1
|
Quinlivan KM, Howard IV, Southan F, Bayer RL, Torres KL, Serhan CN, Panigrahy D. Exploring the Unique Role of Specialized Pro-Resolving Mediators in Cancer Therapeutics. Prostaglandins Other Lipid Mediat 2024:106944. [PMID: 39722403 DOI: 10.1016/j.prostaglandins.2024.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Unresolved chronic inflammation, a hallmark of cancer, promotes tumor growth and metastasis in various cancer types. In contrast to blocking inflammation, stimulation of resolution of inflammation is an entirely novel approach to "resolve" inflammation. Resolution of inflammation mechanisms in cancer includes clearance of tumor debris, counter-regulation of pro-inflammatory eicosanoids and cytokines, and suppression of leukocyte infiltration. Conventional cytotoxic chemotherapy, radiation, anti-angiogenic therapy, and immune checkpoint inhibitors directly or indirectly can lead to the generation of pro-tumorigenic cellular debris. Over the past two decades, a potential paradigm shift has emerged in the inflammation field with the discovery of specialized pro-resolving mediators (SPMs), including resolvins, lipoxins, maresins, and protectins. SPMs are structurally distinct families of mediators grouped together by their pro-resolving "debris-clearing" functions. "Pro-resolving" therapies are in clinical development for various inflammation-driven diseases, including cancer. SPMs, as novel cancer therapeutics, have tremendous potential to enhance current cancer therapy. The mechanisms of SPMs as anti-cancer therapeutics are under active investigation by various laboratories worldwide. Here, we explore the current appreciation of the SPMs as innovative potential treatments designed to harness the unique anti-cancer activity of SPMs.
Collapse
Affiliation(s)
- Katherine M Quinlivan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215.
| | - Isabella V Howard
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Franciska Southan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Rachel L Bayer
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Kimberly L Torres
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
2
|
Rieger L, Molina T, Fabre P, Greffard K, Pellerito O, Dort J, Bilodeau JF, Dumont NA. Transcriptomic and lipidomic profiling reveals distinct bioactive lipid signatures in slow and fast muscles and highlights the role of resolvin-D2 in fiber type determination during myogenesis. FASEB J 2024; 38:e70250. [PMID: 39698915 DOI: 10.1096/fj.202401747r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
Skeletal muscles are predominantly composed of long, multinucleated muscle fibers, classified according to their metabolic and contractile phenotype. The determination of fiber types is influenced by various factors (e.g., innervation, hormones, physical demand). Our laboratory and others showed that resolvins, lipid mediators derived from omega-3 fatty acids, promote muscle regeneration and function after an injury or in models of muscular dystrophies; however, the effect of resolvins on the determination of muscle phenotype remains unknown. Here, we investigated the impact of lipid mediators on muscle phenotype during myogenesis. Transcriptomics analysis of single-nuclei RNAseq data sets revealed that the enzymes responsible for bioactive lipids biosynthesis are differentially expressed in slow fibers versus fast fibers. Lipidomics analysis of slow-twitch muscle (soleus) versus fast-twitch muscle (tibialis anterior) showed that the levels of lipids derived from arachidonic acid are similar between muscle groups, but lipids derived from alpha-linolenic acid, linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid are enriched in slow-twitch muscle. Screening for different lipids in vitro showed that resolvin-D2 enhances the formation of myotubes expressing the slow myosin heavy chain isoform. In vivo, the administration of resolvin-D2 enhances muscle strength, increases myofiber size, and affects fiber typing in injured muscles but not in uninjured muscles. Resolvin-D2 promoted the transition toward the dominant fiber types in regenerating muscle (i.e., type I in the slow-twitch soleus and type IIB in the fast-twitch tibialis anterior muscle), suggesting its participation in fiber typing in conjunction with other factors. Overall, these findings identified new roles of bioactive lipids in the regulation of fiber typing, which could have therapeutic applicability in muscle injuries or dystrophies.
Collapse
Affiliation(s)
- Lupann Rieger
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Thomas Molina
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Paul Fabre
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Karine Greffard
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Quebec, Quebec, Canada
| | | | - Junio Dort
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-François Bilodeau
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
3
|
Kalinkovich A, Livshits G. The cross-talk between the cGAS-STING signaling pathway and chronic inflammation in the development of musculoskeletal disorders. Ageing Res Rev 2024; 104:102602. [PMID: 39612990 DOI: 10.1016/j.arr.2024.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Musculoskeletal disorders (MSDs) comprise diverse conditions affecting bones, joints, and muscles, leading to pain and loss of function, and are one of the most prevalent and major global health concerns. One of the hallmarks of MSDs is DNA damage. Once accumulated in the cytoplasm, the damaged DNA is sensed by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, which triggers the induction of type I interferons and inflammatory cytokines. Thus, this pathway connects the musculoskeletal and immune systems. Inhibitors of cGAS or STING have shown promising therapeutic effects in the pre-clinical models of several MSDs. Systemic, chronic, low-grade inflammation (SCLGI) underlies the development and maintenance of many MSDs. Failure to resolve SCLGI has been hypothesized to play a critical role in the development of chronic diseases, suggesting that the successful resolution of SCLGI will result in the alleviation of their related symptomatology. The process of inflammation resolution is feasible by specialized pro-resolving mediators (SPMs), which are enzymatically generated from dietary essential polyunsaturated fatty acids (PUFAs). The supplementation of SPMs or their stable, small-molecule mimetics and receptor agonists has revealed beneficial effects in inflammation-related animal models, including arthropathies, osteoporosis, and muscle dystrophy, suggesting a translational potential in MSDs. In this review, we substantiate the hypothesis that the use of cGAS-STING signaling pathway inhibitors together with SCLG-resolving compounds may serve as a promising new therapeutic approach for MSDs.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel; Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
4
|
Tomczyk M. Omega-3 Fatty Acids and Muscle Strength-Current State of Knowledge and Future Perspectives. Nutrients 2024; 16:4075. [PMID: 39683468 DOI: 10.3390/nu16234075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), specifically the most biologically active (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), have well-documented health-promoting effects, including, but not limited to, controlling inflammatory processes in the human body and supporting cardiovascular and cognitive health and visual processes. There is also some evidence pointing to the potential of EPA and DHA to preserve and/or enhance muscle strength. Muscle strength plays a crucial role in preventing age-related decline in skeletal muscle mass and function and the subsequent impaired functionality in the daily lives of the elderly. It also has a significant role in physical performance by aiding in the effectiveness of training elements, such as vertical jumps, sprinting, changes of direction, rate of force development, and anaerobic conditioning. Previous studies have indicated that supplementation with n-3 PUFAs may have a small but significant effect on preserving and/or increasing muscle strength in both healthy adults and in elderly. However, the number of studies published on this topic is limited. The goal of this narrative review is to summarize the effects of EPA and DHA supplementation on muscle strength and identify the limitations of previous studies that, if addressed, will help confirm or exclude the beneficial effects of n-3 PUFAs on muscle strength in humans.
Collapse
Affiliation(s)
- Maja Tomczyk
- Department of Biochemistry, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| |
Collapse
|
5
|
Zhang RX, Zhai YY, Ding RR, Huang JH, Shi XC, Liu H, Liu XP, Zhang JF, Lu JF, Zhang Z, Leng XK, Li DF, Xiao JY, Xia B, Wu JW. FNDC1 is a myokine that promotes myogenesis and muscle regeneration. EMBO J 2024:10.1038/s44318-024-00285-0. [PMID: 39567831 DOI: 10.1038/s44318-024-00285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Myogenesis is essential for skeletal muscle formation and regeneration after injury, yet its regulators are largely unknown. Here we identified fibronectin type III domain containing 1 (FNDC1) as a previously uncharacterized myokine. In vitro studies showed that knockdown of Fndc1 in myoblasts reduces myotube formation, while overexpression of Fndc1 promotes myogenic differentiation. We further generated recombinant truncated mouse FNDC1 (mFNDC1), which retains reliable activity in promoting myoblast differentiation in vitro. Gain- and loss-of-function studies collectively showed that FNDC1 promotes cardiotoxin (CTX)-induced muscle regeneration in adult mice. Furthermore, recombinant FNDC1 treatment ameliorated pathological muscle phenotypes in the mdx mouse model of Duchenne muscular dystrophy. Mechanistically, FNDC1 bound to the integrin α5β1 and activated the downstream FAK/PI3K/AKT/mTOR pathway to promote myogenic differentiation. Pharmacological inhibition of integrin α5β1 or of the downstream FAK/PI3K/AKT/mTOR pathway abolished the pro-myogenic effect of FNDC1. Collectively, these results suggested that myokine FNDC1 might be used as a therapeutic agent to regulate myogenic differentiation and muscle regeneration for the treatment of acute and chronic muscle disease.
Collapse
Affiliation(s)
- Rui Xin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuan Yuan Zhai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rong Rong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia He Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Chen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Peng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Feng Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Feng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhe Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiang Kai Leng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - De Fu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Ying Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Wang T, Zhou D, Hong Z. Adipose tissue in older individuals: a contributing factor to sarcopenia. Metabolism 2024; 160:155998. [PMID: 39128607 DOI: 10.1016/j.metabol.2024.155998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Sarcopenia is a geriatric syndrome characterized by a functional decline in muscle. The prevalence of sarcopenia increases with natural aging, becoming a serious health problem among elderly individuals. Therefore, understanding the pathology of sarcopenia is critical for inhibiting age-related alterations and promoting health and longevity in elderly individuals. The development of sarcopenia may be influenced by interactions between visceral and subcutaneous adipose tissue and skeletal muscle, particularly under conditions of chronic low-grade inflammation and metabolic dysfunction. This hypothesis is supported by the following observations: (i) accumulation of senescent cells in both adipose tissue and skeletal muscle with age; (ii) gut dysbiosis, characterized by an imbalance in gut microbial communities as the main trigger for inflammation, sarcopenia, and aged adipose tissue; and (iii) microbial dysbiosis, which could impact the onset or progression of a senescent state. Moreover, adipose tissue acts as an endocrine organ, releasing molecules that participate in intricate communication networks between organs. Our discussion focuses on novel adipokines and their role in regulating adipose tissue and muscle, particularly those influenced by aging and obesity, emphasizing their contributions to disease development. On the basis of these findings, we propose that age-related adipose tissue and sarcopenia are disorders characterized by chronic inflammation and metabolic dysregulation. Finally, we explore new potential therapeutic strategies involving specialized proresolving mediator (SPM) G protein-coupled receptor (GPCR) agonists, non-SPM GPCR agonists, transient receptor potential (TRP) channels, antidiabetic drugs in conjunction with probiotics and prebiotics, and compounds designed to target senescent cells and mitigate their pro-inflammatory activity.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Serhan CN, Chiang N, Nshimiyimana R. Low-dose pro-resolving mediators temporally reset the resolution response to microbial inflammation. Mol Med 2024; 30:153. [PMID: 39294573 PMCID: PMC11411770 DOI: 10.1186/s10020-024-00877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/15/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Specialized pro-resolving mediators (SPMs) promote resolution of inflammation, clear infections and stimulate tissue regeneration. These include resolvins, protectins, and maresins. During self-resolving acute inflammation, SPMs are produced and have key functions activating endogenous resolution response for returning to homeostasis. Herein, we addressed whether infections initiated with ongoing inflammation alter resolution programs, and if low-dose repetitive SPM regimen re-programs the resolution response. METHODS Inflammation was initiated with zymosan (1 mg/mouse) followed by E. coli (105 CFU/mouse) infections carried out in murine peritonitis, and exudates collected at 4-72 h. Leukocytes were enumerated using light microscopy, percentages of PMN, monocytes and macrophages were determined using flow cytometry, and resolution indices calculated. Lipid mediators and SPM profiles were established using mass spectrometry-based metabololipidomics. Repetitive dosing with a SPM panel consisting of RvD1, RvD2, RvD5, MaR1 and RvE2 (0.1 ng/mouse each, i.p.) was given to mice, followed by zymosan challenge. Leukocyte composition, resolution indices and RNA-sequencing were carried out for the repetitive SPM treatments. RESULTS E. coli infections initiated acute inflammation-resolution programs with temporal SPM production in the infectious exudates. Zymosan-induced inflammation prior to E. coli peritonitis shifted exudate resolution indices and delayed E. coli clearance. Lipid mediator metabololipidomics demonstrated that E. coli infection with ongoing zymosan-induced inflammation shifted the time course of exudate SPMs, activating a SPM cluster that included RvD1, RvD5 and MaR1 during the initiation phase of infectious inflammation (0-4 h); RvD5 and MaR1 were present also in the resolution phase (24-48 h). To emulate daily SPM regimens used in humans, a repetitive subthreshold dosing of the SPM panel RvD1, RvD2, RvD5, MaR1 and RvE2 each at 0.1 ng per mouse was administered. This low-dose SPM regimen accelerated exudate PMN clearance following zymosan-induced inflammation, and shortened the resolution interval by > 70%. These low-dose SPMs regulated genes and pathways related to immune response, chemokine clearance and tissue repair, as demonstrated by using RNA-sequencing. CONCLUSIONS Infections encountered during ongoing inflammation in mice reset the resolution mechanisms of inflammation via SPM clusters. Low-dose SPMs activate innate immune responses and pathways towards the resolution response that can be reprogrammed.
Collapse
Affiliation(s)
- Charles N Serhan
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Mass General Brigham and Harvard Medical School, 60 Fenwood Rd., Hale Building for Transformative Medicine 3-016, Boston, MA, 02115, USA.
| | - Nan Chiang
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Mass General Brigham and Harvard Medical School, 60 Fenwood Rd., Hale Building for Transformative Medicine 3-016, Boston, MA, 02115, USA
| | - Robert Nshimiyimana
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Mass General Brigham and Harvard Medical School, 60 Fenwood Rd., Hale Building for Transformative Medicine 3-016, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Turner TC, Pittman FS, Zhang H, Hymel LA, Zheng T, Behara M, Anderson SE, Harrer JA, Link KA, Ahammed MA, Maner-Smith K, Liu X, Yin X, Lim HS, Spite M, Qiu P, García AJ, Mortensen LJ, Jang YC, Willett NJ, Botchwey EA. Improving Functional Muscle Regeneration in Volumetric Muscle Loss Injuries by Shifting the Balance of Inflammatory and Pro-Resolving Lipid Mediators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611741. [PMID: 39314313 PMCID: PMC11418947 DOI: 10.1101/2024.09.06.611741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Severe tissue loss resulting from extremity trauma, such as volumetric muscle loss (VML), poses significant clinical challenges for both general and military populations. VML disrupts the endogenous tissue repair mechanisms, resulting in acute and unresolved chronic inflammation and immune cell presence, impaired muscle healing, scar tissue formation, persistent pain, and permanent functional deficits. The aberrant healing response is preceded by acute inflammation and immune cell infiltration which does not resolve. We analyzed the biosynthesis of inflammatory and specialized pro-resolving lipid mediators (SPMs) after VML injury in two different models; muscle with critical-sized defects had a decreased capacity to biosynthesize SPMs, leading to dysregulated and persistent inflammation. We developed a modular poly(ethylene glycol)-maleimide hydrogel platform to locally release a stable isomer of Resolvin D1 (AT-RvD1) and promote endogenous pathways of inflammation resolution in the two muscle models. The local delivery of AT-RvD1 enhanced muscle regeneration, improved muscle function, and reduced pain sensitivity after VML by promoting molecular and cellular resolution of inflammation. These findings provide new insights into the pathogenesis of VML and establish a pro-resolving hydrogel therapeutic as a promising strategy for promoting functional muscle regeneration after traumatic injury.
Collapse
|
9
|
Patsalos A, Halasz L, Oleksak D, Wei X, Nagy G, Tzerpos P, Conrad T, Hammers DW, Sweeney HL, Nagy L. Spatiotemporal transcriptomic mapping of regenerative inflammation in skeletal muscle reveals a dynamic multilayered tissue architecture. J Clin Invest 2024; 134:e173858. [PMID: 39190487 PMCID: PMC11473166 DOI: 10.1172/jci173858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Tissue regeneration is orchestrated by macrophages that clear damaged cells and promote regenerative inflammation. How macrophages spatially adapt and diversify their functions to support the architectural requirements of actively regenerating tissue remains unknown. In this study, we reconstructed the dynamic trajectories of myeloid cells isolated from acutely injured and early stage dystrophic muscles. We identified divergent subsets of monocytes/macrophages and DCs and validated markers (e.g., glycoprotein NMB [GPNMB]) and transcriptional regulators associated with defined functional states. In dystrophic muscle, specialized repair-associated subsets exhibited distinct macrophage diversity and reduced DC heterogeneity. Integrating spatial transcriptomics analyses with immunofluorescence uncovered the ordered distribution of subpopulations and multilayered regenerative inflammation zones (RIZs) where distinct macrophage subsets are organized in functional zones around damaged myofibers supporting all phases of regeneration. Importantly, intermittent glucocorticoid treatment disrupted the RIZs. Our findings suggest that macrophage subtypes mediated the development of the highly ordered architecture of regenerative tissues, unveiling the principles of the structured yet dynamic nature of regenerative inflammation supporting effective tissue repair.
Collapse
Affiliation(s)
- Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Darby Oleksak
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Xiaoyan Wei
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Petros Tzerpos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas Conrad
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - David W. Hammers
- Myology Institute and Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | - H. Lee Sweeney
- Myology Institute and Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
11
|
Zhu S, Liu J, Wang Q, Yang Y, Du L, Qiu X, Qi R, Wang J. Resolvin D1 alleviates apoptosis triggered by endoplasmic reticulum stress in IPEC-J2 cells. BMC Vet Res 2024; 20:125. [PMID: 38561794 PMCID: PMC10983747 DOI: 10.1186/s12917-023-03820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/22/2023] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Resolvin D1 (RvD1), a specialized pro-resolving lipid mediator (SPM), is derived from docosahexaenoic acid (DHA). It plays a key role in actively resolving inflammatory responses, which further reduces small intestinal damage. However, its regulation of the apoptosis triggered by endoplasmic reticulum (ER) stress in intestinal epithelial cells is still poorly understood. The intestinal porcine epithelial cells (IPEC-J2) were stimulated with tunicamycin to screen an optimal stimulation time and concentration to establish an ER stress model. Meanwhile, RvD1 (0, 1, 10, 20, and 50 nM) cytotoxicity and its impact on cell viability and the effective concentration for reducing ER stress and apoptosis were determined. Finally, the effects of RvD1 on ER stress and associated apoptosis were furtherly explored by flow cytometry analysis, AO/EB staining, RT-qPCR, and western blotting. RESULTS The ER stress model of IPEC-J2 cells was successfully built by stimulating the cells with 1 µg/mL tunicamycin for 9 h. Certainly, the increased apoptosis and cell viability inhibition also appeared under the ER stress condition. RvD1 had no cytotoxicity, and its concentration of 1 nM significantly decreased cell viability inhibition (p= 0.0154) and the total apoptosis rate of the cells from 14.13 to 10.00% (p= 0.0000). RvD1 at the concentration of 1 nM also significantly reduced the expression of glucose-regulated protein 78 (GRP-78, an ER stress marker gene) (p= 0.0000) and pro-apoptotic gene Caspase-3 (p= 0.0368) and promoted the expression of B cell lymphoma 2 (Bcl-2, an anti-apoptotic gene)(p= 0.0008). CONCLUSIONS Collectively, the results shed light on the potential of RvD1 for alleviating apoptosis triggered by ER stress, which may indicate an essential role of RvD1 in maintaining intestinal health and homeostasis.
Collapse
Affiliation(s)
- Siyuan Zhu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, P. R. China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Qi Wang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, P. R. China
| | - Yong Yang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, P. R. China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Lei Du
- Chongqing Academy of Animal Sciences, Chongqing, 402460, P. R. China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, P. R. China
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Chongqing, 402460, P. R. China.
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, P. R. China.
| |
Collapse
|
12
|
Chen YF. Temporal Single-Cell Sequencing Analysis Reveals That GPNMB-Expressing Macrophages Potentiate Muscle Regeneration. RESEARCH SQUARE 2024:rs.3.rs-4108866. [PMID: 38585871 PMCID: PMC10996783 DOI: 10.21203/rs.3.rs-4108866/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Macrophages play a crucial role in coordinating the skeletal muscle repair response, but their phenotypic diversity and the transition of specialized subsets to resolution-phase macrophages remain poorly understood. To address this issue, we induced injury and performed single-cell RNA sequencing on individual cells in skeletal muscle at different time points. Our analysis revealed a distinct macrophage subset that expressed high levels of Gpnmb and that coexpressed critical factors involved in macrophage-mediated muscle regeneration, including Igf1, Mertk, and Nr1h3. Gpnmb gene knockout inhibited macrophage-mediated efferocytosis and impaired skeletal muscle regeneration. Functional studies demonstrated that GPNMB acts directly on muscle cells in vitro and improves muscle regeneration in vivo. These findings provide a comprehensive transcriptomic atlas of macrophages during muscle injury, highlighting the key role of the GPNMB macrophage subset in regenerative processes. Targeting GPNMB signaling in macrophages could have therapeutic potential for restoring skeletal muscle integrity and homeostasis.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taiwan
| |
Collapse
|
13
|
Malan L, Zandberg L, Pienaar C, Nienaber A, Havemann-Nel L. Regular moderate physical activity potentially accelerates and strengthens both the pro-inflammatory and pro-resolving lipid mediator response after acute exercise stress. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102642. [PMID: 39216411 DOI: 10.1016/j.plefa.2024.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The PUFA-derived lipid mediator response shifts from pro-inflammatory to inflammation resolution over time and may be modified by regular moderate exercise. This pre-post-test study aimed to compare the expression of PTGES2 (COX2) and ALOX15 in leucocytes and the plasma 5- and 15-HETE, 18-HEPE and 17-HDHA responses after unaccustomed resistance exercise between 18-35-year-old male recreational runners (n = 18) and less-active controls (n = 15). One repetition maximum (1RM) was determined for squats, 45° leg presses and leg extensions. Subsequently three sets of 8-10 repetitions were performed at 80 % 1RM and blood collected over 72 hours. PTGES2 and ALOX15 expression changed over time in runners (P = 0.016, P = 0.007) but not controls (P = 0.631, P = 0.539). 5- and 15-HETE changed over time in runners (P < 0.001, P = 0.022), but not controls (P = 0.457, P = 0.985). 18-HEPE changed in runners and controls (P < 0.001, P = 0.024), 17-HDHA changed borderline in runners (P = 0.076). In conclusion, pro-inflammatory and inflammation-resolving lipid mediators may respond sooner and more robust in recreational runners than less-active controls after strenuous resistance exercise.
Collapse
Affiliation(s)
- Linda Malan
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.
| | - Lizelle Zandberg
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Cindy Pienaar
- Physical Activity, Sport and Recreation Research Focus Area (PhASRec), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; Department of Sport Studies, Faculty of Applied Sciences, Durban University of Technology, South Africa
| | - Arista Nienaber
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Lize Havemann-Nel
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
14
|
Ho HY, Chen YH, Lo CJ, Tang HY, Chang SW, Fan CM, Ho YH, Lin G, Chiu CY, Lin CM, Cheng ML. Combined Plasma DHA-Containing Phosphatidylcholine PCaa C38:6 and Tetradecanoyl-Carnitine as an Early Biomarker for Assessing the Mortality Risk among Sarcopenic Patients. Nutrients 2024; 16:611. [PMID: 38474739 DOI: 10.3390/nu16050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The coming of the hyper-aged society in Taiwan prompts us to investigate the relationship between the metabolic status of sarcopenic patients and their most adverse outcome-death. We studied the association between any plasma metabolites and the risk for mortality among older Taiwanese sarcopenic patients. We applied a targeted metabolomic approach to study the plasma metabolites of adults aged ≥65 years, and identified the metabolic signature predictive of the mortality of sarcopenic patients who died within a 5.5-year follow-up period. Thirty-five sarcopenic patients who died within the follow-up period (Dead cohort) had shown a specific plasma metabolic signature, as compared with 54 patients who were alive (Alive cohort). Only 10 of 116 non-sarcopenic individuals died during the same period. After multivariable adjustment, we found that sex, hypertension, tetradecanoyl-carnitine (C14-carnitine), and docosahexaenoic acid (DHA)-containing phosphatidylcholine diacyl (PCaa) C38:6 and C40:6 were important risk factors for the mortality of sarcopenic patients. Low PCaa C38:6 levels and high C14-carnitine levels correlated with an increased mortality risk; this was even the same for those patients with hypertension (HTN). Our findings suggest that plasma PCaa C38:6 and acylcarnitine C14-carnitine, when combined, can be a better early biomarker for evaluating the mortality risk of sarcopenia patients.
Collapse
Grants
- BMRP819, BMRP564, CMRPD1L0161, CMRPD1L0162, CMRPD1M0351, CMRPD1J0263, CMRPD1M0341 and CLRPG3K0023 Chang Gung Memorial Hospital
- 110-2320-B-182-017-MY3 and 111-2320-B-182-011 National Science and Technology Council (Taiwan region)
- EMRPD1K0441, EMRPD1K0481, and EMRPD1L0421 Ministry of Education (Taiwan region)
- MOST 111-2634-F-182-001 The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE)(Taiwan region) and the National Science and Technology Council (NSTC)(Taiwan region)
- CMRPD1M0352, CMRPD1N0151, CMRPD1M0342, CMRPD1N0071,112-2320-B-182-020-MY3 Chang Gung Memorial Hospital
Collapse
Affiliation(s)
- Hung-Yao Ho
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yuan-Ho Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Su-Wei Chang
- Department of Artificial Intelligence, College of Intelligent Computing, Chang Gung University, Taoyuan 333, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chun-Ming Fan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Hsuan Ho
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Gigin Lin
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Yung Chiu
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung and Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Ming Lin
- Division of Internal Medicine, Chang Gung Memorial Hospital at Taipei, Taipei 105, Taiwan
- Department of Health Management, Chang Gung Health and Culture Village, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
15
|
Yi X, Tran E, Odiba JO, Qin CX, Ritchie RH, Baell JB. The formyl peptide receptors FPR1 and FPR2 as targets for inflammatory disorders: recent advances in the development of small-molecule agonists. Eur J Med Chem 2024; 265:115989. [PMID: 38199163 DOI: 10.1016/j.ejmech.2023.115989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Formyl peptide receptors (FPRs) comprise a class of chemoattractant pattern recognition receptors, for which several physiological functions like host-defences, as well as the regulation of inflammatory responses, have been ascribed. With accumulating evidence that agonism of FPR1/FPR2 can confer pro-resolution of inflammation, increased attention from academia and industry has led to the discovery of new and interesting small-molecule FPR1/FPR2 agonists. Focused attention on the development of appropriate physicochemical and pharmacokinetic profiles is yielding synthesis of new compounds with promising in vivo readouts. This review presents an overview of small-molecule FPR1/FPR2 agonist medicinal chemistry developed over the past 20 years, with a particular emphasis on interrogation in the increasingly sophisticated bioassays which have been developed.
Collapse
Affiliation(s)
- Xiangyan Yi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Eric Tran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Jephthah O Odiba
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
16
|
Theret M, Chazaud B. Skeletal muscle niche, at the crossroad of cell/cell communications. Curr Top Dev Biol 2024; 158:203-220. [PMID: 38670706 DOI: 10.1016/bs.ctdb.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is composed of a variety of tissue and non-tissue resident cells that participate in homeostasis. In particular, the muscle stem cell niche is a dynamic system, requiring direct and indirect communications between cells, involving local and remote cues. Interactions within the niche must happen in a timely manner for the maintenance or recovery of the homeostatic niche. For instance, after an injury, pro-myogenic cues delivered too early will impact on muscle stem cell proliferation, delaying the repair process. Within the niche, myofibers, endothelial cells, perivascular cells (pericytes, smooth muscle cells), fibro-adipogenic progenitors, fibroblasts, and immune cells are in close proximity with each other. Each cell behavior, membrane profile, and secretome can interfere with muscle stem cell fate and skeletal muscle regeneration. On top of that, the muscle stem cell niche can also be modified by extra-muscle (remote) cues, as other tissues may act on muscle regeneration via the production of circulating factors or the delivery of cells. In this review, we highlight recent publications evidencing both local and remote effectors of the muscle stem cell niche.
Collapse
Affiliation(s)
- Marine Theret
- School of Biomedical Engineering and Department of Medical Genetics University of British Columbia, Vancouver, BC, Canada
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, Inserm U1315, CNRS UMR 5261, Lyon, France.
| |
Collapse
|
17
|
Ferri G, Serano M, Isopi E, Mucci M, Mattoscio D, Pecce R, Protasi F, Mall MA, Romano M, Recchiuti A. Resolvin D1 improves airway inflammation and exercise capacity in cystic fibrosis lung disease. FASEB J 2023; 37:e23233. [PMID: 37823221 DOI: 10.1096/fj.202301495r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Mucus plugging and non-resolving inflammation are inherent features of cystic fibrosis (CF) that may lead to progressive lung disease and exercise intolerance, which are the main causes of morbidity and mortality for people with CF. Therefore, understanding the influence of mucus on basic mechanisms underlying the inflammatory response and identifying strategies to resolve mucus-driven airway inflammation and consequent morbidity in CF are of wide interest. Here, we investigated the effects of the proresolving lipid mediator resolvin (Rv) D1 on mucus-related inflammation as a proof-of-concept to alleviate the burden of lung disease and restore exercise intolerance in CF. We tested the effects of RvD1 on inflammatory responses of human organotypic airways and leukocytes to CF mucus and of humanized mice expressing the epithelial Na + channel (βENaC-Tg) having CF-like mucus obstruction, lung disease, and physical exercise intolerance. RvD1 reduced pathogenic phenotypes of CF-airway supernatant (ASN)-stimulated human neutrophils, including loss of L-selectin shedding and CD16. RNASeq analysis identified select transcripts and pathways regulated by RvD1 in ASN-stimulated CF bronchial epithelial cells that are involved in sugar metabolism, NF-κB activation and inflammation, and response to stress. In in vivo inflammation using βENaC TG mice, RvD1 reduced total leukocytes, PMN, and interstitial Siglec-MΦ when given at 6-8 weeks of age, and in older mice at 10-12 weeks of age, along with the decrease of pro-inflammatory chemokines and increase of anti-inflammatory IL-10. Furthermore, RvD1 treatment promoted the resolution of pulmonary exacerbation caused by Pseudomonas aeruginosa infection and significantly enhanced physical activity and energy expenditure associated with mucus obstruction, which was impaired in βENaC-Tg mice compared with wild-type. These results demonstrate that RvD1 can rectify features of CF and offer proof-of-concept for its therapeutic application in this and other muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Giulia Ferri
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Matteo Serano
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Elisa Isopi
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Matteo Mucci
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Romina Pecce
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Romano
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Antonio Recchiuti
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
18
|
Dort J, Orfi Z, Fiscaletti M, Campeau PM, Dumont NA. Gpr18 agonist dampens inflammation, enhances myogenesis, and restores muscle function in models of Duchenne muscular dystrophy. Front Cell Dev Biol 2023; 11:1187253. [PMID: 37645248 PMCID: PMC10461444 DOI: 10.3389/fcell.2023.1187253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction: Muscle wasting in Duchenne Muscular Dystrophy is caused by myofiber fragility and poor regeneration that lead to chronic inflammation and muscle replacement by fibrofatty tissue. Our recent findings demonstrated that Resolvin-D2, a bioactive lipid derived from omega-3 fatty acids, has the capacity to dampen inflammation and stimulate muscle regeneration to alleviate disease progression. This therapeutic avenue has many advantages compared to glucocorticoids, the current gold-standard treatment for Duchenne Muscular Dystrophy. However, the use of bioactive lipids as therapeutic drugs also faces many technical challenges such as their instability and poor oral bioavailability. Methods: Here, we explored the potential of PSB-KD107, a synthetic agonist of the resolvin-D2 receptor Gpr18, as a therapeutic alternative for Duchenne Muscular Dystrophy. Results and discussion: We showed that PSB-KD107 can stimulate the myogenic capacity of patient iPSC-derived myoblasts in vitro. RNAseq analysis revealed an enrichment in biological processes related to fatty acid metabolism, lipid biosynthesis, small molecule biosynthesis, and steroid-related processes in PSB-KD107-treated mdx myoblasts, as well as signaling pathways such as Peroxisome proliferator-activated receptors, AMP-activated protein kinase, mammalian target of rapamycin, and sphingolipid signaling pathways. In vivo, the treatment of dystrophic mdx mice with PSB-KD107 resulted in reduced inflammation, enhanced myogenesis, and improved muscle function. The positive impact of PSB-KD107 on muscle function is similar to the one of Resolvin-D2. Overall, our findings provide a proof-of concept that synthetic analogs of bioactive lipid receptors hold therapeutic potential for the treatment of Duchenne Muscular Dystrophy.
Collapse
Affiliation(s)
- Junio Dort
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Zakaria Orfi
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Melissa Fiscaletti
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Philippe M. Campeau
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas A. Dumont
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
19
|
Libreros S, Nshimiyimana R, Lee B, Serhan CN. Infectious neutrophil deployment is regulated by resolvin D4. Blood 2023; 142:589-606. [PMID: 37295018 PMCID: PMC10447623 DOI: 10.1182/blood.2022019145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 06/11/2023] Open
Abstract
Neutrophils reside in the bone marrow (BM), ready for deployment to sites of injury/infection, initiating inflammation and its resolution. Here, we report that distal infections signal to the BM via resolvins to regulate granulopoiesis and BM neutrophil deployment. Emergency granulopoiesis during peritonitis evoked changes in BM resolvin D1 (RvD1) and BM RvD4. We found that leukotriene B4 stimulates neutrophil deployment. RvD1 and RvD4 each limited neutrophilic infiltration to infections, and differently regulated BM myeloid populations: RvD1 increased reparative monocytes, and RvD4 regulated granulocytes. RvD4 disengaged emergency granulopoiesis, prevented excess BM neutrophil deployment, and acted on granulocyte progenitors. RvD4 also stimulated exudate neutrophil, monocyte, and macrophage phagocytosis, and enhanced bacterial clearance. This mediator accelerated both neutrophil apoptosis and clearance by macrophages, thus expediting the resolution phase of inflammation. RvD4 stimulated phosphorylation of ERK1/2 and STAT3 in human BM-aspirate-derived granulocytes. RvD4 in the 1 to 100 nM range stimulated whole-blood neutrophil phagocytosis of Escherichia coli. RvD4 increased BM macrophage efferocytosis of neutrophils. Together, these results demonstrate the novel functions of resolvins in granulopoiesis and neutrophil deployment, contributing to the resolution of infectious inflammation.
Collapse
Affiliation(s)
- Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Brendon Lee
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Larouche JA, Wallace EC, Spence BD, Buras E, Aguilar CA. Spatiotemporal mapping of immune and stem cell dysregulation after volumetric muscle loss. JCI Insight 2023; 8:e162835. [PMID: 36821376 PMCID: PMC10132146 DOI: 10.1172/jci.insight.162835] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Volumetric muscle loss (VML) is an acute trauma that results in persistent inflammation, supplantation of muscle tissue with fibrotic scarring, and decreased muscle function. The cell types, nature of cellular communication, and tissue locations that drive the aberrant VML response have remained elusive. Herein, we used spatial transcriptomics on a mouse model of VML and observed that VML engenders a unique spatial profibrotic pattern driven by crosstalk between fibrotic and inflammatory macrophages and mesenchymal-derived cells. The dysregulated response impinged on muscle stem cell-mediated repair, and targeting this circuit resulted in increased regeneration and reductions in inflammation and fibrosis. Collectively, these results enhance our understanding of the cellular crosstalk that drives aberrant regeneration and provides further insight into possible avenues for fibrotic therapy exploration.
Collapse
Affiliation(s)
| | | | | | - Eric Buras
- Biointerfaces Institute
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
| | - Carlos A. Aguilar
- Department of Biomedical Engineering
- Biointerfaces Institute
- Program in Cellular and Molecular Biology, University of Michigan (UM), Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
22
|
Martindale RG. Novel nutrition strategies to enhance recovery after surgery. JPEN J Parenter Enteral Nutr 2023; 47:476-481. [PMID: 36938940 DOI: 10.1002/jpen.2485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 03/21/2023]
Abstract
Surgery and traumatic injury set off a cascade of metabolic changes that are becoming better understood. Recently, strategies and protocols have been developed for optimizing outcomes, and this has yielded beneficial results. This brief review evaluates three specific nutrition or metabolic interventions in the postoperative setting that attempt to optimize outcomes. We limited this to three subspecialty areas including oncologic surgery, orthopedic surgery, and cardiac surgery. These agents included fish oils, factors to prevent dysbiosis, and resistance exercise and its role in enhancing protein update. Where these novel agents fit into the basic tenets of postoperative nutrition interventions does not change the narrative: deliver graduated early enteral feeding to attenuate the metabolic response to surgical stress, maintain the gastrointestinal mucosal barrier, use immune/metabolic modulation to enhance immune response while attenuating excessive inflammation, and support the microbiome.
Collapse
Affiliation(s)
- Robert G Martindale
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
23
|
Maestas DR, Chung L, Han J, Wang X, Sommerfeld SD, Kelly SH, Moore E, Nguyen HH, Mejías JC, Peña AN, Zhang H, Hooks JST, Chin AF, Andorko JI, Berlinicke CA, Krishnan K, Choi Y, Anderson AE, Mahatme R, Mejia C, Eric M, Woo J, Ganguly S, Zack DJ, Zhao L, Pearce EJ, Housseau F, Pardoll DM, Elisseeff JH. Helminth egg derivatives as proregenerative immunotherapies. Proc Natl Acad Sci U S A 2023; 120:e2211703120. [PMID: 36780522 PMCID: PMC9974432 DOI: 10.1073/pnas.2211703120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
The immune system is increasingly recognized as an important regulator of tissue repair. We developed a regenerative immunotherapy from the helminth Schistosoma mansoni soluble egg antigen (SEA) to stimulate production of interleukin (IL)-4 and other type 2-associated cytokines without negative infection-related sequelae. The regenerative SEA (rSEA) applied to a murine muscle injury induced accumulation of IL-4-expressing T helper cells, eosinophils, and regulatory T cells and decreased expression of IL-17A in gamma delta (γδ) T cells, resulting in improved repair and decreased fibrosis. Encapsulation and controlled release of rSEA in a hydrogel further enhanced type 2 immunity and larger volumes of tissue repair. The broad regenerative capacity of rSEA was validated in articular joint and corneal injury models. These results introduce a regenerative immunotherapy approach using natural helminth derivatives.
Collapse
Affiliation(s)
- David R. Maestas
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Liam Chung
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
| | - Jin Han
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Xiaokun Wang
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Sven D. Sommerfeld
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Sean H. Kelly
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Erika Moore
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
- Materials Science and Engineering, University of Florida, Gainesville, FL32611
| | - Helen Hieu Nguyen
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Joscelyn C. Mejías
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Alexis N. Peña
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Hong Zhang
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Joshua S. T. Hooks
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Alexander F. Chin
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - James I. Andorko
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
| | - Cynthia A. Berlinicke
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Kavita Krishnan
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Younghwan Choi
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Amy E. Anderson
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Ronak Mahatme
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Christopher Mejia
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Marie Eric
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - JiWon Woo
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Sudipto Ganguly
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Liang Zhao
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Edward J. Pearce
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD21287
| | - Franck Housseau
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Drew M. Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| |
Collapse
|
24
|
Jannas-Vela S, Espinosa A, Candia AA, Flores-Opazo M, Peñailillo L, Valenzuela R. The Role of Omega-3 Polyunsaturated Fatty Acids and Their Lipid Mediators on Skeletal Muscle Regeneration: A Narrative Review. Nutrients 2023; 15:nu15040871. [PMID: 36839229 PMCID: PMC9965797 DOI: 10.3390/nu15040871] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Skeletal muscle is the largest tissue in the human body, comprising approximately 40% of body mass. After damage or injury, a healthy skeletal muscle is often fully regenerated; however, with aging and chronic diseases, the regeneration process is usually incomplete, resulting in the formation of fibrotic tissue, infiltration of intermuscular adipose tissue, and loss of muscle mass and strength, leading to a reduction in functional performance and quality of life. Accumulating evidence has shown that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and their lipid mediators (i.e., oxylipins and endocannabinoids) have the potential to enhance muscle regeneration by positively modulating the local and systemic inflammatory response to muscle injury. This review explores the process of muscle regeneration and how it is affected by acute and chronic inflammatory conditions, focusing on the potential role of n-3 PUFAs and their derivatives as positive modulators of skeletal muscle healing and regeneration.
Collapse
Affiliation(s)
- Sebastian Jannas-Vela
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Alejandra Espinosa
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, San Felipe 2170000, Chile
| | - Alejandro A. Candia
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Marcelo Flores-Opazo
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Luis Peñailillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Las Condes, Santiago 7591538, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Correspondence:
| |
Collapse
|
25
|
Abstract
Inflammation and its timely resolution are critical to ensure effective host defense and appropriate tissue repair after injury and or infection. Chronic, unresolved inflammation typifies many prevalent pathologies. The key mediators that initiate and drive the inflammatory response are well defined and targeted by conventional anti-inflammatory therapeutics. More recently, there is a growing appreciation that specific mediators, including arachidonate-derived lipoxins, are generated in self-limiting inflammatory responses to promote the resolution of inflammation and endogenous repair mechanisms without compromising host defense. We discuss the proresolving biological actions of lipoxins and recent efforts to harness their therapeutic potential through the development of novel, potent lipoxin mimetics generated via efficient, modular stereoselective synthetic pathways. We consider the evidence that lipoxin mimetics may have applications in limiting inflammation and reversing fibrosis and the underlying mechanisms.
Collapse
Affiliation(s)
- Catherine Godson
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland;
- The Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland;
- The Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Dubuisson N, Versele R, Planchon C, Selvais CM, Noel L, Abou-Samra M, Davis-López de Carrizosa MA. Histological Methods to Assess Skeletal Muscle Degeneration and Regeneration in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:16080. [PMID: 36555721 PMCID: PMC9786356 DOI: 10.3390/ijms232416080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive disease caused by the loss of function of the protein dystrophin. This protein contributes to the stabilisation of striated cells during contraction, as it anchors the cytoskeleton with components of the extracellular matrix through the dystrophin-associated protein complex (DAPC). Moreover, absence of the functional protein affects the expression and function of proteins within the DAPC, leading to molecular events responsible for myofibre damage, muscle weakening, disability and, eventually, premature death. Presently, there is no cure for DMD, but different treatments help manage some of the symptoms. Advances in genetic and exon-skipping therapies are the most promising intervention, the safety and efficiency of which are tested in animal models. In addition to in vivo functional tests, ex vivo molecular evaluation aids assess to what extent the therapy has contributed to the regenerative process. In this regard, the later advances in microscopy and image acquisition systems and the current expansion of antibodies for immunohistological evaluation together with the development of different spectrum fluorescent dyes have made histology a crucial tool. Nevertheless, the complexity of the molecular events that take place in dystrophic muscles, together with the rise of a multitude of markers for each of the phases of the process, makes the histological assessment a challenging task. Therefore, here, we summarise and explain the rationale behind different histological techniques used in the literature to assess degeneration and regeneration in the field of dystrophinopathies, focusing especially on those related to DMD.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Neuromuscular Reference Center, Cliniques Universitaires Saint-Luc (CUSL), Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Chloé Planchon
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - María A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
27
|
Bernard C, Zavoriti A, Pucelle Q, Chazaud B, Gondin J. Role of macrophages during skeletal muscle regeneration and hypertrophy-Implications for immunomodulatory strategies. Physiol Rep 2022; 10:e15480. [PMID: 36200266 PMCID: PMC9535344 DOI: 10.14814/phy2.15480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
Skeletal muscle is a plastic tissue that regenerates ad integrum after injury and adapts to raise mechanical loading/contractile activity by increasing its mass and/or myofiber size, a phenomenon commonly refers to as skeletal muscle hypertrophy. Both muscle regeneration and hypertrophy rely on the interactions between muscle stem cells and their neighborhood, which include inflammatory cells, and particularly macrophages. This review first summarizes the role of macrophages in muscle regeneration in various animal models of injury and in response to exercise-induced muscle damage in humans. Then, the potential contribution of macrophages to skeletal muscle hypertrophy is discussed on the basis of both animal and human experiments. We also present a brief comparative analysis of the role of macrophages during muscle regeneration versus hypertrophy. Finally, we summarize the current knowledge on the impact of different immunomodulatory strategies, such as heat therapy, cooling, massage, nonsteroidal anti-inflammatory drugs and resolvins, on skeletal muscle regeneration and their potential impact on muscle hypertrophy.
Collapse
Affiliation(s)
- Clara Bernard
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Aliki Zavoriti
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Quentin Pucelle
- Université de Versailles Saint‐Quentin‐En‐YvelinesVersaillesFrance
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| |
Collapse
|
28
|
Król M, Kupnicka P, Bosiacki M, Chlubek D. Mechanisms Underlying Anti-Inflammatory and Anti-Cancer Properties of Stretching-A Review. Int J Mol Sci 2022; 23:ijms231710127. [PMID: 36077525 PMCID: PMC9456560 DOI: 10.3390/ijms231710127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 02/07/2023] Open
Abstract
Stretching is one of the popular elements in physiotherapy and rehabilitation. When correctly guided, it can help minimize or slow down the disabling effects of chronic health conditions. Most likely, the benefits are associated with reducing inflammation; recent studies demonstrate that this effect from stretching is not just systemic but also local. In this review, we present the current body of knowledge on the anti-inflammatory properties of stretching at a molecular level. A total of 22 papers, focusing on anti-inflammatory and anti-cancer properties of stretching, have been selected and reviewed. We show the regulation of oxidative stress, the expression of pro- and anti-inflammatory genes and mediators, and remodeling of the extracellular matrix, expressed by changes in collagen and matrix metalloproteinases levels, in tissues subjected to stretching. We point out that a better understanding of the anti-inflammatory properties of stretching may result in increasing its importance in treatment and recovery from diseases such as osteoarthritis, systemic sclerosis, and cancer.
Collapse
Affiliation(s)
- Małgorzata Król
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence:
| | - Mateusz Bosiacki
- Chair and Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska 54, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
29
|
Kalinkovich A, Becker M, Livshits G. New Horizons in the Treatment of Age-Associated Obesity, Sarcopenia and Osteoporosis. Drugs Aging 2022; 39:673-683. [PMID: 35781216 DOI: 10.1007/s40266-022-00960-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
The rapid increase in both the lifespan and proportion of older adults in developed countries is accompanied by the dramatic growth of age-associated chronic diseases, including obesity, sarcopenia, and osteoporosis. Hence, prevention and treatment of age-associated chronic diseases has become increasingly urgent. The key to achieving this goal is a better understanding of the mechanisms underlying their pathophysiology, some aspects of which, despite extensive investigation, are still not fully understood. Aging, obesity, sarcopenia, and osteoporosis are characterized by the creation of a systemic, chronic, low-grade inflammation (SCLGI). The common mechanisms that govern the development of these chronic conditions include a failed resolution of inflammation. Physiologically, the process of inflammation resolution is provided mainly by specialized pro-resolving mediators (SPMs) acting via cognate G protein-coupled receptors (GPCRs). Noteworthy, SPM levels and the expression of their receptors are significantly reduced in aging and the associated chronic disorders. In preclinical studies, supplementation of SPMs or their stable, small-molecule SPM mimetics and receptor agonists reveals clear beneficial effects in inflammation-related obesity and sarcopenic and osteoporotic conditions, suggesting a translational potential. Age-associated chronic disorders are also characterized by gut dysbiosis and the accumulation of senescent cells in the adipose tissue, skeletal muscle, and bones. Based on these findings, we propose SCLGI resolution as a novel strategy for the prevention/treatment of age-associated obesity, sarcopenia, and osteoporosis. Our approach entails the enhancement of inflammation resolution by SPM mimetics and receptor agonists in concert with probiotics/prebiotics and compounds that eliminate senescent cells and their pro-inflammatory activity.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 6905126, Tel-Aviv, Israel
| | - Maria Becker
- Adelson School of Medicine, Ariel University, 4077625, Ariel, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 6905126, Tel-Aviv, Israel. .,Adelson School of Medicine, Ariel University, 4077625, Ariel, Israel.
| |
Collapse
|
30
|
Bivona Iii JJ, Mank MM, Stapleton RD, Files DC, Toth MJ, Poynter ME. Skeletal Muscle Myofibers Directly Contribute to LPS-Induced Systemic Inflammatory Tone. Front Pharmacol 2022; 13:917917. [PMID: 35814217 PMCID: PMC9260049 DOI: 10.3389/fphar.2022.917917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
The abundance, anatomical distribution, and vascularity of skeletal muscle make it a potentially important contributor to local cytokine production and systemic cytokine abundance during inflammatory events. An orchestrated balance between the production of pro- and anti-inflammatory mediators is necessary for proper immune function, yet the contribution of the body's largest organ system, comprised primarily of skeletal muscle myocytes that fuse to form myofibers, to this process is largely unknown. Endotoxin (lipopolysaccharide, LPS) stimulates toll-like receptor 4 (TLR4) to induce the production of several pro-inflammatory cytokines, including interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2), by a of myriad cell types. We sought to quantify the influence of myofibers on systemic cytokine concentrations following an acute endotoxemia challenge. To accomplish this, we generated muscle specific conditional knockouts for TLR4 (TLR4SMKO), IL-6 (IL6SMKO), and CCL2 (CCL2SMKO). We administered low concentrations of intravenous LPS (IV LPS) to these receptor and effector knockout mice and collected samples after 3 h. Using gene expression analysis of gastrocnemius muscle and serum cytokine measurements after IV LPS, we determined that deletion of myofiber IL-6 or CCL2 led to a 93% and 57% reduction of these specific cytokines in the systemic circulation, respectively. Myofiber specific TLR4 deletion decreased the expression of IL-6, CCL2, and C-X-C motif chemokine ligand 1 (CXCL1) in the gastrocnemius muscle. These data indicate the critical involvement and direct contribution of myofibers during the early systemic inflammatory cytokine response to endotoxin.
Collapse
Affiliation(s)
- Joseph J Bivona Iii
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Madeleine M Mank
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Renee D Stapleton
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - D Clark Files
- Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael J Toth
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Matthew E Poynter
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| |
Collapse
|
31
|
Larouche JA, Fraczek PM, Kurpiers SJ, Yang BA, Davis C, Castor-Macias JA, Sabin K, Anderson S, Harrer J, Hall M, Brooks SV, Jang YC, Willett N, Shea LD, Aguilar CA. Neutrophil and natural killer cell imbalances prevent muscle stem cell-mediated regeneration following murine volumetric muscle loss. Proc Natl Acad Sci U S A 2022; 119:e2111445119. [PMID: 35377804 PMCID: PMC9169656 DOI: 10.1073/pnas.2111445119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Volumetric muscle loss (VML) overwhelms the innate regenerative capacity of mammalian skeletal muscle (SkM), leading to numerous disabilities and reduced quality of life. Immune cells are critical responders to muscle injury and guide tissue resident stem cell– and progenitor-mediated myogenic repair. However, how immune cell infiltration and intercellular communication networks with muscle stem cells are altered following VML and drive pathological outcomes remains underexplored. Herein, we contrast the cellular and molecular mechanisms of VML injuries that result in the fibrotic degeneration or regeneration of SkM. Following degenerative VML injuries, we observed the heightened infiltration of natural killer (NK) cells as well as the persistence of neutrophils beyond 2 wk postinjury. Functional validation of NK cells revealed an antagonistic role in neutrophil accumulation in part via inducing apoptosis and CCR1-mediated chemotaxis. The persistent infiltration of neutrophils in degenerative VML injuries was found to contribute to impairments in muscle stem cell regenerative function, which was also attenuated by transforming growth factor beta 1 (TGFβ1). Blocking TGFβ signaling reduced neutrophil accumulation and fibrosis and improved muscle-specific force. Collectively, these results enhance our understanding of immune cell–stem cell cross talk that drives regenerative dysfunction and provide further insight into possible avenues for fibrotic therapy exploration.
Collapse
Affiliation(s)
- Jacqueline A. Larouche
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Paula M. Fraczek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Sarah J. Kurpiers
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin A. Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Carol Davis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Jesus A. Castor-Macias
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Kaitlyn Sabin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Shannon Anderson
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Julia Harrer
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Matthew Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Susan V. Brooks
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Young C. Jang
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Nick Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Carlos A. Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
32
|
Singh P, Chazaud B. Benefits and pathologies associated with the inflammatory response. Exp Cell Res 2021; 409:112905. [PMID: 34736921 DOI: 10.1016/j.yexcr.2021.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 10/20/2022]
Abstract
Adult skeletal muscle regenerates completely after a damage, thanks to the satellite cells, or muscle stem cells (MuSCs), that implement the adult myogenic program. This program is sustained by both robust intrinsic mechanisms and extrinsic cues coming from the close neighborhood of MuSCs during muscle regeneration. Among the various cell types present in the regenerating muscle, immune cells, and particularly macrophages, exert numerous functions and provide sequential transient niches to support the myogenic program. The adequate orchestration of the delivery of these cues ensures efficient muscle regeneration and full functional recovery. The situation is very different in muscular dystrophies where asynchronous and permanent microinjuries occur, triggering contradictory regenerating cues at the same time in a specific area, that lead to chronic inflammation and fibrogenesis. Here we review the beneficial effects that leukocytes, and particularly macrophages, exert on their neighboring cells during skeletal muscle regeneration after an acute injury. Then, the more complicated (and less beneficial) roles of leukocytes during muscular dystrophies are presented. Finally, we discuss how the inflammatory compartment may be a target to improve muscle regeneration in both acute muscle injury and muscle diseases.
Collapse
Affiliation(s)
- Pawandeep Singh
- Institut NeuroMyoGene, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, 69008, Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGene, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
33
|
Juban G, Chazaud B. Efferocytosis during Skeletal Muscle Regeneration. Cells 2021; 10:cells10123267. [PMID: 34943775 PMCID: PMC8699096 DOI: 10.3390/cells10123267] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Efferocytosis, i.e., engulfment of dead cells by macrophages, is a crucial step during tissue repair after an injury. Efferocytosis delineates the transition from the pro-inflammatory phase of the inflammatory response to the recovery phase that ensures tissue reconstruction. We present here the role of efferocytosis during skeletal muscle regeneration, which is a paradigm of sterile tissue injury followed by a complete regeneration. We present the molecular mechanisms that have been described to control this process, and particularly the metabolic control of efferocytosis during skeletal muscle regeneration.
Collapse
|
34
|
Minari ALA, Thomatieli-Santos RV. From skeletal muscle damage and regeneration to the hypertrophy induced by exercise: What is the role of different macrophages subsets? Am J Physiol Regul Integr Comp Physiol 2021; 322:R41-R54. [PMID: 34786967 DOI: 10.1152/ajpregu.00038.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages are one of the top players when considering immune cells involved with tissue homeostasis. Recently, increasing evidence has demonstrated that these macrophages could also present two major subsets during tissue healing; proliferative macrophages (M1-like), which are responsible for increasing myogenic cell proliferation, and restorative macrophages (M2-like), which are accountable for the end of the mature muscle myogenesis. The participation and characterization of these macrophage subsets is critical during myogenesis, not only to understand the inflammatory role of macrophages during muscle recovery but also to create supportive strategies that can improve mass muscle maintenance. Indeed, most of our knowledge about macrophage subsets comes from skeletal muscle damage protocols, and we still do not know how these subsets can contribute to skeletal muscle adaptation. This narrative review aims to collect and discuss studies demonstrating the involvement of different macrophage subsets during the skeletal muscle damage/regeneration process, showcasing an essential role of these macrophage subsets during muscle adaptation induced by acute and chronic exercise programs.
Collapse
Affiliation(s)
- André Luis Araujo Minari
- Universidade estadual Paulista, Campus Presidente Prudente, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| | - Ronaldo V Thomatieli-Santos
- Universidade Federal de São Paulo, Campus Baixada Santista, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| |
Collapse
|
35
|
Penner AL, Waytt V, Winter T, Leng S, Duhamel TA, Aukema HM. Oxylipin profiles and levels vary by skeletal muscle type, dietary fat and sex in young rats. Appl Physiol Nutr Metab 2021; 46:1378-1388. [PMID: 34115947 DOI: 10.1139/apnm-2021-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyunsaturated fatty acids (PUFA)-derived bioactive lipid mediators called oxylipins have been shown to influence muscle growth, inflammation and repair in select muscles. Since individual oxylipins have varying effects and potencies, broad profiling in differing muscle types is required to further understand their overall effects. In addition, diet and sex are key determinants of oxylipin levels. Therefore, to provide comprehensive data on oxylipin profiles in rat soleus (SO), red gastrocnemius (RG), and white gastrocnemius (WG) muscles, female and male weanling Sprague-Dawley rats were provided control or experimental diets enriched in n-3 (ω-3) or n-6 (ω-6) PUFA for 6 weeks. Free oxylipin analysis by HPLC/MS/MS revealed that SO muscle had 25% more oxylipins and 4-13 times greater oxylipin mass than WG muscle. Dietary n-3 PUFA (α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid) each increased n-3 oxylipins derived directly from their precursors and several that were not direct precursors, while reducing arachidonic acid derived oxylipins. Dietary linoleic acid had few effects on oxylipins. Oxylipins with a sex effect were higher in females in SO and RG. Oxylipins generally reflected the effects of diet and sex on PUFA, but there were exceptions. These fundamental oxylipin profile data provide groundwork knowledge and context for future research on muscle oxylipin functions. Novelty: Rat SO compared with RG and WG muscles have a higher number and greater mass of oxylipins. Oxylipins generally reflect diet effects on PUFA in all muscles, but there are notable exceptions. Oxylipins in SO and RG are higher in females.
Collapse
Affiliation(s)
- Avery L Penner
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| | - Victoria Waytt
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| | - Shan Leng
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| | - Todd A Duhamel
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
36
|
Dort J, Orfi Z, Fabre P, Molina T, Conte TC, Greffard K, Pellerito O, Bilodeau JF, Dumont NA. Resolvin-D2 targets myogenic cells and improves muscle regeneration in Duchenne muscular dystrophy. Nat Commun 2021; 12:6264. [PMID: 34716330 PMCID: PMC8556273 DOI: 10.1038/s41467-021-26516-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
Lack of dystrophin causes muscle degeneration, which is exacerbated by chronic inflammation and reduced regenerative capacity of muscle stem cells in Duchenne Muscular Dystrophy (DMD). To date, glucocorticoids remain the gold standard for the treatment of DMD. These drugs are able to slow down the progression of the disease and increase lifespan by dampening the chronic and excessive inflammatory process; however, they also have numerous harmful side effects that hamper their therapeutic potential. Here, we investigated Resolvin-D2 as a new therapeutic alternative having the potential to target multiple key features contributing to the disease progression. Our in vitro findings showed that Resolvin-D2 promotes the switch of macrophages toward their anti-inflammatory phenotype and increases their secretion of pro-myogenic factors. Moreover, Resolvin-D2 directly targets myogenic cells and promotes their differentiation and the expansion of the pool of myogenic progenitor cells leading to increased myogenesis. These effects are ablated when the receptor Gpr18 is knocked-out, knocked-down, or blocked by the pharmacological antagonist O-1918. Using different mouse models of DMD, we showed that Resolvin-D2 targets both inflammation and myogenesis leading to enhanced muscle function compared to glucocorticoids. Overall, this preclinical study has identified a new therapeutic approach that is more potent than the gold-standard treatment for DMD.
Collapse
Affiliation(s)
- Junio Dort
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- School of rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Zakaria Orfi
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Paul Fabre
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Thomas Molina
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Talita C Conte
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Karine Greffard
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Quebec city, QC, Canada
| | | | - Jean-François Bilodeau
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Quebec city, QC, Canada
- Department of Medicine, Faculty of Medicine, Laval University, Quebec city, QC, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Montreal, QC, Canada.
- School of rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
37
|
Luis Araujo Minari A, Avila F, Missae Oyama L, Vagner Thomatieli Dos Santos R. Inflammatory response of the peripheral neuroendocrine system following downhill running. Cytokine 2021; 149:155746. [PMID: 34678553 DOI: 10.1016/j.cyto.2021.155746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Exploring the relationship between exercise inflammation and the peripheral neuroendocrine system is essential for understanding how acute or repetitive bouts of exercise can contribute to skeletal muscle adaption. In severe damage, some evidence demonstrates that peripheral neuroendocrine receptors might contribute to inflammatory resolution, supporting the muscle healing process through myogenesis. In this sense, the current study aimed to evaluate two classic peripheral neuronal receptors along with skeletal muscle inflammation and adaptation parameters in triceps brachii after exercise. We euthanized C57BL (10 to 12 weeks old) male mice before, and one, two, and three days after a downhill running protocol. The positive Ly6C cells, along with interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), glucocorticoid receptor (GR), α7 subunits of the nicotinic acetylcholine receptor (nAChRs), and myonuclei accretion were analyzed. Our main results demonstrated that nAChRs increased with the inflammatory and myonuclei accretion responses regardless of NF-κB and GR protein expression. These results indicate that increased nAChR may contribute to skeletal muscle adaption after downhill running in mice.
Collapse
Affiliation(s)
| | - Felipe Avila
- Departamento de Fisiologia - Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia - Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Ronaldo Vagner Thomatieli Dos Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil; Departamento de Biociências - Campus da Baixada Santista, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.
| |
Collapse
|
38
|
Andrews D, Godson C. Lipoxins and synthetic lipoxin mimetics: Therapeutic potential in renal diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158940. [PMID: 33839296 DOI: 10.1016/j.bbalip.2021.158940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022]
Abstract
Inflammation and its timely resolution are critical to ensuring effective host defence and appropriate tissue repair after injury. Unresolved inflammation typifies many renal pathologies. The key drivers of the inflammatory response are well defined and targeted by conventional anti-inflammatory therapeutics. However, these are associated with undesirable side effects including immune suppression. More recently, there is growing appreciation that specialized lipid mediators [SPMs] including lipoxins promote the resolution of inflammation and endogenous repair mechanisms without compromising host defence. We discuss the pro-resolving bioactions of lipoxins and recent work that aims to harness their therapeutic potential in the context of kidney disease.
Collapse
Affiliation(s)
- Darrell Andrews
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
39
|
Markworth JF, Sugg KB, Sarver DC, Maddipati KR, Brooks SV. Local shifts in inflammatory and resolving lipid mediators in response to tendon overuse. FASEB J 2021; 35:e21655. [PMID: 34042218 DOI: 10.1096/fj.202100078r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 01/25/2023]
Abstract
Tendon inflammation has been implicated in both adaptive connective tissue remodeling and overuse-induced tendinopathy. Lipid mediators control both the initiation and resolution of inflammation, but their roles within tendon are largely unknown. Here, we profiled local shifts in intratendinous lipid mediators via liquid chromatography-tandem mass spectrometry in response to synergist ablation-induced plantaris tendon overuse. Sixty-four individual lipid mediators were detected in homogenates of plantaris tendons from ambulatory control rats. This included many bioactive metabolites of the cyclooxygenase (COX), lipoxygenase (LOX), and epoxygenase (CYP) pathways. Synergist ablation induced a robust inflammatory response at day 3 post-surgery characterized by epitenon infiltration of polymorphonuclear leukocytes and monocytes/macrophages (MΦ), heightened expression of inflammation-related genes, and increased intratendinous concentrations of the pro-inflammatory eicosanoids thromboxane B2 and prostaglandin E2 . By day 7, MΦ became the predominant myeloid cell type in tendon and there were further delayed increases in other COX metabolites including prostaglandins D2 , F2α , and I2 . Specialized pro-resolving mediators including protectin D1, resolvin D2 and D6, as well as related pathway markers of D-resolvins (17-hydroxy-docosahexaenoic acid), E-resolvins (18-hydroxy-eicosapentaenoic acid), and lipoxins (15-hydroxy-eicosatetraenoic acid) were also increased locally in response to tendon overuse, as were anti-inflammatory fatty acid epoxides of the CYP pathway (eg, epoxy-eicosatrienoic acids). Nevertheless, intratendinous prostaglandins remained markedly increased even following 28 days of tendon overuse together with a lingering MΦ presence. These data reveal a delayed and prolonged local inflammatory response to tendon overuse characterized by an overwhelming predominance of pro-inflammatory eicosanoids and a relative lack of specialized pro-resolving lipid mediators.
Collapse
Affiliation(s)
- James F Markworth
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kristoffer B Sugg
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Cellular & Molecular Physiology, Johns Hopkins University, Baltimore, MD, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, MI, USA
| | - Susan V Brooks
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
40
|
Panci G, Chazaud B. Inflammation during post-injury skeletal muscle regeneration. Semin Cell Dev Biol 2021; 119:32-38. [PMID: 34140216 DOI: 10.1016/j.semcdb.2021.05.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/02/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022]
Abstract
The adult skeletal muscle fully regenerates after injury thanks to the properties of muscle stem cells that follow the adult myogenic program to replace damaged myofibers. Muscle regeneration also relies upon the coordinated actions of several other cell types, among which immune cells. Leukocytes infiltrate the damaged muscle soon after injury and support the regeneration process in a variety of ways, from the activation of muscle stem cells to the maturation of newly formed myofibers. Leukocytes also interact with other cell types such as fibroadipogenic precursors and endothelial cells. This review presents the interactions that leukocytes develop with the cells present in their vicinity and the impact they have on skeletal muscle regeneration.
Collapse
Affiliation(s)
- Georgiana Panci
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, F-69008 Lyon, France.
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, F-69008 Lyon, France.
| |
Collapse
|
41
|
Markworth JF, Brown LA, Lim E, Castor‐Macias JA, Larouche J, Macpherson PCD, Davis C, Aguilar CA, Maddipati KR, Brooks SV. Metabolipidomic profiling reveals an age-related deficiency of skeletal muscle pro-resolving mediators that contributes to maladaptive tissue remodeling. Aging Cell 2021; 20:e13393. [PMID: 34075679 PMCID: PMC8208786 DOI: 10.1111/acel.13393] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/07/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Specialized pro-resolving mediators actively limit inflammation and support tissue regeneration, but their role in age-related muscle dysfunction has not been explored. We profiled the mediator lipidome of aging muscle via liquid chromatography-tandem mass spectrometry and tested whether treatment with the pro-resolving mediator resolvin D1 (RvD1) could rejuvenate the regenerative ability of aged muscle. Aged mice displayed chronic muscle inflammation and this was associated with a basal deficiency of pro-resolving mediators 8-oxo-RvD1, resolvin E3, and maresin 1, as well as many anti-inflammatory cytochrome P450-derived lipid epoxides. Following muscle injury, young and aged mice produced similar amounts of most pro-inflammatory eicosanoid metabolites of cyclooxygenase (e.g., prostaglandin E2 ) and 12-lipoxygenase (e.g., 12-hydroxy-eicosatetraenoic acid), but aged mice produced fewer markers of pro-resolving mediators including the lipoxins (15-hydroxy-eicosatetraenoic acid), D-resolvins/protectins (17-hydroxy-docosahexaenoic acid), E-resolvins (18-hydroxy-eicosapentaenoic acid), and maresins (14-hydroxy-docosahexaenoic acid). Similar absences of downstream pro-resolving mediators including lipoxin A4 , resolvin D6, protectin D1/DX, and maresin 1 in aged muscle were associated with greater inflammation, impaired myofiber regeneration, and delayed recovery of strength. Daily intraperitoneal injection of RvD1 had minimal impact on intramuscular leukocyte infiltration and myofiber regeneration but suppressed inflammatory cytokine expression, limited fibrosis, and improved recovery of muscle function. We conclude that aging results in deficient local biosynthesis of specialized pro-resolving mediators in muscle and that immunoresolvents may be attractive novel therapeutics for the treatment of muscular injuries and associated pain in the elderly, due to positive effects on recovery of muscle function without the negative side effects on tissue regeneration of non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- James F. Markworth
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Lemuel A. Brown
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Eunice Lim
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | | | - Jacqueline Larouche
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | - Peter C. D. Macpherson
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Carol Davis
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Carlos A. Aguilar
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | - Krishna Rao Maddipati
- Department of Pathology Lipidomics Core Facility Wayne State University Detroit MI USA
| | - Susan V. Brooks
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| |
Collapse
|
42
|
Patsalos A, Tzerpos P, Wei X, Nagy L. Myeloid cell diversification during regenerative inflammation: Lessons from skeletal muscle. Semin Cell Dev Biol 2021; 119:89-100. [PMID: 34016524 PMCID: PMC8530826 DOI: 10.1016/j.semcdb.2021.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
Understanding the mechanisms of tissue and organ regeneration in adult animals and humans is of great interest from a basic biology as well as a medical, therapeutical point of view. It is increasingly clear that the relatively limited ability to regenerate tissues and organs in mammals as oppose to lower vertebrates is the consequence of evolutionary trade-offs and changes during development and aging. Thus, the coordinated interaction of the immune system, particularly the innate part of it, and the injured, degenerated parenchymal tissues such as skeletal muscle, liver, lung, or kidney shape physiological and also pathological processes. In this review, we provide an overview of how morphologically and functionally complete (ad integrum) regeneration is achieved using skeletal muscle as a model. We will review recent advances about the differentiation, activation, and subtype specification of circulating monocyte to resolution or repair-type macrophages during the process we term regenerative inflammation, resulting in complete restoration of skeletal muscle in murine models of toxin-induced injury.
Collapse
Affiliation(s)
- Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Petros Tzerpos
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Xiaoyan Wei
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
43
|
Sawada Y, Saito-Sasaki N, Nakamura M. Omega 3 Fatty Acid and Skin Diseases. Front Immunol 2021; 11:623052. [PMID: 33613558 PMCID: PMC7892455 DOI: 10.3389/fimmu.2020.623052] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Humans are exposed to various external environmental factors. Food intake is one of the most influential factors impacting daily lifestyle. Among nutrients obtained from foods, omega-3 polyunsaturated fatty acids (PUFAs) have various beneficial effects on inflammatory diseases. Furthermore, omega-3 PUFA metabolites, including resolvins, are known to demonstrate strong anti-inflammatory effects during allergic and inflammatory diseases; however, little is known regarding the actual impact of these metabolites on skin diseases. In this review, we focused on metabolites that have strong anti-inflammatory actions in various inflammatory diseases, as well as those that present antitumor actions in malignancies, in addition to the actual effect of omega-3 PUFA metabolites on various cells.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Natsuko Saito-Sasaki
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Motonobu Nakamura
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|