1
|
Matsuoka T, Yashiro M. Molecular Mechanism for Malignant Progression of Gastric Cancer Within the Tumor Microenvironment. Int J Mol Sci 2024; 25:11735. [PMID: 39519285 PMCID: PMC11546171 DOI: 10.3390/ijms252111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Gastric cancer (GC) is one of the most common cancers worldwide. Most patients are diagnosed at the progressive stage of GC, and progress in the development of effective anti-GC drugs has been insufficient. The tumor microenvironment (TME) regulates various functions of tumor cells, and interactions between the cellular and molecular components of the TME-e.g., inflammatory cells, fibroblasts, vasculature cells, and innate and adaptive immune cells-promote the aggressiveness of cancer cells and dissemination to distant organs. This review summarizes the roles of various TME cells and molecules in regulating the malignant progression and metastasis of GC. We also address the important roles of signaling pathways in mediating the interaction between cancer cells and the different components of the GC TME. Finally, we discuss the implications of these molecular mechanisms for developing novel and effective therapies targeting molecular and cellular components of the GC TME to control the malignant progression of GC.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan;
- Institute of Medical Genetics, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan;
- Institute of Medical Genetics, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan
| |
Collapse
|
2
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Shen G, Wang Q, Li Z, Xie J, Han X, Wei Z, Zhang P, Zhao S, Wang X, Huang X, Xu M. Bridging Chronic Inflammation and Digestive Cancer: The Critical Role of Innate Lymphoid Cells in Tumor Microenvironments. Int J Biol Sci 2024; 20:4799-4818. [PMID: 39309440 PMCID: PMC11414386 DOI: 10.7150/ijbs.96338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
The incidence and mortality of digestive system-related cancers have always been high and attributed to the heterogeneity and complexity of the immune microenvironment of the digestive system. Furthermore, several studies have shown that chronic inflammation in the digestive system is responsible for cancer incidence; therefore, controlling inflammation is a potential strategy to stop the development of cancer. Innate Lymphoid Cells (ILC) represent a heterogeneous group of lymphocytes that exist in contrast to T cells. They function by interacting with cytokines and immune cells in an antigen-independent manner. In the digestive system cancer, from the inflammatory phase to the development, migration, and metastasis of tumors, ILC have been found to interact with the immune microenvironment and either control or promote these processes. The conventional treatments for digestive tumors have limited efficacy, therefore, ILC-associated immunotherapies are promising strategies. This study reviews the characterization of different ILC subpopulations, how they interact with and influence the immune microenvironment as well as chronic inflammation, and their promotional or inhibitory role in four common digestive system tumors, including pancreatic, colorectal, gastric, and hepatocellular cancers. In particular, the review emphasizes the role of ILC in associating chronic inflammation with cancer and the potential for enhanced immunotherapy with cytokine therapy and adoptive immune cell therapy.
Collapse
Affiliation(s)
- Guanliang Shen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinda Han
- Xinglin College, Nantong University, Nantong, Jiangsu, China
| | - Zehao Wei
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiumei Wang
- Affiliated Cancer Hospital of Inner Mongolia Medical University, 010020, Inner Mongolia, China
| | | | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
4
|
Ooki A, Osumi H, Yoshino K, Yamaguchi K. Potent therapeutic strategy in gastric cancer with microsatellite instability-high and/or deficient mismatch repair. Gastric Cancer 2024; 27:907-931. [PMID: 38922524 PMCID: PMC11335850 DOI: 10.1007/s10120-024-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Gastric cancer (GC) is a common malignancy that presents challenges in patient care worldwide. The mismatch repair (MMR) system is a highly conserved DNA repair mechanism that protects genome integrity during replication. Deficient MMR (dMMR) results in an increased accumulation of genetic errors in microsatellite sequences, leading to the development of a microsatellite instability-high (MSI-H) phenotype. Most MSI-H/dMMR GCs arise sporadically, mainly due to MutL homolog 1 (MLH1) epigenetic silencing. Unlike microsatellite-stable (MSS)/proficient MMR (pMMR) GCs, MSI-H/dMMR GCs are relatively rare and represent a distinct subtype with genomic instability, a high somatic mutational burden, favorable immunogenicity, different responses to treatment, and prognosis. dMMR/MSI-H status is a robust predictive biomarker for treatment with immune checkpoint inhibitors (ICIs) due to high neoantigen load, prominent tumor-infiltrating lymphocytes, and programmed cell death ligand 1 (PD-L1) overexpression. However, a subset of MSI-H/dMMR GC patients does not benefit from immunotherapy, highlighting the need for further research into predictive biomarkers and resistance mechanisms. This review provides a comprehensive overview of the clinical, molecular, immunogenic, and therapeutic aspects of MSI-H/dMMR GC, with a focus on the impact of ICIs in immunotherapy and their potential as neoadjuvant therapies. Understanding the complexity and diversity of the molecular and immunological profiles of MSI-H/dMMR GC will drive the development of more effective therapeutic strategies and molecular targets for future precision medicine.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Koichiro Yoshino
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| |
Collapse
|
5
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
6
|
Hermans L, O’Sullivan TE. No time to die: Epigenetic regulation of natural killer cell survival. Immunol Rev 2024; 323:61-79. [PMID: 38426615 PMCID: PMC11102341 DOI: 10.1111/imr.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
NK cells are short-lived innate lymphocytes that can mediate antigen-independent responses to infection and cancer. However, studies from the past two decades have shown that NK cells can acquire transcriptional and epigenetic modifications during inflammation that result in increased survival and lifespan. These findings blur the lines between the innate and adaptive arms of the immune system, and suggest that the homeostatic mechanisms that govern the persistence of innate immune cells are malleable. Indeed, recent studies have shown that NK cells undergo continuous and strictly regulated adaptations controlling their survival during development, tissue residency, and following inflammation. In this review, we summarize our current understanding of the critical factors regulating NK cell survival throughout their lifespan, with a specific emphasis on the epigenetic modifications that regulate the survival of NK cells in various contexts. A precise understanding of the molecular mechanisms that govern NK cell survival will be important to enhance therapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Leen Hermans
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
8
|
Sun JR, Kong CF, Ye YX, Wang Q, Qu XK, Jia LQ, Wu S. Integrated analysis of single-cell and bulk RNA-sequencing reveals a novel signature based on NK cell marker genes to predict prognosis and immunotherapy response in gastric cancer. Sci Rep 2024; 14:7648. [PMID: 38561388 PMCID: PMC10985121 DOI: 10.1038/s41598-024-57714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Natural killer (NK) cells play essential roles in the tumor development, diagnosis, and prognosis of tumors. In this study, we aimed to establish a reliable signature based on marker genes in NK cells, thus providing a new perspective for assessing immunotherapy and the prognosis of patients with gastric cancer (GC). We analyzed a total of 1560 samples retrieved from the public database. We performed a comprehensive analysis of single-cell RNA-sequencing (scRNA-seq) data of gastric cancer and identified 377 marker genes for NK cells. By performing Cox regression analysis, we established a 12-gene NK cell-associated signature (NKCAS) for the Cancer Genome Atlas (TCGA) cohort, that assigned GC patients into a low-risk group (LRG) or a high-risk group (HRG). In the TCGA cohort, the areas under curve (AUC) value were 0.73, 0.81, and 0.80 at 1, 3, and 5 years. External validation of the predictive ability for the signature was then validated in the Gene Expression Omnibus (GEO) cohorts (GSE84437). The expression levels of signature genes were measured and validated in GC cell lines by real-time PCR. Moreover, NKCAS was identified as an independent prognostic factor by multivariate analysis. We combined this with a variety of clinicopathological characteristics (age, M stage, and tumor grade) to construct a nomogram to predict the survival outcomes of patients. Moreover, the LRG showed higher immune cell infiltration, especially CD8+ T cells and NK cells. The risk score was negatively associated with inflammatory activities. Importantly, analysis of the independent immunotherapy cohort showed that the LRG had a better prognosis and immunotherapy response when compared with the HRG. The identification of NK cell marker genes in this study suggests potential therapeutic targets. Additionally, the developed predictive signatures and nomograms may aid in the clinical management of GC.
Collapse
Affiliation(s)
- Jian-Rong Sun
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Chen-Fan Kong
- Department of Urology, The affiliated Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Liantangxiantong Road, Shenzhen, 518009, Luohu, People's Republic of China
| | - Yi-Xiang Ye
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Qin Wang
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Xiang-Ke Qu
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Li-Qun Jia
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China.
| | - Song Wu
- Department of Urology, The affiliated Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Liantangxiantong Road, Shenzhen, 518009, Luohu, People's Republic of China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China.
| |
Collapse
|
9
|
Fiuza-Luces C, Valenzuela PL, Gálvez BG, Ramírez M, López-Soto A, Simpson RJ, Lucia A. The effect of physical exercise on anticancer immunity. Nat Rev Immunol 2024; 24:282-293. [PMID: 37794239 DOI: 10.1038/s41577-023-00943-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
Regular physical activity is associated with lower cancer incidence and mortality, as well as with a lower rate of tumour recurrence. The epidemiological evidence is supported by preclinical studies in animal models showing that regular exercise delays the progression of cancer, including highly aggressive malignancies. Although the mechanisms underlying the antitumorigenic effects of exercise remain to be defined, an improvement in cancer immunosurveillance is likely important, with different immune cell subtypes stimulated by exercise to infiltrate tumours. There is also evidence that immune cells from blood collected after an exercise bout could be used as adoptive cell therapy for cancer. In this Perspective, we address the importance of muscular activity for maintaining a healthy immune system and discuss the effects of a single bout of exercise (that is, 'acute' exercise) and those of 'regular' exercise (that is, repeated bouts) on anticancer immunity, including tumour infiltrates. We also address the postulated mechanisms and the clinical implications of this emerging area of research.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain.
| | - Pedro L Valenzuela
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Systems Biology Department, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Beatriz G Gálvez
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Ramírez
- Oncohematology Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- La Princesa Institute of Heah, Madrid, Spain
| | - Alejandro López-Soto
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.
| | - Richard J Simpson
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, USA
- Department of Paediatrics, The University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
- Faculty of Sport Sciences, Universidad Europea, Madrid, Spain.
| |
Collapse
|
10
|
Liu L, Zou C, Lv X, Wei H, Wu S, Song J, Tang Z, Luo H, Li X, Ai Y. SP2-induced circPUM1 modulates chemoresistance and nature killer cell toxicity in oral squamous cell carcinoma. J Cell Mol Med 2024; 28:e17888. [PMID: 37556099 PMCID: PMC10902577 DOI: 10.1111/jcmm.17888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/04/2023] [Accepted: 07/22/2023] [Indexed: 08/10/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a type of tumour found in the cavity that is characterized by differentiation and metastasis to the lymph nodes. Although diagnosis strategy and clinical treatment have recently improved, the outcomes for OSCC patients remain unsatisfactory. This study verified the characteristics of circPUM1 in OSCC cells, subsequently generating dysregulated circPUM1 cell models, showing that circPUM1 promoted chemoresistance and natural killer (NK) cell toxicity. Furthermore, the transcription factor SP2 regulated the expression of circPUM1 in OSCC cells, circPUM1 acted as a molecular sponge for miR-770-5p. Moreover, Nucleosome Assembly Protein 1 Like 1 (NAP1L1) is a downstream target for miR-770-5p and essential for circPUM1-mediated cisplatin resistance and NK cell cytotoxicity in OSCC cells. The network composed of SP2, circPUM1, miR-770-5p and NAP1L1 in OSCC appears to be a promising avenue for the development of novel targets for diagnosing or treating OSCC.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mouth Neoplasms/pathology
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Drug Resistance, Neoplasm/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Cell Line, Tumor
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Gene Expression Regulation, Neoplastic/drug effects
- Cisplatin/pharmacology
- RNA, Circular/genetics
- RNA, Circular/metabolism
Collapse
Affiliation(s)
- Lian Liu
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Chen Zou
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Xiaozhi Lv
- Department of Oral and Maxillofacial Surgery, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Haigang Wei
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Siyuan Wu
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Jing Song
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Zhe Tang
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Hailing Luo
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Xia Li
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Yilong Ai
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| |
Collapse
|
11
|
Abdul-Rahman T, Ghosh S, Badar SM, Nazir A, Bamigbade GB, Aji N, Roy P, Kachani H, Garg N, Lawal L, Bliss ZSB, Wireko AA, Atallah O, Adebusoye FT, Teslyk T, Sikora K, Horbas V. The paradoxical role of cytokines and chemokines at the tumor microenvironment: a comprehensive review. Eur J Med Res 2024; 29:124. [PMID: 38360737 PMCID: PMC10868116 DOI: 10.1186/s40001-024-01711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
Tumor progression and eradication have long piqued the scientific community's interest. Recent discoveries about the role of chemokines and cytokines in these processes have fueled renewed interest in related research. These roles are frequently viewed as contentious due to their ability to both suppress and promote cancer progression. As a result, this review critically appraised existing literature to discuss the unique roles of cytokines and chemokines in the tumor microenvironment, as well as the existing challenges and future opportunities for exploiting these roles to develop novel and targeted treatments. While these modulatory molecules play an important role in tumor suppression via enhanced cancer-cell identification by cytotoxic effector cells and directly recruiting immunological effector cells and stromal cells in the TME, we observed that they also promote tumor proliferation. Many cytokines, including GM-CSF, IL-7, IL-12, IL-15, IL-18, and IL-21, have entered clinical trials for people with advanced cancer, while the FDA has approved interferon-alpha and IL-2. Nonetheless, low efficacy and dose-limiting toxicity limit these agents' full potential. Conversely, Chemokines have tremendous potential for increasing cancer immune-cell penetration of the tumor microenvironment and promoting beneficial immunological interactions. When chemokines are combined with cytokines, they activate lymphocytes, producing IL-2, CD80, and IL-12, all of which have a strong anticancer effect. This phenomenon opens the door to the development of effective anticancer combination therapies, such as therapies that can reverse cancer escape, and chemotaxis of immunosuppressive cells like Tregs, MDSCs, and TAMs.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine.
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | - Sarah M Badar
- The University of the West of Scotland, Lanarkshire, UK
| | | | - Gafar Babatunde Bamigbade
- Department of Food Science and Technology, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Narjiss Aji
- McGill University, Faculty of Medicine and Health Sciences, Montreal, Canada
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | | | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, One Medical Center Drive Stratford, Camden, NJ, 08084, USA
| | - Lukman Lawal
- Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Zarah Sophia Blake Bliss
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac Campus Norte, Huixquilucan, Mexico
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | - Tetiana Teslyk
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine
| | - Kateryna Sikora
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine
| | - Viktoriia Horbas
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine
| |
Collapse
|
12
|
Lukácsi S, Munkácsy G, Győrffy B. Harnessing Hyperthermia: Molecular, Cellular, and Immunological Insights for Enhanced Anticancer Therapies. Integr Cancer Ther 2024; 23:15347354241242094. [PMID: 38818970 PMCID: PMC11143831 DOI: 10.1177/15347354241242094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 06/01/2024] Open
Abstract
Hyperthermia, the raising of tumor temperature (≥39°C), holds great promise as an adjuvant treatment for cancer therapy. This review focuses on 2 key aspects of hyperthermia: its molecular and cellular effects and its impact on the immune system. Hyperthermia has profound effects on critical biological processes. Increased temperatures inhibit DNA repair enzymes, making cancer cells more sensitive to chemotherapy and radiation. Elevated temperatures also induce cell cycle arrest and trigger apoptotic pathways. Furthermore, hyperthermia modifies the expression of heat shock proteins, which play vital roles in cancer therapy, including enhancing immune responses. Hyperthermic treatments also have a significant impact on the body's immune response against tumors, potentially improving the efficacy of immune checkpoint inhibitors. Mild systemic hyperthermia (39°C-41°C) mimics fever, activating immune cells and raising metabolic rates. Intense heat above 50°C can release tumor antigens, enhancing immune reactions. Using photothermal nanoparticles for targeted heating and drug delivery can also modulate the immune response. Hyperthermia emerges as a cost-effective and well-tolerated adjuvant therapy when integrated with immunotherapy. This comprehensive review serves as a valuable resource for the selection of patient-specific treatments and the guidance of future experimental studies.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | - Gyöngyi Munkácsy
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
- University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| |
Collapse
|
13
|
Zhang P, Chen Z, Lin X, Yu S, Yu X, Chen Z. Unravelling diagnostic clusters and immune landscapes of disulfidptosis patterns in gastric cancer through bioinformatic assay. Aging (Albany NY) 2023; 15:15434-15450. [PMID: 38154092 PMCID: PMC10781506 DOI: 10.18632/aging.205365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
Disulfidptosis is a novel type of cell death mediated by SLC7A11-induced disulfide stress. Gastric cancer (GC) is a common malignant gastrointestinal tumor. Existing evidence shows that SLC7A11 can regulate cell death and improve the progression of GC, suggesting disulfidptosis may exist in the pathological process of GC. However, the underlying functions of disulfidptosis regulators in GC remain unknown. The dataset of GSE54129 was screened to comprehensively investigate the disulfidptosis-related diagnostic clusters and immune landscapes in GC. Totally 15 significant disulfidptosis regulators were identified via difference analysis between GC samples and controls. Then random forest model was utilized to assess their importance score (mean decrease Gini). Then a nomogram model was constructed, which could offer benefit to patients based on our subsequent decision curve analysis. All the included GC patients were divided into 2 disulfidptosis subgroups (clusterA and clusterB) according to the significant disulfidptosis regulators in virtue of consensus clustering analysis. The disulfidptosis score of each sample was calculated through PCA algorithms to quantify the disulfidptosis subtypes. Patients from clusterB exhibited lower disulfidptosis scores than those of patients in clusterA. In addition, we found that the cases in clusterB were closely associated with the immunity of activated CD4 T cell, etc., while clusterA was linked to immature dendritic cell, mast cell, natural killer T cell, natural killer cell, etc., which has a higher disulfidptosis score. Therefore, disulfidptosis regulators play an important role in the pathological process of GC, providing a promising marker and an immunotherapeutic strategy for future GC therapy.
Collapse
Affiliation(s)
- Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhuofeng Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | | | - Siyao Yu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiang Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510405, China
| | - Zhuoqun Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
14
|
Weiner L, Fitzgerald A, Maynard R, Marcisak E, Nasir A, Glasgow E, Jablonski S, Van Der Veken P, Pearson G, Eisman S, Mace E, Fertig E. Fibroblast activation protein regulates natural killer cell migration, extravasation and tumor infiltration. RESEARCH SQUARE 2023:rs.3.rs-3706465. [PMID: 38196606 PMCID: PMC10775390 DOI: 10.21203/rs.3.rs-3706465/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Natural killer (NK) cells play a critical role in physiologic and pathologic conditions such as pregnancy, infection, autoimmune disease and cancer. In cancer, numerous strategies have been designed to exploit the cytolytic properties of NK cells, with variable success. A major hurdle to NK-cell focused therapies is NK cell recruitment and infiltration into tumors. While the chemotaxis pathways regulating NK recruitment to different tissues are well delineated, the mechanisms human NK cells employ to physically migrate are ill-defined. We show for the first time that human NK cells express fibroblast activation protein (FAP), a cell surface protease previously thought to be primarily expressed by activated fibroblasts. FAP degrades the extracellular matrix to facilitate cell migration and tissue remodeling. We used novel in vivo zebrafish and in vitro 3D culture models to demonstrate that FAP knock out and pharmacologic inhibition restrict NK cell migration, extravasation, and invasion through tissue matrix. Notably, forced overexpression of FAP promotes NK cell invasion through matrix in both transwell and tumor spheroid assays, ultimately increasing tumor cell lysis. Additionally, FAP overexpression enhances NK cells invasion into a human tumor in immunodeficient mice. These findings demonstrate the necessity of FAP in NK cell migration and present a new approach to modulate NK cell trafficking and enhance cell-based therapy in solid tumors.
Collapse
Affiliation(s)
| | - Allison Fitzgerald
- Lombardi Comprehensive Cancer Center, Georgetown University Medial Center, Washington
| | | | - Emily Marcisak
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine
| | | | | | | | | | | | | | - Emily Mace
- Columbia University Irving Medical Center
| | - Elana Fertig
- Johns Hopkins Convergence Institute, Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Department of Biomedical Engineeri
| |
Collapse
|
15
|
Zhu W, Liu X, Yang L, He Q, Huang D, Tan X. Ferroptosis and tumor immunity: In perspective of the major cell components in the tumor microenvironment. Eur J Pharmacol 2023; 961:176124. [PMID: 37925133 DOI: 10.1016/j.ejphar.2023.176124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023]
Abstract
Ferroptosis is an iron-dependent form of cell death driven by lipid peroxidation, which is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. Mounting studies on the essential role of ferroptosis have been published in the progression of solid tumors, metastasis, therapy, and therapy resistance. Studies showed that ferroptosis is a "double-edged sword" in tumor immunity, which means it may have both tumor-antagonizing and tumor-promoting functions. The tumor microenvironment (TME) comprises not only tumor cells but also surrounding immune cells, stromal cells, as well as noncellular components such as the extracellular matrix (ECM), cytokines, growth factors, and extracellular vesicles (EVs). In the complex and diverse condition in TME where tumor cells grow, changes in each constituent may impact tumor destiny differently. Recently, several studies have revealed the interaction between ferroptosis and different constituents in TME. Both tumor cells and nontumor cells have a dual role in tumor immunity and influence tumor progression through ferroptosis. Herein, this review aims at summarizing the role of ferroptosis in tumor immunity based on TME, focusing on the mechanisms of the interaction between the ferroptosis and the different constituents in TME, illuminating how ferroptosis plays its role in promoting or antagonizing tumors by acting with varying components in TME and proposing several questions in immunomodulatory effects of ferroptosis and ferroptosis-associated immunotherapy.
Collapse
Affiliation(s)
- Wanling Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaowei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiang He
- Department of Cosmetic Surgery, Sichuan Provincial People's Hospital Medical Group Chengdu Newme Medical Cosmetic Hospital, 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Gao Y, Shi H, Zhao H, Yao M, He Y, Jiang M, Li J, Li Z, Su S, Liu T, Yin C, Liao X, Yue W. Single-cell transcriptomics identify TNFRSF1B as a novel T-cell exhaustion marker for ovarian cancer. Clin Transl Med 2023; 13:e1416. [PMID: 37712139 PMCID: PMC10502459 DOI: 10.1002/ctm2.1416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) patients routinely show poor immunotherapeutic response due to the complex tumour microenvironment (TME). It is urgent to explore new immunotherapeutic markers. METHODS Through the single-cell RNA sequencing (scRNA-seq) analyses on high-grade serous OC (HGSOC), moderate severity borderline tumour and matched normal ovary, we identified a novel exhausted T cells subpopulation that related to poor prognosis in OC. Histological staining, multiple immunofluorescences, and flow cytometry were applied to validate some results from scRNA-seq. Furthermore, a tumour-bearing mice model was constructed to investigate the effects of TNFRSF1B treatment on tumour growth in vivo. RESULTS Highly immunosuppressive TME in HGSOC is displayed compared to moderate severity borderline tumour and matched normal ovary. Subsequently, a novel exhausted subpopulation of CD8+ TNFRSF1B+ T cells is identified, which is associated with poor survival. In vitro experiments demonstrate that TNFRSF1B is specifically upregulated on activated CD8+ T cells and suppressed interferon-γ secretion. The expression of TNFRSF1B on CD8+ T cells is closely related to OC clinical malignancy and is a marker of poor prognosis through 140 OC patients' verification. In addition, the blockade of TNFRSF1B inhibits tumour growth via profoundly remodeling the immune microenvironment in the OC mouse model. CONCLUSIONS Our transcriptomic results analyzed by scRNA-seq delineate a high-resolution snapshot of the entire tumour ecosystem of OC TME. The major applications of our findings were an exhausted subpopulation of CD8+ TNFRSF1B+ T cells for predicting OC patient prognosis and the potential therapeutic value of TNFRSF1B. These findings demonstrated the clinical value of TNFRSF1B as a potential immunotherapy target and extended our understanding of factors contributing to immunotherapy failure in OC.
Collapse
Affiliation(s)
- Yan Gao
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Hui Shi
- School of Pharmaceutical SciencesBeijing Advanced Innovation Center for Human Brain ProtectionKey Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Tsinghua UniversityBeijingChina
- Joint Graduate Program of Peking‐Tsinghua‐NIBS, School of Life SciencesTsinghua UniversityBeijingChina
| | - Hongyu Zhao
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Mengcheng Yao
- Bioinformatics departmentAnnoroad Gene Technology Co., LtdBeijingChina
| | - Yue He
- Department of Gynecology and OncologyBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Mei Jiang
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Jie Li
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Zhefeng Li
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Shaofei Su
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Tao Liu
- Bioinformatics departmentAnnoroad Gene Technology Co., LtdBeijingChina
| | - Chenghong Yin
- Department of Internal MedicineBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| | - Xuebin Liao
- School of Pharmaceutical SciencesBeijing Advanced Innovation Center for Human Brain ProtectionKey Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Tsinghua UniversityBeijingChina
| | - Wentao Yue
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijingChina
| |
Collapse
|
17
|
Yang S, Li G, Yin X, Wang Y, Jiang X, Bian X, Fang T, Yin S, Zhang L, Xue Y. Cancer-associated fibroblast expression of glutamine fructose-6-phosphate aminotransferase 2 (GFPT2) is a prognostic marker in gastric cancer. J Pathol Clin Res 2023; 9:391-408. [PMID: 37395335 PMCID: PMC10397376 DOI: 10.1002/cjp2.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 07/04/2023]
Abstract
Glutamine fructose-6-phosphate aminotransferase 2 (GFPT2) is a rate-limiting enzyme in hexosamine biosynthesis involved in the occurrence and progress of many cancers. What role it plays in gastric cancer (GC) is still unclear. In this study, transcriptome sequencing data from the Harbin Medical University (HMU)-GC cohort and The Cancer Genome Atlas (TCGA) dataset were combined with the HMU-TCGA training cohort to analyze the biological function and clinical significance of GFPT2. The correlation of GFPT2 with immune cells and stromal cells was analyzed in the GC immune microenvironment through transcriptome sequencing data and a public single-cell sequencing database. In cell lines, GC tissues, and the tissue microarray, GFPT2 protein expression was confirmed by western blotting and immunohistochemistry. The mRNA of GFPT2 was highly expressed in the tumor (p < 0.001), and GC cells and tumors expressed high levels of GFPT2 protein. Compared to low expression, high GFPT2 mRNA expression was associated with higher levels of tumor invasion, higher pathological stages, and poor prognosis (p = 0.02) in GC patients. In a drug susceptibility analysis, GFPT2 mRNA expression was associated with multiple chemotherapeutic drug sensitivity, including docetaxel, paclitaxel, and cisplatin. Gene enrichment analysis found that GFPT2 was mainly primarily involved in the extracellular matrix receptor interaction pathway. The ESTIMATE, CIBERSORT, and ssGSEA algorithms showed that GFPT2 was associated with immune cell infiltration. In addition, GFPT2 was more likely to be expressed within cancer-associated fibroblasts (CAFs), and high levels of GFPT2 expression were highly correlated with four CAFs scores (all p < 0.05). Finally, a prognostic model to assess the risk of death in GC patients was constructed based on GFPT2 protein expression and lymph node metastasis rate. In conclusion, GFPT2 plays an essential role in the function of CAFs in GC. It can be used as a biomarker to assess GC prognosis and immune infiltration.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Pathology, Basic Medical Science CollegeHarbin Medical UniversityHarbinPR China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal HospitalChifeng Clinical Medical School of Inner Mongolia Medical UniversityChifengPR China
| | - Xin Yin
- Department of Gastroenterological SurgeryHarbin Medical University Cancer Hospital, Harbin Medical UniversityHarbinPR China
| | - Yufei Wang
- Department of Gastroenterological SurgeryHarbin Medical University Cancer Hospital, Harbin Medical UniversityHarbinPR China
| | - Xinju Jiang
- Department of Pathology, Basic Medical Science CollegeHarbin Medical UniversityHarbinPR China
| | - Xiulan Bian
- Department of Pathology, Basic Medical Science CollegeHarbin Medical UniversityHarbinPR China
| | - Tianyi Fang
- Department of Gastroenterological SurgeryHarbin Medical University Cancer Hospital, Harbin Medical UniversityHarbinPR China
| | - Shengjie Yin
- Department of Medical Oncology, Municipal Hospital of ChifengInner Mongolia Autonomous RegionChifengPR China
| | - Lei Zhang
- Department of Pathology, Basic Medical Science CollegeHarbin Medical UniversityHarbinPR China
| | - Yingwei Xue
- Department of Gastroenterological SurgeryHarbin Medical University Cancer Hospital, Harbin Medical UniversityHarbinPR China
| |
Collapse
|
18
|
Jiang Y, Zhang Z, Wang W, Huang W, Chen C, Xi S, Ahmad MU, Ren Y, Sang S, Xie J, Wang JY, Xiong W, Li T, Han Z, Yuan Q, Xu Y, Xing L, Poultsides GA, Li G, Li R. Biology-guided deep learning predicts prognosis and cancer immunotherapy response. Nat Commun 2023; 14:5135. [PMID: 37612313 PMCID: PMC10447467 DOI: 10.1038/s41467-023-40890-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Substantial progress has been made in using deep learning for cancer detection and diagnosis in medical images. Yet, there is limited success on prediction of treatment response and outcomes, which has important implications for personalized treatment strategies. A significant hurdle for clinical translation of current data-driven deep learning models is lack of interpretability, often attributable to a disconnect from the underlying pathobiology. Here, we present a biology-guided deep learning approach that enables simultaneous prediction of the tumor immune and stromal microenvironment status as well as treatment outcomes from medical images. We validate the model for predicting prognosis of gastric cancer and the benefit from adjuvant chemotherapy in a multi-center international study. Further, the model predicts response to immune checkpoint inhibitors and complements clinically approved biomarkers. Importantly, our model identifies a subset of mismatch repair-deficient tumors that are non-responsive to immunotherapy and may inform the selection of patients for combination treatments.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhicheng Zhang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- JancsiTech and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Wang
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weicai Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanli Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sujuan Xi
- The Reproductive Medical Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - M Usman Ahmad
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yulan Ren
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shengtian Sang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingjing Xie
- Graduate Group of Epidemiology, University of California Davis, Davis, CA, USA
| | - Jen-Yeu Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tuanjie Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Han
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Xing
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - George A Poultsides
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
19
|
Veith T, Schultz A, Alahmari S, Beck R, Johnson J, Andor N. Mathematical Modeling of Clonal Interference by Density-Dependent Selection in Heterogeneous Cancer Cell Lines. Cells 2023; 12:1849. [PMID: 37508513 PMCID: PMC10378185 DOI: 10.3390/cells12141849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Many cancer cell lines are aneuploid and heterogeneous, with multiple karyotypes co-existing within the same cell line. Karyotype heterogeneity has been shown to manifest phenotypically, thus affecting how cells respond to drugs or to minor differences in culture media. Knowing how to interpret karyotype heterogeneity phenotypically would give insights into cellular phenotypes before they unfold temporally. Here, we re-analyzed single cell RNA (scRNA) and scDNA sequencing data from eight stomach cancer cell lines by placing gene expression programs into a phenotypic context. Using live cell imaging, we quantified differences in the growth rate and contact inhibition between the eight cell lines and used these differences to prioritize the transcriptomic biomarkers of the growth rate and carrying capacity. Using these biomarkers, we found significant differences in the predicted growth rate or carrying capacity between multiple karyotypes detected within the same cell line. We used these predictions to simulate how the clonal composition of a cell line would change depending on density conditions during in-vitro experiments. Once validated, these models can aid in the design of experiments that steer evolution with density-dependent selection.
Collapse
Affiliation(s)
- Thomas Veith
- Moffitt Cancer Center, Integrated Mathematical Oncology, USF Magnolia Drive, Tampa, FL 33612, USA; (T.V.); (A.S.); (R.B.)
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33612, USA
| | - Andrew Schultz
- Moffitt Cancer Center, Integrated Mathematical Oncology, USF Magnolia Drive, Tampa, FL 33612, USA; (T.V.); (A.S.); (R.B.)
| | - Saeed Alahmari
- Department of Computer Science, Najran University, King Abdulaziz Road, Najran 61441, Saudi Arabia;
| | - Richard Beck
- Moffitt Cancer Center, Integrated Mathematical Oncology, USF Magnolia Drive, Tampa, FL 33612, USA; (T.V.); (A.S.); (R.B.)
| | - Joseph Johnson
- Moffitt Cancer Center, Analytic Microscopy Core, USF Magnolia Drive, Tampa, FL 33612, USA;
| | - Noemi Andor
- Moffitt Cancer Center, Integrated Mathematical Oncology, USF Magnolia Drive, Tampa, FL 33612, USA; (T.V.); (A.S.); (R.B.)
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33612, USA
| |
Collapse
|
20
|
Guo C, Tang Y, Li Q, Yang Z, Guo Y, Chen C, Zhang Y. Deciphering the immune heterogeneity dominated by natural killer cells with prognostic and therapeutic implications in hepatocellular carcinoma. Comput Biol Med 2023; 158:106872. [PMID: 37030269 DOI: 10.1016/j.compbiomed.2023.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Belonging to type 1 innate lymphoid cells (ILC1), natural killer (NK) cells play an important role not only in fighting microbial infections but also in anti-tumor response. Hepatocellular carcinoma (HCC) represents an inflammation-related malignancy and NK cells are enriched in the liver, making them an essential component of the HCC immune microenvironment. In this study, we performed single-cell RNA-sequencing (scRNA-seq) analysis to identify the NK cell marker genes (NKGs) and uncovered 80 prognosis-related ones by the TCGA-LIHC dataset. Based on prognostic NKGs, HCC patients were categorized into two subtypes with distinct clinical outcomes. Subsequently, we conducted LASSO-COX and stepwise regression analysis on prognostic NKGs to establish a five-gene (UBB, CIRBP, GZMH, NUDC, and NCL) prognostic signature-NKscore. Different mutation statuses of the two risk groups stratified by NKscore were comprehensively characterized. Besides, the established NKscore-integrated nomogram presented enhanced predictive performance. Single sample gene set enrichment analysis (ssGSEA) analysis was used to uncover the landscape of the tumor immune microenvironment (TIME) and the high-NKscore risk group was characterized with an immune-exhausted phenotype while the low-NKscore risk group held relatively strong anti-cancer immunity. T cell receptor (TCR) repertoire, tumor inflammation signature (TIS), and Immunophenoscore (IPS) analyses revealed differences in immunotherapy sensitivity between the two NKscore risk groups. Taken together, we developed a novel NK cell-related signature to predict the prognosis and immunotherapy efficacy for HCC patients.
Collapse
Affiliation(s)
- Chengbin Guo
- Faculty of Medicine, Macau University of Science and Technology, Tapai, Macau, 999078, China
| | - Yuqin Tang
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China
| | - Qizhuo Li
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhao Yang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqi Guo
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China.
| | - Chuanliang Chen
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China.
| | - Yongqiang Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
21
|
Cui JX, Xu XH, He T, Liu JJ, Xie TY, Tian W, Liu JY. L-kynurenine induces NK cell loss in gastric cancer microenvironment via promoting ferroptosis. J Exp Clin Cancer Res 2023; 42:52. [PMID: 36855135 PMCID: PMC9976385 DOI: 10.1186/s13046-023-02629-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Natural killer (NK) cells play a major role in body's fighting against various types of cancers. Their infiltration in the tumor microenvironment (TME) of gastric cancer (GC) are significantly decreased, which has been reported as a robust prognostic marker. However, the causes leading to NK cells loss in GC TME remains poorly understood. METHODS We constructed a non-contact co-culturing system and humanized xenograft tumor mice model to detect the influence of GC microenvironment on NK-92 or primary human NK cells viability by flow cytometry. Then through using the specific inhibitors for different types of cell death and examining the surrogate markers, we confirmed ferroptosis in NK cells. Inspired by the accidental discoveries, we constructed a NK-92 cell strain with high expression of GPX4 and treated the humanized xenograft tumor mice model with the NK-92 cells. RESULTS We found L-KYN, mainly generated through indoleamine 2, 3-dioxygenase (IDO) from GC cells, impaired NK cells viability in TME. Further analysis revealed L-KYN induced ferroptosis in NK cells via an AHR-independent way. Moreover, we found NK cells with higher GPX4 expression showed resistance to L-KYN induced ferroptosis. Based on this, we generated GPX4 over-expressed NK-92 cells, and found these cells showed therapeutic potential towards GC. CONCLUSIONS Our study revealed a novel mechanism to explain the decline of NK cell number in GC TME. Notably, we also developed a potential immunotherapy strategy, which might be beneficial in clinical treatment in the future.
Collapse
Affiliation(s)
- Jian-Xin Cui
- grid.414252.40000 0004 1761 8894Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Xian-Hui Xu
- Department of Emergency, No. 971 Hospital of PLAN, Qingdao, 266071 Shandong Province China
| | - Tao He
- grid.410570.70000 0004 1760 6682Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Jia-Jia Liu
- grid.410570.70000 0004 1760 6682Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Tian-Yu Xie
- grid.414252.40000 0004 1761 8894Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Wen Tian
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Jun-Yan Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
22
|
Tien FM, Lu HH, Lin SY, Tsai HC. Epigenetic remodeling of the immune landscape in cancer: therapeutic hurdles and opportunities. J Biomed Sci 2023; 30:3. [PMID: 36627707 PMCID: PMC9832644 DOI: 10.1186/s12929-022-00893-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
The tumor immune microenvironment represents a sophisticated ecosystem where various immune cell subtypes communicate with cancer cells and stromal cells. The dynamic cellular composition and functional characteristics of the immune landscape along the trajectory of cancer development greatly impact the therapeutic efficacy and clinical outcome in patients receiving systemic antitumor therapy. Mounting evidence has suggested that epigenetic mechanisms are the underpinning of many aspects of antitumor immunity and facilitate immune state transitions during differentiation, activation, inhibition, or dysfunction. Thus, targeting epigenetic modifiers to remodel the immune microenvironment holds great potential as an integral part of anticancer regimens. In this review, we summarize the epigenetic profiles and key epigenetic modifiers in individual immune cell types that define the functional coordinates of tumor permissive and non-permissive immune landscapes. We discuss the immunomodulatory roles of current and prospective epigenetic therapeutic agents, which may open new opportunities in enhancing cancer immunotherapy or overcoming existing therapeutic challenges in the management of cancer.
Collapse
Affiliation(s)
- Feng-Ming Tien
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Hsuan-Hsuan Lu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Center for Frontier Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Shu-Yung Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Hsing-Chen Tsai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan.
- Center for Frontier Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan.
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No. 1 Jen Ai Road Section 1, Rm542, Taipei, 100233, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, 100225, Taiwan.
| |
Collapse
|
23
|
Zhao W, Lin J, Cheng S, Li H, Shu Y, Xu C. Comprehensive analysis of COMMD10 as a novel prognostic biomarker for gastric cancer. PeerJ 2023; 11:e14645. [PMID: 36919165 PMCID: PMC10008319 DOI: 10.7717/peerj.14645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/06/2022] [Indexed: 03/11/2023] Open
Abstract
Background COMMD10 has an important role in the development of certain tumors, but its relevance to gastric cancer (GC) is unclear. The purpose of this study is to investigate the difference of COMMD10 expression in gastric adenocarcinoma (STAD) and analyze the correlation between COMMD10 expression and prognosis of STAD patients. Methods The expression levels of COMMD10 between STAD and normal tissues were explored using the The Cancer Genome Atlas (TCGA) database. In addition, the expression of COMMD10 in GC was further validated by immunohistochemistry (IHC) staining, qRT-PCR and Western blot. Dot blot experiments were used for exploring m6A expression levels in tissues with high and low COMMD10 expression. Kaplan-Meier analysis and COX regression analysis were used to explore the relationship between COMMD10 and STAD prognosis. A nomogram was constructed to predict the survival probability of STAD patients. GO and KEGG functional enrichment of COMMD10-related genes were performed. The Corrlot software package was used to analyze the correlation between COMMD10 expression levels and m6A modifications in STAD. An analysis of immune infiltration based on the CIBERSOFT and the single-sample GSEA (ssGSEA) method was performed. Results COMMD10 expression was significantly associated with multiple cancers, including STAD in TCGA. COMMD10 expression was elevated in STAD cancer tissues compared to paracancerous tissues. COMMD10 upregulation was associated with poorer overall survival (OS), clinical stage, N stage, and primary treatment outcome in STAD. Functional enrichment of COMMD10-related genes was mainly involved in biological processes such as RNA localization, RNA splicing, RNA transport, mRNA surveillance pathways, and spliceosomes. The dot blot experiment showed that m6A levels were higher in cancer tissues with high COMMD10 expression compared with paracancerous tissues. COMMD10 was significantly correlated with most m6A-related genes. COMMD10 was involved in STAD immune cells infiltration, correlated with macrophage cells expression. Conclusion High COMMD10 expression was significantly associated with poor prognosis in STAD patients, and its functional realization was related to m6A modification. COMMD10 involved in STAD immune infiltration.
Collapse
Affiliation(s)
- Wenfang Zhao
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiahui Lin
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Sha Cheng
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Huan Li
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yufeng Shu
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Canxia Xu
- The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
24
|
Lian J, Zhang G, Zhang Y, Liu H, Zhang J, Nan P, Tian W. PD-L1 and HER2 expression in gastric adenocarcinoma and their prognostic significance. Dig Liver Dis 2022; 54:1419-1427. [PMID: 35123909 DOI: 10.1016/j.dld.2022.01.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND The upregulation of programmed death-ligand 1 (PD-L1) and epidermal growth factor receptor 2 (HER2) may play a role in gastric adenocarcinoma (GAC). AIM To study PD-L1 and HER-2 expression and prognosis in GAC. METHODS PD-L1 and HER2 expression was determined in tumor tissues of 75 patients with GAC. The correlations between PD-L1, HER2 expression, and clinicopathological factors were analyzed. RESULTS The positive expression rate for PD-L1 was 57.3% (43/75) and the HER2 over-expression rate was 17.3% (13/75). PD-L1 expression negatively correlated with the grade of GAC differentiation (r =-0.26, P<0.05). Approximately 85% of HER2-positive GACs were found to be PD-L1-positive and PD-L1 expression positively correlated with HER2 overexpression. The TNM stage and combined HER2 and PD-L1 expression were independent prognostic factors affecting the survival of patients with GAC. The median overall survival and recurrence-free survival of groups I (HER2 overexpression and PD-L1 positive), II (HER2 overexpression and PD-L1 negative), III (No HER2 overexpression and PD-L1 positive) and IV (No HER2 overexpression and PD-L1 negative) were (47 (17-77), 15 (0-44), 81 (62-101), and 78 (60-98) months, respectively. CONCLUSION PD-L1 expression is upregulated in more than half of patients with GAC. Anti-PD-L1 treatment combined with anti-HER2 therapy may benefit patients with locally advanced GAC with HER2 overexpression.
Collapse
Affiliation(s)
- Jie Lian
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Guanjun Zhang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Yun Zhang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, Guizhou 563003, P.R. China
| | - Jiaojiao Zhang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Pengfei Nan
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Wei Tian
- Department of Pathology, No. 215 Hospital of Shanxi Nuclear Industry, Xianyang 712000, China
| |
Collapse
|
25
|
Sun K, Wu L, Wang S, Deng W. Antitumor effects of Chinese herbal medicine compounds and their nano-formulations on regulating the immune system microenvironment. Front Oncol 2022; 12:949332. [PMID: 36212483 PMCID: PMC9540406 DOI: 10.3389/fonc.2022.949332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Traditional Chinese medicine (TCM), including herbal medicine, acupuncture and meditation, has a wide range of applications in China. In recent years, herbal compounding and active ingredients have been used to control tumor growth, reduce suffering, improve quality of life, and prolong the life span of cancer patients. To reduce side effects, herbal medicine can be used in conjunction with radiotherapy and chemotherapy or can be used as an adjuvant to strengthen the immune effect of anticancer vaccines. In particular, in the immunosuppressed tumor microenvironment, herbal medicine can have antitumor effects by stimulating the immune response. This paper reviews the advances in research on antitumor immunomodulation in Chinese herbal medicine, including the regulation of the innate immune system, which includes macrophages, MDSCs, and natural killer cells, and the adaptive immune system, which includes CD4+ T cells, CD8+ T cells, and regulatory T cells (Tregs), to influence tumor-associated inflammation. In addition, a combination of active ingredients of herbal medicine and modern nanotechnology alter the tumor immune microenvironment. In recent years, immunological antitumor therapy in TCM has been applied on a reasonably large scale both nationally and internationally, and there is potential for further clinical expansion. Investigation of immune modulation mechanisms in Chinese herbal medicine will provide novel perspectives of how herbal medicine controls tumor growth and metastasis, which will contribute to the evolution of tumor research.
Collapse
|
26
|
Yu X, He S, Shen J, Huang Q, Yang P, Huang L, Pu D, Wang L, Li L, Liu J, Liu Z, Zhu L. Tumor vessel normalization and immunotherapy in gastric cancer. Ther Adv Med Oncol 2022; 14:17588359221110176. [PMID: 35872968 PMCID: PMC9297465 DOI: 10.1177/17588359221110176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is a common malignant tumor, and patients with GC have a low survival rate due to limited effective treatment methods. Angiogenesis and immune evasion are two key processes in GC progression, and they act synergistically to promote tumor progression. Tumor vascular normalization has been shown to improve the efficacy of cancer immunotherapy, which in turn may be improved through enhanced immune stimulation. Therefore, it may be interesting to identify synergies between immunomodulatory agents and anti-angiogenic therapies in GC. This strategy aims to normalize the tumor microenvironment through the action of the anti-vascular endothelial growth factor while stimulating the immune response through immunotherapy and prolonging the survival of GC patients.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Shan He
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Jian Shen
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Qiushi Huang
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Peng Yang
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Lin Huang
- West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dan Pu
- West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Wang
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Lu Li
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jinghua Liu
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| | - Zelong Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, No. 37, Guo Xue Xiang, Wuhou District, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
27
|
Ran GH, Lin YQ, Tian L, Zhang T, Yan DM, Yu JH, Deng YC. Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduct Target Ther 2022; 7:205. [PMID: 35768424 PMCID: PMC9243142 DOI: 10.1038/s41392-022-01058-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells, a subgroup of innate lymphoid cells, act as the first line of defense against cancer. Although some evidence shows that NK cells can develop in secondary lymphoid tissues, NK cells develop mainly in the bone marrow (BM) and egress into the blood circulation when they mature. They then migrate to and settle down in peripheral tissues, though some special subsets home back into the BM or secondary lymphoid organs. Owing to its success in allogeneic adoptive transfer for cancer treatment and its "off-the-shelf" potential, NK cell-based immunotherapy is attracting increasing attention in the treatment of various cancers. However, insufficient infiltration of adoptively transferred NK cells limits clinical utility, especially for solid tumors. Expansion of NK cells or engineered chimeric antigen receptor (CAR) NK cells ex vivo prior to adoptive transfer by using various cytokines alters the profiles of chemokine receptors, which affects the infiltration of transferred NK cells into tumor tissue. Several factors control NK cell trafficking and homing, including cell-intrinsic factors (e.g., transcriptional factors), cell-extrinsic factors (e.g., integrins, selectins, chemokines and their corresponding receptors, signals induced by cytokines, sphingosine-1-phosphate (S1P), etc.), and the cellular microenvironment. Here, we summarize the profiles and mechanisms of NK cell homing and trafficking at steady state and during tumor development, aiming to improve NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Guang He Ran
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Yu Qing Lin
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tao Zhang
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Dong Mei Yan
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Jian Hua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - You Cai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
| |
Collapse
|
28
|
Rossi F, Fredericks N, Snowden A, Allegrezza MJ, Moreno-Nieves UY. Next Generation Natural Killer Cells for Cancer Immunotherapy. Front Immunol 2022; 13:886429. [PMID: 35720306 PMCID: PMC9202478 DOI: 10.3389/fimmu.2022.886429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, immunotherapy for cancer has become mainstream with several products now authorized for therapeutic use in the clinic and are becoming the standard of care for some malignancies. Chimeric antigen receptor (CAR)-T cell therapies have demonstrated substantial efficacy for the treatment of hematological malignancies; however, they are complex and currently expensive to manufacture, and they can generate life-threatening adverse events such as cytokine release syndrome (CRS). The limitations of current CAR-T cells therapies have spurred an interest in alternative immunotherapy approaches with safer risk profiles and with less restrictive manufacturing constraints. Natural killer (NK) cells are a population of immune effector cells with potent anti-viral and anti-tumor activity; they have the capacity to swiftly recognize and kill cancer cells without the need of prior stimulation. Although NK cells are naturally equipped with cytotoxic potential, a growing body of evidence shows the added benefit of engineering them to better target tumor cells, persist longer in the host, and be fitter to resist the hostile tumor microenvironment (TME). NK-cell-based immunotherapies allow for the development of allogeneic off-the-shelf products, which have the potential to be less expensive and readily available for patients in need. In this review, we will focus on the advances in the development of engineering of NK cells for cancer immunotherapy. We will discuss the sourcing of NK cells, the technologies available to engineer NK cells, current clinical trials utilizing engineered NK cells, advances on the engineering of receptors adapted for NK cells, and stealth approaches to avoid recipient immune responses. We will conclude with comments regarding the next generation of NK cell products, i.e., armored NK cells with enhanced functionality, fitness, tumor-infiltration potential, and with the ability to overcome tumor heterogeneity and immune evasion.
Collapse
Affiliation(s)
- Fiorella Rossi
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Nathaniel Fredericks
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Andrew Snowden
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Michael J Allegrezza
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Uriel Y Moreno-Nieves
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| |
Collapse
|
29
|
Chen Y, Sun Z, Wan L, Chen H, Xi T, Jiang Y. Tumor Microenvironment Characterization for Assessment of Recurrence and Survival Outcome in Gastric Cancer to Predict Chemotherapy and Immunotherapy Response. Front Immunol 2022; 13:890922. [PMID: 35572498 PMCID: PMC9101297 DOI: 10.3389/fimmu.2022.890922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background The tumor microenvironment (TME) is crucial for tumor recurrence, prognosis, and therapeutic responses. We comprehensively investigated the TME characterization associated with relapse and survival outcomes of gastric cancer (GC) to predict chemotherapy and immunotherapy response. Methods A total of 2,456 GC patients with complete gene-expression data and clinical annotations from twelve cohorts were included. The TME characteristics were evaluated using three proposed computational algorithms. We then developed a TME-classifier, a TME-cluster, and a TME-based risk score for the assessment of tumor recurrence and prognosis in patients with GC to predict chemotherapy and immunotherapy response. Results Patients with tumor recurrence presented with inactive immunogenicity, namely, high infiltration of tumor-associated stromal cells, low infiltration of tumor-associated immunoactivated lymphocytes, high stromal score, and low immune score. The TME-classifier of 4 subtypes with distinct clinicopathology, genomic, and molecular characteristics was significantly associated with tumor recurrence (P = 0.002), disease-free survival (DFS, P <0.001), and overall survival (OS, P <0.001) adjusted by confounding variables in 1,193 stage I–III GC patients who underwent potential radical surgery. The TME cluster and TME-based risk score can also predict DFS (P <0.001) and OS (P <0.001). More importantly, we found that patients in the TMEclassifier-A, TMEclassifier-C, and TMEclassifier-D groups benefited from adjuvant chemotherapy, and patients in the TMEclassifier-B group without chemotherapy benefit responded best to pembrolizumab treatment (PD-1 inhibitor), followed by patients in the TMEclassifier-A, while patients in the C and D groups of the TMEclassifier responded poorly to immunotherapy. Conclusion We determined that TME characterization is significantly associated with tumor recurrence and prognosis. The TME-classifier we proposed can guide individualized chemotherapy and immunotherapy decision-making.
Collapse
Affiliation(s)
- Yan Chen
- Shatou Community Health Service Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, The Second People’s Hospital of Bao’an Shenzhen (Group), Shenzhen Bao’an Shajing People’s Hospital, Guangzhou Medical University, Shenzhen, China
- *Correspondence: Yuming Jiang, ; Yan Chen,
| | - Zepang Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Wan
- Shatou Community Health Service Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, The Second People’s Hospital of Bao’an Shenzhen (Group), Shenzhen Bao’an Shajing People’s Hospital, Guangzhou Medical University, Shenzhen, China
| | - Hongzhuan Chen
- Shatou Community Health Service Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, The Second People’s Hospital of Bao’an Shenzhen (Group), Shenzhen Bao’an Shajing People’s Hospital, Guangzhou Medical University, Shenzhen, China
| | - Tieju Xi
- Shatou Community Health Service Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, The Second People’s Hospital of Bao’an Shenzhen (Group), Shenzhen Bao’an Shajing People’s Hospital, Guangzhou Medical University, Shenzhen, China
| | - Yuming Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Yuming Jiang, ; Yan Chen,
| |
Collapse
|
30
|
PDK4 Constitutes a Novel Prognostic Biomarker and Therapeutic Target in Gastric Cancer. Diagnostics (Basel) 2022; 12:diagnostics12051101. [PMID: 35626257 PMCID: PMC9139696 DOI: 10.3390/diagnostics12051101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Gastric cancer (GC) is one of the most prevalent and deadly malignancies worldwide. We aimed to assess the functional role and clinical significance of pyruvate dehydrogenase kinase (PDK) in GC and explored the underlying mechanisms. The bioinformatics method was used to investigate the expression of PDKs in GC, the effect on clinical outcomes, enriched pathways, interactive network, and the correlation between PDK4 and immune infiltration. Next, PDK expression in the GC cells and tissues were verified by qRT-PCR and western blotting. A Cell Counting Kit-8 (CCK8), colony-formation, Flow cytometry, Transwell and wound healing assays were carried out to evaluate the influence of PDK4 on cell proliferation, invasion and migration. Among PDKs, PDK4 expression was aberrant in GC and identified as an independent prognostic factor. GO analysis, GSEA, and PPI showed that PDK4 expression may regulate cell adhesion, metal ion transport, synaptic activity, and cancer cell metabolism in GC. Analyses of immune infiltration showed that PDK4 correlated with the abundant expression of various immunocytes. Finally, we verified that upregulation of PDK4 expression enhanced the ability of GC cells to proliferate, migrate, and invade. In conclusion, PDK4 was identified as a potential candidate diagnostic biomarker and therapeutic target for GC patients.
Collapse
|
31
|
Zhu Y, Zhao Y, Cao Z, Chen Z, Pan W. Identification of three immune subtypes characterized by distinct tumor immune microenvironment and therapeutic response in stomach adenocarcinoma. Gene X 2022; 818:146177. [PMID: 35065254 DOI: 10.1016/j.gene.2021.146177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In primary stomach adenocarcinoma (STAD), the tumor immune microenvironment (TIME) is important for cancer occurrence and progression; however, its clinical significance remains unclear. This study investigated the association between patient survival, TIME, and therapeutic response to STAD. METHODS Gene expression profiles of STAD cases were collected from the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus. Molecular subtypes were explored with consistent clustering methods according to 119 immune signatures and the infiltrating scores of 22 immune cells using the Multi-Omics Immuno-Oncology Biological Research algorithm. We determined IFNγ scores and immune cytolytic activity (CYT) scores on the basis of corresponding gene signatures via single-sample Gene Set Enrichment Analysis. Comparisons of survival, TIME, 10 immunity-related oncogenic pathways, immune checkpoint expression, and therapeutic response were conducted among the three subtypes. We further applied linear discriminant analysis to construct a characteristic index to classify the subtypes, and the Pearson correlation coefficient for the relationship between the index and immune checkpoint genes. Weighted Correlation Network Analysis (WGCNA) was used to mine the associated modules and specific genes. RESULTS We collected gene expression profiles from 352 STAD cases in the TCGA database, 300 in GSE62254, and 344 in GSE84437. Three STAD subtypes (IS1-IS3) were established according to the TIME signatures. The IS3 subtype had the highest immune score and the best prognosis, as well as markedly increased immune T-cell CYT, Th1/IFNγ scores, and immune checkpoint gene expression, compared to the other two subtypes. It was highly similar to the PD-1 response group in the previous study samples of GSE91061. The established TIME classification index performed well in classifying subtypes and was directly proportional to immune checkpoint-related gene expression levels. WGCNA explored 6 modules and 14 genes, namely DYSF, MAN1C1, HTRA3, EMCN, RFLNB, KANK3, MAGEH1, CD93, PCAT19, FUT11, BMP1, FOSB, DCHS1, and TCF3, which were associated with the established TIME classification index and STAD patient prognosis. CONCLUSION TIME phenotypes of STAD patients could be divided into three different molecular subtypes, which displayed different prognoses, immune features, and therapeutic responses. Our results shed new light on predicting patient outcomes and the discovery of new anti-STAD therapeutic strategies according to the TIME.
Collapse
Affiliation(s)
- Yimiao Zhu
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou 215006, People's Republic of China; Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Yu Zhao
- Department of Endocrinology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Zhongsheng Cao
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Zhihao Chen
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Wensheng Pan
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou 215006, People's Republic of China; Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China.
| |
Collapse
|
32
|
Xiao X, Cheng W, Zhang G, Wang C, Sun B, Zha C, Kong F, Jia Y. Long Noncoding RNA: Shining Stars in the Immune Microenvironment of Gastric Cancer. Front Oncol 2022; 12:862337. [PMID: 35402261 PMCID: PMC8989925 DOI: 10.3389/fonc.2022.862337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is a kind of malignant tumor disease that poses a serious threat to human health. The GC immune microenvironment (TIME) is a very complex tumor microenvironment, mainly composed of infiltrating immune cells, extracellular matrix, tumor-associated fibroblasts, cytokines and chemokines, all of which play a key role in inhibiting or promoting tumor development and affecting tumor prognosis. Long non-coding RNA (lncRNA) is a non-coding RNA with a transcript length is more than 200 nucleotides. LncRNAs are expressed in various infiltrating immune cells in TIME and are involved in innate and adaptive immune regulation, which is closely related to immune escape, migration and invasion of tumor cells. LncRNA-targeted therapeutic effect prediction for GC immunotherapy provides a new approach for clinical research on the disease.
Collapse
Affiliation(s)
- Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guixing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chunyuan Zha
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
33
|
Xie R, Yuan M, Jiang Y. The Pan-Cancer Crosstalk Between the EFNA Family and Tumor Microenvironment for Prognosis and Immunotherapy of Gastric Cancer. Front Cell Dev Biol 2022; 10:790947. [PMID: 35309935 PMCID: PMC8924469 DOI: 10.3389/fcell.2022.790947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background: EFNA1-5 have important physiological functions in regulating tumorigenesis and metastasis. However, correlating EFNA genes in the tumor immune microenvironment (TIME), and the prognosis of patients with gastric cancer remains to be determined. Methods: Using public databases, the expression of EFNA1-5 in pan-cancer and gastric cancer was comprehensively analyzed using UCSC Xena, the Oncomine dataset and UALCAN. We further completed survival analysis by Kaplan-Meier plotter to evaluate the prognosis of the high and low expression groups of the EFNAs gene in patients with gastric cancer. The TIMER tool was used to reveal the correlation between immune cell infiltration and genes of interest. Spearman correlation was used to find an association between the EFNA genes and tumor stem cells, TIME, microsatellite instability (MSI) or tumor mutational burden (TMB). We also used cBioportal, GeneMANIA and STRINGS to explore the types of changes in these genes and the protein interactions. Finally, we described the TIME based on QUANTISEQ algorithm, predicted the relationship between the EFNA genes and half-maximal inhibitory concentration (IC50), and analyzed the relationship between the EFNA family genes and immune checkpoints. Results: The expression of EFNA1, EFNA3, EFNA4, and EFNA5 was elevated in pan-cancer. Compared with normal adjacent tissues, EFNA1, EFNA3, and EFNA4 were up-regulated in gastric cancer. In terms of the influence on the survival of patients, the expression of EFNA3 and EFNA4 were related to overall survival (OS) and disease-free survival (DFS) for patients with gastric cancer. High expression of EFNA5 often predicted poor OS and DFS. In gastric cancer, the expression of EFNA3 and EFNA4 showed a significant negative correlation with B cells. The higher the expression of EFNA5, the higher the abundance of B cells, CD4+T cells and macrophages. CD8+T cells, dendritic cells infiltration and EFNA1-4 expression were negatively correlated. The infiltration of CD4+T cells, macrophages and neutrophils was negatively correlated with the expression of EFNA1, EFNA3, and EFNA4. TMB and MSI were positively correlated with EFNA3/EFNA4 expression. In the tumor microenvironment and drug sensitivity, EFNA3/4/5 also showed a significant correlation. In addition, we explored the relationship between the EFNA family genes and the immune microenvironment (B cells, M2 macrophages, monocytes, CD8+ T cells, regulatory T cells, myeloid dendritic cells, natural killer cells, non-regulatory CD4+ T cells), immune checkpoint (PDCD1, PDCD1LG2, CD274, CTLA4), and IC50 of common chemotherapeutic drugs for gastric cancer (5-fluorouracil, cisplatin, docetaxel and gemcitabine). Conclusions: Our study provides new ideas for tumor treatment and prognosis from the perspective of TIME, and nominates EFNA1-5 to become potential therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Rongrong Xie
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengping Yuan
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Valenzuela PL, Saco-Ledo G, Santos-Lozano A, Morales JS, Castillo-García A, Simpson RJ, Lucia A, Fiuza-Luces C. Exercise Training and Natural Killer Cells in Cancer Survivors: Current Evidence and Research Gaps Based on a Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2022; 8:36. [PMID: 35244811 PMCID: PMC8897541 DOI: 10.1186/s40798-022-00419-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/13/2022] [Indexed: 12/25/2022]
Abstract
Background Exercise training can positively impact the immune system and particularly natural killer (NK) cells, at least in healthy people. This effect would be of relevance in the context of cancer given the prominent role of these cells in antitumor immunity. In this systematic review and meta-analysis, we aimed to summarize current evidence on the effects of exercise training on the levels and function of NK cells in cancer survivors (i.e., from the time of diagnosis until the end of life). Methods Relevant articles were searched in PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (until January 11, 2022). Randomized controlled trials (RCT) of exercise training (i.e., non-acute) interventions vs usual care conducted in cancer survivors and assessing NK number and/or cytotoxic activity (NKCA) before and upon completion of the intervention were included. Methodological quality of the studies was assessed with the PEDro scale, and results were meta-analyzed using a random effects (Dersimoian and Laird) model. Results Thirteen RCT including 459 participants (mean age ranging 11–63 years) met the inclusion criteria. Methodological quality of the studies was overall fair (median PEDro score = 5 out of 10). There was heterogeneity across studies regarding cancer types (breast cancer, non-small cell lung cancer and other solid tumors), treatment (e.g., receiving vs having received chemotherapy), exercise modes (aerobic or resistance exercise, Tai Chi, Yoga) and duration (2–24 weeks). No consistent effects were observed for NK number in blood (mean difference [MD]: 1.47, 95% confidence interval [CI] − 0.35 to 3.29, p = 0.113) or NKCA as assessed in vitro (MD: − 0.02, 95%CI − 0.17 to 0.14, p = 0.834). However, mixed results existed across studies, and some could not be meta-analyzed due to lack of information or methodological heterogeneity. Conclusions Current evidence does not support a significant effect of exercise training intervention on NK cells in blood or on their ‘static response’ (as assessed in vitro) in cancer survivors. Several methodological issues and research gaps are highlighted in this review, which should be considered in future studies to draw definite conclusions on this topic. Supplementary Information The online version contains supplementary material available at 10.1186/s40798-022-00419-w.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Gonzalo Saco-Ledo
- Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Alejandro Santos-Lozano
- Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain.,I+HeALTH, Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
| | - Javier S Morales
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cadiz, Spain
| | | | - Richard J Simpson
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, USA.,Department of Pediatrics, The University of Arizona, Tucson, AZ, USA.,Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Carmen Fiuza-Luces
- Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
35
|
Oliviero B, Varchetta S, Mele D, Pessino G, Maiello R, Falleni M, Tosi D, Donadon M, Soldani C, Franceschini B, Torzilli G, Piccolo G, Barabino M, Opocher E, Maestri M, Bernuzzi S, Wucherpfennig KW, Mondelli MU, Mantovani S. MICA/B-targeted antibody promotes NK cell-driven tumor immunity in patients with intrahepatic cholangiocarcinoma. Oncoimmunology 2022; 11:2035919. [PMID: 35223192 PMCID: PMC8865231 DOI: 10.1080/2162402x.2022.2035919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The major histocompatibility complex-class I chain related proteins A and B (MICA/B) is upregulated because of cellular stress and MICA/B shedding by cancer cells causes escape from NKG2D recognition favoring the emergence of cancers. Cholangiocarcinoma (CCA) is a relatively rare, though increasingly prevalent, primary liver cancer characterized by a late clinical presentation and a dismal prognosis. We explored the NKG2D-MICA/B axis in NK cells from 41 patients with intrahepatic cholangiocarcinoma (iCCA). The MICA/B-specific 7C6 mAb was used for ex vivo antibody-dependent cytotoxicity (ADCC) experiments using circulating, non tumor liver- and tumor-infiltrating NK cells against the HuCCT-1 cell line and patient-derived primary iCCA cells as targets. MICA/B were more expressed in iCCA than in non-tumoral tissue, MICA transcription being higher in moderately-differentiated compared with poorly-differentiated cancer. Serum MICA was elevated in iCCA patients in line with higher expression of ADAM10 and ADAM17 that are responsible for proteolytic release of MICA/B from tumor. Addition of 7C6 significantly boosted peripheral, liver- and tumor-infiltrating-NK cell degranulation and IFNγ production toward MICA/B-expressing established cell lines and autologous iCCA patient target cells. Our data show that anti-MICA/B drives NK cell anti-tumor activity, and provide preclinical evidence in support of 7C6 as a potential immunotherapeutic tool for iCCA.
Collapse
Affiliation(s)
- Barbara Oliviero
- Division of Clinical Immunology - Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Varchetta
- Division of Clinical Immunology - Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dalila Mele
- Division of Clinical Immunology - Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Greta Pessino
- Division of Clinical Immunology - Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roberta Maiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Falleni
- Department of Pathology, Department of Health Sciences, ASST Santi Paolo e Carlo, State University of Milan, Milan, Italy
| | - Delfina Tosi
- Department of Pathology, Department of Health Sciences, ASST Santi Paolo e Carlo, State University of Milan, Milan, Italy
| | - Matteo Donadon
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Rozzano, Italy
| | - Cristiana Soldani
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Rozzano, Italy
| | - Barbara Franceschini
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Rozzano, Italy
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Rozzano, Italy
| | - Gaetano Piccolo
- Division of Gastrointestinal Surgery, ASST Santi Paolo e Carlo, and State University of Milan, Milan, Italy
| | - Matteo Barabino
- Division of Gastrointestinal Surgery, ASST Santi Paolo e Carlo, and State University of Milan, Milan, Italy
| | - Enrico Opocher
- Division of Gastrointestinal Surgery, ASST Santi Paolo e Carlo, and State University of Milan, Milan, Italy
| | - Marcello Maestri
- Division of General Surgery 1, Department of Surgery, Fondazione Irccs Policlinico San Matteo, Pavia, Italy
| | - Stefano Bernuzzi
- Immunohematology and Transfusion Service, Department of Diagnostic Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Kai W. Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mario U. Mondelli
- Division of Clinical Immunology - Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy,Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy,CONTACT Mario U. Mondelli UOC Immunologia Clinica – Malattie Infettive, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, Pavia27100, Italy
| | - Stefania Mantovani
- Division of Clinical Immunology - Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
36
|
Li JH, O’Sullivan TE. Back to the Future: Spatiotemporal Determinants of NK Cell Antitumor Function. Front Immunol 2022; 12:816658. [PMID: 35082797 PMCID: PMC8785903 DOI: 10.3389/fimmu.2021.816658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
NK cells play a crucial role in host protection during tumorigenesis. Throughout tumor development, however, NK cells become progressively dysfunctional through a combination of dynamic tissue-specific and systemic factors. While a number of immunosuppressive mechanisms present within the tumor microenvironment have been characterized, few studies have contextualized the spatiotemporal dynamics of these mechanisms during disease progression and across anatomical sites. Understanding how NK cell immunosuppression evolves in these contexts will be necessary to optimize NK cell therapy for solid and metastatic cancers. Here, we outline the spatiotemporal determinants of antitumor NK cell regulation, including heterogeneous tumor architecture, temporal disease states, diverse cellular communities, as well as the complex changes in NK cell states produced by the sum of these higher-order elements. Understanding of the signals encountered by NK cells across time and space may reveal new therapeutic targets to harness the full potential of NK cell therapy for cancer.
Collapse
Affiliation(s)
- Joey H. Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Medical Scientist Training Program, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
37
|
Mao C, Ma L, Huang Y, Yang X, Huang H, Cai W, Sitrakiniaina A, Gu R, Xue X, Shen X. Immunogenomic Landscape and Immune-Related Gene-Based Prognostic Signature in Asian Gastric Cancer. Front Oncol 2021; 11:750768. [PMID: 34804939 PMCID: PMC8602354 DOI: 10.3389/fonc.2021.750768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background Asians have the highest incidence of gastric cancer (GC), and the prognosis of Asian GC is poor. Furthermore, the therapeutics for Asian GC is limited because of genetic heterogeneity and screening difficulty at the early stage. This study aimed to develop an immune-related gene (IRG)-based prognostic signature and to explore prognosis-related regulatory mechanism and therapeutic target for Asian GC. Methods To elucidate the prognostic value of IRGs in Asian GC, a comprehensive analysis of IRG expression profiles and overall survival times in 364 Asian GC patients from the Asian Cancer Research Group (ACRG) and The Cancer Genome Atlas (TCGA) databases was performed, and a novel prognostic index was established. To further explore regulatory prognosis mechanisms and therapeutic targets, a tumor immunogenomic landscape analysis, including stromal and immune subcomponents, cell types, panimmune gene sets, and immunomodulatory genes, was performed. Result Our analysis allowed the creation of an optimal risk assessment model, the Asian-specific IRG-based prognostic index (ASIRGPI), which showed a high accuracy in predicting survival in Asian GC. We also developed an ASIRGPI-based nomogram to predict the 3- and 5-year overall survival (OS) of Asian GC patients. The impact of the ASIRGPI on the worse prognosis of Asian GC was possibly related to the stromal component remodeling. Specifically, TGFβ gene sets were significantly associated with the ASIRGPI and worse prognosis. Immunomodulatory gene analysis further revealed that TGFβ1 and EDNRB may be the novel potential therapeutic targets for Asian GC. Conclusions As a tumor microenvironment-relevant gene set-based prognostic signature, the ASIRGPI model provides an effective approach for evaluating the prognosis of Asian GC and may even prolong OS by enabling the selection of individualized therapy with the novel targets.
Collapse
Affiliation(s)
- Chenchen Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liangliang Ma
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingpeng Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinxin Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - He Huang
- Department of General Surgery, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wentao Cai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andriamifehimanjaka Sitrakiniaina
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Ruihong Gu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Novel Biomarkers of Gastric Adenocarcinoma: Current Research and Future Perspectives. Cancers (Basel) 2021; 13:cancers13225660. [PMID: 34830815 PMCID: PMC8616337 DOI: 10.3390/cancers13225660] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Gastric cancer is characterized by poor survival rates despite surgery and chemotherapy. Current research focuses on biomarkers to improve diagnosis and prognosis, and to enable targeted treatment strategies. The aim of our review was to give an overview over the wide range of novel biomarkers in gastric cancer. These biomarkers are targets of a specific treatment, such as antibodies against human epidermal growth factor receptor 2. Other promising biomarkers for targeted therapies that have shown relevance in clinical trials are vascular endothelial growth factor, programmed cell death protein 1, and Claudin 18.2. There is a vast number of biomarkers based on DNA, RNA, and protein expression, as well as detection of circulating tumor cells and the immune tumor microenvironment. Abstract Overall survival of gastric cancer remains low, as patients are often diagnosed with advanced stage disease. In this review, we give an overview of current research on biomarkers in gastric cancer and their implementation in treatment strategies. The HER2-targeting trastuzumab is the first molecular targeted agent approved for gastric cancer treatment. Other promising biomarkers for targeted therapies that have shown relevance in clinical trials are VEGF and Claudin 18.2. Expression of MET has been shown to be a negative prognostic factor in gastric cancer. Targeting the PD-1/PD-L1 pathway with immune checkpoint inhibitors has proven efficacy in advanced gastric cancer. Recent technology advances allow the detection of circulating tumor cells that may be used as diagnostic and prognostic indicators and for therapy monitoring in gastric cancer patients. Prognostic molecular subtypes of gastric cancer have been identified using genomic data. In addition, transcriptome profiling has allowed a comprehensive characterization of the immune and stromal microenvironment in gastric cancer and development of novel risk scores. These prognostic and predictive markers highlight the rapidly evolving field of research in gastric cancer, promising improved treatment stratification and identification of molecular targets for individualized treatment in gastric cancer.
Collapse
|
39
|
Shen W, Wang G, Cooper GR, Jiang Y, Zhou X. The Epithelial and Stromal Immune Microenvironment in Gastric Cancer: A Comprehensive Analysis Reveals Prognostic Factors with Digital Cytometry. Cancers (Basel) 2021; 13:cancers13215382. [PMID: 34771544 PMCID: PMC8582557 DOI: 10.3390/cancers13215382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. Tumor heterogeneity continues to confound researchers' understanding of tumor growth and the development of an effective therapy. Digital cytometry allows interpretation of heterogeneous bulk tissue transcriptomes at the cellular level. We built a novel signature matrix to dissect epithelium and stroma signals using a scRNA-seq data set (GSE134520) for GC and then applied cell mixture deconvolution to estimate diverse epithelial, stromal, and immune cell proportions from bulk transcriptome data in four independent GC cohorts (GSE62254, GSE15459, GSE84437, and TCGA-STAD) from the GEO and TCGA databases. Robust computational methods were applied to identify strong prognostic factors for GC. We identified an EMEC population whose proportions were significantly higher in patients with stage I cancer than other stages, and it was predominantly present in tumor samples but not typically found in normal samples. We found that the ratio of EMECs to stromal cells and the ratio of adaptive T cells to monocytes were the most significant prognostic factors within the non-immune and immune factors, respectively. The STEM score, which unifies these two prognostic factors, was an independent prognostic factor of overall survival (HR = 0.92, 95% CI = 0.89-0.94, p=2.05×10-9). The entire GC cohort was stratified into three risk groups (high-, moderate-, and low-risk), which yielded incremental survival times (p<0.0001). For stage III disease, patients in the moderate- and low-risk groups experienced better survival benefits from radiation therapy ((HR = 0.16, 95% CI = 0.06-0.4, p<0.0001), whereas those in the high-risk group did not (HR = 0.49, 95% CI = 0.14-1.72, p=0.25). We concluded that the STEM score is a promising prognostic factor for gastric cancer.
Collapse
Affiliation(s)
- Wenjun Shen
- Department of Bioinformatics, Shantou University Medical College, Shantou 515041, China;
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA 94035, USA
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou 515041, China
- Correspondence: (W.S.); (Y.J.)
| | - Guoyun Wang
- Department of Bioinformatics, Shantou University Medical College, Shantou 515041, China;
| | - Georgia R. Cooper
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (G.R.C.); (X.Z.)
| | - Yuming Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94035, USA
- Correspondence: (W.S.); (Y.J.)
| | - Xin Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (G.R.C.); (X.Z.)
- Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
40
|
Warner J, Hardesty J, Song Y, Sun R, Deng Z, Xu R, Yin X, Zhang X, McClain C, Warner D, Kirpich I. Fat-1 Transgenic Mice With Augmented n3-Polyunsaturated Fatty Acids Are Protected From Liver Injury Caused by Acute-On-Chronic Ethanol Administration. Front Pharmacol 2021; 12:711590. [PMID: 34531743 PMCID: PMC8438569 DOI: 10.3389/fphar.2021.711590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol-associated liver disease (ALD) is the leading cause of liver disease worldwide, and alcohol-associated hepatitis (AH), a severe form of ALD, is a major contributor to the mortality and morbidity due to ALD. Many factors modulate susceptibility to ALD development and progression, including nutritional factors such as dietary fatty acids. Recent work from our group and others showed that modulation of dietary or endogenous levels of n6-and n3-polyunsaturated fatty acids (PUFAs) can exacerbate or attenuate experimental ALD, respectively. In the current study, we interrogated the effects of endogenous n3-PUFA enrichment in a mouse model which recapitulates features of early human AH using transgenic fat-1 mice which endogenously convert n6-PUFAs to n3-PUFAs. Male wild type (WT) and fat-1 littermates were provided an ethanol (EtOH, 5% v/v)-containing liquid diet for 10 days, then administered a binge of EtOH (5 g/kg) by oral gavage on the 11th day, 9 h prior to sacrifice. In WT mice, EtOH treatment resulted in liver injury as determined by significantly elevated plasma ALT levels, whereas in fat-1 mice, EtOH caused no increase in this biomarker. Compared to their pair-fed controls, a significant EtOH-mediated increase in liver neutrophil infiltration was observed also in WT, but not fat-1 mice. The hepatic expression of several cytokines and chemokines, including Pai-1, was significantly lower in fat-1 vs WT EtOH-challenged mice. Cultured bone marrow-derived macrophages isolated from fat-1 mice expressed less Pai-1 and Cxcl2 (a canonical neutrophil chemoattractant) mRNA compared to WT when stimulated with lipopolysaccharide. Further, we observed decreased pro-inflammatory M1 liver tissue-resident macrophages (Kupffer cells, KCs), as well as increased liver T regulatory cells in fat-1 vs WT EtOH-fed mice. Taken together, our data demonstrated protective effects of endogenous n3-PUFA enrichment on liver injury caused by an acute-on-chronic EtOH exposure, a paradigm which recapitulates human AH, suggesting that n3-PUFAs may be a viable nutritional adjuvant therapy for this disease.
Collapse
Affiliation(s)
- Jeffrey Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Josiah Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Ying Song
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Rui Sun
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Zhongbin Deng
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Surgery, University of Louisville, Louisville, KY, United States.,University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Raobo Xu
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, United States.,University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY, United States.,Department of Chemistry, University of Louisville, Louisville, KY, United States.,Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY, United States
| | - Xinmin Yin
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, United States.,University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY, United States.,Department of Chemistry, University of Louisville, Louisville, KY, United States.,Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY, United States
| | - Xiang Zhang
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, United States.,University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY, United States.,Department of Chemistry, University of Louisville, Louisville, KY, United States.,Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY, United States
| | - Craig McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States.,University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, United States.,University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY, United States.,Robley Rex Veterans Affairs Medical Center, Louisville, KY, United States
| | - Dennis Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Irina Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States.,University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, United States.,University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
41
|
Fuertes MB, Domaica CI, Zwirner NW. Leveraging NKG2D Ligands in Immuno-Oncology. Front Immunol 2021; 12:713158. [PMID: 34394116 PMCID: PMC8358801 DOI: 10.3389/fimmu.2021.713158] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) revolutionized the field of immuno-oncology and opened new avenues towards the development of novel assets to achieve durable immune control of cancer. Yet, the presence of tumor immune evasion mechanisms represents a challenge for the development of efficient treatment options. Therefore, combination therapies are taking the center of the stage in immuno-oncology. Such combination therapies should boost anti-tumor immune responses and/or target tumor immune escape mechanisms, especially those created by major players in the tumor microenvironment (TME) such as tumor-associated macrophages (TAM). Natural killer (NK) cells were recently positioned at the forefront of many immunotherapy strategies, and several new approaches are being designed to fully exploit NK cell antitumor potential. One of the most relevant NK cell-activating receptors is NKG2D, a receptor that recognizes 8 different NKG2D ligands (NKG2DL), including MICA and MICB. MICA and MICB are poorly expressed on normal cells but become upregulated on the surface of damaged, transformed or infected cells as a result of post-transcriptional or post-translational mechanisms and intracellular pathways. Their engagement of NKG2D triggers NK cell effector functions. Also, MICA/B are polymorphic and such polymorphism affects functional responses through regulation of their cell-surface expression, intracellular trafficking, shedding of soluble immunosuppressive isoforms, or the affinity of NKG2D interaction. Although immunotherapeutic approaches that target the NKG2D-NKG2DL axis are under investigation, several tumor immune escape mechanisms account for reduced cell surface expression of NKG2DL and contribute to tumor immune escape. Also, NKG2DL polymorphism determines functional NKG2D-dependent responses, thus representing an additional challenge for leveraging NKG2DL in immuno-oncology. In this review, we discuss strategies to boost MICA/B expression and/or inhibit their shedding and propose that combination strategies that target MICA/B with antibodies and strategies aimed at promoting their upregulation on tumor cells or at reprograming TAM into pro-inflammatory macrophages and remodeling of the TME, emerge as frontrunners in immuno-oncology because they may unleash the antitumor effector functions of NK cells and cytotoxic CD8 T cells (CTL). Pursuing several of these pipelines might lead to innovative modalities of immunotherapy for the treatment of a wide range of cancer patients.
Collapse
Affiliation(s)
- Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
42
|
Gastric Cancer Mesenchymal Stem Cells Inhibit NK Cell Function through mTOR Signalling to Promote Tumour Growth. Stem Cells Int 2021; 2021:9989790. [PMID: 34306099 PMCID: PMC8263240 DOI: 10.1155/2021/9989790] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
The dysfunction of natural killer (NK) cells has been increasingly reported in malignancies, especially in solid tumours. Mesenchymal stem cells (MSCs) exhibit pleiotropic functions that include mediating immune cell exhaustion which is implicated in cancer progression. However, the association of MSCs derived from gastric cancer (gastric cancer mesenchymal stem cells: GCMSCs) with the dysfunction of NK cells remains poorly understood. In this study, we demonstrated that GCMSCs effectively contributed to the exhaustion of NK cells through the release of soluble factors. Furthermore, passivation of the antitumour effect in NK cells was closely associated with their dysfunctional state. The GCMSC-conditioned medium prevented the frequency and effector function of infiltrating NK cells in tumour-bearing mouse models, thus promoting tumour growth. Mechanistically, mammalian target of rapamycin (mTOR) signalling, a critical regulator of cellular metabolism that mediates the function of immune cells, was inhibited in NK cells treated with GCMSCs. However, the checkpoint receptor PD-1 was still present at minimal levels with or without GCMSCs. The study results revealed that GCMSCs contributed to dysfunctional NK cells involved at least partially in the inhibition of mTOR signalling, suggesting potential directions for NK cell-based cancer immunotherapy.
Collapse
|
43
|
Jiang Y, Liang X, Han Z, Wang W, Xi S, Li T, Chen C, Yuan Q, Li N, Yu J, Xie Y, Xu Y, Zhou Z, Poultsides GA, Li G, Li R. Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study. LANCET DIGITAL HEALTH 2021; 3:e371-e382. [PMID: 34045003 DOI: 10.1016/s2589-7500(21)00065-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The tumour stroma microenvironment plays an important part in disease progression and its composition can influence treatment response and outcomes. Histological evaluation of tumour stroma is limited by access to tissue, spatial heterogeneity, and temporal evolution. We aimed to develop a radiological signature for non-invasive assessment of tumour stroma and treatment outcomes. METHODS In this multicentre, retrospective study, we analysed CT images and outcome data of 2209 patients with resected gastric cancer from five independent cohorts recruited from two centres (Nanfang Hospital of Southern Medical University [Guangzhou, China] and Sun Yat-sen University Cancer Center [Guangzhou, China]). Patients with histologically confirmed gastric cancer, at least 15 lymph nodes harvested, preoperative abdominal CT available, and complete clinicopathological and follow-up data were eligible for inclusion. Tumour tissue was collected for patients in the training cohort (321 patients), internal validation cohort one (246 patients), and external validation cohort one (128 patients). Four stroma classes were defined according to the protein expression of α-smooth muscle actin and periostin assessed by immunohistochemistry. The primary objective was to predict the histologically based stroma classes by using preoperative CT images. We trained a deep convolutional neural network model using the training cohort and tested the model in the internal and external validation cohort one. We evaluated the model's association with prognosis in the training cohort, two internal, and two external validation cohorts and compared outcomes of patients who received or did not receive adjuvant chemotherapy. FINDINGS The deep-learning model achieved a high diagnostic accuracy for assessing tumour stroma in both internal validation cohort one (area under the receiver operating characteristic curve [AUC] 0·96-0·98]) and external validation cohort one (AUC 0·89-0·94). The stromal imaging signature was significantly associated with disease-free survival and overall survival in all cohorts (p<0·0001). The predicted stroma classes remained an independent prognostic factor adjusting for clinicopathological variables including tumour size, stage, differentiation, and Lauren histology. In patients with stage II or III disease in predicted stroma classes one and two subgroups, patients who received adjuvant chemotherapy had improved survival compared with those who did not (in those with stage II disease hazard ratio [HR] 0·48 [95% CI 0·29-0·77], p=0·0021; and in those with stage III disease HR 0·70 [0·57-0·85], p=0·00042). However, in the other two subgroups adjuvant chemotherapy was not associated with survival and might even be detrimental in the predicted stroma class 4 subgroup (HR 1·48 [1·08-2·03], p=0·013). INTERPRETATION The deep-learning model could allow for accurate and non-invasive evaluation of tumour stroma from CT images in gastric cancer. The radiographical model predicted chemotherapy outcomes and could be used in combination with clinicopathological criteria to refine prognosis and inform treatment decisions of patients with gastric cancer. FUNDING None.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaokun Liang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Colleges of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Han
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Wei Wang
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sujuan Xi
- The Reproductive Medical Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tuanjie Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Chuanli Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Colleges of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Yaoqin Xie
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Colleges of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwei Zhou
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - George A Poultsides
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
44
|
Lawal B, Lo WC, Mokgautsi N, Sumitra MR, Khedkar H, Wu ATH, Huang HS. A preclinical report of a cobimetinib-inspired novel anticancer small-molecule scaffold of isoflavones, NSC777213, for targeting PI3K/AKT/mTOR/MEK in multiple cancers. Am J Cancer Res 2021; 11:2590-2617. [PMID: 34249417 PMCID: PMC8263676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways are critical for normal human physiology, and any alteration in their regulation leads to several human cancers. These pathways are well interconnected and share a survival mechanism for escaping the depressant effect of antagonists. Therefore, novel small molecules capable of targeting both pathways with minimal or no toxicity are better alternatives to current drugs, which are disadvantaged by their accompanying resistance and toxicity. In this study, we demonstrate that the PI3K/AKT/mTOR/MEK is a crucial oncoimmune signature in multiple cancers. Moreover, we describe NSC777213, a novel isoflavone core and cobimetinib-inspired small molecule, which exhibit both antiproliferative activities against all panels of NCI60 human tumor cell lines (except COLO205 and HT29) and a selective cytotoxic preference for melanoma, non-small-cell lung cancer (NSCLC), brain, renal, and ovarian cancer cell lines. Notably, for NSC777213 treatment, chemoresistant ovarian cancer cell lines, including SK-OV-3, OVCAR-3, OVCAR-4, and NCI/ADR-RES, exhibited a higher antiproliferative sensitivity (total growth inhibition (TGI) = 7.62-31.50 µM) than did the parental cell lines OVCAR-8 and IGROV1 (TGI > 100 µM). NSC777213 had a mechanistic correlation with clinical inhibitors of PI3K/AKT/mTOR/MEK. NSC777213 demonstrates robust binding interactions and higher affinities for AKT and mTOR than did isoflavone, and also demonstrate a higher affinity for human MEK-1 kinase than some MEK inhibitors under clinical developments. In addition, treatment of U251 and U87MG cells with NSC777213 significantly downregulated the expression levels of the total and phosphorylated forms of PI3K/AKT/mTOR/MEK. Our study suggests that NSC777213 is a promising PI3K/AKT/mTOR/MEK inhibitor for further preclinical and clinical evaluation as a chemotherapeutic agent, particularly for the treatment of NSCLC, melanoma, and brain, renal, and ovarian cancers.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia SinicaTaipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical UniversityTaipei 11031, Taiwan
| | - Wen-Cheng Lo
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei 11031, Taiwan
- Department of Neurosurgery, Taipei Medical University HospitalTaipei 11031, Taiwan
- Taipei Neuroscience Institute, Taipei Medical UniversityTaipei 11031, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia SinicaTaipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical UniversityTaipei 11031, Taiwan
| | - Maryam Rachmawati Sumitra
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia SinicaTaipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical UniversityTaipei 11031, Taiwan
| | - Harshita Khedkar
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia SinicaTaipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical UniversityTaipei 11031, Taiwan
| | - Alexander TH Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei 11031, Taiwan
- The PhD Program of Translational Medicine, College of Science and Technology, Taipei Medical UniversityTaipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical UniversityTaipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical CenterTaipei 11490, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia SinicaTaipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical UniversityTaipei 11031, Taiwan
- School of Pharmacy, National Defense Medical CenterTaipei 11490, Taiwan
- PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical UniversityTaipei 11031, Taiwan
| |
Collapse
|
45
|
Kwon M, An M, Klempner SJ, Lee H, Kim KM, Sa JK, Cho HJ, Hong JY, Lee T, Min YW, Kim TJ, Min BH, Park WY, Kang WK, Kim KT, Kim ST, Lee J. Determinants of Response and Intrinsic Resistance to PD-1 Blockade in Microsatellite Instability-High Gastric Cancer. Cancer Discov 2021; 11:2168-2185. [PMID: 33846173 DOI: 10.1158/2159-8290.cd-21-0219] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/28/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
Sequence alterations in microsatellites and an elevated mutational burden are observed in 20% of gastric cancers and associated with clinical response to anti-PD-1 antibodies. However, 50% of microsatellite instability-high (MSI-H) cancers are intrinsically resistant to PD-1 therapies. We conducted a phase II trial of pembrolizumab in patients with advanced MSI-H gastric cancer and included serial and multi-region tissue samples in addition to serial peripheral blood analyses. The number of whole-exome sequencing (WES)-derived nonsynonymous mutations correlated with antitumor activity and prolonged progression-free survival (PFS). Coupling WES to single-cell RNA sequencing, we identified dynamic tumor evolution with greater on-treatment collapse of mutational architecture in responders. Diverse T-cell receptor repertoire was associated with longer PFS to pembrolizumab. In addition, an increase in PD-1+ CD8+ T cells correlated with durable clinical benefit. Our findings highlight the genomic, immunologic, and clinical outcome heterogeneity within MSI-H gastric cancer and may inform development of strategies to enhance responsiveness. SIGNIFICANCE: This study highlights response heterogeneity within MSI-H gastric cancer treated with pembrolizumab monotherapy and underscores the potential for extended baseline and early on-treatment biomarker analyses to identify responders. The observed markers of intrinsic resistance have implications for patient stratification to inform novel combinations among patients with intrinsically resistant features.See related commentary by Fontana and Smyth, p. 2126.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Minsuk Kwon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Minae An
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Samuel J Klempner
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hyuk Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jason K Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Hee Jin Cho
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul, Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Taehyang Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yang Won Min
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Jun Kim
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung-Hoon Min
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyu-Tae Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
46
|
Grunberg N, Pevsner-Fischer M, Goshen-Lago T, Diment J, Stein Y, Lavon H, Mayer S, Levi-Galibov O, Friedman G, Ofir-Birin Y, Syu LJ, Migliore C, Shimoni E, Stemmer SM, Brenner B, Dlugosz AA, Lyden D, Regev-Rudzki N, Ben-Aharon I, Scherz-Shouval R. Cancer-Associated Fibroblasts Promote Aggressive Gastric Cancer Phenotypes via Heat Shock Factor 1-Mediated Secretion of Extracellular Vesicles. Cancer Res 2021; 81:1639-1653. [PMID: 33547159 PMCID: PMC8337092 DOI: 10.1158/0008-5472.can-20-2756] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
Gastric cancer is the third most lethal cancer worldwide, and evaluation of the genomic status of gastric cancer cells has not translated into effective prognostic or therapeutic strategies. We therefore hypothesize that outcomes may depend on the tumor microenvironment (TME), in particular, cancer-associated fibroblasts (CAF). However, very little is known about the role of CAFs in gastric cancer. To address this, we mapped the transcriptional landscape of human gastric cancer stroma by microdissection and RNA sequencing of CAFs from patients with gastric cancer. A stromal gene signature was associated with poor disease outcome, and the transcription factor heat shock factor 1 (HSF1) regulated the signature. HSF1 upregulated inhibin subunit beta A and thrombospondin 2, which were secreted in CAF-derived extracellular vesicles to the TME to promote cancer. Together, our work provides the first transcriptional map of human gastric cancer stroma and highlights HSF1 and its transcriptional targets as potential diagnostic and therapeutic targets in the genomically stable tumor microenvironment. SIGNIFICANCE: This study shows how HSF1 regulates a stromal transcriptional program associated with aggressive gastric cancer and identifies multiple proteins within this program as candidates for therapeutic intervention. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/7/1639/F1.large.jpg.
Collapse
Affiliation(s)
- Nil Grunberg
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Tal Goshen-Lago
- Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Judith Diment
- Department of Pathology, Kaplan Medical Center, Rehovot, Israel
| | - Yaniv Stein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hagar Lavon
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Shimrit Mayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Oshrat Levi-Galibov
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Gil Friedman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Yifat Ofir-Birin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Li-Jyun Syu
- Department of Dermatology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Cristina Migliore
- University of Torino, Department of Oncology, Candiolo; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Eyal Shimoni
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Salomon M Stemmer
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Baruch Brenner
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Andrzej A Dlugosz
- Department of Dermatology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Cell & Developmental Biology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Irit Ben-Aharon
- Division of Oncology, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
47
|
Ning ZK, Hu CG, Huang C, Liu J, Zhou TC, Zong Z. Molecular Subtypes and CD4 + Memory T Cell-Based Signature Associated With Clinical Outcomes in Gastric Cancer. Front Oncol 2021; 10:626912. [PMID: 33816214 PMCID: PMC8011500 DOI: 10.3389/fonc.2020.626912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
Background CD4+ memory T cells are an important component of the tumor microenvironment (TME) and affect tumor occurrence and progression. Nevertheless, there has been no systematic analysis of the effect of CD4+ memory T cells in gastric cancer (GC). Methods Three datasets obtained from microarray and the corresponding clinical data of GC patients were retrieved and downloaded from the Gene Expression Omnibus (GEO) database. We uploaded the normalize gene expression data with standard annotation to the CIBERSORT web portal for evaluating the proportion of immune cells in the GC samples. The WGCNA was performed to identify the modules the CD4+ memory T cell related module (CD4+ MTRM) which was most significantly associated with CD4+ memory T cell. Univariate Cox analysis was used to screen prognostic CD4+ memory T cell-related genes (CD4+ MTRGs) in CD4+ MTRM. LASSO analysis and multivariate Cox analysis were then performed to construct a prognostic gene signature whose effect was evaluated by Kaplan-Meier curves and receiver operating characteristic (ROC), Harrell’s concordance index (C-index), and decision curve analyses (DCA). A prognostic nomogram was finally established based on the CD4+ MTRGs. Result We observed that a high abundance of CD4+ memory T cells was associated with better survival in GC patients. CD4+ MTRM was used to stratify GC patients into three clusters by unsupervised clustering analysis and ten CD4+ MTRGs were identified. Overall survival, five immune checkpoint genes and 17 types of immunocytes were observed to be significantly different among the three clusters. A ten-CD4+ MTRG signature was constructed to predict GC patient prognosis. The ten-CD4+ MTRG signature could divide GC patients into high- and low-risk groups with distinct OS rates. Multivariate Cox analysis suggested that the ten-CD4+ MTRG signature was an independent risk factor in GC. A nomogram incorporating this signature and clinical variables was established, and the C-index was 0.73 (95% CI: 0.697–0.763). Calibration curves and DCA presented high credibility for the OS nomogram. Conclusion We identified three molecule subtypes, ten CD4+ MTRGs, and generated a prognostic nomogram that reliably predicts OS in GC. These findings have implications for precise prognosis prediction and individualized targeted therapy.
Collapse
Affiliation(s)
- Zhi-Kun Ning
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Day Ward, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ce-Gui Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiang Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tai-Cheng Zhou
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
48
|
Malchiodi ZX, Weiner LM. Understanding and Targeting Natural Killer Cell-Cancer-Associated Fibroblast Interactions in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13030405. [PMID: 33499238 PMCID: PMC7865209 DOI: 10.3390/cancers13030405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Pancreatic cancer is an aggressive disease with a 5-year survival rate of less than 10%. Current therapies can be ineffective due to immune suppression and fibrosis (tissue scarring) that prevents cancer cells from being killed. This review article discusses the relevance of examining how natural killer (NK) cells, immune cells involved in the anti-cancer immune response, interact with cancer-associated fibroblasts (CAFs), which cause fibrosis, in pancreatic cancer. Understanding how these cell types interact may provide insights to guide the development of novel targeted therapies to increase immune response and survival in patients with pancreatic cancer. Abstract Interactions between natural killer (NK) cells and cancer-associated fibroblasts (CAFs) comprise a relevant but relatively understudied crosstalk relationship within the tumor microenvironment (TME). This review discusses the relevance of both natural killer cell and cancer-associated fibroblast function and activity in cancers, with an emphasis on pancreatic ductal adenocarcinoma (PDAC), incorporating additional insights from other malignancies to inform future directions for research. We describe what is currently known about NK cell-CAF crosstalk and their molecular interactions, how it is possible to exploit NK cell cytotoxicity in tumors and how to target CAFs to enhance efficacy of cancer therapies and cytotoxic immune cells. Although not previously tested in combination, there is an abundance of evidence demonstrating that targeting tumor-promoting CAFs and exploiting NK cells, separately, are beneficial as therapeutic strategies. This raises the possibility that a novel combination regimen addressing these two cell targets may be even more beneficial to eradicate PDAC and other solid tumors.
Collapse
|
49
|
Riggan L, Shah S, O’Sullivan TE. Arrested development: suppression of NK cell function in the tumor microenvironment. Clin Transl Immunology 2021; 10:e1238. [PMID: 33456775 PMCID: PMC7797224 DOI: 10.1002/cti2.1238] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that protect against viral infection and tumor metastasis. Despite their inherent ability to kill a broad range of virally infected, stressed and transformed cells, low numbers of dysfunctional NK cells are often observed in many advanced solid human cancers. Here, we review the potential mechanisms that influence suboptimal mature NK cell recruitment and function in the tumor microenvironment (TME) of solid tumors. We further highlight current immunotherapy approaches aimed to circumvent NK cell dysfunction and discuss next-generation strategies to enhance adoptive NK cell therapy through targeting intrinsic and extrinsic checkpoints the regulate NK cell functionality in the TME. Understanding the mechanisms that drive NK cell dysfunction in the TME will lead to novel immunotherapeutic approaches in the fight against cancer.
Collapse
Affiliation(s)
- Luke Riggan
- Department of Microbiology, Immunology, and Molecular GeneticsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Molecular Biology InstituteUniversity of CaliforniaLos AngelesCAUSA
| | - Siya Shah
- Department of Microbiology, Immunology, and Molecular GeneticsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Timothy E O’Sullivan
- Department of Microbiology, Immunology, and Molecular GeneticsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Molecular Biology InstituteUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
50
|
Haas MS, Kagey MH, Heath H, Schuerpf F, Rottman JB, Newman W. mDKN-01, a Novel Anti-DKK1 mAb, Enhances Innate Immune Responses in the Tumor Microenvironment. Mol Cancer Res 2020; 19:717-725. [PMID: 33443105 DOI: 10.1158/1541-7786.mcr-20-0799] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
Dickkopf-1 (DKK1), a secreted modulator of Wnt signaling, is overexpressed in many cancers, is often associated with worse clinical outcomes, and has been shown to have immunosuppressive effects. DKN-01 is an IgG4 clinical stage antibody that potently and specifically neutralizes human and murine DKK1 and has recently completed a promising study in combination with pembrolizumab in patients with gastric/gastroesophageal junction cancer. The purpose of this study is to characterize a murine version of DKN-01 (mDKN-01) and to better understand its mechanism of action. We examined the efficacy of mDKN-01 in both melanoma and metastatic breast cancer models. Immune depletion experiments revealed a requirement for natural killer (NK) but not B and T cells for tumor growth inhibition. mDKN-01 treatment promotes the induction of the NK-activating cytokines IL15 and IL33 as well as an enhanced recruitment of CD45+ cells. Other treatment-related changes include a reduction of Gr-1+CD11b+ myeloid-derived suppressor cells (MDSC) in the tumor and spleen and the upregulation of PD-L1 on MDSCs. In addition, mDKN-01 has a marked effect at reducing pulmonary metastases in the mouse 4T1 breast cancer model. Finally, the mDKN-01/anti-PD-1 combination was more effective at inhibiting melanoma growth than mDKN-01 alone. Taken together, our data demonstrate that mDKN-01 has efficacy by blocking the immunosuppressive effects of DKK1 in the tumor microenvironment (TME) and provides insight into the clinical activity observed with DKN-01-based treatment. IMPLICATIONS: mDKN-01 reverses a DKK1-mediated innate immune suppression in the TME and has additive efficacy with a PD-1 inhibitor.
Collapse
|