1
|
Lechuga GC, Temerozo JR, Napoleão-Pêgo P, Carvalho JPRS, Gomes LR, Bou-Habib DC, Morel CM, Provance DW, Souza TML, De-Simone SG. Enhanced Assessment of Cross-Reactive Antigenic Determinants within the Spike Protein. Int J Mol Sci 2024; 25:8180. [PMID: 39125749 PMCID: PMC11311977 DOI: 10.3390/ijms25158180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Despite successful vaccination efforts, the emergence of new SARS-CoV-2 variants poses ongoing challenges to control COVID-19. Understanding humoral responses regarding SARS-CoV-2 infections and their impact is crucial for developing future vaccines that are effective worldwide. Here, we identified 41 immunodominant linear B-cell epitopes in its spike glycoprotein with an SPOT synthesis peptide array probed with a pool of serum from hospitalized COVID-19 patients. The bioinformatics showed a restricted set of epitopes unique to SARS-CoV-2 compared to other coronavirus family members. Potential crosstalk was also detected with Dengue virus (DENV), which was confirmed by screening individuals infected with DENV before the COVID-19 pandemic in a commercial ELISA for anti-SARS-CoV-2 antibodies. A high-resolution evaluation of antibody reactivity against peptides representing epitopes in the spike protein identified ten sequences in the NTD, RBD, and S2 domains. Functionally, antibody-dependent enhancement (ADE) in SARS-CoV-2 infections of monocytes was observed in vitro with pre-pandemic Dengue-positive sera. A significant increase in viral load was measured compared to that of the controls, with no detectable neutralization or considerable cell death, suggesting its role in viral entry. Cross-reactivity against peptides from spike proteins was observed for the pre-pandemic sera. This study highlights the importance of identifying specific epitopes generated during the humoral response to a pathogenic infection to understand the potential interplay of previous and future infections on diseases and their impact on vaccinations and immunodiagnostics.
Collapse
Affiliation(s)
- Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (J.R.T.); (D.C.B.-H.)
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Graduate Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Fluminense Federal University, Niterói 24220-900, Brazil
| | - Larissa R. Gomes
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (J.R.T.); (D.C.B.-H.)
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - Thiago M. L. Souza
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Graduate Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Fluminense Federal University, Niterói 24220-900, Brazil
- Epidemiology and Molecular Systematics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
2
|
Pons-Tomàs G, Pino R, Soler-García A, Launes C, Martínez-de-Albeniz I, Ríos-Barnés M, Melé-Casas M, Hernández-García M, Monsonís M, Gené A, de-Sevilla MF, García-García JJ, Fortuny C, Fumadó V. Deciphering the Longevity and Levels of SARS-CoV-2 Antibodies in Children: A Year-Long Study Highlighting Clinical Phenotypes and Age-Related Variations. Pathogens 2024; 13:622. [PMID: 39204223 PMCID: PMC11357146 DOI: 10.3390/pathogens13080622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Identifying potential factors correlated with the sustained presence of antibodies in plasma may facilitate improved retrospective diagnoses and aid in the appraisal of pertinent vaccination strategies for various demographic groups. The main objective was to describe the persistence of anti-spike IgG one year after diagnosis in children and analyse its levels in relation to epidemiological and clinical variables. METHODS A prospective, longitudinal, observational study was conducted in a university reference hospital in the Metropolitan Region of Barcelona (Spain) (March 2020-May 2021). This study included patients under 18 years of age with SARS-CoV-2 infection (positive PCR or antigen tests for SARS-CoV-2). Clinical and serological follow-up one year after infection was performed. RESULTS We included 102 patients with a median age of 8.8 years. Anti-spike IgG was positive in 98/102 (96%) 12 months after the infection. There were higher anti-spike IgG levels were noted in patients younger than 2 years (p = 0.034) and those with pneumonia (p < 0.001). A positive and significant correlation was observed between C-reactive protein at diagnosis and anti-spike IgG titre one-year after diagnosis (p = 0.027). CONCLUSION Anti-SARS-CoV-2 IgG antibodies were detected in almost all paediatric patients one year after infection. We also observed a positive correlation between virus-specific IgG antibody titres with SARS-CoV-2 clinical phenotype (pneumonia) and age (under 2 years old).
Collapse
Affiliation(s)
- Gemma Pons-Tomàs
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
| | - Rosa Pino
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
| | - Aleix Soler-García
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
| | - Cristian Launes
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | | | - María Ríos-Barnés
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
- Infectious and Imported Diseases Department, Hospital Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Maria Melé-Casas
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
| | - María Hernández-García
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
| | - Manuel Monsonís
- Department of Microbiology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain; (M.M.); (A.G.)
| | - Amadeu Gené
- Department of Microbiology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain; (M.M.); (A.G.)
| | - Mariona-F. de-Sevilla
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Juan-José García-García
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Claudia Fortuny
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Infectious and Imported Diseases Department, Hospital Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Victoria Fumadó
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Infectious and Imported Diseases Department, Hospital Sant Joan de Déu, 08950 Barcelona, Spain;
| |
Collapse
|
3
|
Adami FL, de Castro MV, Almeida BDS, Daher IP, Yamamoto MM, Souza Santos K, Zatz M, Naslavsky MS, Rosa DS, Cunha-Neto E, de Oliveira VL, Kalil J, Boscardin SB. Anti-RBD IgG antibodies from endemic coronaviruses do not protect against the acquisition of SARS-CoV-2 infection among exposed uninfected individuals. Front Immunol 2024; 15:1396603. [PMID: 38846944 PMCID: PMC11153698 DOI: 10.3389/fimmu.2024.1396603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Background The Coronaviridae family comprises seven viruses known to infect humans, classified into alphacoronaviruses (HCoV-229E and HCoV-NL63) and betacoronaviruses (HCoV-OC43 and HCoV-HKU1), which are considered endemic. Additionally, it includes SARS-CoV (severe acute respiratory syndrome), MERS-CoV (Middle East respiratory syndrome), and the novel coronavirus SARS-CoV-2, responsible for COVID-19. SARS-CoV-2 induces severe respiratory complications, particularly in the elderly, immunocompromised individuals and those with underlying diseases. An essential question since the onset of the COVID-19 pandemic has been to determine whether prior exposure to seasonal coronaviruses influences immunity or protection against SARS-CoV-2. Methods In this study, we investigated a cohort of 47 couples (N=94), where one partner tested positive for SARS-CoV-2 infection via real-time PCR while the other remained negative. Plasma samples, collected at least 30 days post-PCR reaction, were assessed using indirect ELISA and competition assays to measure specific antibodies against the receptor-binding domain (RBD) portion of the Spike (S) protein from SARS-CoV-2, HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1. Results IgG antibody levels against the four endemic coronavirus RBD proteins were similar between the PCR-positive and PCR-negative individuals, suggesting that IgG against endemic coronavirus RBD regions was not associated with protection from infection. Moreover, we found no significant IgG antibody cross-reactivity between endemic coronaviruses and SARS-CoV-2 RBDs. Conclusions Taken together, results suggest that anti-RBD antibodies induced by a previous infection with endemic HCoVs do not protect against acquisition of COVID-19 among exposed uninfected individuals.
Collapse
Affiliation(s)
- Flávia Lopes Adami
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mateus Vidigal de Castro
- Centro de Estudos do Genoma Humano e Células Tronco, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Bianca da Silva Almeida
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Isabela Pazotti Daher
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Márcio Massao Yamamoto
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Keity Souza Santos
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Mayana Zatz
- Centro de Estudos do Genoma Humano e Células Tronco, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Michel Satya Naslavsky
- Centro de Estudos do Genoma Humano e Células Tronco, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Imunologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Vivian Leite de Oliveira
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Jorge Kalil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| |
Collapse
|
4
|
Stern D, Meyer TC, Treindl F, Mages HW, Krüger M, Skiba M, Krüger JP, Zobel CM, Schreiner M, Grossegesse M, Rinner T, Peine C, Stoliaroff-Pépin A, Harder T, Hofmann N, Michel J, Nitsche A, Stahlberg S, Kneuer A, Sandoni A, Kubisch U, Schlaud M, Mankertz A, Schwarz T, Corman VM, Müller MA, Drosten C, de la Rosa K, Schaade L, Dorner MB, Dorner BG. A bead-based multiplex assay covering all coronaviruses pathogenic for humans for sensitive and specific surveillance of SARS-CoV-2 humoral immunity. Sci Rep 2023; 13:21846. [PMID: 38071261 PMCID: PMC10710470 DOI: 10.1038/s41598-023-48581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Serological assays measuring antibodies against SARS-CoV-2 are key to describe the epidemiology, pathobiology or induction of immunity after infection or vaccination. Of those, multiplex assays targeting multiple antigens are especially helpful as closely related coronaviruses or other antigens can be analysed simultaneously from small sample volumes, hereby shedding light on patterns in the immune response that would otherwise remain undetected. We established a bead-based 17-plex assay detecting antibodies targeting antigens from all coronaviruses pathogenic for humans: SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV strains 229E, OC43, HKU1, and NL63. The assay was validated against five commercial serological immunoassays, a commercial surrogate virus neutralisation test, and a virus neutralisation assay, all targeting SARS-CoV-2. It was found to be highly versatile as shown by antibody detection from both serum and dried blot spots and as shown in three case studies. First, we followed seroconversion for all four endemic HCoV strains and SARS-CoV-2 in an outbreak study in day-care centres for children. Second, we were able to link a more severe clinical course to a stronger IgG response with this 17-plex-assay, which was IgG1 and IgG3 dominated. Finally, our assay was able to discriminate recent from previous SARS-CoV-2 infections by calculating the IgG/IgM ratio on the N antigen targeting antibodies. In conclusion, due to the comprehensive method comparison, thorough validation, and the proven versatility, our multiplex assay is a valuable tool for studies on coronavirus serology.
Collapse
Affiliation(s)
- Daniel Stern
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany.
| | - Tanja C Meyer
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Fridolin Treindl
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Hans Werner Mages
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Maren Krüger
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Martin Skiba
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Jan Philipp Krüger
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Berlin, Berlin, Germany
| | - Christian M Zobel
- Department of Internal Medicine, Bundeswehr Hospital Berlin, Berlin, Germany
| | | | - Marica Grossegesse
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Thomas Rinner
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Caroline Peine
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Anna Stoliaroff-Pépin
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Thomas Harder
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Natalie Hofmann
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Janine Michel
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Silke Stahlberg
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Antje Kneuer
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Anna Sandoni
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Ulrike Kubisch
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Martin Schlaud
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Annette Mankertz
- Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients (FG 12), Robert Koch Institute, 13353, Berlin, Germany
| | - Tatjana Schwarz
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Corporate Member, Freie Universität Berlin, 10117, Berlin, Germany
- Corporate Member, Humboldt-Universität zu Berlin, 14195, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Kathrin de la Rosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Lars Schaade
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Martin B Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Brigitte G Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany.
| |
Collapse
|
5
|
Camirand Lemyre F, Honfo SH, Caya C, Cheng MP, Colwill K, Corsini R, Gingras AC, Jassem A, Krajden M, Márquez AC, Mazer BD, McLennan M, Renaud C, Yansouni CP, Papenburg J, Lewin A. Two-phase Bayesian latent class analysis to assess diagnostic test performance in the absence of a gold standard: COVID-19 serological assays as a proof of concept. Vox Sang 2023; 118:1069-1077. [PMID: 37850270 DOI: 10.1111/vox.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND OBJECTIVES In this proof-of-concept study, which included blood donor samples, we aimed to demonstrate how Bayesian latent class models (BLCMs) could be used to estimate SARS-CoV-2 seroprevalence in the absence of a gold standard assay under a two-phase sampling design. MATERIALS AND METHODS To this end, 6810 plasma samples from blood donors who resided in Québec (Canada) were collected from May to July 2020 and tested for anti-SARS-CoV-2 antibodies using seven serological assays (five commercial and two non-commercial). RESULTS SARS-CoV-2 seroprevalence was estimated at 0.71% (95% credible interval [CrI] = 0.53%-0.92%). The cPass assay had the lowest sensitivity estimate (88.7%; 95% CrI = 80.6%-94.7%), while the Héma-Québec assay had the highest (98.7%; 95% CrI = 97.0%-99.6%). CONCLUSION The estimated low seroprevalence (which indicates a relatively limited spread of SARS-CoV-2 in Quebec) might change rapidly-and this tool, developed using blood donors, could enable a rapid update of the prevalence estimate in the absence of a gold standard. Further, the present analysis illustrates how a two-stage BLCM sampling design, along with blood donor samples, can be used to estimate the performance of new diagnostic tests and inform public health decisions regarding a new or emerging disease for which a perfect reference standard does not exist.
Collapse
Affiliation(s)
- Felix Camirand Lemyre
- Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sewanou Hermann Honfo
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Chelsea Caya
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Matthew P Cheng
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- Division of Microbiology, Department of Clinical Laboratory Medicine, Optilab Montreal - McGill University Health Centre, Montreal, Quebec, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Rachel Corsini
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Agatha Jassem
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Ana Citlali Márquez
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce D Mazer
- COVID-19 Immunity Task Force, Secretariat, McGill University, Montreal, Quebec, Canada
- Division of Allergy and Immunology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Meghan McLennan
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Christian Renaud
- Affaires Médicales et Innovation, Héma-Québec, Montreal, Quebec, Canada
| | - Cedric P Yansouni
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- Division of Microbiology, Department of Clinical Laboratory Medicine, Optilab Montreal - McGill University Health Centre, Montreal, Quebec, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- J.D. MacLean Centre for Tropical Diseases, McGill University, Montreal, Quebec, Canada
| | - Jesse Papenburg
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- Division of Microbiology, Department of Clinical Laboratory Medicine, Optilab Montreal - McGill University Health Centre, Montreal, Quebec, Canada
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Montreal Children's Hospital, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, School of Population and Global Health, McGill University, Montreal, Quebec, Canada
| | - Antoine Lewin
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Affaires Médicales et Innovation, Héma-Québec, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Bondareva M, Budzinski L, Durek P, Witkowski M, Angermair S, Ninnemann J, Kreye J, Letz P, Ferreira-Gomes M, Semin I, Guerra GM, Momsen Reincke S, Sánchez-Sendin E, Yilmaz S, Sempert T, Heinz GA, Tizian C, Raftery M, Schönrich G, Matyushkina D, Smirnov IV, Govorun VM, Schrezenmeier E, Stefanski AL, Dörner T, Zocche S, Viviano E, Klement N, Sehmsdorf KJ, Lunin A, Chang HD, Drutskaya M, Kozlovskaya L, Treskatsch S, Radbruch A, Diefenbach A, Prüss H, Enghard P, Mashreghi MF, Kruglov AA. Cross-regulation of antibody responses against the SARS-CoV-2 Spike protein and commensal microbiota via molecular mimicry. Cell Host Microbe 2023; 31:1866-1881.e10. [PMID: 37944493 DOI: 10.1016/j.chom.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/11/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
The commensal microflora provides a repertoire of antigens that illicit mucosal antibodies. In some cases, these antibodies can cross-react with host proteins, inducing autoimmunity, or with other microbial antigens. We demonstrate that the oral microbiota can induce salivary anti-SARS-CoV-2 Spike IgG antibodies via molecular mimicry. Anti-Spike IgG antibodies in the saliva correlated with enhanced abundance of Streptococcus salivarius 1 month after anti-SARS-CoV-2 vaccination. Several human commensal bacteria, including S. salivarius, were recognized by SARS-CoV-2-neutralizing monoclonal antibodies and induced cross-reactive anti-Spike antibodies in mice, facilitating SARS-CoV-2 clearance. A specific S. salivarius protein, RSSL-01370, contains regions with homology to the Spike receptor-binding domain, and immunization of mice with RSSL-01370 elicited anti-Spike IgG antibodies in the serum. Additionally, oral S. salivarius supplementation enhanced salivary anti-Spike antibodies in vaccinated individuals. Altogether, these data show that distinct species of the human microbiota can express molecular mimics of SARS-CoV-2 Spike protein, potentially enhancing protective immunity.
Collapse
Affiliation(s)
- Marina Bondareva
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Lisa Budzinski
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Mario Witkowski
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Stefan Angermair
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Justus Ninnemann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Jakob Kreye
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Philine Letz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Marta Ferreira-Gomes
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Iaroslav Semin
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - S Momsen Reincke
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Elisa Sánchez-Sendin
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Selin Yilmaz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Toni Sempert
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Gitta Anne Heinz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Caroline Tizian
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Martin Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daria Matyushkina
- Scientific Research Institute for Systems Biology and Medicine, Scientific Driveway, 18, 117246 Moscow, Russia
| | - Ivan V Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Vadim M Govorun
- Scientific Research Institute for Systems Biology and Medicine, Scientific Driveway, 18, 117246 Moscow, Russia
| | - Eva Schrezenmeier
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; Department of Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Anna-Luisa Stefanski
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Silvia Zocche
- Departments of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité University Medicine, 10117 Berlin, Germany
| | - Edoardo Viviano
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, 10117 Berlin, Germany
| | - Nele Klement
- Department of Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Katharina Johanna Sehmsdorf
- Department of Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Alexander Lunin
- Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Marina Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Liubov Kozlovskaya
- Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sascha Treskatsch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Diefenbach
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Andrey A Kruglov
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany; Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Biological Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
7
|
Francis ME, Jansen EB, Yourkowski A, Selim A, Swan CL, MacPhee BK, Thivierge B, Buchanan R, Lavender KJ, Darbellay J, Rogers MB, Lew J, Gerdts V, Falzarano D, Skowronski DM, Sjaarda C, Kelvin AA. Previous infection with seasonal coronaviruses does not protect male Syrian hamsters from challenge with SARS-CoV-2. Nat Commun 2023; 14:5990. [PMID: 37752151 PMCID: PMC10522707 DOI: 10.1038/s41467-023-41761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
SARS-CoV-2 variants and seasonal coronaviruses continue to cause disease and coronaviruses in the animal reservoir pose a constant spillover threat. Importantly, understanding of how previous infection may influence future exposures, especially in the context of seasonal coronaviruses and SARS-CoV-2 variants, is still limited. Here we adopted a step-wise experimental approach to examine the primary immune response and subsequent immune recall toward antigenically distinct coronaviruses using male Syrian hamsters. Hamsters were initially inoculated with seasonal coronaviruses (HCoV-NL63, HCoV-229E, or HCoV-OC43), or SARS-CoV-2 pango B lineage virus, then challenged with SARS-CoV-2 pango B lineage virus, or SARS-CoV-2 variants Beta or Omicron. Although infection with seasonal coronaviruses offered little protection against SARS-CoV-2 challenge, HCoV-NL63-infected animals had an increase of the previously elicited HCoV-NL63-specific neutralizing antibodies during challenge with SARS-CoV-2. On the other hand, primary infection with HCoV-OC43 induced distinct T cell gene signatures. Gene expression profiling indicated interferon responses and germinal center reactions to be induced during more similar primary infection-challenge combinations while signatures of increased inflammation as well as suppression of the antiviral response were observed following antigenically distant viral challenges. This work characterizes and analyzes seasonal coronaviruses effect on SARS-CoV-2 secondary infection and the findings are important for pan-coronavirus vaccine design.
Collapse
Affiliation(s)
- Magen E Francis
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ethan B Jansen
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Yourkowski
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alaa Selim
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cynthia L Swan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brian K MacPhee
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brittany Thivierge
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rachelle Buchanan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry J Lavender
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matthew B Rogers
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Danuta M Skowronski
- BC Centre for Disease Control, Immunization Programs and Vaccine Preventable Diseases Service, Vancouver, BC, Canada
- University of British Columbia, School of Population and Public Health, Vancouver, BC, Canada
| | - Calvin Sjaarda
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Centre, Kingston, ON, Canada
| | - Alyson A Kelvin
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
8
|
Viñeta Paramo M, Ngo LP, Abu-Raya B, Reicherz F, Xu RY, Bone JN, Srigley JA, Solimano A, Goldfarb DM, Skowronski DM, Lavoie PM. Respiratory syncytial virus epidemiology and clinical severity before and during the COVID-19 pandemic in British Columbia, Canada: a retrospective observational study. LANCET REGIONAL HEALTH. AMERICAS 2023; 25:100582. [PMID: 37705884 PMCID: PMC10495630 DOI: 10.1016/j.lana.2023.100582] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/10/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023]
Abstract
Background The COVID-19 pandemic has perturbed the seasonality of respiratory syncytial virus (RSV) infections. However, we lack data on how this impacted the severity of paediatric RSV cases. The objective of this study was to describe the clinical severity of RSV cases before, during and after pandemic measures in British Columbia (BC), Canada. Methods Retrospective study of RSV cases from September 1st, 2017 to May 15th, 2023, with a review of RSV outcomes in children below 18 years old at BC's paediatric hospital. Temporal changes in RSV cases and hospitalisations were quantified using interrupted time series. Findings BC experienced only 11 RSV cases (from 95,266 tests) between September 2020 and August 2021. This was followed by a resurgence of 9,529 RSV cases (219,566 tests [4.3% positive tests]) in 2021-22 and 8,215 cases (124,449 tests [6.6% positive tests]) in 2022-23, increased compared to 1,750 cases (48,664 tests [3.6% positive tests]) per corresponding yearly period in 2017-20. From September 2017 to May 2023, the median age of children with RSV at BC Children's Hospital increased from 8.7 [IQR: 2.0-26.0] to 19.6 [3.9-43.7] months per yearly period. More children were hospitalised in 2022-23 (n = 360), compared to 2017-20 (n = 168 per period) and 2021-22 (n = 172). However, we detected no increase in hospitalisations or ICU admissions in children born prematurely or with chronic cardiorespiratory conditions. Interpretation The increased detection of symptomatic RSV cases in older children in 2021-22 and increased RSV-related hospitalisations in 2022-23 suggest a gradual increase in the pool of immunologically vulnerable children due to a prolonged lack of viral exposure. Funding Government of Canada via its COVID-19 Immunity Task Force.
Collapse
Affiliation(s)
- Marina Viñeta Paramo
- Department of Paediatrics, University of British Columbia, Vancouver, Canada
- Women+ and Children’s Health Sciences, Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Lilian P.L. Ngo
- Department of Paediatrics, University of British Columbia, Vancouver, Canada
| | - Bahaa Abu-Raya
- Department of Paediatrics, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Frederic Reicherz
- Department of Paediatrics, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Rui Yang Xu
- Department of Paediatrics, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Jeffrey N. Bone
- Women+ and Children’s Health Sciences, Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Jocelyn A. Srigley
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, BC Children’s Hospital and BC Women’s Hospital + Health Centre, Vancouver, Canada
| | - Alfonso Solimano
- Department of Paediatrics, University of British Columbia, Vancouver, Canada
| | - David M. Goldfarb
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, BC Children’s Hospital and BC Women’s Hospital + Health Centre, Vancouver, Canada
| | - Danuta M. Skowronski
- Immunization Programs and Vaccine Preventable Diseases Service, British Columbia Centre for Disease Control, Vancouver, Canada
| | - Pascal M. Lavoie
- Department of Paediatrics, University of British Columbia, Vancouver, Canada
- Women+ and Children’s Health Sciences, Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
9
|
Kalk A, Sturmberg J, Van Damme W, Brown GW, Ridde V, Zizi M, Paul E. Surfing Corona waves - instead of breaking them: Rethinking the role of natural immunity in COVID-19 policy. F1000Res 2023; 11:337. [PMID: 37576385 PMCID: PMC10412939 DOI: 10.12688/f1000research.110593.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 08/15/2023] Open
Abstract
In the first two years of the pandemic, COVID-19 response policies have aimed to break Corona waves through non-pharmaceutical interventions and mass vaccination. However, for long-term strategies to be effective and efficient, and to avoid massive disruption and social harms, it is crucial to introduce the role of natural immunity in our thinking about COVID-19 (or future "Disease-X") control and prevention. We argue that any Corona or similar virus control policy must appropriately balance five key elements simultaneously: balancing the various fundamental interests of the nation, as well as the various interventions within the health sector; tailoring the prevention measures and treatments to individual needs; limiting social interaction restrictions; and balancing the role of vaccinations against the role of naturally induced immunity. Given the high infectivity of SARS-CoV-2 and its differential impact on population segments, we examine this last element in more detail and argue that an important aspect of 'living with the virus' will be to better understand the role of naturally induced immunity in our overall COVID-19 policy response. In our eyes, a policy approach that factors natural immunity should be considered for persons without major comorbidities and those having 'encountered' the antigen in the past.
Collapse
Affiliation(s)
- Andreas Kalk
- Kinshasa Country Office, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), Kinshasa, Democratic Republic of the Congo
| | - Joachim Sturmberg
- Foundation President – International Society for Systems and Complexity Sciences for Health, Australia, Callaghan, Australia
- A/Prof of General Practice, College of Health, Medicine and Wellbeing, University of Newcastle, Australia, Callaghan, Australia
| | - Wim Van Damme
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Antwerp, Belgium
| | | | - Valéry Ridde
- CEPED, IRD-Université de Paris, ERL INSERM SAGESUD, Institute for Research on Sustainable Development (IRD), Paris, France
| | - Martin Zizi
- Aerendir Mobile Inc., Mountain View, California, USA
| | - Elisabeth Paul
- School of Public Health, Université libre de Bruxelles, Brussels, 1070, Belgium
| |
Collapse
|
10
|
Watts AW, Mâsse LC, Goldfarb DM, Irvine MA, Hutchison SM, Muttucomaroe L, Poon B, Barakauskas VE, O'Reilly C, Bosman E, Reicherz F, Coombs D, Pitblado M, O'Brien SF, Lavoie PM. SARS-CoV-2 cross-sectional seroprevalence study among public school staff in Metro Vancouver after the first Omicron wave in British Columbia, Canada. BMJ Open 2023; 13:e071228. [PMID: 37308276 DOI: 10.1136/bmjopen-2022-071228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
OBJECTIVE To determine the SARS-CoV-2 seroprevalence among school workers within the Greater Vancouver area, British Columbia, Canada, after the first Omicron wave. DESIGN Cross-sectional study by online questionnaire, with blood serology testing. SETTING Three main school districts (Vancouver, Richmond and Delta) in the Vancouver metropolitan area. PARTICIPANTS Active school staff enrolled from January to April 2022, with serology testing between 27 January and 8 April 2022. Seroprevalence estimates were compared with data obtained from Canadian blood donors weighted over the same sampling period, age, sex and postal code distribution. PRIMARY AND SECONDARY OUTCOMES SARS-CoV-2 nucleocapsid antibody testing results adjusted for test sensitivity and specificity, and regional variation across school districts using Bayesian models. RESULTS Of 1850 school staff enrolled, 65.8% (1214/1845) reported close contact with a COVID-19 case outside the household. Of those close contacts, 51.5% (625/1214) were a student and 54.9% (666/1214) were a coworker. Cumulative incidence of COVID-19 positive testing by self-reported nucleic acid or rapid antigen testing since the beginning of the pandemic was 15.8% (291/1845). In a representative sample of 1620 school staff who completed serology testing (87.6%), the adjusted seroprevalence was 26.5% (95% CrI 23.9% to 29.3%), compared with 32.4% (95% CrI 30.6% to 34.5%) among 7164 blood donors. CONCLUSION Despite frequent COVID-19 exposures reported, SARS-CoV-2 seroprevalence among school staff in this setting remained no greater than the community reference group. Results are consistent with the premise that many infections were acquired outside the school setting, even with Omicron.
Collapse
Affiliation(s)
- Allison W Watts
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Louise C Mâsse
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - David M Goldfarb
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mike A Irvine
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Sarah M Hutchison
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Lauren Muttucomaroe
- Department of Pediatrics, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Bethany Poon
- Department of Pediatrics, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Vilte E Barakauskas
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Else Bosman
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Frederic Reicherz
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Daniel Coombs
- Department of Mathematics and Institute of Applied Mathematics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark Pitblado
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Sheila F O'Brien
- Canadian Blood Services, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Pascal M Lavoie
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Devaux CA, Fantini J. Unravelling Antigenic Cross-Reactions toward the World of Coronaviruses: Extent of the Stability of Shared Epitopes and SARS-CoV-2 Anti-Spike Cross-Neutralizing Antibodies. Pathogens 2023; 12:713. [PMID: 37242383 PMCID: PMC10220573 DOI: 10.3390/pathogens12050713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The human immune repertoire retains the molecular memory of a very great diversity of target antigens (epitopes) and can recall this upon a second encounter with epitopes against which it has previously been primed. Although genetically diverse, proteins of coronaviruses exhibit sufficient conservation to lead to antigenic cross-reactions. In this review, our goal is to question whether pre-existing immunity against seasonal human coronaviruses (HCoVs) or exposure to animal CoVs has influenced the susceptibility of human populations to SARS-CoV-2 and/or had an impact upon the physiopathological outcome of COVID-19. With the hindsight that we now have regarding COVID-19, we conclude that although antigenic cross-reactions between different coronaviruses exist, cross-reactive antibody levels (titers) do not necessarily reflect on memory B cell frequencies and are not always directed against epitopes which confer cross-protection against SARS-CoV-2. Moreover, the immunological memory of these infections is short-term and occurs in only a small percentage of the population. Thus, in contrast to what might be observed in terms of cross-protection at the level of a single individual recently exposed to circulating coronaviruses, a pre-existing immunity against HCoVs or other CoVs can only have a very minor impact on SARS-CoV-2 circulation at the level of human populations.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM Institut Hospitalo-Universitaire—Méditerranée Infection, 13005 Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), 13009 Marseille, France
| | - Jacques Fantini
- Aix-Marseille Université, INSERM UMR_S 1072, 13015 Marseille, France
| |
Collapse
|
12
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
13
|
Wolf C, Köppert S, Becza N, Kuerten S, Kirchenbaum GA, Lehmann PV. Antibody Levels Poorly Reflect on the Frequency of Memory B Cells Generated following SARS-CoV-2, Seasonal Influenza, or EBV Infection. Cells 2022; 11:cells11223662. [PMID: 36429090 PMCID: PMC9688940 DOI: 10.3390/cells11223662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The scope of immune monitoring is to define the existence, magnitude, and quality of immune mechanisms operational in a host. In clinical trials and praxis, the assessment of humoral immunity is commonly confined to measurements of serum antibody reactivity without accounting for the memory B cell potential. Relying on fundamentally different mechanisms, however, passive immunity conveyed by pre-existing antibodies needs to be distinguished from active B cell memory. Here, we tested whether, in healthy human individuals, the antibody titers to SARS-CoV-2, seasonal influenza, or Epstein-Barr virus antigens correlated with the frequency of recirculating memory B cells reactive with the respective antigens. Weak correlations were found. The data suggest that the assessment of humoral immunity by measurement of antibody levels does not reflect on memory B cell frequencies and thus an individual's potential to engage in an anamnestic antibody response against the same or an antigenically related virus. Direct monitoring of the antigen-reactive memory B cell compartment is both required and feasible towards that goal.
Collapse
Affiliation(s)
- Carla Wolf
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sebastian Köppert
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Noémi Becza
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Greg A. Kirchenbaum
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
| | - Paul V. Lehmann
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Correspondence: ; Tel.: +1-(216)-791-5084
| |
Collapse
|
14
|
Diani S, Leonardi E, Cavezzi A, Ferrari S, Iacono O, Limoli A, Bouslenko Z, Natalini D, Conti S, Mantovani M, Tramonte S, Donzelli A, Serravalle E. SARS-CoV-2-The Role of Natural Immunity: A Narrative Review. J Clin Med 2022; 11:6272. [PMID: 36362500 PMCID: PMC9655392 DOI: 10.3390/jcm11216272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Both natural immunity and vaccine-induced immunity to COVID-19 may be useful to reduce the mortality/morbidity of this disease, but still a lot of controversy exists. AIMS This narrative review analyzes the literature regarding these two immunitary processes and more specifically: (a) the duration of natural immunity; (b) cellular immunity; (c) cross-reactivity; (d) the duration of post-vaccination immune protection; (e) the probability of reinfection and its clinical manifestations in the recovered patients; (f) the comparisons between vaccinated and unvaccinated as to the possible reinfections; (g) the role of hybrid immunity; (h) the effectiveness of natural and vaccine-induced immunity against Omicron variant; (i) the comparative incidence of adverse effects after vaccination in recovered individuals vs. COVID-19-naïve subjects. MATERIAL AND METHODS through multiple search engines we investigated COVID-19 literature related to the aims of the review, published since April 2020 through July 2022, including also the previous articles pertinent to the investigated topics. RESULTS nearly 900 studies were collected, and 246 pertinent articles were included. It was highlighted that the vast majority of the individuals after suffering from COVID-19 develop a natural immunity both of cell-mediated and humoral type, which is effective over time and provides protection against both reinfection and serious illness. Vaccine-induced immunity was shown to decay faster than natural immunity. In general, the severity of the symptoms of reinfection is significantly lower than in the primary infection, with a lower degree of hospitalizations (0.06%) and an extremely low mortality. CONCLUSIONS this extensive narrative review regarding a vast number of articles highlighted the valuable protection induced by the natural immunity after COVID-19, which seems comparable or superior to the one induced by anti-SARS-CoV-2 vaccination. Consequently, vaccination of the unvaccinated COVID-19-recovered subjects may not be indicated. Further research is needed in order to: (a) measure the durability of immunity over time; (b) evaluate both the impacts of Omicron BA.5 on vaccinated and healed subjects and the role of hybrid immunity.
Collapse
Affiliation(s)
- Sara Diani
- School of Musictherapy, Université Européenne Jean Monnet, 35129 Padova, Italy
| | | | | | | | - Oriana Iacono
- Physical Medicine and Rehabilitation Department, Mirandola Hospital, 41037 Mirandola, Italy
| | - Alice Limoli
- ARPAV (Regional Agency for the Environment Protection), 31100 Treviso, Italy
| | - Zoe Bouslenko
- Cardiology Department, Valdese Hospital, 10100 Torino, Italy
| | | | | | | | - Silvano Tramonte
- Environment and Health Commission, National Bioarchitecture Institute, 20121 Milano, Italy
| | | | | |
Collapse
|
15
|
Jia L, Weng S, Wu J, Tian X, Zhang Y, Wang X, Wang J, Yan D, Wang W, Fang F, Zhu Z, Qiu C, Zhang W, Xu Y, Wan Y. Preexisting antibodies targeting SARS-CoV-2 S2 cross-react with commensal gut bacteria and impact COVID-19 vaccine induced immunity. Gut Microbes 2022; 14:2117503. [PMID: 36100957 PMCID: PMC9481142 DOI: 10.1080/19490976.2022.2117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The origins of preexisting SARS-CoV-2 cross-reactive antibodies and their potential impacts on vaccine efficacy have not been fully clarified. In this study, we demonstrated that S2 was the prevailing target of the preexisting S protein cross-reactive antibodies in both healthy human and SPF mice. A dominant antibody epitope was identified on the connector domain of S2 (1147-SFKEELDKYFKNHT-1160, P144), which could be recognized by preexisting antibodies in both human and mouse. Through metagenomic sequencing and fecal bacteria transplant, we demonstrated that the generation of S2 cross-reactive antibodies was associated with commensal gut bacteria. Furthermore, six P144 reactive monoclonal antibodies were isolated from naïve SPF mice and were proven to cross-react with commensal gut bacteria collected from both human and mouse. A variety of cross-reactive microbial proteins were identified using LC-MS, of which E. coli derived HSP60 and HSP70 proteins were confirmed to be able to bind to one of the isolated monoclonal antibodies. Mice with high levels of preexisting S2 cross-reactive antibodies mounted higher S protein specific binding antibodies, especially against S2, after being immunized with a SARS-CoV-2 S DNA vaccine. Similarly, we found that levels of preexisting S2 and P144-specific antibodies correlated positively with RBD binding antibody titers after two doses of inactivated SARS-CoV-2 vaccination in human. Collectively, our study revealed an alternative origin of preexisting S2-targeted antibodies and disclosed a previously neglected aspect of the impact of gut microbiota on host anti-SARS-CoV-2 immunity.
Collapse
Affiliation(s)
- Liqiu Jia
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shufeng Weng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China,Ying Xu State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Xiangxiang Tian
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, China
| | - Yifan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, China
| | - Xuyang Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,Department of Immunology, School of Basic Medical, Jiamusi University, Jiamusi, China
| | - Dongmei Yan
- Department of Immunology, School of Basic Medical, Jiamusi University, Jiamusi, China
| | - Wanhai Wang
- Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, China
| | - Fang Fang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhaoqin Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,Zhaoqin Zhu Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chao Qiu
- Institutes of Biomedical Sciences & Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China,Chao Qiu Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China,State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China,Wenhong Zhang Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Ying Xu State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China,State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Department of Radiology, Shanghai Public Health Clinical Center, Shanghai, China,CONTACT Yanmin Wan Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Hu C, Wang Z, Ren L, Hao Y, Zhu M, Jiang H, Wang S, Li D, Shao Y. Pre-existing anti-HCoV-OC43 immunity influences the durability and cross-reactivity of humoral response to SARS-CoV-2 vaccination. Front Cell Infect Microbiol 2022; 12:978440. [PMID: 36118022 PMCID: PMC9478943 DOI: 10.3389/fcimb.2022.978440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose This study was conducted in order to properly understand whether prior seasonal human coronavirus (HCoV) immunity could impact the potential cross-reactivity of humoral responses induced by SARS-CoV-2 vaccine, thereby devising universal coronavirus vaccines for future outbreaks. Methods We performed enzyme-linked immunosorbent assay (ELISA) to quantify the immunoglobulin G (IgG) antibody levels to spike (S) protein and S1 subunit of HCoVs (HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E), and ELISA [anti-RBD and anti-nucleoprotein (N)], chemiluminescence immunoassay assays (anti-RBD), pseudovirus neutralization test, and authentic viral neutralization test to detect the binding and neutralizing antibodies to SARS-CoV-2 in the vaccinees. Results We found that the antibody of seasonal HCoVs did exist before vaccination and could be boosted by SARS-CoV-2 vaccine. A further analysis demonstrated that the prior S and S1 IgG antibodies of HCoV-OC43 were positively correlated with anti-RBD and neutralization antibodies to SARS-CoV-2 at 12 and 24 weeks after the second vaccination, and the correlation is more statistically significant at 24 weeks. The persistent antibody levels of SARS-CoV-2 were observed in vaccinees with higher pre-existing HCoV-OC43 antibodies. Conclusion Our data indicate that inactivated SARS-CoV-2 vaccination may confer cross-protection against seasonal coronaviruses in most individuals, and more importantly, the pre-existing HCoV-OC43 antibody was associated with protective immunity to SARS-CoV-2, supporting the development of a pan-coronavirus vaccine.
Collapse
Affiliation(s)
- Caiqin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Zheng Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Ren
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanling Hao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meiling Zhu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - He Jiang
- Guangxi Key Laboratory of AIDS Prevention and Control and Achievement Transformation, Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Shuo Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Dan Li, ; Yiming Shao,
| | - Yiming Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Dan Li, ; Yiming Shao,
| |
Collapse
|
17
|
Bhatt M, Zemek RL, Tang K, Malley R, Plint AC, Pham-Huy A, Dawson J, McGahern C, Pelchat M, Arnold C, Galipeau Y, Langlois MA. Antibody Seronegativity in COVID-19 RT-PCR-Positive Children. Pediatr Infect Dis J 2022; 41:e318-e320. [PMID: 35544731 PMCID: PMC9281420 DOI: 10.1097/inf.0000000000003573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
This substudy of a prospective case-ascertained household transmission study investigated severe acute respiratory syndrome coronavirus 2 reverse transcription polymerase chain reaction-positive individuals without antibody development and factors associated with nonseroconversion. Approximately 1 of 8 individuals with coronavirus disease 2019 did not seroconvert. Children, particularly the youngest, were approximately half as likely to seroconvert compared with adults. Apart from the absence of fever/chills, individual symptoms did not strongly predict nonseroconversion.
Collapse
Affiliation(s)
- Maala Bhatt
- From the Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Roger L. Zemek
- From the Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Ken Tang
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Richard Malley
- Division of Infectious Diseases, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amy C. Plint
- From the Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Anne Pham-Huy
- From the Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Jennifer Dawson
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Candice McGahern
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) accelerated development of messenger RNA (mRNA) vaccines, which have proven to be highly effective against COVID-19. However, antibody responses vary widely and wane over time. This study evaluated the range and kinetics of the primary antibody response to SARS-CoV-2 mRNA-based vaccination in parallel with the B cells that are involved in generating and maintaining this response. These include plasmablasts, the antibody-secreting cells that arise rapidly yet transiently following immunization, and memory B cells, a heterogeneous population that can provide long-lasting immunity. Our results show that the antibody response was tightly linked to early plasmablasts, while the cellular response was sustained by a distinct population of memory B cells. Messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective at inducing protective immunity. However, weak antibody responses are seen in some individuals, and cellular correlates of immunity remain poorly defined, especially for B cells. Here we used unbiased approaches to longitudinally dissect primary antibody, plasmablast, and memory B cell (MBC) responses to the two-dose mRNA-1273 vaccine in SARS-CoV-2–naive adults. Coordinated immunoglobulin A (IgA) and IgG antibody responses were preceded by bursts of spike-specific plasmablasts after both doses but earlier and more intensely after dose 2. While antibody and B cell cellular responses were generally robust, they also varied within the cohort and decreased over time after a dose-2 peak. Both antigen-nonspecific postvaccination plasmablast frequency after dose 1 and their spike-specific counterparts early after dose 2 correlated with subsequent antibody levels. This correlation between early plasmablasts and antibodies remained for titers measured at 6 months after vaccination. Several distinct antigen-specific MBC populations emerged postvaccination with varying kinetics, including two MBC populations that correlated with 2- and 6-month antibody titers. Both were IgG-expressing MBCs: one less mature, appearing as a correlate after the first dose, while the other MBC correlate showed a more mature and resting phenotype, emerging as a correlate later after dose 2. This latter MBC was also a major contributor to the sustained spike-specific MBC response observed at month 6. Thus, these plasmablasts and MBCs that emerged after both the first and second doses with distinct kinetics are potential determinants of the magnitude and durability of antibodies in response to mRNA-based vaccination.
Collapse
|
19
|
Qi H, Liu B, Wang X, Zhang L. The humoral response and antibodies against SARS-CoV-2 infection. Nat Immunol 2022; 23:1008-1020. [PMID: 35761083 DOI: 10.1038/s41590-022-01248-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Two and a half years into the COVID-19 pandemic, we have gained many insights into the human antibody response to the causative SARS-CoV-2 virus. In this Review, we summarize key observations of humoral immune responses in people with COVID-19, discuss key features of infection- and vaccine-induced neutralizing antibodies, and consider vaccine designs for inducing antibodies that are broadly protective against different variants of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China. .,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China. .,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China. .,NexVac Research Center, Tsinghua University, Beijing, China. .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China. .,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China.,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xinquan Wang
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Linqi Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China. .,NexVac Research Center, Tsinghua University, Beijing, China. .,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China. .,Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases, Tsinghua University, Beijing, China.
| |
Collapse
|
20
|
Tosif S, Haycroft ER, Sarkar S, Toh ZQ, Do LAH, Donato CM, Selva KJ, Hoq M, Overmars I, Nguyen J, Lee L, Clifford V, Daley A, Mordant FL, McVernon J, Mulholland K, Marcato AJ, Smith MZ, Curtis N, McNab S, Saffery R, Kedzierska K, Subarrao K, Burgner D, Steer A, Bines JE, Sutton P, Licciardi PV, Chung AW, Neeland MR, Crawford NW. Virology and immune dynamics reveal high household transmission of ancestral SARS-CoV-2 strain. Pediatr Allergy Immunol 2022; 33:10.1111/pai.13824. [PMID: 35871459 PMCID: PMC9349415 DOI: 10.1111/pai.13824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Household studies are crucial for understanding the transmission of SARS-CoV-2 infection, which may be underestimated from PCR testing of respiratory samples alone. We aim to combine the assessment of household mitigation measures; nasopharyngeal, saliva, and stool PCR testing; along with mucosal and systemic SARS-CoV-2-specific antibodies, to comprehensively characterize SARS-CoV-2 infection and transmission in households. METHODS Between March and September 2020, we obtained samples from 92 participants in 26 households in Melbourne, Australia, in a 4-week period following the onset of infection with ancestral SARS-CoV-2 variants. RESULTS The secondary attack rate was 36% (24/66) when using nasopharyngeal swab (NPS) PCR positivity alone. However, when respiratory and nonrespiratory samples were combined with antibody responses in blood and saliva, the secondary attack rate was 76% (50/66). SARS-CoV-2 viral load of the index case and household isolation measures were key factors that determine secondary transmission. In 27% (7/26) of households, all family members tested positive by NPS for SARS-CoV-2 and were characterized by lower respiratory Ct values than low transmission families (Median 22.62 vs. 32.91; IQR 17.06-28.67 vs. 30.37-34.24). High transmission families were associated with enhanced plasma antibody responses to multiple SARS-CoV-2 antigens and the presence of neutralizing antibodies. Three distinguishing saliva SARS-CoV-2 antibody features were identified according to age (IgA1 to Spike 1, IgA1 to nucleocapsid protein (NP)), suggesting that adults and children generate distinct mucosal antibody responses during the acute phase of infection. CONCLUSION Utilizing respiratory and nonrespiratory PCR testing, along with the measurement of SARS-CoV-2-specific local and systemic antibodies, provides a more accurate assessment of infection within households and highlights some of the immunological differences in response between children and adults.
Collapse
|
21
|
WANG G, XIANG Z, WANG W, CHEN Z. Seasonal coronaviruses and SARS-CoV-2: effects of preexisting immunity during the COVID-19 pandemic. J Zhejiang Univ Sci B 2022; 23:451-460. [PMID: 35686525 PMCID: PMC9198228 DOI: 10.1631/jzus.b2200049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although the coronavirus disease 2019 (COVID-19) epidemic is still ongoing, vaccination rates are rising slowly and related treatments and drugs are being developed. At the same time, there is increasing evidence of preexisting immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans, mainly consisting of preexisting antibodies and immune cells (including T cells and B cells). The presence of these antibodies is mainly due to the seasonal prevalence of four common coronavirus types, especially OC43 and HKU1. The accumulated relevant evidence has suggested that the target of antibodies is mainly the S2 subunit of S protein, followed by evolutionary conservative regions such as the nucleocapsid (N) protein. Additionally, preexisting memory T and B cells are also present in the population. Preexisting antibodies can help the body protect against SARS-CoV-2 infection, reduce the severity of COVID-19, and rapidly increase the immune response post-infection. These multiple effects can directly affect disease progression and even the likelihood of death in certain individuals. Besides the positive effects, preexisting immunity may also have negative consequences, such as antibody-dependent enhancement (ADE) and original antigenic sin (OAS), the prevalence of which needs to be further established. In the future, more research should be focused on evaluating the role of preexisting immunity in COVID-19 outcomes, adopting appropriate policies and strategies for fighting the pandemic, and vaccine development that considers preexisting immunity.
Collapse
Affiliation(s)
- Gang WANG
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Ze XIANG
- Zhejiang University School of Medicine, Hangzhou310003, China
| | - Wei WANG
- Jiangsu Institute of Parasitic Diseases, Wuxi214064, China
| | - Zhi CHEN
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China,Zhi CHEN,
| |
Collapse
|
22
|
Baker D, MacDougall A, Kang AS, Schmierer K, Giovannoni G, Dobson R. Seroconversion following COVID-19 vaccination: can we optimize protective response in CD20-treated individuals? Clin Exp Immunol 2022; 207:263-271. [PMID: 35553629 PMCID: PMC9113152 DOI: 10.1093/cei/uxab015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Although there is an ever-increasing number of disease-modifying treatments for relapsing multiple sclerosis (MS), few appear to influence coronavirus disease 2019 (COVID-19) severity. There is concern about the use of anti-CD20-depleting monoclonal antibodies, due to the apparent increased risk of severe disease following severe acute respiratory syndrome corona virus two (SARS-CoV-2) infection and inhibition of protective anti-COVID-19 vaccine responses. These antibodies are given as maintenance infusions/injections and cause persistent depletion of CD20+ B cells, notably memory B-cell populations that may be instrumental in the control of relapsing MS. However, they also continuously deplete immature and mature/naïve B cells that form the precursors for infection-protective antibody responses, thus blunting vaccine responses. Seroconversion and maintained SARS-CoV-2 neutralizing antibody levels provide protection from COVID-19. However, it is evident that poor seroconversion occurs in the majority of individuals following initial and booster COVID-19 vaccinations, based on standard 6 monthly dosing intervals. Seroconversion may be optimized in the anti-CD20-treated population by vaccinating prior to treatment onset or using extended/delayed interval dosing (3-6 month extension to dosing interval) in those established on therapy, with B-cell monitoring until (1-3%) B-cell repopulation occurs prior to vaccination. Some people will take more than a year to replete and therefore protection may depend on either the vaccine-induced T-cell responses that typically occur or may require prophylactic, or rapid post-infection therapeutic, antibody or small-molecule antiviral treatment to optimize protection against COVID-19. Further studies are warranted to demonstrate the safety and efficacy of such approaches and whether or not immunity wanes prematurely as has been observed in the other populations.
Collapse
Affiliation(s)
- David Baker
- The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Amy MacDougall
- Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Angray S Kang
- The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Centre for Oral Immunobiology and Regenerative Medicine, Dental Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Klaus Schmierer
- The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Gavin Giovannoni
- The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Ruth Dobson
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, Barts and The London School of Medicine & Dentistry, London, UK
| |
Collapse
|
23
|
Geanes ES, LeMaster C, Fraley ER, Khanal S, McLennan R, Grundberg E, Selvarangan R, Bradley T. Cross-reactive antibodies elicited to conserved epitopes on SARS-CoV-2 spike protein after infection and vaccination. Sci Rep 2022; 12:6496. [PMID: 35444221 PMCID: PMC9019795 DOI: 10.1038/s41598-022-10230-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 is a novel betacoronavirus that caused coronavirus disease 2019 and has resulted in millions of deaths worldwide. Novel coronavirus infections in humans have steadily become more common. Understanding antibody responses to SARS-CoV-2, and identifying conserved, cross-reactive epitopes among coronavirus strains could inform the design of vaccines and therapeutics with broad application. Here, we determined that individuals with previous SARS-CoV-2 infection or vaccinated with the Pfizer-BioNTech BNT162b2 vaccine produced antibody responses that cross-reacted with related betacoronaviruses. Moreover, we designed a peptide-conjugate vaccine with a conserved SARS-CoV-2 S2 spike epitope, immunized mice and determined cross-reactive antibody binding to SARS-CoV-2 and other related coronaviruses. This conserved spike epitope also shared sequence homology to proteins in commensal gut microbiota and could prime immune responses in humans. Thus, SARS-CoV-2 conserved epitopes elicit cross-reactive immune responses to both related coronaviruses and host bacteria that could serve as future targets for broad coronavirus therapeutics and vaccines.
Collapse
Affiliation(s)
- Eric S Geanes
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Cas LeMaster
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Elizabeth R Fraley
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Santosh Khanal
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Rebecca McLennan
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Elin Grundberg
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri- Kansas City, Kansas City, MO, USA.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Rangaraj Selvarangan
- Department of Pediatrics, University of Missouri- Kansas City, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, MO, USA
| | - Todd Bradley
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA. .,Department of Pediatrics, University of Missouri- Kansas City, Kansas City, MO, USA. .,Department of Pediatrics, University of Kansas Medical Center, Kansas City, MO, USA. .,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
24
|
Goldfarb DM, Mâsse LC, Watts AW, Hutchison SM, Muttucomaroe L, Bosman ES, Barakauskas VE, Choi A, Dhillon N, Irvine MA, Reicherz F, O'Reilly C, Sediqi S, Xu RY, Razzaghian HR, Sadarangani M, Coombs D, O'Brien SF, Lavoie PM. SARS-CoV-2 seroprevalence among Vancouver public school staff in British Columbia, Canada: a cross-sectional study. BMJ Open 2022; 12:e057846. [PMID: 35383082 PMCID: PMC8983418 DOI: 10.1136/bmjopen-2021-057846] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/03/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES Few studies reported COVID-19 cases in schools during the 2020/21 academic year in a setting of uninterrupted in-person schooling. The main objective was to determine the SARS-CoV-2 seroprevalence among school staff in Vancouver public schools. DESIGN Cumulative incident COVID-19 cases among all students and school staff based on public health data, with an embedded cross-sectional serosurvey among a school staff sample that was compared to period, age, sex and geographical location-weighted data from blood donors. SETTING Vancouver School District (British Columbia, Canada) from kindergarten to grade 12. PARTICIPANTS Active school staff enrolled from 3 February to 23 April 2021 with serology testing from 10 February to 15 May 2021. MAIN OUTCOME MEASURES SARS-CoV-2 seroprevalence among school staff, based on spike (S)-based (unvaccinated staff) or N-based serology testing (vaccinated staff). RESULTS Public health data showed the cumulative incidence of COVID-19 among students attending in-person was 9.8 per 1000 students (n=47 280), and 13 per 1000 among school staff (n=7071). In a representative sample of 1689 school staff, 78.2% had classroom responsibilities, and spent a median of 17.6 hours in class per week (IQR: 5.0-25 hours). Although 21.5% (363/1686) of surveyed staff self-reported close contact with a COVID-19 case outside of their household (16.5% contacts were school-based), 5 cases likely acquired the infection at school based on viral testing. Sensitivity/Specificity-adjusted seroprevalence in 1556/1689 staff (92.1%) was 2.3% (95% CI: 1.6% to 3.2%), comparable to a sex, age, date and residency area-weighted seroprevalence of 2.6% (95% CI: 2.2% to 3.1%) among 5417 blood donors. CONCLUSION Seroprevalence among staff was comparable to a reference group of blood donors from the same community. These data show that in-person schooling could be safely maintained during the 2020/21 school year with mitigation measures, in a large school district in Vancouver, Canada.
Collapse
Affiliation(s)
- David M Goldfarb
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Louise C Mâsse
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Allison W Watts
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah M Hutchison
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren Muttucomaroe
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Else S Bosman
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vilte E Barakauskas
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Alexandra Choi
- Office of the Medical Health Officer, Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada
| | - Nalin Dhillon
- Office of the Medical Health Officer, Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada
| | - Michael A Irvine
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Frederic Reicherz
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Sadaf Sediqi
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Rui Yang Xu
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hamid R Razzaghian
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manish Sadarangani
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Daniel Coombs
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sheila F O'Brien
- Epidemiology & Surveillance, Canadian Blood Services, Ottawa, Ontario, Canada
- School of Epidemiology & Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Pascal M Lavoie
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Tanunliong G, Liu AC, Kaweski S, Irvine M, Reyes RC, Purych D, Krajden M, Morshed M, Sekirov I, Gantt S, Skowronski DM, Jassem AN. Age-Associated Seroprevalence of Coronavirus Antibodies: Population-Based Serosurveys in 2013 and 2020, British Columbia, Canada. Front Immunol 2022; 13:836449. [PMID: 35401521 PMCID: PMC8984254 DOI: 10.3389/fimmu.2022.836449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundOlder adults have been disproportionately affected during the SARS-CoV-2 pandemic, including higher risk of severe disease and long-COVID. Prior exposure to endemic human coronaviruses (HCoV) may modulate the response to SARS-CoV-2 infection and contribute to age-related observations. We hypothesized that cross-reactive antibodies to SARS-CoV-2 are associated with antibodies to HCoV and that both increase with age.MethodsTo assess SARS-CoV-2 unexposed individuals, we drew upon archived anonymized residual sero-surveys conducted in British Columbia (BC), Canada, including before SARS-CoV-2 emergence (May, 2013) and before widespread community circulation in BC (May, 2020). Fifty sera, sex-balanced per ten-year age band, were sought among individuals ≤10 to ≥80 years old, supplemented as indicated by sera from March and September 2020. Sera were tested on the Meso Scale Diagnostics (MSD) electrochemiluminescent multiplex immunoassay to quantify IgG antibody against the Spike proteins of HCoV, including alpha (HCoV-229E, HCoV-NL63) and beta (HCoV-HKU1, HCoV-OC43) viruses, and the 2003 epidemic beta coronavirus, SARS-CoV-1. Cross-reactive antibodies to Spike, Nucleocapsid, and the Receptor Binding Domain (RBD) of SARS-CoV-2 were similarly measured, with SARS-CoV-2 sero-positivity overall defined by positivity on ≥2 targets.ResultsSamples included 407 sera from 2013, of which 17 were children ≤10 years. The 2020 samples included 488 sera, of which 88 were children ≤10 years. Anti-Spike antibodies to all four endemic HCoV were acquired by 10 years of age. There were 20/407 (5%) sera in 2013 and 8/488 (2%) in 2020 that were considered sero-positive for SARS-CoV-2 based on MSD testing. Of note, antibody to the single SARS-CoV-2 RBD target was detected in 329/407 (81%) of 2013 sera and 91/488 (19%) of 2020 sera. Among the SARS-CoV-2 overall sero-negative population, age was correlated with anti-HCoV antibody levels and these, notably 229E and HKU1, were correlated with cross-reactive anti-SARS-CoV-2 RBD titres. SARS-CoV-2 overall sero-positive individuals showed higher titres to HCoV more generally.ConclusionMost people have an HCoV priming exposure by 10 years of age and IgG levels are stable thereafter. Anti-HCoV antibodies can cross-react with SARS-CoV-2 epitopes. These immunological interactions warrant further investigation with respect to their implications for COVID-19 clinical outcomes.
Collapse
Affiliation(s)
- Guadalein Tanunliong
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Aaron C. Liu
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Samantha Kaweski
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Mike Irvine
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Romina C. Reyes
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- LifeLabs, Burnaby, BC, Canada
| | - Dale Purych
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Surrey Memorial Hospital, Fraser Health Authority, Surrey, BC, Canada
| | - Mel Krajden
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Muhammad Morshed
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Inna Sekirov
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Soren Gantt
- Departments of Pediatrics and Microbiology, Infectious Diseases & Immunology, University of Montreal, Montreal, QC, Canada
- Sainte-Justine University Hospital Centre, Montreal, QC, Canada
| | - Danuta M. Skowronski
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Communicable Diseases and Immunization Services, British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Agatha N. Jassem
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
- *Correspondence: Agatha N. Jassem,
| |
Collapse
|
26
|
Ercanoglu MS, Gieselmann L, Dähling S, Poopalasingam N, Detmer S, Koch M, Korenkov M, Halwe S, Klüver M, Di Cristanziano V, Janicki H, Schlotz M, Worczinski J, Gathof B, Gruell H, Zehner M, Becker S, Vanshylla K, Kreer C, Klein F. No substantial preexisting B cell immunity against SARS-CoV-2 in healthy adults. iScience 2022; 25:103951. [PMID: 35224466 PMCID: PMC8857777 DOI: 10.1016/j.isci.2022.103951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Preexisting immunity against SARS-CoV-2 may have critical implications for our understanding of COVID-19 susceptibility and severity. The presence and clinical relevance of a preexisting B cell immunity remain to be fully elucidated. Here, we provide a detailed analysis of the B cell immunity to SARS-CoV-2 in unexposed individuals. To this end, we extensively investigated SARS-CoV-2 humoral immunity in 150 adults sampled pre-pandemically. Comprehensive screening of donor plasma and purified IgG samples for binding and neutralization in various functional assays revealed no substantial activity against SARS-CoV-2 but broad reactivity to endemic betacoronaviruses. Moreover, we analyzed antibody sequences of 8,174 putatively SARS-CoV-2-reactive B cells at a single cell level and generated and tested 158 monoclonal antibodies. None of these antibodies displayed relevant binding or neutralizing activity against SARS-CoV-2. Taken together, our results show no evidence of competent preexisting antibody and B cell immunity against SARS-CoV-2 in unexposed adults. Comprehensive analysis of the B cell response to SARS-CoV-2 in pre-pandemic samples No substantial plasma and IgG reactivity against SARS-CoV-2 MAbs isolated from pre-pandemic samples showed no SARS-CoV-2 neutralizing activity No indication of competent preexisting B cell immunity against SARS-CoV-2
Collapse
Affiliation(s)
- Meryem Seda Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Sabrina Dähling
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nareshkumar Poopalasingam
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Susanne Detmer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Manuel Koch
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Michael Korenkov
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sandro Halwe
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35042 Marburg, Germany.,German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Michael Klüver
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35042 Marburg, Germany.,German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Veronica Di Cristanziano
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Johanna Worczinski
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Birgit Gathof
- Institute of Transfusion Medicine, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Matthias Zehner
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35042 Marburg, Germany.,German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
27
|
McGuire BE, Mela JE, Thompson VC, Cucksey LR, Stevens CE, McWhinnie RL, Winkler DFH, Pelech S, Nano FE. Escherichia coli recombinant expression of SARS-CoV-2 protein fragments. Microb Cell Fact 2022; 21:21. [PMID: 35123472 PMCID: PMC8817660 DOI: 10.1186/s12934-022-01753-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
We have developed a method for the inexpensive, high-level expression of antigenic protein fragments of SARS-CoV-2 proteins in Escherichia coli. Our approach uses the thermophilic family 9 carbohydrate-binding module (CBM9) as an N-terminal carrier protein and affinity tag. The CBM9 module was joined to SARS-CoV-2 protein fragments via a flexible proline–threonine linker, which proved to be resistant to E. coli proteases. Two CBM9-spike protein fragment fusion proteins and one CBM9-nucleocapsid fragment fusion protein largely resisted protease degradation, while most of the CBM9 fusion proteins were degraded at some site in the SARS-CoV-2 protein fragment. All of the fusion proteins were highly expressed in E. coli and the CBM9-ID-H1 fusion protein was shown to yield 122 mg/L of purified product. Three purified CBM9-SARS-CoV-2 fusion proteins were tested and found to bind antibodies directed to the appropriate SARS-CoV-2 antigenic regions. The largest intact CBM9 fusion protein, CBM9-ID-H1, incorporates spike protein amino acids 540–588, which is a conserved region overlapping and C-terminal to the receptor binding domain that is widely recognized by human convalescent sera and contains a putative protective epitope.
Collapse
|
28
|
Galipeau Y, Siragam V, Laroche G, Marion E, Greig M, McGuinty M, Booth RA, Durocher Y, Cuperlovic-Culf M, Bennett SAL, Crawley AM, Giguère PM, Cooper C, Langlois MA. Relative Ratios of Human Seasonal Coronavirus Antibodies Predict the Efficiency of Cross-Neutralization of SARS-CoV-2 Spike Binding to ACE2. EBioMedicine 2021; 74:103700. [PMID: 34861490 PMCID: PMC8629681 DOI: 10.1016/j.ebiom.2021.103700] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Antibodies raised against human seasonal coronaviruses (sCoVs), which are responsible for the common cold, are known to cross-react with SARS-CoV-2 antigens. This prompts questions about their protective role against SARS-CoV-2 infections and COVID-19 severity. However, the relationship between sCoVs exposure and SARS-CoV-2 correlates of protection are not clearly identified. METHODS We performed a cross-sectional analysis of cross-reactivity and cross-neutralization to SARS-CoV-2 antigens (S-RBD, S-trimer, N) using pre-pandemic sera from four different groups: pediatrics and adolescents, individuals 21 to 70 years of age, older than 70 years of age, and individuals living with HCV or HIV. Data was then further analysed using machine learning to identify predictive patterns of neutralization based on sCoVs serology. FINDINGS Antibody cross-reactivity to SARS-CoV-2 antigens varied between 1.6% and 15.3% depending on the cohort and the isotype-antigen pair analyzed. We also show a range of neutralizing activity (0-45%) with median inhibition ranging from 17.6 % to 23.3 % in serum that interferes with SARS-CoV-2 spike attachment to ACE2 independently of age group. While the abundance of sCoV antibodies did not directly correlate with neutralization, we show that neutralizing activity is rather dependent on relative ratios of IgGs in sera directed to all four sCoV spike proteins. More specifically, we identified antibodies to NL63 and OC43 as being the most important predictors of neutralization. INTERPRETATION Our data support the concept that exposure to sCoVs triggers antibody responses that influence the efficiency of SARS-CoV-2 spike binding to ACE2, which may potentially impact COVID-19 disease severity through other latent variables. FUNDING This study was supported by a grant by the CIHR (VR2 -172722) and by a grant supplement by the CITF, and by a NRC Collaborative R&D Initiative Grant (PR031-1).
Collapse
Affiliation(s)
- Yannick Galipeau
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Canada
| | - Vinayakumar Siragam
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Canada
| | - Erika Marion
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Canada
| | - Matthew Greig
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Canada
| | | | - Ronald A Booth
- University of Ottawa & The Ottawa Hospital Department of Pathology and Laboratory Medicine and The Eastern Ontario Regional Laboratory Association (EORLA)
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Canada; Digital Technologies Research Center, National Research Council Canada; Ottawa Institute of Systems Biology
| | - Steffany A L Bennett
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Canada; Ottawa Institute of Systems Biology; University of Ottawa Centre for Infection, Immunity and Inflammation (CI3)
| | - Angela M Crawley
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Canada; The Ottawa Hospital Research Institute; University of Ottawa Centre for Infection, Immunity and Inflammation (CI3); Department of Biology, Carleton University, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Canada
| | | | - Marc-André Langlois
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Canada; University of Ottawa Centre for Infection, Immunity and Inflammation (CI3).
| |
Collapse
|
29
|
A novel multiplex electrochemiluminescent immunoassay for detection and quantification of anti-SARS-CoV-2 IgG and anti-seasonal endemic human coronavirus IgG. J Clin Virol 2021; 146:105050. [PMID: 34883405 PMCID: PMC8632860 DOI: 10.1016/j.jcv.2021.105050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Multiplex immunoassays capture a comprehensive profile of the humoral response against SARS-CoV-2 and human endemic coronaviruses. We validated a multiplex panel (V-PLEX Panel 2) from Meso Scale Diagnostics targeting antibodies against nine coronavirus antigens. Performance was compared against alternative single- and multi-antigen immunoassays. METHODS Sera collected for clinical or public health testing from 2018 to 2020 (n = 135) were used to compare all tested platforms, and inter-test agreement was assessed by Cohen's kappa coefficient. Sample category (positive/negative) was assigned based on collection date relative to the index case in Canada, and SARS-CoV-2 PCR and serology results. 117 out of the 135 samples (31 positive, 86 negative) were assigned a category and were used to calculate sensitivity and specificity, with MSD's test results based upon manufacturer-set cut-offs. RESULTS We observed SARS-CoV-2 target sensitivities of 100% and specificities >94% for all antigens (RBD, Nucleocapsid, Spike) in V-PLEX Panel 2. When targets were combined, we found a SARS-CoV-2 sensitivity of 100% and specificity of 98.8% with no difference in performance compared to clinical assays, and Cohen's kappa ranging from 0.798 to 0.945 compared to surface plasmon resonance imaging (SPRi). Quantitative measurements of antibodies against the Spike protein of endemic human coronaviruses were concordant with SPRi. CONCLUSION Meso Scale Diagnostics' V-PLEX Coronavirus Panel 2 allows for highly sensitive and specific detection of anti-coronavirus IgG, and is concordant with other serological assays for detection of antibodies against SARS-CoV-2 and the endemic human coronaviruses, making it a good tool for humoral response characterization after both infection and vaccination.
Collapse
|
30
|
Liu Y, Budylowski P, Dong S, Li Z, Goroshko S, Leung LYT, Grunebaum E, Campisi P, Propst EJ, Wolter NE, Rini JM, Zia A, Ostrowski M, Ehrhardt GRA. SARS-CoV-2-Reactive Mucosal B Cells in the Upper Respiratory Tract of Uninfected Individuals. THE JOURNAL OF IMMUNOLOGY 2021; 207:2581-2588. [PMID: 34607939 DOI: 10.4049/jimmunol.2100606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is a respiratory pathogen that can cause severe disease in at-risk populations but results in asymptomatic infections or a mild course of disease in the majority of cases. We report the identification of SARS-CoV-2-reactive B cells in human tonsillar tissue obtained from children who were negative for coronavirus disease 2019 prior to the pandemic and the generation of mAbs recognizing the SARS-CoV-2 Spike protein from these B cells. These Abs showed reduced binding to Spike proteins of SARS-CoV-2 variants and did not recognize Spike proteins of endemic coronaviruses, but subsets reacted with commensal microbiota and exhibited SARS-CoV-2-neutralizing potential. Our study demonstrates pre-existing SARS-CoV-2-reactive Abs in various B cell populations in the upper respiratory tract lymphoid tissue that may lead to the rapid engagement of the pathogen and contribute to prevent manifestations of symptomatic or severe disease.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Shilan Dong
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Zhijie Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sofiya Goroshko
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Leslie Y T Leung
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Paolo Campisi
- Department of Otolaryngology-Head & Neck Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Evan J Propst
- Department of Otolaryngology-Head & Neck Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Nikolas E Wolter
- Department of Otolaryngology-Head & Neck Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - James M Rini
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; and
| | - Amin Zia
- dYcode.bio, Toronto, Ontario, Canada
| | - Mario Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Götz R A Ehrhardt
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
31
|
Muthumani K, Xu Z, Jeong M, Maslow JN, Kalyanaraman VS, Srinivasan A. Preexisting vs. de novo antibodies against SARS-CoV-2 in individuals without or with virus infection: impact on antibody therapy, vaccine research and serological testing. TRANSLATIONAL MEDICINE COMMUNICATIONS 2021; 6:13. [PMID: 34230895 PMCID: PMC8248284 DOI: 10.1186/s41231-021-00093-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
The causative agent of the ongoing pandemic in the world is SARS-CoV-2. The research on SARS-CoV-2 has progressed with lightning speed on various fronts, including clinical research and treatment, virology, epidemiology, drug development, and vaccine research. Recent studies reported that sera from healthy individuals, who were confirmed negative for SARS-CoV-2 by RT-PCR method, tested positive for antibodies against spike and nucleocapsid proteins of SARS-CoV-2. Further, such antibodies also exhibited neutralizing activity against the virus. These observations have prompted us to prepare a commentary on this topic. While the preexisting antibodies are likely to protect against SARS-CoV-2 infection, they may also complicate serological testing results. Another unknown is the influence of preexisting antibodies on immune responses in individuals receiving vaccines against SARS-CoV-2. The commentary identifies the potential limitations with the serological tests based on spike and nucleocapsid proteins as these tests may overestimate the seroprevalence due to cross-reactive antibodies. The inclusion of tests specific to SARS-CoV-2 (such as RBD of spike protein) could overcome these limitations.
Collapse
Affiliation(s)
| | - Ziyang Xu
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | | | - Joel N. Maslow
- GeneOne Life Science, Inc, Seoul, 07335 South Korea
- Department of Medicine, Morristown Medical Center, Morristown, NJ 07960 USA
| | | | | |
Collapse
|
32
|
Moi ML. [Dengue amidst COVID-19: challenges & control measures for the double burden]. Uirusu 2021; 71:1-10. [PMID: 35526989 DOI: 10.2222/jsv.71.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dengue, an arbovirus, is a public health treat in the tropics and sub-tropical climates worldwide. The disease incidence has grown dramatically worldwide, with an estimated 390 million dengue virus infection per year. Dengue has distinct epidemiological patterns which are associated with the four virus serotypes. All four serotypes can co-circulate within a region, in which a number of regions are hyperendemic for all 4 serotypes. Currently, there are no specific treatment or vaccine for the disease. Dengue prevention depends on vector control measures and early interventions. The COVID-19 pandemic has placed immense pressure on health care and management systems worldwide. During the COVID-19 pandemic, the situation was aggravated by the simultaneous dengue outbreaks, that has led to a double burden which has further impacted the healthcare sector, particularly in resource limited settings. This review article will focus on dengue epidemics during the COVID-19 pandemic and discuss on recent findings on immunological cascades between dengue and COVID-19 and, the impact on vaccine development.
Collapse
|