disease pathophysiology unifying superficial epithelial and submucosal gland (SMG) dysfunctions has remained elusive. We hypothesized that biophysical abnormalities associated with CF mucus hyperconcentration provide a unifying mechanism. Studies of the anion secretion-inhibited pig airway model of CF revealed elevated SMG mucus concentrations, osmotic pressures, and SMG mucus accumulation. Human airway studies revealed hyperconcentrated CF SMG mucus with raised osmotic pressures and cohesive forces predicted to limit SMG mucus secretion/release. Using proline-rich protein 4 (PRR4) as a biomarker of SMG secretion, CF sputum proteomics analyses revealed markedly lower PRR4 levels compared to healthy and bronchiectasis controls, consistent with a failure of CF SMGs to secrete mucus onto airway surfaces. Raised mucus osmotic/cohesive forces, reflecting mucus hyperconcentration, provide a unifying mechanism that describes disease-initiating mucus accumulation on airway surfaces and in SMGs of the CF lung.
Collapse
Affiliation(s)
- Takafumi Kato
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - Giorgia Radicioni
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Micah J. Papanikolas
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Georgi V. Stoychev
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew R. Markovetz
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Melody Porterfield
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Rodney C. Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cameron B. Morrison
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kimberlie A. Burns
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristen K. White
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tara A. Brennan
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Henry P. Goodell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Holly Thacker
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Henry T. Loznev
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lawrence J. Forsberg
- Protein Expression and Purification Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takahide Nagase
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Scott H. Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - David B. Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen T. Ballard
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Liegeois MA, Fahy JV. The Mucin Gene MUC5B Is Required for Normal Lung Function. Am J Respir Crit Care Med 2022; 205:737-739. [PMID: 35148488 PMCID: PMC9836220 DOI: 10.1164/rccm.202201-0064ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Maude A. Liegeois
- Cardiovascular Research InstituteUniversity of California San FranciscoSan Francisco, California
| | - John V. Fahy
- Cardiovascular Research Institute,Division of Pulmonary and Critical Care MedicineUniversity of California San FranciscoSan Francisco, California
| |
Collapse
|
23
|
Markovetz MR, Garbarine IC, Morrison CB, Kissner WJ, Seim I, Forest MG, Papanikolas MJ, Freeman R, Ceppe A, Ghio A, Alexis NE, Stick SM, Ehre C, Boucher RC, Esther CR, Muhlebach MS, Hill DB. Mucus and mucus flake composition and abundance reflect inflammatory and infection status in cystic fibrosis. J Cyst Fibros 2022; 21:959-966. [DOI: 10.1016/j.jcf.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/11/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
|
24
|
Pino-Argumedo MI, Fischer AJ, Hilkin BM, Gansemer ND, Allen PD, Hoffman EA, Stoltz DA, Welsh MJ, Abou Alaiwa MH. Elastic mucus strands impair mucociliary clearance in cystic fibrosis pigs. Proc Natl Acad Sci U S A 2022; 119:e2121731119. [PMID: 35324331 PMCID: PMC9060506 DOI: 10.1073/pnas.2121731119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/22/2022] [Indexed: 01/18/2023] Open
Abstract
SignificanceIn many lung diseases, increased amounts of and/or abnormal mucus impair mucociliary clearance, a key defense against inhaled and aspirated material. Submucosal glands lining cartilaginous airways secrete mucus strands that are pulled by cilia until they break free from the duct and sweep upward toward the larynx, carrying particulates. In cystic fibrosis (CF) pigs, progressive clearance of insufflated microdisks was repeatedly interrupted as microdisks abruptly recoiled. Aerosolizing a reducing agent to break disulfide bonds linking mucins ruptured mucus strands, freeing them from submucosal gland ducts and allowing cilia to propel them up the airways. These findings highlight the abnormally increased elasticity of CF mucus and suggest that agents that break disulfide bonds might have value in lung diseases with increased mucus.
Collapse
Affiliation(s)
- Maria I. Pino-Argumedo
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Anthony J. Fischer
- Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Brieanna M. Hilkin
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Patrick D. Allen
- Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Eric A. Hoffman
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| | - David A. Stoltz
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Michael J. Welsh
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- HHMI, University of Iowa, Iowa City, IA 52242
| | - Mahmoud H. Abou Alaiwa
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
25
|
Genome-Wide RNAi Screening Identifies Novel Pathways/Genes Involved in Oxidative Stress and Repurposable Drugs to Preserve Cystic Fibrosis Airway Epithelial Cell Integrity. Antioxidants (Basel) 2021; 10:antiox10121936. [PMID: 34943039 PMCID: PMC8750174 DOI: 10.3390/antiox10121936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022] Open
Abstract
Recurrent infection-inflammation cycles in cystic fibrosis (CF) patients generate a highly oxidative environment, leading to progressive destruction of the airway epithelia. The identification of novel modifier genes involved in oxidative stress susceptibility in the CF airways might contribute to devise new therapeutic approaches. We performed an unbiased genome-wide RNAi screen using a randomized siRNA library to identify oxidative stress modulators in CF airway epithelial cells. We monitored changes in cell viability after a lethal dose of hydrogen peroxide. Local similarity and protein-protein interaction network analyses uncovered siRNA target genes/pathways involved in oxidative stress. Further mining against public drug databases allowed identifying and validating commercially available drugs conferring oxidative stress resistance. Accordingly, a catalog of 167 siRNAs able to confer oxidative stress resistance in CF submucosal gland cells targeted 444 host genes and multiple circuitries involved in oxidative stress. The most significant processes were related to alternative splicing and cell communication, motility, and remodeling (impacting cilia structure/function, and cell guidance complexes). Other relevant pathways included DNA repair and PI3K/AKT/mTOR signaling. The mTOR inhibitor everolimus, the α1-adrenergic receptor antagonist doxazosin, and the Syk inhibitor fostamatinib significantly increased the viability of CF submucosal gland cells under strong oxidative stress pressure. Thus, novel therapeutic strategies to preserve airway cell integrity from the harsh oxidative milieu of CF airways could stem from a deep understanding of the complex consequences of oxidative stress at the molecular level, followed by a rational repurposing of existing "protective" drugs. This approach could also prove useful to other respiratory pathologies.
Collapse
|
26
|
Ermund A, Meiss LN, Dolan B, Jaudas F, Ewaldsson L, Bähr A, Klymiuk N, Hansson GC. Mucus threads from surface goblet cells clear particles from the airways. Respir Res 2021; 22:303. [PMID: 34823518 PMCID: PMC8620232 DOI: 10.1186/s12931-021-01898-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/17/2021] [Indexed: 01/23/2023] Open
Abstract
Background The mucociliary clearance system driven by beating cilia protects the airways from inhaled microbes and particles. Large particles are cleared by mucus bundles made in submucosal glands by parallel linear polymers of the MUC5B mucins. However, the structural organization and function of the mucus generated in surface goblet cells are poorly understood. Methods The origin and characteristics of different mucus structures were studied on live tissue explants from newborn wild-type (WT), cystic fibrosis transmembrane conductance regulator (CFTR) deficient (CF) piglets and weaned pig airways using video microscopy, Airyscan imaging and electron microscopy. Bronchoscopy was performed in juvenile pigs in vivo. Results We have identified a distinct mucus formation secreted from the surface goblet cells with a diameter less than two micrometer. This type of mucus was named mucus threads. With time mucus threads gathered into larger mucus assemblies, efficiently collecting particles. The previously observed Alcian blue stained mucus bundles were around 10 times thicker than the threads. Together the mucus bundles, mucus assemblies and mucus threads cleared the pig trachea from particles. Conclusions These results demonstrate that normal airway mucus is more complex and has a more variable structural organization and function than was previously understood. These observations emphasize the importance of studying young objects to understand the function of a non-compromised lung. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01898-3.
Collapse
Affiliation(s)
- Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden.
| | - Lauren N Meiss
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden
| | - Brendan Dolan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden
| | - Florian Jaudas
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lars Ewaldsson
- Experimental Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden
| |
Collapse
|
27
|
Lindner M, Laporte A, Block S, Elomaa L, Weinhart M. Physiological Shear Stress Enhances Differentiation, Mucus-Formation and Structural 3D Organization of Intestinal Epithelial Cells In Vitro. Cells 2021; 10:2062. [PMID: 34440830 PMCID: PMC8391940 DOI: 10.3390/cells10082062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) mucus plays a pivotal role in the tissue homoeostasis and functionality of the gut. However, due to the shortage of affordable, realistic in vitro GI models with a physiologically relevant mucus layer, studies with deeper insights into structural and compositional changes upon chemical or physical manipulation of the system are rare. To obtain an improved mucus-containing cell model, we developed easy-to-use, reusable culture chambers that facilitated the application of GI shear stresses (0.002-0.08 dyn∙cm-2) to cells on solid surfaces or membranes of cell culture inserts in bioreactor systems, thus making them readily accessible for subsequent analyses, e.g., by confocal microscopy or transepithelial electrical resistance (TEER) measurement. The human mucus-producing epithelial HT29-MTX cell-line exhibited superior reorganization into 3-dimensional villi-like structures with highly proliferative tips under dynamic culture conditions when compared to static culture (up to 180 vs. 80 µm in height). Additionally, the median mucus layer thickness was significantly increased under flow (50 ± 24 vs. 29 ± 14 µm (static)), with a simultaneous accelerated maturation of the cells into a goblet-like phenotype. We demonstrated the strong impact of culture conditions on the differentiation and reorganization of HT29-MTX cells. The results comprise valuable advances towards the improvement of existing GI and mucus models or the development of novel systems using our newly designed culture chambers.
Collapse
Affiliation(s)
- Marcus Lindner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.L.); (S.B.); (L.E.)
| | - Anna Laporte
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, 30167 Hannover, Germany;
| | - Stephan Block
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.L.); (S.B.); (L.E.)
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.L.); (S.B.); (L.E.)
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.L.); (S.B.); (L.E.)
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, 30167 Hannover, Germany;
| |
Collapse
|
28
|
Kang A, Yeom M, Kim H, Yoon SW, Jeong DG, Moon HJ, Lyoo KS, Na W, Song D. Sputum Processing Method for Lateral Flow Immunochromatographic Assays to Detect Coronaviruses. Immune Netw 2021; 21:e11. [PMID: 33728104 PMCID: PMC7937507 DOI: 10.4110/in.2021.21.e11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 12/01/2022] Open
Abstract
Coronavirus causes an infectious disease in various species and crosses the species barriers leading to the outbreak of zoonotic diseases. Due to the respiratory diseases are mainly caused in humans and viruses are replicated and excreted through the respiratory tract, the nasal fluid and sputum are mainly used for diagnosis. Early diagnosis of coronavirus plays an important role in preventing its spread and is essential for quarantine policies. For rapid decision and prompt triage of infected host, the immunochromatographic assay (ICA) has been widely used for point of care testing. However, when the ICA is applied to an expectorated sputum in which antigens are present, the viscosity of sputum interferes with the migration of the antigens on the test strip. To overcome this limitation, it is necessary to use a mucolytic agent without affecting the antigens. In this study, we combined known mucolytic agents to lower the viscosity of sputum and applied that to alpha and beta coronavirus, porcine epidemic diarrhea virus (PEDV) and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively, spiked in sputum to find optimal pretreatment conditions. The pretreatment method using tris(2-carboxyethyl)phosphine (TCEP) and BSA was suitable for ICA diagnosis of sputum samples spiked with PEDV and MERS-CoV. This sensitive assay for the detection of coronavirus in sputum provides an useful information for the diagnosis of pathogen in low respiratory tract.
Collapse
Affiliation(s)
- Aram Kang
- College of Pharmacy, Korea University, Sejong 30019, Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong 30019, Korea
| | - Hyekwon Kim
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Korea
| | - Sun-Woo Yoon
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34113, Korea
| | - Dae-Gwin Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34113, Korea
| | - Hyong-Joon Moon
- College of Healthcare & Biotechnology, Semyung University, Jecheon 27136, Korea
| | - Kwang-Soo Lyoo
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan 54531, Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea.,Animal Medical Institute, Chonnam National University, Gwangju 61186, Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong 30019, Korea
| |
Collapse
|
29
|
Morgan LE, Jaramillo AM, Shenoy SK, Raclawska D, Emezienna NA, Richardson VL, Hara N, Harder AQ, NeeDell JC, Hennessy CE, El-Batal HM, Magin CM, Grove Villalon DE, Duncan G, Hanes JS, Suk JS, Thornton DJ, Holguin F, Janssen WJ, Thelin WR, Evans CM. Disulfide disruption reverses mucus dysfunction in allergic airway disease. Nat Commun 2021; 12:249. [PMID: 33431872 PMCID: PMC7801631 DOI: 10.1038/s41467-020-20499-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/20/2020] [Indexed: 01/04/2023] Open
Abstract
Airway mucus is essential for lung defense, but excessive mucus in asthma obstructs airflow, leading to severe and potentially fatal outcomes. Current asthma treatments have minimal effects on mucus, and the lack of therapeutic options stems from a poor understanding of mucus function and dysfunction at a molecular level and in vivo. Biophysical properties of mucus are controlled by mucin glycoproteins that polymerize covalently via disulfide bonds. Once secreted, mucin glycopolymers can aggregate, form plugs, and block airflow. Here we show that reducing mucin disulfide bonds disrupts mucus in human asthmatics and reverses pathological effects of mucus hypersecretion in a mouse allergic asthma model. In mice, inhaled mucolytic treatment loosens mucus mesh, enhances mucociliary clearance, and abolishes airway hyperreactivity (AHR) to the bronchoprovocative agent methacholine. AHR reversal is directly related to reduced mucus plugging. These findings establish grounds for developing treatments to inhibit effects of mucus hypersecretion in asthma.
Collapse
Affiliation(s)
- Leslie E Morgan
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Ana M Jaramillo
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Siddharth K Shenoy
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dorota Raclawska
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Nkechinyere A Emezienna
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Obstetrics and Gynecology, Howard University College of Medicine, Washington, DC, USA
| | - Vanessa L Richardson
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Naoko Hara
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Anna Q Harder
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - James C NeeDell
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Corinne E Hennessy
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Hassan M El-Batal
- Department of Bioengineering, College of Engineering, Design, and Computing, University of Colorado, Denver
- Anschutz Medial Campus, Denver, CO, USA
| | - Chelsea M Magin
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Bioengineering, College of Engineering, Design, and Computing, University of Colorado, Denver
- Anschutz Medial Campus, Denver, CO, USA
| | | | - Gregg Duncan
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Fischell Department of Bioengineering, School of Engineering University of Maryland, College Park, MD, USA
| | - Justin S Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David J Thornton
- Wellcome Trust Centre for Cell-Matrix Research and the Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Fernando Holguin
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - William J Janssen
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Medicine National Jewish Health, Denver, CO, USA.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, USA
| | | | - Christopher M Evans
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA. .,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
30
|
Ostedgaard LS, Price MP, Whitworth KM, Abou Alaiwa MH, Fischer AJ, Warrier A, Samuel M, Spate LD, Allen PD, Hilkin BM, Romano Ibarra GS, Ortiz Bezara ME, Goodell BJ, Mather SE, Powers LS, Stroik MR, Gansemer ND, Hippee CE, Zarei K, Goeken JA, Businga TR, Hoffman EA, Meyerholz DK, Prather RS, Stoltz DA, Welsh MJ. Lack of airway submucosal glands impairs respiratory host defenses. eLife 2020; 9:59653. [PMID: 33026343 PMCID: PMC7541087 DOI: 10.7554/elife.59653] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Submucosal glands (SMGs) are a prominent structure that lines human cartilaginous airways. Although it has been assumed that SMGs contribute to respiratory defense, that hypothesis has gone without a direct test. Therefore, we studied pigs, which have lungs like humans, and disrupted the gene for ectodysplasin (EDA-KO), which initiates SMG development. EDA-KO pigs lacked SMGs throughout the airways. Their airway surface liquid had a reduced ability to kill bacteria, consistent with SMG production of antimicrobials. In wild-type pigs, SMGs secrete mucus that emerges onto the airway surface as strands. Lack of SMGs and mucus strands disrupted mucociliary transport in EDA-KO pigs. Consequently, EDA-KO pigs failed to eradicate a bacterial challenge in lung regions normally populated by SMGs. These in vivo and ex vivo results indicate that SMGs are required for normal antimicrobial activity and mucociliary transport, two key host defenses that protect the lung.
Collapse
Affiliation(s)
- Lynda S Ostedgaard
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Margaret P Price
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | | | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Anthony J Fischer
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Akshaya Warrier
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Melissa Samuel
- Division of Animal Science, University of Missouri, Columbia, United States
| | - Lee D Spate
- Division of Animal Science, University of Missouri, Columbia, United States
| | - Patrick D Allen
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Brieanna M Hilkin
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Guillermo S Romano Ibarra
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Miguel E Ortiz Bezara
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Brian J Goodell
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Steven E Mather
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Linda S Powers
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Mallory R Stroik
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Nicholas D Gansemer
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Camilla E Hippee
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Keyan Zarei
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, United States
| | - J Adam Goeken
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Thomas R Businga
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Eric A Hoffman
- Department of Biomedical Engineering, University of Iowa, Iowa City, United States.,Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Randall S Prather
- Division of Animal Science, University of Missouri, Columbia, United States
| | - David A Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, United States.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Michael J Welsh
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Howard Hughes Medical Institute, University of Iowa, Iowa City, United States
| |
Collapse
|
31
|
Xie Y, Lu L, Tang XX, Moninger TO, Huang TJ, Stoltz DA, Welsh MJ. Acidic Submucosal Gland pH and Elevated Protein Concentration Produce Abnormal Cystic Fibrosis Mucus. Dev Cell 2020; 54:488-500.e5. [PMID: 32730755 DOI: 10.1016/j.devcel.2020.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 10/24/2022]
Abstract
In response to respiratory insults, airway submucosal glands secrete copious mucus strands to increase mucociliary clearance and protect the lung. However, in cystic fibrosis, stimulating submucosal glands has the opposite effect, disrupting mucociliary transport. In cystic fibrosis (CF) pigs, loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channels produced submucosal gland mucus that was abnormally acidic with an increased protein concentration. To test whether these variables alter mucus, we produced a microfluidic model of submucosal glands using mucus vesicles from banana slugs. Acidic pH and increased protein concentration decreased mucus gel volume and increased mucus strand elasticity and tensile strength. However, once mucus strands were formed, changing pH or protein concentration largely failed to alter the biophysical properties. Likewise, raising pH or apical perfusion did not improve clearance of mucus strands from CF airways. These findings reveal mechanisms responsible for impaired mucociliary transport in CF and have important implications for potential treatments.
Collapse
Affiliation(s)
- Yuliang Xie
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lin Lu
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Xiao Xiao Tang
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas O Moninger
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - David A Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Michael J Welsh
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
32
|
Fakih D, Rodriguez-Piñeiro AM, Trillo-Muyo S, Evans CM, Ermund A, Hansson GC. Normal murine respiratory tract has its mucus concentrated in clouds based on the Muc5b mucin. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1270-L1279. [PMID: 32348677 DOI: 10.1152/ajplung.00485.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The organization of the normal airway mucus system differs in small experimental animals from that in humans and large mammals. To address normal murine airway mucociliary clearance, Alcian blue-stained mucus transport was measured ex vivo on tracheal tissues of naïve C57BL/6, Muc5b-/-, Muc5ac-/-, and EGFP-tagged Muc5b reporter mice. Close to the larynx with a few submucosal glands, the mucus appeared as thick bundles. More distally in the trachea and in large bronchi, Alcian blue-stained mucus was organized in cloud-like formations based on the Muc5b mucin. On tilted tissue, the mucus clouds moved upward toward the larynx with an average velocity of 12 µm/s compared with 20 µm/s for beads not associated with clouds. In Muc5ac-/- mice, Muc5b formed mucus strands attached to the tissue surface, while in Muc5b-/- mice, Muc5ac had a more variable appearance. The normal mouse lung mucus thus appears as discontinuous clouds, clearly different from the stagnant mucus layer in diseased lungs.
Collapse
Affiliation(s)
- Dalia Fakih
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | - Sergio Trillo-Muyo
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | - Anna Ermund
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
33
|
Denneny E, Sahota J, Beatson R, Thornton D, Burchell J, Porter J. Mucins and their receptors in chronic lung disease. Clin Transl Immunology 2020; 9:e01120. [PMID: 32194962 PMCID: PMC7077995 DOI: 10.1002/cti2.1120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
There is growing recognition that mucus and mucin biology have a considerable impact on respiratory health, and subsequent global morbidity and mortality. Mucins play a critical role in chronic lung disease, not only by providing a physical barrier and clearing pathogens, but also in immune homeostasis. The aim of this review is to familiarise the reader with the role of mucins in both lung health and disease, with particular focus on function in immunity, infection and inflammation. We will also discuss their receptors, termed glycan-binding proteins, and how they provide an attractive prospect for therapeutic intervention.
Collapse
Affiliation(s)
- Emma Denneny
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| | - Jagdeep Sahota
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| | - Richard Beatson
- Breast Cancer Biology Group Division of Cancer Studies King's College London Guy's Hospital London UK
| | - David Thornton
- Wellcome Trust Centre for Cell-Matrix Research School of Biological Sciences Faculty of Biology, Medicine and Health Manchester Academic Health Sciences Centre University of Manchester Manchester UK
| | - Joy Burchell
- Breast Cancer Biology Group Division of Cancer Studies King's College London Guy's Hospital London UK
| | - Joanna Porter
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| |
Collapse
|
34
|
Morrison CB, Markovetz MR, Ehre C. Mucus, mucins, and cystic fibrosis. Pediatr Pulmonol 2019; 54 Suppl 3:S84-S96. [PMID: 31715083 PMCID: PMC6853602 DOI: 10.1002/ppul.24530] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
Cystic fibrosis (CF) is both the most common and most lethal genetic disease in the Caucasian population. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and is characterized by the accumulation of thick, adherent mucus plaques in multiple organs, of which the lungs, gastrointestinal tract and pancreatic ducts are the most commonly affected. A similar pathogenesis cascade is observed in all of these organs: loss of CFTR function leads to altered ion transport, consisting of decreased chloride and bicarbonate secretion via the CFTR channel and increased sodium absorption via epithelial sodium channel upregulation. Mucosa exposed to changes in ionic concentrations sustain severe pathophysiological consequences. Altered mucus biophysical properties and weakened innate defense mechanisms ensue, furthering the progression of the disease. Mucins, the high-molecular-weight glycoproteins responsible for the viscoelastic properties of the mucus, play a key role in the disease but the actual mechanism of mucus accumulation is still undetermined. Multiple hypotheses regarding the impact of CFTR malfunction on mucus have been proposed and are reviewed here. (a) Dehydration increases mucin monomer entanglement, (b) defective Ca2+ chelation compromises mucin expansion, (c) ionic changes alter mucin interactions, and (d) reactive oxygen species increase mucin crosslinking. Although one biochemical change may dominate, it is likely that all of these mechanisms play some role in the progression of CF disease. This article discusses recent findings on the initial cause(s) of aberrant mucus properties in CF and examines therapeutic approaches aimed at correcting mucus properties.
Collapse
Affiliation(s)
- Cameron Bradley Morrison
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew Raymond Markovetz
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Camille Ehre
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
35
|
Yahr TL, Ellermeier CD. 25 th Annual Midwest Microbial Pathogenesis Conference. J Bacteriol 2019; 201:e00239-19. [PMID: 30988032 PMCID: PMC6597398 DOI: 10.1128/jb.00239-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 25th annual Midwest Microbial Pathogenesis Conference (MMPC) was held at the University of Iowa from 28 to 30 September 2018. The conference has a long-standing tradition of providing scientists from the Midwest with a forum to present and discuss cutting-edge advances in microbial pathogenesis with particular focus on bacterial interactions with the environment, host, and other microbes. This review summarizes the genesis of the MMPC, topics presented at the conference, and articles found in the special MMPC sections of this issue of the Journal of Bacteriology.
Collapse
Affiliation(s)
- Timothy L. Yahr
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
36
|
Jaramillo AM, Piccotti L, Velasco WV, Delgado ASH, Azzegagh Z, Chung F, Nazeer U, Farooq J, Brenner J, Parker-Thornburg J, Scott BL, Evans CM, Adachi R, Burns AR, Kreda SM, Tuvim MJ, Dickey BF. Different Munc18 proteins mediate baseline and stimulated airway mucin secretion. JCI Insight 2019; 4:124815. [PMID: 30721150 PMCID: PMC6483006 DOI: 10.1172/jci.insight.124815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
Airway mucin secretion is necessary for ciliary clearance of inhaled particles and pathogens but can be detrimental in pathologies such as asthma and cystic fibrosis. Exocytosis in mammals requires a Munc18 scaffolding protein, and airway secretory cells express all 3 Munc18 isoforms. Using conditional airway epithelial cell-deletant mice, we found that Munc18a has the major role in baseline mucin secretion, Munc18b has the major role in stimulated mucin secretion, and Munc18c does not function in mucin secretion. In an allergic asthma model, Munc18b deletion reduced airway mucus occlusion and airflow resistance. In a cystic fibrosis model, Munc18b deletion reduced airway mucus occlusion and emphysema. Munc18b deficiency in the airway epithelium did not result in any abnormalities of lung structure, particle clearance, inflammation, or bacterial infection. Our results show that regulated secretion in a polarized epithelial cell may involve more than one exocytic machine at the apical plasma membrane and that the protective roles of mucin secretion can be preserved while therapeutically targeting its pathologic roles.
Collapse
Affiliation(s)
- Ana M. Jaramillo
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Lucia Piccotti
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Walter V. Velasco
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Zoulikha Azzegagh
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Felicity Chung
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Usman Nazeer
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junaid Farooq
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Josh Brenner
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jan Parker-Thornburg
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brenton L. Scott
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christopher M. Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Roberto Adachi
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alan R. Burns
- College of Optometry, University of Houston, Houston, Texas, USA
| | - Silvia M. Kreda
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael J. Tuvim
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Burton F. Dickey
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|