1
|
Nie HY, Ge J, Liu KG, Yue Y, Li H, Lin HG, Zhang T, Yan HF, Xu BX, Sun HW, Yang JW, Si SY, Zhou JL, Cui Y. Moxifloxacin plus Cordyceps polysaccharide ameliorate intestinal barrier damage due to abdominal infection via anti-inflammation and immune regulation under simulated microgravity. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:23-37. [PMID: 39864909 DOI: 10.1016/j.lssr.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/13/2024] [Accepted: 11/22/2024] [Indexed: 01/05/2025]
Abstract
BACKGROUND Currently, there is limited research on the impact of abdominal infection on intestinal damage under microgravity conditions. Cordyceps polysaccharide (CPS), the main active ingredient of Cordyceps, has demonstrated various pharmacological effects, including anti-inflammatory, antioxidant, and immunomodulatory properties. Moxifloxacin (MXF) is a fourth-generation quinolone antibiotic that is believed to have a dual regulatory effect on immune system activation and suppression. Our objective was to investigate the effects of MXF plus CPS on the intestinal barrier damage due to abdominal infection under microgravity. METHODS The hindlimb unloading model in rats was employed to simulate microgravity. The rat model of abdominal infection was established by cecal ligation and puncture (CLP). MXF, CPS and the combination of the two drugs were used to treat CLP-rats in simulated microgravity. We assessed histopathological changes of ileum by hematoxylin and eosin staining. The intestinal ultrastructure was observed under transmission electron microscopy. Additionally, the expression of intestinal barrier proteins RegIII α/γ and MUC2 was detected by Western blot analysis, while the localization of these proteins within the ileum was examined using immunohistochemistry. Cytometric bead array (CBA) was employed to detect cytokine including IL-6, TNF-α, IL-1β, IL-1α, CXCL-1, MCP-1, IL-17A, IL-18, and IL-33. Flow cytometry analysis was conducted to determine the percentages of Treg cells, M1 macrophages, M2 macrophages, T cells and CD8+T cells. RESULTS The results showed that compared with the normal gravity groups, the simulated microgravity groups exhibited a significant decrease in RegIII α/γ protein expression, an increase in M1 macrophage frequency, and elevated levels of TNF-α, IL-1α, MCP-1 and IL-6. Notably, the combined application of MXF and CPS effectively mitigated intestinal barrier damage in CLP-rats exposed to microgravity, as evidenced by alleviated ultrastructural and pathological impairments in ileum, along with increased expression of key intestinal barrier proteins MUC2 and RegIII α/γ. Furthermore, the combination therapy enhances the proportion of T cells, CD8+T cells, and M2 macrophages in septic rats exposed to simulated microgravity while reducing the frequency of Treg cells and M1 macrophages. MXF plus CPS also led to a reduction of proinflammatory cytokines and chemokines, including IL-6, TNF-α, IL-1β, IL-1α, CXCL-1, MCP-1, IL18, and IL33. CONCLUSION Our study showed that MXF plus CPS exhibited a protective effect on intestinal barrier damage due to abdominal infection under microgravity, potentially attributed to its anti-inflammatory properties and immune regulatory mechanisms. These findings may provide insights into the development of drugs targeting abdominal infections in the space environment.
Collapse
Affiliation(s)
- Hong-Yun Nie
- Department of General Surgery, the 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, PR China
| | - Jun Ge
- Department of General Surgery, the 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, PR China
| | - Kai-Ge Liu
- Department of General Surgery, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China
| | - Yuan Yue
- Department of Disease Control and Prevention, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China
| | - Hao Li
- Department of General Surgery, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China.
| | - Hai-Guan Lin
- Department of General Surgery, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China
| | - Tao Zhang
- Department of General Surgery, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China
| | - Hong-Feng Yan
- Department of General Surgery, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China
| | - Bing-Xin Xu
- Special Medical Laboratory, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China
| | - Hong-Wei Sun
- Department of General Surgery, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China
| | - Jian-Wu Yang
- Department of General Surgery, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China
| | - Shao-Yan Si
- Special Medical Laboratory, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China
| | - Jin-Lian Zhou
- Department of Pathology, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China
| | - Yan Cui
- Department of General Surgery, the 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, PR China; Department of General Surgery, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China.
| |
Collapse
|
2
|
Hoisington AJ, Choy K, Khair S, Dyamenahalli KU, Najarro KM, Wiktor AJ, Frank DN, Burnham EL, McMahan RH, Kovacs EJ. Recent alcohol intake impacts microbiota in adult burn patients. Alcohol 2024; 118:25-35. [PMID: 38604285 PMCID: PMC11179986 DOI: 10.1016/j.alcohol.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Alcohol use is associated with an increased incidence of negative health outcomes in burn patients due to biological mechanisms that include a dysregulated inflammatory response and increased intestinal permeability. This study used phosphatidylethanol (PEth) in blood, a direct biomarker of recent alcohol use, to investigate associations between a recent history of alcohol use and the fecal microbiota, short chain fatty acids, and inflammatory markers in the first week after a burn injury for nineteen participants. Burn patients were grouped according to PEth levels of low or high and differences in the overall fecal microbial community were observed between these cohorts. Two genera that contributed to the differences and had higher relative abundance in the low PEth burn patient group were Akkermansia, a mucin degrading bacteria that improves intestinal barrier function, and Bacteroides, a potentially anti-inflammatory bacteria. There was no statistically significant difference between levels of short chain fatty acids or intestinal permeability across the two groups. To our knowledge, this study represents the first report to evaluate the effects of burn injury and recent alcohol use on early post burn microbiota dysbiosis, inflammatory response, and levels of short chain fatty acids. Future studies in this field are warranted to better understand the factors associated with negative health outcomes and develop interventional trials.
Collapse
Affiliation(s)
- Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Veteran Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA; Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA; Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, USA
| | - Kevin Choy
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shanawaj Khair
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Graduate Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kiran U Dyamenahalli
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kevin M Najarro
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA
| | - Arek J Wiktor
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel N Frank
- GI and Liver Innate Immune Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ellen L Burnham
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Alcohol Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel H McMahan
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA
| | - Elizabeth J Kovacs
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Veteran Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA; Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Graduate Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA; Alcohol Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Xiao M, Zhang P, Chen Z, Liu X, Wei W, He Z, Wang Y, Cheng J, Zhu Z, Wen J, Yang H. Adenosine diphosphate ribosylation factor 6 inhibition protects burn sepsis induced lung injury through preserving vascular integrity and suppressing ASC inflammasome transmission. Burns 2024; 50:913-923. [PMID: 38267288 DOI: 10.1016/j.burns.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Severe burns are devastating injuries with significant immune dysfunction and result in substantial mortality and morbidity due to sepsis induced organ failure. Acute lung injury is the most common type of organ injury in sepsis, however, the mechanisms of which are poorly understood and effective therapeutic measures are limited. This study is aimed to investigate the effect of a small Guanosine triphosphatase (GTPase), Adenosine diphosphate ribosylation factor 6 (ARF6), on burn sepsis induced lung injury, and discuss the possible mechanisms. METHODS Burn sepsis was established in male C57BL/6 mice. Mice were anesthetised by intramuscular injection of ketamine and xylazine hydrochloride, then 30% TBSA full thickness burn followed by sub-eschar injection of lipopolysaccharide. Animals were treated with intraperitoneal injection of a small molecule inhibitor of ARF6: NAV-2729, or vehicle, right after the burn and sepsis stimuli were inflicted. Lung tissues were harvested for histopathological observation and the acute lung injury scores were calculated. Organ permeability, Vascular Endothelial Cadherin (VE-cadherin) expression, inflammatory cytokine levels and myeloperoxidase activity in lung tissues were detected. Rat pulmonary microvascular endothelial cells (PMVECs) were stimulated by burn sepsis serum with or without 10 μM NAV-2729. The ARF6 activation, VE-cadherin expression, inflammasome activity, adapter protein apoptosis speck-like protein containing a caspase recruiting domain (ASC) specks and cytokines secretion were determined. Student's t test was used for comparison between two groups. Multiple comparisons among groups were performed by using analysis of variance, with Tukey's test for the post hoc test. RESULTS NAV-2729 treatment attenuated burn sepsis induced lung injury and promoted survival of burn septic mice by preserving VE-cadherin expression in endothelial cell adherent junction and limited vascular hyperpermeability in lung tissues. Moreover, inflammatory cytokine expression and inflammatory injury in lung tissues were alleviated. Mechanistically, NAV-2729 enhanced vascular integrity by inhibiting ARF6 activation and restoring VE-cadherin expression in PMVECs. In addition, NAV-2729 inhibited ARF6-dependent phagocytosis of ASC specks, thus preventing inflammation propagation mediated by cell-to-cell transmission of ASC specks. CONCLUSIONS ARF6 inhibition preserved vascular integrity by restoring expression of VE-cadherin and suppressed the spread of inflammation by affecting phagocytosis of ASC specks, thus protected against sepsis induced lung injury and improve survival of burn septic animals. The findings of this study implied potential therapeutics by which ARF6 inhibition can protect lung function from septic induced lung injury and improve outcomes in burn sepsis.
Collapse
Affiliation(s)
- Mengjing Xiao
- Department of Burn Plastic and Cosmetic Surgery, South China Hospital Affiliated to Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen 518111, PR China.
| | - Peirong Zhang
- Inpatient Ward 1, Songhe Nursing Home, 3 Yuenan Street, Huangsha Avenue, Liwan District, Guangzhou 510145, PR China.
| | - Zimiao Chen
- Department of Burn Plastic and Cosmetic Surgery, South China Hospital Affiliated to Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen 518111, PR China.
| | - Xiaojie Liu
- Department of Burn Plastic and Cosmetic Surgery, South China Hospital Affiliated to Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen 518111, PR China.
| | - Wei Wei
- Department of Burn Plastic and Cosmetic Surgery, South China Hospital Affiliated to Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen 518111, PR China.
| | - Zhihao He
- Department of Burn Plastic and Cosmetic Surgery, South China Hospital Affiliated to Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen 518111, PR China.
| | - Yao Wang
- Department of Burn Plastic and Cosmetic Surgery, South China Hospital Affiliated to Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen 518111, PR China.
| | - Jian Cheng
- Department of Burn Plastic and Cosmetic Surgery, South China Hospital Affiliated to Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen 518111, PR China.
| | - Zhen Zhu
- Department of Burn Plastic and Cosmetic Surgery, South China Hospital Affiliated to Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen 518111, PR China.
| | - Jing Wen
- Department of Burn Plastic and Cosmetic Surgery, South China Hospital Affiliated to Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen 518111, PR China.
| | - Hongming Yang
- Department of Burn Plastic and Cosmetic Surgery, South China Hospital Affiliated to Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen 518111, PR China.
| |
Collapse
|
4
|
Song Y, Li Y, Hu W, Li F, Sheng H, Huang C, Gou X, Hou J, Zheng J, Xiao Y. Luminol-conjugated cyclodextrin biological nanoparticles for the treatment of severe burn-induced intestinal barrier disruption. BURNS & TRAUMA 2024; 12:tkad054. [PMID: 38444636 PMCID: PMC10910847 DOI: 10.1093/burnst/tkad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 03/07/2024]
Abstract
Background The breakdown of intestinal barrier integrity occurs after severe burn injury and is responsible for the subsequent reactions of inflammation and oxidative stress. A new protective strategy for the intestinal barrier is urgently needed due to the limitations of the traditional methods. Recently, the application of nanoparticles has become one of the promising therapies for many inflammation-related diseases or oxidative damage. Herein, we developed a new anti-inflammatory and antioxidant nanoparticle named luminol-conjugated cyclodextrin (LCD) and aimed to evaluate its protective effects in severe burn-induced intestinal injury. Methods First, LCD nanoparticles, engineered with covalent conjugation between luminol and β-cyclodextrin (β-CD), were synthesized and examined. Then a mouse burn model was successfully established before the mouse body weight, intestinal histopathological manifestation, permeability, tight junction (TJ) expression and pro-inflammatory cytokines were determined in different groups. The proliferation, apoptosis, migration and reactive oxygen species (ROS) of intestinal epithelial cells (IECs) were assessed. Intraepithelial lymphocytes (IELs) were isolated and cultured for analysis by flow cytometry. Results LCD nanoparticle treatment significantly relieved the symptoms of burn-induced intestinal injury in the mouse model, including body weight loss and intestinal permeability abnormalities. Moreover, LCD nanoparticles remarkably recovered the mechanical barrier of the intestine after severe burn, renewed TJ structures, promoted IEC proliferation and migration, and inhibited IEC apoptosis. Mechanistically, LCD nanoparticles dramatically alleviated pro-inflammation factors (tumor necrosis factor-α, IL-17A) and ROS accumulation, which could be highly involved in intestinal barrier disruption. Furthermore, an increase in IL-17A and the proportion of IL-17A+Vγ4+ γδ T subtype cells was also observed in vitro in LPS-treated Vγ4+ γδ T cells, but the use of LCD nanoparticles suppressed this increase. Conclusions Taken together, these findings demonstrate that LCD nanoparticles have the protective ability to ameliorate intestinal barrier disruption and provide a therapeutic intervention for burn-induced intestinal injury.
Collapse
Affiliation(s)
- Yajun Song
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Yang Li
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Yuanjiagang Road, Yuzhong District, Chongqing, 400016, China
| | - Wengang Hu
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Feng Li
- Department of Urology, Chongqing University Three Gorges Hospital, No. 165, Xincheng Road, Wanzhou District, Chongqing, 404031, China
| | - Hao Sheng
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Chibing Huang
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Yuanjiagang Road, Yuzhong District, Chongqing, 400016, China
| | - Jingming Hou
- Department of Rehabilitation, Southwest Hospital, The Army Medical University, No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Ji Zheng
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Ya Xiao
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| |
Collapse
|
5
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Gao C, Koko MY, Hong W, Gankhuyag J, Hui M, Gantumur MA, Dong N. Protective Properties of Intestinal Alkaline Phosphatase Supplementation on the Intestinal Barrier: Interactions and Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27-45. [PMID: 37964463 DOI: 10.1021/acs.jafc.3c05119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The intestinal barrier is critical for maintaining intestinal homeostasis, and its dysfunction is associated with various diseases. Recent findings have revealed the multifunctional role of intestinal alkaline phosphatase (IAP) in diverse biological processes, including gut health maintenance and function. This review summarizes the protective effects of IAP on intestinal barrier integrity, encompassing the physical, chemical, microbial, and immune barriers. We discuss the results and insights from in vitro, animal model, and clinical studies as well as the available evidence regarding the impact of diet on IAP activity and expression. IAP can also be used as an indicator to assess intestinal-barrier-related diseases. Further research into the mechanisms of action and long-term health effects of IAP in maintaining overall intestinal health is essential for its future use as a dietary supplement or functional component in medical foods.
Collapse
Affiliation(s)
- Chenzhe Gao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Marwa Yagoub Koko
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Weichen Hong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Javzan Gankhuyag
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Mizhou Hui
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Munkh-Amgalan Gantumur
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
| |
Collapse
|
7
|
Ravichandran P, Pruskowski KA. Pharmacologic Considerations for Antimicrobials and Anticoagulants after Burn Injury. EUROPEAN BURN JOURNAL 2023; 4:573-583. [PMID: 39600026 PMCID: PMC11571861 DOI: 10.3390/ebj4040038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2024]
Abstract
Derangements in pharmacokinetics and pharmacodynamics (PK/PD) of burn patients are poorly understood and lacking consistent data. This leads to an absence of consensus regarding pharmacologic management of burn patients, complicating their care. In order to effectively manage burn critical illness, knowledge of pharmacologic parameters and their changes is necessary. It is also imperative that the clinician understands how these changes will affect drug dosing. A common practice is to increase antibiotic dosing and/or frequency; however, this may not be necessary and doses should be adjusted to patient- and drug-specific parameters. Additionally, monitoring assays for antibiotic levels as well as coagulation factors can be useful for adjusting dosages to best treat the patient. This review focuses on alterations in PK/PD as well as other physiologic changes after burn injury, with special reference to care in military and austere settings.
Collapse
Affiliation(s)
- Pranav Ravichandran
- F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kaitlin A. Pruskowski
- F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| |
Collapse
|
8
|
Ji W, Sun Z, Yang Y, Hu M, Zhang Q, Fu J, Chen J, Huang Y, Cheng Y. Downregulation of RUNX1-Activated Osteopontin Facilitates Burn Wound Healing by Activating the MAPK Pathways. J Burn Care Res 2023; 44:1371-1381. [PMID: 36913234 DOI: 10.1093/jbcr/irad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 03/14/2023]
Abstract
Burn wounds require intervention to ensure timely progression to reduce morbidity and mortality. The migrative and proliferative capabilities of keratinocytes are impaired in wounds. Matrix metalloproteinases (MMPs) can degrade the extracellular matrix (ECM), allowing epithelial cells to migrate. As reported, osteopontin can regulate cell migration, cell adhesion, and ECM invasion in endothelial and epithelial cells, and its expression is significantly increased in chronic wounds. Therefore, this study investigates the biological functions of osteopontin and its related mechanisms involved in burn wounds. We established cellular and animal models of burn injury. Levels of osteopontin, RUNX1, MMPs, collagen I, CK19, PCNA, and pathway-associated proteins were measured by RT-qPCR, western blotting, and immunofluorescence staining. Cell viability and migration were examined by CCK-8 and wound scratch assays. Histological changes were analyzed by hematoxylin and eosin staining and Masson's trichrome staining. For in vitro analysis, osteopontin silencing facilitated the growth and migration of HaCaT cells and promoted ECM degradation in HaCaT cells. Mechanistically, RUNX1 bound to osteopontin promoter, and RUNX1 upregulation attenuated the promoting efficacy of osteopontin silencing on cell growth and migration and ECM degradation. Additionally, RUNX1-activated osteopontin inactivated the MAPK signaling pathway. For in vivo analysis, osteopontin depletion facilitated burn wound healing by promoting reepithelialization and ECM degradation. In conclusion, RUNX1 activates the osteopontin expression at the transcriptional level and osteopontin depletion facilitates the recovery of burn wounds by promoting the migration of keratinocytes and reepithelization and ECM degradation by activating the MAPK pathway.
Collapse
Affiliation(s)
- Wei Ji
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhibo Sun
- Department of Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanqing Yang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Meng Hu
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Qian Zhang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Jie Fu
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - JunWei Chen
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yan Huang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yanyang Cheng
- Department of Paediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
9
|
Luo Z, Wang Z, Li P, Tan Y, He G, Liu X, Shen T, Yang X, Luo X. Intestinal alkaline phosphatase improves intestinal permeability and alleviates multiple organ dysfunction caused by heatstroke. Heliyon 2023; 9:e21838. [PMID: 38028005 PMCID: PMC10663923 DOI: 10.1016/j.heliyon.2023.e21838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Heatstroke (HS) is a severe acute disease related to gastrointestinal barrier dysfunction, systemic inflammation and multiple organ injury. Many of the functions of Intestinal alkaline phosphatase (IAP) have been linked to gut homeostasis, gut barrier function and inflammation. However, the protective effect of IAP on heatstroke is not fully elucidated. This study aims to explore the protective effect of IAP on heatstroke by maintaining intestinal barrier and improving permeability. Methods Male C57BL/6 mice were placed in a controlled climate chamber (ambient temperature: 40.0 ± 0.5 °C; humidity: 60 ± 5 %) until the maximum core temperature (Tc, max) reached 42.7 °C (the received criterion of HS). Then heat exposed mice (n = 195) were divided into three groups: 0.2 mL of 0.9 % physiological saline (HS) or vehicle (HS + Vehicle) or 300 IU IAP (HS + IAP) by gavage at 0, 24, and 48 h after onset. Control group mice (Con) (n = 65) were not exposed to heat and were gavaged with 0.9 % physiological saline of the same volume at the same time. Results IAP treatment significantly reduced the levels of endotoxin, FD4, and D-lactate in the blood of heatstroke mice, reduced intestinal permeability and maintained the integrity of the intestinal barrier by increasing the expression of tight junction proteins. Meanwhile, IAP treatment alleviated liver and kidney damage caused by heatstroke, reduced serum levels of inflammatory cytokines, and thus improved survival rate of mice after heatstroke. Conclusion This study indicates that IAP can improve the intestinal barrier function and intestinal permeability by increasing intestinal tight junctions, reduce systemic inflammation and multiple organ injury and improving the survival rate of heatstroke. Therefore, we consider IAP may be added to enteral nutrition formulas as a potential means for diseases characterized by intestinal permeability disorders, including heatstroke.
Collapse
Affiliation(s)
- Zhen Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Zeze Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Ping Li
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Yulong Tan
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Genlin He
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Xiaoqian Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Tingting Shen
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xuesen Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| |
Collapse
|
10
|
Shi L, Jin L, Huang W. Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases. Cells 2023; 12:1888. [PMID: 37508557 PMCID: PMC10377837 DOI: 10.3390/cells12141888] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal barrier is a precisely regulated semi-permeable physiological structure that absorbs nutrients and protects the internal environment from infiltration of pathological molecules and microorganisms. Bile acids are small molecules synthesized from cholesterol in the liver, secreted into the duodenum, and transformed to secondary or tertiary bile acids by the gut microbiota. Bile acids interact with bile acid receptors (BARs) or gut microbiota, which plays a key role in maintaining the homeostasis of the intestinal barrier. In this review, we summarize and discuss the recent studies on bile acid disorder associated with intestinal barrier dysfunction and related diseases. We focus on the roles of bile acids, BARs, and gut microbiota in triggering intestinal barrier dysfunction. Insights for the future prevention and treatment of intestinal barrier dysfunction and related diseases are provided.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biomedical Science, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Singh VK, Almpani M, Wheeler KM, Rahme LG. Interconnections of Pseudomonas aeruginosa Quorum-Sensing Systems in Intestinal Permeability and Inflammation. mBio 2023; 14:e0352422. [PMID: 36786582 PMCID: PMC10127598 DOI: 10.1128/mbio.03524-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
Quorum sensing (QS) is a highly conserved microbial communication mechanism based on the production and sensing of secreted signaling molecules. The recalcitrant pathogen Pseudomonas aeruginosa is a problematic nosocomial pathogen with complex interconnected QS systems controlling multiple virulence functions. The relevance of QS in P. aeruginosa pathogenesis is well established; however, the regulatory interrelationships of the three major QS systems, LasR/LasI, MvfR (PqsR)/PqsABCD, and RhlR/RhlI, have been studied primarily in vitro. It is, therefore, unclear how these relationships translate to the host environment during infection. Here, we use a collection of P. aeruginosa QS mutants of the three major QS systems to assess the interconnections and contributions in intestinal inflammation and barrier function in vivo. This work reveals that MvfR, not LasR or RhlR, promotes intestinal inflammation during infection. In contrast, we find that P. aeruginosa-driven murine intestinal permeability is controlled by an interconnected QS network involving all three regulators, with MvfR situated upstream of LasR and RhlR. This study demonstrates the importance of understanding the interrelationships of the QS systems during infection and provides critical insights for developing successful antivirulence strategies. Moreover, this work provides a framework to interrogate QS systems in physiologically relevant settings. IMPORTANCE Pseudomonas aeruginosa is a common multidrug-resistant bacterial pathogen that seriously threatens critically ill and immunocompromised patients. Intestinal colonization by this pathogen is associated with elevated mortality rates. Disrupting bacterial communication is a desirable anti-infective approach since these systems coordinate multiple acute and chronic virulence functions in P. aeruginosa. Here, we investigate the role of each of the three major communication systems in the host intestinal functions. This work reveals that P. aeruginosa influences intestinal inflammation and permeability through distinct mechanisms.
Collapse
Affiliation(s)
- Vijay K. Singh
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Marianna Almpani
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Kelsey M. Wheeler
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurence G. Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Abstract
Infections are the leading cause of mortality in burn patients who survive their initial resuscitation. Burn injury leads to immunosuppression and a dysregulated inflammatory response which can have a prolonged impact. Early surgical excision along with support of the multidisciplinary burn team has improved mortality in burn patients. The authors review diagnostic and therapeutic challenges as well as strategies for management of burn related infections.
Collapse
|
13
|
Lu Y, Shi Y, Wu Q, Sun X, Zhang WZ, Xu XL, Chen W. An Overview of Drug Delivery Nanosystems for Sepsis-Related Liver Injury Treatment. Int J Nanomedicine 2023; 18:765-779. [PMID: 36820059 PMCID: PMC9938667 DOI: 10.2147/ijn.s394802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Sepsis, which is a systemic inflammatory response syndrome caused by infection, has high morbidity and mortality. Sepsis-related liver injury is one of the manifestations of sepsis-induced multiple organ syndrome. To date, an increasing number of studies have shown that the hepatic inflammatory response, oxidative stress, microcirculation coagulation dysfunction, and bacterial translocation play extremely vital roles in the occurrence and development of sepsis-related liver injury. In the clinic, sepsis-related liver injury is mainly treated by routine empirical methods on the basis of the primary disease. However, these therapies have some shortcomings, such as serious side effects, short duration of drug effects and lack of specificity. The emergence of drug delivery nanosystems can significantly improve drug bioavailability and reduce toxic side effects. In this paper, we reviewed drug delivery nanosystems designed for the treatment of sepsis-related liver injury according to their mechanisms (hepatic inflammation response, oxidative stress, coagulation dysfunction in the microcirculation, and bacterial translocation). Although much promising progress has been achieved, translation into clinical practice is still difficult. To this end, we also discussed the key issues currently facing this field, including immune system rejection and single treatment modalities. Finally, with the rigorous optimization of nanotechnology and the deepening of research, drug delivery nanosystems have great potential for the treatment of sepsis-related liver injury.
Collapse
Affiliation(s)
- Yi Lu
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yi Shi
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qian Wu
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xin Sun
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Wei-Zhen Zhang
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China,Xiao-Ling Xu, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, People’s Republic of China, Email
| | - Wei Chen
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Correspondence: Wei Chen, ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, People’s Republic of China, Tel +86-21-64385700-3522, Email
| |
Collapse
|
14
|
Wu D, Su S, Zha X, Wei Y, Yang G, Huang Q, Yang Y, Xia L, Fan S, Peng X. Glutamine promotes O-GlcNAcylation of G6PD and inhibits AGR2 S-glutathionylation to maintain the intestinal mucus barrier in burned septic mice. Redox Biol 2022; 59:102581. [PMID: 36565645 PMCID: PMC9800542 DOI: 10.1016/j.redox.2022.102581] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Mucus forms the first line of defence of the intestinal mucosa barrier, and mucin is its core component. Glutamine is a vital energy substance for goblet cells; it can promote mucus synthesis and alleviate damage to the intestinal mucus barrier after burn injury, but its mechanism is not fully understood. This study focused on the molecular mechanisms underlying the effects of glutamine on the synthesis and modification of mucin 2 (MUC2) by using animal and cellular models of burn sepsis. We found that anterior gradient-2 (AGR2) plays a key role in the posttranslational modification of MUC2. Oxidative stress induced by burn sepsis enhanced the S-glutathionylation of AGR2, interfered with the processing and modification of MUC2 precursors by AGR2 and blocked the synthesis of mature MUC2. Further studies revealed that NADPH, catalysed by glucose-6-phosphate dehydrogenase (G6PD), is a key molecule in inhibiting oxidative stress and regulating AGR2 activity. Glutamine promotes O-linked N-acetylglucosamine (O-GlcNAc) modification of G6PD via the hexosamine pathway, which facilitates G6PD homodimer formation and increases NADPH synthesis, thereby inhibiting AGR2 S-glutathionylation and promoting MUC2 maturation, ultimately reducing damage to the intestinal mucus barrier after burn sepsis. Overall, we have demonstrated that the central mechanisms of glutamine in promoting MUC2 maturation and maintaining the intestinal mucus barrier are the enhancement of G6PD glycosylation and inhibition of AGR2 S-glutathionylation.
Collapse
Affiliation(s)
- Dan Wu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Sen Su
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xule Zha
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Yan Wei
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Gang Yang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Qianying Huang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Yongjun Yang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Lin Xia
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Shijun Fan
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xi Peng
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Shriners Burns Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Singh VK, Almpani M, Maura D, Kitao T, Ferrari L, Fontana S, Bergamini G, Calcaterra E, Pignaffo C, Negri M, de Oliveira Pereira T, Skinner F, Gkikas M, Andreotti D, Felici A, Déziel E, Lépine F, Rahme LG. Tackling recalcitrant Pseudomonas aeruginosa infections in critical illness via anti-virulence monotherapy. Nat Commun 2022; 13:5103. [PMID: 36042245 PMCID: PMC9428149 DOI: 10.1038/s41467-022-32833-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal barrier derangement allows intestinal bacteria and their products to translocate to the systemic circulation. Pseudomonas aeruginosa (PA) superimposed infection in critically ill patients increases gut permeability and leads to gut-driven sepsis. PA infections are challenging due to multi-drug resistance (MDR), biofilms, and/or antibiotic tolerance. Inhibition of the quorum-sensing transcriptional regulator MvfR(PqsR) is a desirable anti-PA anti-virulence strategy as MvfR controls multiple acute and chronic virulence functions. Here we show that MvfR promotes intestinal permeability and report potent anti-MvfR compounds, the N-Aryl Malonamides (NAMs), resulting from extensive structure-activity-relationship studies and thorough assessment of the inhibition of MvfR-controlled virulence functions. This class of anti-virulence non-native ligand-based agents has a half-maximal inhibitory concentration in the nanomolar range and strong target engagement. Using a NAM lead in monotherapy protects murine intestinal barrier function, abolishes MvfR-regulated small molecules, ameliorates bacterial dissemination, and lowers inflammatory cytokines. This study demonstrates the importance of MvfR in PA-driven intestinal permeability. It underscores the utility of anti-MvfR agents in maintaining gut mucosal integrity, which should be part of any successful strategy to prevent/treat PA infections and associated gut-derived sepsis in critical illness settings. NAMs provide for the development of crucial preventive/therapeutic monotherapy options against untreatable MDR PA infections.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA, 02114, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Marianna Almpani
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA, 02114, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Damien Maura
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA, 02114, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Voyager Therapeutics, Cambridge, MA, 02139, USA
| | - Tomoe Kitao
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA, 02114, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- T. Kitao, Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, 501-1194, Japan
| | - Livia Ferrari
- Translational Biology Department, Aptuit (Verona) S.rl, an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
| | - Stefano Fontana
- DMPK Department, Aptuit (Verona) S.rl, an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
| | - Gabriella Bergamini
- Translational Biology Department, Aptuit (Verona) S.rl, an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
| | - Elisa Calcaterra
- Translational Biology Department, Aptuit (Verona) S.rl, an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
| | - Chiara Pignaffo
- DMPK Department, Aptuit (Verona) S.rl, an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
| | - Michele Negri
- In vitro Chemotherapy Laboratory, Aptuit (Verona) S.r.l., an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
| | - Thays de Oliveira Pereira
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Quebec, H7V 1B7, Canada
| | - Frances Skinner
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Manos Gkikas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Danielle Andreotti
- Global Synthetic Chemistry Department, Aptuit (Verona) S.r.l., an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
| | - Antonio Felici
- Department of Microbiology Discovery, In Vitro Biology, Aptuit (Verona) S.r.l., an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
- A Felici, Academic Partnership, Evotec SE, 37135 Via A. Fleming 4, Verona, Italy
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Quebec, H7V 1B7, Canada
| | - Francois Lépine
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Quebec, H7V 1B7, Canada
| | - Laurence G Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA.
- Shriners Hospitals for Children, Boston, MA, 02114, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Singh SB, Lin HC. Role of Intestinal Alkaline Phosphatase in Innate Immunity. Biomolecules 2021; 11:biom11121784. [PMID: 34944428 PMCID: PMC8698947 DOI: 10.3390/biom11121784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal alkaline phosphatase (IAP) is a multi-functional protein that has been demonstrated to primarily protect the gut. The role of IAP in maintaining intestinal homeostasis is underscored by the observation that IAP expression is defective in many gastrointestinal-related disorders such as inflammatory bowel disease IBD, necrotizing enterocolitis, and metabolic syndrome and that exogenous IAP supplementation improves the outcomes associated with these disorders. Additionally, studies using transgenic IAP-knock out (IAP-KO) mouse models further support the importance of the defensive role of IAP in the intestine. Supplementation of exogenous IAP and cellular overexpression of IAP have also been used in vitro to dissect out the downstream mechanisms of this protein in mammalian cell lines. Some of the innate immune functions of IAP include lipopolysaccharide (LPS) detoxification, protection of gut barrier integrity, regulation of gut microbial communities and its anti-inflammatory roles. A novel function of IAP recently identified is the induction of autophagy. Due to its critical role in the gut physiology and its excellent safety profile, IAP has been used in phase 2a clinical trials for treating conditions such as sepsis-associated acute kidney injury. Many excellent reviews discuss the role of IAP in physiology and pathophysiology and here we extend these to include recent updates on this important host defense protein and discuss its role in innate immunity via its effects on bacteria as well as on host cells. We will also discuss the relationship between IAP and autophagy and how these two pathways may act in concert to protect the gut.
Collapse
Affiliation(s)
- Sudha B. Singh
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA;
| | - Henry C. Lin
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Correspondence:
| |
Collapse
|
17
|
Kühn F, Duan R, Ilmer M, Wirth U, Adiliaghdam F, Schiergens TS, Andrassy J, Bazhin AV, Werner J. Targeting the Intestinal Barrier to Prevent Gut-Derived Inflammation and Disease: A Role for Intestinal Alkaline Phosphatase. Visc Med 2021; 37:383-393. [PMID: 34722721 DOI: 10.1159/000515910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Background Intestinal alkaline phosphatase (IAP) as a tissue-specific isozyme of alkaline phosphatases is predominantly produced by enterocytes in the proximal small intestine. In recent years, an increasing number of pathologies have been identified to be associated with an IAP deficiency, making it very worthwhile to review the various roles, biological functions, and potential therapeutic aspects of IAP. Summary IAP primarily originates and acts in the intestinal tract but affects other organs through specific biological axes related to its fundamental roles such as promoting gut barrier function, dephosphorylation/detoxification of lipopolysaccharides (LPS), and regulation of gut microbiota. Key Messages Numerous studies reporting on the different roles and the potential therapeutic value of IAP across species have been published during the last decade. While IAP deficiency is linked to varying degrees of physiological dysfunctions across multiple organ systems, the supplementation of IAP has been proven to be beneficial in several translational and clinical studies. The increasing evidence of the salutary functions of IAP underlines the significance of the naturally occurring brush border enzyme.
Collapse
Affiliation(s)
- Florian Kühn
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Ruifeng Duan
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Ulrich Wirth
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Fatemeh Adiliaghdam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias S Schiergens
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Joachim Andrassy
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| |
Collapse
|
18
|
Qin C, Jiang Y, Chen X, Bian Y, Wang Y, Xie K, Yu Y. Dexmedetomidine protects against burn-induced intestinal barrier injury via the MLCK/p-MLC signalling pathway. Burns 2021; 47:1576-1585. [PMID: 33933302 DOI: 10.1016/j.burns.2021.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Evidence suggests that sedative dexmedetomidine can prevent intestinal dysfunction. However, the specific mechanisms of its protective effects against burn-induced intestinal barrier injury remain unclear. We aimed to explore the possible positive effects of dexmedetomidine on burn-induced intestinal barrier injury and the effects the myosin light chain kinase (MLCK)/phosphorylated myosin light chain (p-MLC) signalling pathway in an experimental model of burn injury. METHODS In this study, the plasma concentration of fluorescein isothiocyanate-labelled dextran (FITC-dextran) was measured. Histological changes were evaluated using haematoxylin and eosin (HE) staining. Tight junction proteins were evaluated by western blot and immunofluorescence analyses to assess the structural integrity of intestinal tight junctions. The level of inflammation was detected by enzyme-linked immunosorbent assay (ELISA). RESULTS The results shows that the increase in intestinal permeability caused by burn injury is accompanied by histological damage to the intestine, decreases in the expression of the tight junction proteins Zonula Occludens-1 (ZO-1) and Occludin, increases in inflammatory cytokine levels and elevation of both MLCK protein expression and MLC phosphorylation. After dexmedetomidine treatment, the burn-induced changes were ameliorated. CONCLUSIONS In conclusion, dexmedetomidine exerted an anti-inflammatory effect and protected tight junction complexes against burn‑induced intestinal barrier damage by inhibiting the MLCK/p-MLC signalling pathways.
Collapse
Affiliation(s)
- Chao Qin
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China; Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China; Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Xing Chen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nankai University, Tianjin, People's Republic of China
| | - Yingxue Bian
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Yaoqi Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China; Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China; Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China; Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China.
| |
Collapse
|