1
|
Akimov VE, Tychinin DI, Antonova OA, Shaymardanov AM, Voronina MD, Deinichenko KA, Fateev OD, Yudin VS, Yudin SM, Mukhin VE, Romanova SV, Nekrasova AI, Zhdanova AS, Tsypkina AV, Vladimirov IS, Makhotenko AV, Keskinov AA, Kraevoy SA, Snigir EA, Svetlichnyy DV, Skvortsova VI. Remodeling of the chromatin landscape in peripheral blood cells in patients with severe Delta COVID-19. Front Immunol 2024; 15:1415317. [PMID: 39712003 PMCID: PMC11662282 DOI: 10.3389/fimmu.2024.1415317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 12/24/2024] Open
Abstract
COVID-19 is characterized by systemic pro-inflammatory shifts with the development of serious alterations in the functioning of the immune system. Investigations of the gene expression changes accompanying the infection state provide insight into the molecular and cellular processes depending on the sickness severity and virus variants. Severe Delta COVID-19 has been characterized by the appearance of a monocyte subset enriched for proinflammatory gene expression signatures and a shift in ligand-receptor interactions. We profiled the chromatin accessibility landscape of 140,000 nuclei in PBMC samples from healthy individuals or individuals with COVID-19. We investigated cis-regulatory elements and identified the core transcription factors governing gene expression in immune cells during COVID-19 infection. In severe cases, we discovered that regulome and chromatin co-accessibility modules were significantly altered across many cell types. Moreover, cases with the Delta variant were accompanied by a specific monocyte subtype discovered using scATAC-seq data. Our analysis showed that immune cells of individuals with severe Delta COVID-19 underwent significant remodeling of the chromatin accessibility landscape and development of the proinflammatory expression pattern. Using a gene regulatory network modeling approach, we investigated the core transcription factors governing the cell state and identified the most pronounced chromatin changes in CD14+ monocytes from individuals with severe Delta COVID-19. Together, our results provide novel insights into cis-regulatory module organization and its impact on gene activity in immune cells during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Vasiliy E. Akimov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Dmitriy I. Tychinin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Olga A. Antonova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Abusaid M. Shaymardanov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Maria D. Voronina
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Kseniia A. Deinichenko
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Oleg D. Fateev
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Vladimir S. Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Sergey M. Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Vladimir E. Mukhin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Svetlana V. Romanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Aleksandra I. Nekrasova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Anastasia S. Zhdanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Anastasia V. Tsypkina
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Ivan S. Vladimirov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Antonida V. Makhotenko
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Anton A. Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Sergey A. Kraevoy
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Ekaterina A. Snigir
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Dmitry V. Svetlichnyy
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | | |
Collapse
|
2
|
Rodríguez-Ubreva J, Calafell-Segura J, Calvillo CL, Keller B, Ciudad L, Handfield LF, de la Calle-Fabregat C, Godoy-Tena G, Andrés-León E, Hoo R, Porter T, Prigmore E, Hofmann M, Decker A, Martín J, Vento-Tormo R, Warnatz K, Ballestar E. COVID-19 progression and convalescence in common variable immunodeficiency patients show dysregulated adaptive immune responses and persistent type I interferon and inflammasome activation. Nat Commun 2024; 15:10344. [PMID: 39609471 PMCID: PMC11605083 DOI: 10.1038/s41467-024-54732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Common variable immunodeficiency (CVID) is the most prevalent primary immunodeficiency, marked by hypogammaglobulinemia, poor antibody responses, and increased infection susceptibility. The COVID-19 pandemic provided a unique opportunity to study the effects of prolonged viral infections on the immune responses of CVID patients. Here we use single-cell RNA-seq and spectral flow cytometry of peripheral blood samples before, during, and after SARS-CoV-2 infection showing that COVID-19 CVID patients display a persistent type I interferon signature at convalescence across immune compartments. Alterations in adaptive immunity include sustained activation of naïve B cells, increased CD21low B cells, impaired Th1 polarization, CD4+ T central memory exhaustion, and increased CD8+ T cell cytotoxicity. NK cell differentiation is defective, although cytotoxicity remains intact. Monocytes show persistent activation of inflammasome-related genes. These findings suggest the involvement of intact humoral immunity in regulating these processes and might indicate the need for early intervention to manage viral infections in CVID patients.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | | | - Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Eduardo Andrés-León
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Regina Hoo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Tarryn Porter
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annegrit Decker
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | | | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
3
|
Koo H, Morrow CD. Shared and unique patterns of autonomous human endogenous retrovirus loci transcriptomes in CD14 + monocytes from individuals with physical trauma or infection with COVID-19. Retrovirology 2024; 21:17. [PMID: 39497142 PMCID: PMC11533341 DOI: 10.1186/s12977-024-00652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
Since previous studies have suggested that the RNAs of human endogenous retrovirus (HERV) might be involved in regulating innate immunity, it is important to investigate the HERV transcriptome patterns in innate immune cell types such as CD14 + monocytes. Using single cell RNA-seq datasets from resting or stimulated PBMCs mapped to 3,220 known discrete autonomous proviral HERV loci, we found individual-specific variation in HERV transcriptomes between HERV loci in CD14 + monocytes. Analysis of paired datasets from the same individual that were cultured in vitro with LPS or without (i.e. control) revealed 36 HERV loci in CD14 + monocytes that were detected only after activation. To extend our analysis to in vivo activated CD14 + monocytes, we used two scRNA-seq datasets from studies that had demonstrated activation of circulating CD14 + monocytes in patients with physical trauma or patients hospitalized with COVID-19 infections. For direct comparison between the trauma and COVID-19 datasets, we first analyzed 1.625 billion sequence reads from a composite pangenome control of 21 normal individuals. Comparison of the sequence read depth of HERV loci in the trauma or COVID-19 samples to the pangenome control revealed that 39 loci in the COVID-19 and 11 HERV loci in the trauma samples were significantly different (Mann-Whitney U test), with 9 HERV loci shared between the COVID-19 and trauma datasets. The capacity to compare HERV loci transcriptome patterns in innate immune cells, like CD14 + monocytes, across different pathological conditions will lead to greater understanding of the physiological role of HERV expression in health and disease.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Genetics Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
| |
Collapse
|
4
|
Ivanov KI, Yang H, Sun R, Li C, Guo D. The emerging role of SARS-CoV-2 nonstructural protein 1 (nsp1) in epigenetic regulation of host gene expression. FEMS Microbiol Rev 2024; 48:fuae023. [PMID: 39231808 PMCID: PMC11418652 DOI: 10.1093/femsre/fuae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024] Open
Abstract
Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes widespread changes in epigenetic modifications and chromatin architecture in the host cell. Recent evidence suggests that SARS-CoV-2 nonstructural protein 1 (nsp1) plays an important role in driving these changes. Previously thought to be primarily involved in host translation shutoff and cellular mRNA degradation, nsp1 has now been shown to be a truly multifunctional protein that affects host gene expression at multiple levels. The functions of nsp1 are surprisingly diverse and include not only the downregulation of cellular mRNA translation and stability, but also the inhibition of mRNA export from the nucleus, the suppression of host immune signaling, and, most recently, the epigenetic regulation of host gene expression. In this review, we first summarize the current knowledge on SARS-CoV-2-induced changes in epigenetic modifications and chromatin structure. We then focus on the role of nsp1 in epigenetic reprogramming, with a particular emphasis on the silencing of immune-related genes. Finally, we discuss potential molecular mechanisms underlying the epigenetic functions of nsp1 based on evidence from SARS-CoV-2 interactome studies.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Guangzhou National Laboratory, Guangzhou, 510320, China
- Department of Microbiology, University of Helsinki, Helsinki, 00014, Finland
| | - Haibin Yang
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Ruixue Sun
- Guangzhou National Laboratory, Guangzhou, 510320, China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou, 510320, China
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| |
Collapse
|
5
|
Ghorra N, Popotas A, Besse-Hammer T, Rogiers A, Corazza F, Nagant C. Cytokine Profile in Patients with Postacute Sequelae of COVID-19. Viral Immunol 2024; 37:346-354. [PMID: 39172652 DOI: 10.1089/vim.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
The enduring impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its disease manifestation, COVID-19, on public health remains significant. Postacute sequelae of SARS-CoV-2 infection (PASC) affect a considerable number of patients, impairing their quality of life. While the role of the cytokine storm in acute COVID-19 is well established, its contribution to the pathophysiology of PASC is not fully understood. This study aimed to analyze the cytokine profile of patients with PASC following in vitro stimulation of Toll-like receptor (TLR) pathways, comparing them with a healthy control group. From October 2020 till March 2021, Brugmann University Hospital's clinical research unit included patients with PASC in the study. Whole blood samples were collected from 50 patients and 25 healthy volunteers. After in vitro stimulation under five different conditions, cytokine levels were measured using a multiplex method. Significantly decreased cytokine levels were observed in patients with PASC compared with healthy volunteers, particularly after TLR4 (interleukin [IL]-1α, IL-1β, IL-2, IL-10, interferon (IFN)α, IFNγ, IFNω, and tumor necrosis factor (TNF)α) and TLR7/8 (IL-1α, IL-1β, IFNα, IFNω, IFNγ, and TNFα) pathway stimulation. Principal component analysis identified two distinct clusters, suggesting a likely dysregulation of immunity involving TLR4 and TLR7/8 pathways in patients with PASC. Our study suggests that TLR4 and TLR7/8 pathways play a role in the pathophysiology of PASC. Continuous basal activation of immunity could explain the high basal concentrations of cytokines described in these patients and the decreased amplitude of response of these signaling pathways following specific stimulation.
Collapse
Affiliation(s)
- Nathalie Ghorra
- Department of Immunology, LHUB-ULB (Laboratoire Hospitalier Universitaire de Bruxelles), Brussels, Belgium
| | - Alexandros Popotas
- Translational Research Unit, Hôpital Universitaire Des Enfants Reine Fabiola, Bruxelles, Belgique
- Translational Research Unit, Université Libre de Bruxelles, CHU Brugmann, Brussels, Belgium
| | - Tatiana Besse-Hammer
- Department of Clinical Research, Brugmann University Hospital, Brussels, Belgium
- Department of Neurology, Brugmann University Hospital, Brussels, Belgium
| | - Anne Rogiers
- Department of Clinical Research, Brugmann University Hospital, Brussels, Belgium
- Department of Neurology, Brugmann University Hospital, Brussels, Belgium
| | - Francis Corazza
- Department of Immunology, LHUB-ULB (Laboratoire Hospitalier Universitaire de Bruxelles), Brussels, Belgium
- Translational Research Unit, Hôpital Universitaire Des Enfants Reine Fabiola, Bruxelles, Belgique
| | - Carole Nagant
- Department of Immunology, LHUB-ULB (Laboratoire Hospitalier Universitaire de Bruxelles), Brussels, Belgium
| |
Collapse
|
6
|
Galúcio VCA, de Menezes DC, Chaves ECR, van den Berg AVS, de Lima PDL, da Costa Vasconcelos PF, Quaresma JAS, Falcão LFM. Laboratory profiling of patients with long COVID in the Brazilian Amazon region: A cross-sectional study. J Med Virol 2024; 96:e29828. [PMID: 39081145 DOI: 10.1002/jmv.29828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 01/25/2025]
Abstract
The condition commonly referred to as long coronavirus disease (COVID) is characterized by the continuation of symptoms, sometimes accompanied by new symptoms that persist after the resolution of acute coronavirus disease 2019 (COVID-19). This observational cross-sectional study investigated 332 patients with long COVID in the Brazilian Amazon region. The study aimed to elucidate the systemic interactions associated with long COVID by compiling the findings related to hematological, coagulation, immunological, metabolic, hepatic, renal, and muscular profiles. Participants with long COVID were identified using rigorous criteria and underwent thorough laboratory examinations. The obtained data were subsequently analyzed, allowing for comparisons, associations, and correlations between findings within distinct groups in the study. Significant associations were observed between hospitalization during the acute phase and persistent laboratory abnormalities, suggesting a potential link between acute severity and long-term effects. Notably, individuals with long COVID for over a year exhibited elevated levels of monocytes, prolonged prothrombin times, reduced prothrombin activity, high levels of lactate dehydrogenase, and an increased frequency of qualitative C-reactive protein detection. This study provides valuable insights into the laboratory risk profile of patients with long COVID, particularly in the unique context of the Amazon region, where patients exhibit persistent symptoms lasting up to 1261 days.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juarez Antônio Simões Quaresma
- Centre for Biological Health Sciences, State University of Pará (UEPA), Belém, Brazil
- School of Medicine, São Paulo University (USP), São Paulo, Brazil
- Tropical Medicine Centre, Federal University of Pará (UFPA), Belém, Brazil
| | - Luiz Fábio Magno Falcão
- Centre for Biological Health Sciences, State University of Pará (UEPA), Belém, Brazil
- School of Medicine, São Paulo University (USP), São Paulo, Brazil
| |
Collapse
|
7
|
Bechtold V, Smolen KK, Burny W, de Angelis SP, Delandre S, Essaghir A, Marchant A, Ndour C, Taton M, van der Most R, Willems F, Didierlaurent AM. Functional and epigenetic changes in monocytes from adults immunized with an AS01-adjuvanted vaccine. Sci Transl Med 2024; 16:eadl3381. [PMID: 39083587 DOI: 10.1126/scitranslmed.adl3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024]
Abstract
The adjuvant AS01 plays a key role in the immunogenicity of several approved human vaccines with demonstrated high efficacy. Its adjuvant effect relies on activation of the innate immune system. However, specific effects of AS01-adjuvanted vaccines on innate cell function and epigenetic remodeling, as described for Bacille Calmette-Guérin (BCG) and influenza vaccines, are still unknown. We assessed the long-term functional and epigenetic changes in circulating monocytes and dendritic cells induced by a model vaccine containing hepatitis B surface antigen and AS01 in healthy adults (NCT01777295). The AS01-adjuvanted vaccine, but not an Alum-adjuvanted vaccine, increased the number of circulating monocytes and their expression of human leukocyte antigen (HLA)-DR, which correlated with the magnitude of the memory CD4+ T cell response. Single-cell analyses revealed epigenetic alterations in monocyte and dendritic cell subsets, affecting accessibility of transcription factors involved in cell functions including activator protein-1 (AP-1), GATA, C/EBP, and interferon regulatory factor. The functional changes were characterized by a reduced proinflammatory response to Toll-like receptor activation and an improved response to interferon-γ, a cytokine critical for the adjuvant's mode of action. Epigenetic changes were most evident shortly after the second vaccine dose in CD14+ monocytes, for which accessibility differences of some transcription factors could persist for up to 6 months postvaccination. Together, we show that reprogramming of monocyte subsets occurs after vaccination with an AS01-adjuvanted vaccine, an effect that may contribute to the impact of vaccination beyond antigen-specific protection.
Collapse
Affiliation(s)
| | - Kinga K Smolen
- GSK, Rixensart, 1330, Belgium
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Faculty of Medicine, Université libre de Bruxelles (ULB), Brussels, 1070, Belgium
| | | | | | | | | | - Arnaud Marchant
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Faculty of Medicine, Université libre de Bruxelles (ULB), Brussels, 1070, Belgium
| | - Cheikh Ndour
- Business and Decision Life Sciences c/o GSK, Rixensart, 1330, Belgium
| | - Martin Taton
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Faculty of Medicine, Université libre de Bruxelles (ULB), Brussels, 1070, Belgium
| | | | - Fabienne Willems
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Faculty of Medicine, Université libre de Bruxelles (ULB), Brussels, 1070, Belgium
| | | |
Collapse
|
8
|
Ostapchuk YO, Lushova AV, Kan SA, Abdolla N, Kali A, Tleulieva R, Perfilyeva AV, Perfilyeva YV. Long-term changes in the phenotype and cytokine production of monocytes in COVID-19 recovered and vaccinated individuals. Infect Immun 2024; 92:e0021624. [PMID: 38874358 PMCID: PMC11238551 DOI: 10.1128/iai.00216-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Monocytes play a crucial role in the immune response against pathogens. Here, we sought to determine COVID-19 and the vaccine Gam-COVID-Vac induce long-term changes in the phenotype and cytokine production of circulating monocytes. Monocytes were purified from peripheral blood mononuclear cells of healthy donors who had not had COVID-19 or vaccination, who had received two doses of Gam-COVID-Vac, and who had mild/moderate COVID-19 in the last 6 months and evaluated by flow cytometry. To investigate the effect of SARS-CoV-2 proteins, monocytes were cultured for 2 days with or without stimulation with recombinant SARS-CoV-2 S1 and N peptides. Monocytes obtained from vaccinated and recovered individuals showed increased basal expression of HLA-DR, CD63, CXCR2, and TLR7. We also observed an increased frequency of CD63+ classical monocytes in both groups, as well as an increased frequency of HLA-DR+ non-classical monocytes in the COVID-19-recovered group compared to the control group. Monocytes from vaccinated and recovered donors produced higher basal levels of IL-6, IL-1β, and TNF-α cytokines. Ex vivo stimulation with SARS-CoV-2 antigens induced increased expression of HLA-DR and TLR7 on monocytes obtained from the control group. The challenge with SARS-CoV-2 antigens had no effect on the production of IL-6, IL-1β, and TNF-α cytokines by monocytes. The acquired data offer compelling evidence of enduring alterations in both the phenotype and functional status of circulating monocytes subsequent to vaccination with Gam-COVID-Vac and mild/moderate COVID-19 infection. At least some of these changes appear to be a consequence of exposure to SARS-CoV-2 S1 and N antigens.
Collapse
Affiliation(s)
- Yekaterina O. Ostapchuk
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin’s Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
- ECO-Consulting LLC, Almaty, Kazakhstan
| | - Anzhelika V. Lushova
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin’s Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Sofia A. Kan
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin’s Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Nurshat Abdolla
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin’s Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
| | - Aikyn Kali
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin’s Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Raikhan Tleulieva
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin’s Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | - Yuliya V. Perfilyeva
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin’s Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
| |
Collapse
|
9
|
Zhao J, Zhang H, Jiang L, Cheng F, Li W, Wang Z, Liu H, Li S, Jiang Y, Li M, Li Y, Liu S, Fang M, Zhou X, Ye X, Zhao S, Zheng Y, Meng S. Increased antibody titers but induced T cell AICD and apoptosis response in COVID-19 convalescents by inactivated vaccine booster. Microbiol Spectr 2024; 12:e0243523. [PMID: 38319108 PMCID: PMC10913726 DOI: 10.1128/spectrum.02435-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
It is urgently needed to evaluate the necessity and benefits of booster vaccination against the coronavirus 2 of the severe acute respiratory syndrome (SARS-CoV-2) Omicron to facilitate clinical decision-making for 2019 coronavirus disease (COVID-19) convalescents. We conducted a multicenter, prospective clinical trial (registration number: ChiCTR2100045810) in the first patients with COVID-19 from 28 January 2020 to 20 February 2020 to assess the long-term durability of neutralizing antibodies against live Omicron BA.5 and further assess the efficiency and safety of CoronaVac in the convalescent group. A total of 96 COVID-19 convalescents were enrolled in this study. Neutralizing antibody titers in convalescents were significantly reduced in 9-10 months. A dose-refreshing vaccination in 28 convalescents with an antibody titer below 96 significantly induced neutralizing antibodies against live Omicron by 4.84-fold. Meanwhile, the abundance of naive T cells increased dramatically, and TEMRA and TEM cells gradually decreased after vaccination. Activation-induced cell death and apoptosis-related genes were significantly elevated after vaccination in all T-cell subtypes. One-dose booster vaccination was effective in inducing a robust antibody response against SARS-CoV-2 Omicron in COVID-19 convalescents with low antibody titers. However, vaccine-mediated T-cell consumption and regeneration patterns may be detrimental to the antiviral response.IMPORTANCEThe globally dominant coronavirus 2 of the severe acute respiratory syndrome (SARS-CoV-2) Omicron variant raises the possibility of repeat infections among 2019 coronavirus disease (COVID-19) convalescents with low neutralizing antibody titers. The importance of this multicenter study lies in its evaluation of the long-term durability of neutralizing antibodies in COVID-19 convalescents and the efficacy of a booster vaccination against the live Omicron. The findings suggest that a one-dose booster vaccination is effective in inducing a robust antibody response against SARS-CoV-2 Omicron in convalescents with low antibody titers. However, the study also highlights the potential detrimental effects on the antiviral response due to vaccine-mediated T-cell consumption and regeneration patterns. These results are crucial for facilitating clinical decision-making for COVID-19 convalescents and informing public health policies regarding booster vaccinations.
Collapse
Affiliation(s)
- Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Han Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lina Jiang
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Fang Cheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- Department of Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zihao Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyang Liu
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shaohua Li
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yiyun Jiang
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Meiling Li
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shuhong Liu
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Min Fang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Ye
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shousong Zhao
- Department of Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuxuan Zheng
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Oh DS, Kim E, Lu G, Normand R, Shook LL, Lyall A, Jasset O, Demidkin S, Gilbert E, Kim J, Akinwunmi B, Tantivit J, Tirard A, Arnold BY, Slowikowski K, Goldberg MB, Filbin MR, Hacohen N, Nguyen LH, Chan AT, Yu XG, Li JZ, Yonker L, Fasano A, Perlis RH, Pasternak O, Gray KJ, Choi GB, Drew DA, Sen P, Villani AC, Edlow AG, Huh JR. SARS-CoV-2 infection elucidates unique features of pregnancy-specific immunity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.05.24301794. [PMID: 38370801 PMCID: PMC10871456 DOI: 10.1101/2024.02.05.24301794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Pregnancy is a risk factor for increased severity of SARS-CoV-2 and other respiratory infections. The mechanisms underlying this risk have not been well-established, partly due to a limited understanding of how pregnancy shapes immune responses. To gain insight into the role of pregnancy in modulating immune responses at steady state and upon perturbation, we collected peripheral blood mononuclear cells (PBMC), plasma, and stool from 226 women, including 152 pregnant individuals (n = 96 with SARS-CoV-2 infection and n = 56 healthy controls) and 74 non-pregnant women (n = 55 with SARS-CoV-2 and n = 19 healthy controls). We found that SARS-CoV-2 infection was associated with altered T cell responses in pregnant compared to non-pregnant women. Differences included a lower percentage of memory T cells, a distinct clonal expansion of CD4-expressing CD8 + T cells, and the enhanced expression of T cell exhaustion markers, such as programmed cell death-1 (PD-1) and T cell immunoglobulin and mucin domain-3 (Tim-3), in pregnant women. We identified additional evidence of immune dysfunction in severely and critically ill pregnant women, including a lack of expected elevation in regulatory T cell (Treg) levels, diminished interferon responses, and profound suppression of monocyte function. Consistent with earlier data, we found maternal obesity was also associated with altered immune responses to SARS-CoV-2 infection, including enhanced production of inflammatory cytokines by T cells. Certain gut bacterial species were altered in pregnancy and upon SARS-CoV-2 infection in pregnant individuals compared to non-pregnant women. Shifts in cytokine and chemokine levels were also identified in the sera of pregnant individuals, most notably a robust increase of interleukin-27 (IL-27), a cytokine known to drive T cell exhaustion, in the pregnant uninfected control group compared to all non-pregnant groups. IL-27 levels were also significantly higher in uninfected pregnant controls compared to pregnant SARS-CoV-2-infected individuals. Using two different preclinical mouse models of inflammation-induced fetal demise and respiratory influenza viral infection, we found that enhanced IL-27 protects developing fetuses from maternal inflammation but renders adult female mice vulnerable to viral infection. These combined findings from human and murine studies reveal nuanced pregnancy-associated immune responses, suggesting mechanisms underlying the increased susceptibility of pregnant individuals to viral respiratory infections.
Collapse
|
11
|
An H, Yan C, Ma J, Gong J, Gao F, Ning C, Wang F, Zhang M, Li B, Su Y, Liu P, Wei H, Jiang X, Yu Q. Immune inhibitory receptor-mediated immune response, metabolic adaptation, and clinical characterization in patients with COVID-19. Sci Rep 2023; 13:19221. [PMID: 37932287 PMCID: PMC10628246 DOI: 10.1038/s41598-023-45883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Immune inhibitory receptors (IRs) play a critical role in the regulation of immune responses to various respiratory viral infections. However, in coronavirus disease 2019 (COVID-19), the roles of these IRs in immune modulation, metabolic reprogramming, and clinical characterization remain to be determined. Through consensus clustering analysis of IR transcription in the peripheral blood of patients with COVID-19, we identified two distinct IR patterns in patients with COVID-19, which were named IR_cluster1 and IR_cluster2. Compared to IR_cluster1 patients, IR_cluster2 patients with lower expressions of immune inhibitory receptors presented with a suppressed immune response, lower nutrient metabolism, and worse clinical manifestations or prognosis. Considering the critical influence of the integrated regulation of multiple IRs on disease severity, we established a scoring system named IRscore, which was based on principal component analysis, to evaluate the combined effect of multiple IRs on the disease status of individual patients with COVID-19. Similar to IR_cluster2 patients, patients with high IRscores had longer hospital-free days at day 45, required ICU admission and mechanical ventilatory support, and presented higher Charlson comorbidity index and SOFA scores. A high IRscore was also linked to acute infection phase and absence of drug intervention. Our investigation comprehensively elucidates the potential role of IR patterns in regulating the immune response, modulating metabolic processes, and shaping clinical manifestations of COVID-19. All of this evidence suggests the essential role of prognostic stratification and biomarker screening based on IR patterns in the clinical management and drug development of future emerging infectious diseases such as COVID-19.
Collapse
Affiliation(s)
- Huaying An
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Congrui Yan
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Jun Ma
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Jiayuan Gong
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Fenghua Gao
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Changwen Ning
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Fei Wang
- Department of Cardiology, Chinese People's Liberation Army Lanzhou General Hospital Anning Branch, Lanzhou, China
| | - Meng Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Baoyi Li
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Yunqi Su
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Pengyu Liu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Hanqi Wei
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Xingwei Jiang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.
| | - Qun Yu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Wimmers F, Burrell AR, Feng Y, Zheng H, Arunachalam PS, Hu M, Spranger S, Nyhoff LE, Joshi D, Trisal M, Awasthi M, Bellusci L, Ashraf U, Kowli S, Konvinse KC, Yang E, Blanco M, Pellegrini K, Tharp G, Hagan T, Chinthrajah RS, Nguyen TT, Grifoni A, Sette A, Nadeau KC, Haslam DB, Bosinger SE, Wrammert J, Maecker HT, Utz PJ, Wang TT, Khurana S, Khatri P, Staat MA, Pulendran B. Multi-omics analysis of mucosal and systemic immunity to SARS-CoV-2 after birth. Cell 2023; 186:4632-4651.e23. [PMID: 37776858 PMCID: PMC10724861 DOI: 10.1016/j.cell.2023.08.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/18/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
The dynamics of immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants and young children by analyzing blood samples and weekly nasal swabs collected before, during, and after infection with Omicron and non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, showed no sign of decay for up to 300 days. Infants mounted a robust mucosal immune response characterized by inflammatory cytokines, interferon (IFN) α, and T helper (Th) 17 and neutrophil markers (interleukin [IL]-17, IL-8, and CXCL1). The immune response in blood was characterized by upregulation of activation markers on innate cells, no inflammatory cytokines, but several chemokines and IFNα. The latter correlated with viral load and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell multi-omics. Together, these data provide a snapshot of immunity to infection during the initial weeks and months of life.
Collapse
Affiliation(s)
- Florian Wimmers
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany; DFG Cluster of Excellence 2180 "Image-guided and Functional Instructed Tumor Therapy" (iFIT), University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany; German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Allison R Burrell
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Sara Spranger
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lindsay E Nyhoff
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Devyani Joshi
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Meera Trisal
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Mayanka Awasthi
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Usama Ashraf
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Katherine C Konvinse
- Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Emily Yang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Blanco
- Stanford Genomics Service Center, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Gregory Tharp
- Yerkes National Primate Research Center, Atlanta, GA 30024, USA
| | - Thomas Hagan
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - R Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - Tran T Nguyen
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kari C Nadeau
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - David B Haslam
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Steven E Bosinger
- Yerkes National Primate Research Center, Atlanta, GA 30024, USA; Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taia T Wang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mary A Staat
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Kane AS, Boribong BP, Loiselle M, Chitnis AP, Chavez H, Moldawer LL, Larson SD, Badaki-Makun O, Irimia D, Yonker LM. Monocyte anisocytosis corresponds with increasing severity of COVID-19 in children. Front Pediatr 2023; 11:1177048. [PMID: 37425266 PMCID: PMC10326545 DOI: 10.3389/fped.2023.1177048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Although SARS-CoV-2 infection can lead to severe COVID-19 in children, the role of biomarkers for assessing the risk of progression to severe disease is not well established in the pediatric population. Given the differences in monocyte signatures associated with worsening COVID-19 in adults, we aimed to determine whether monocyte anisocytosis early in the infectious course would correspond with increasing severity of COVID-19 in children. Methods We performed a multicenter retrospective study of 215 children with SARS-CoV-2 infection, Multisystem Inflammatory Syndrome in Children (MIS-C), convalescent COVID-19, and healthy age-matched controls to determine whether monocyte anisocytosis, quantified by monocyte distribution width (MDW) on complete blood count, was associated with increasing severity of COVID-19. We performed exploratory analyses to identify other hematologic parameters in the inflammatory signature of pediatric SARS-CoV-2 infection and determine the most effective combination of markers for assessing COVID-19 severity in children. Results Monocyte anisocytosis increases with COVID-19 severity and need for hospitalization. Although other inflammatory markers such as lymphocyte count, neutrophil/lymphocyte ratio, C-reactive protein, and cytokines correlate with disease severity, these parameters were not as sensitive as MDW for identifying severe disease in children. An MDW threshold of 23 offers a sensitive marker for severe pediatric COVID-19, with improved accuracy when assessed in combination with other hematologic parameters. Conclusion Monocyte anisocytosis corresponds with shifting hematologic profiles and inflammatory markers in children with COVID-19, and MDW serves as a clinically accessible biomarker for severe COVID-19 in children.
Collapse
Affiliation(s)
- Abigail S. Kane
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Brittany P. Boribong
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Maggie Loiselle
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Anagha P. Chitnis
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Hector Chavez
- Department of Pediatrics, Jackson Memorial Hospital, Miami, FL, United States
- Department of Pediatric Emergency Medicine, Holtz Children’s Hospital, Miami, FL, United States
| | - Lyle L. Moldawer
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Shawn D. Larson
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Oluwakemi Badaki-Makun
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Center for Data Science in Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Daniel Irimia
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Surgery, Shriners Burn Hospital, Boston, MA, United States
| | - Lael M. Yonker
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Scott NA, Pearmain L, Knight SB, Brand O, Morgan DJ, Jagger C, Harbach S, Khan S, Shuwa HA, Franklin M, Kästele V, Williams T, Prise I, McClure FA, Hackney P, Smith L, Menon M, Konkel JE, Lawless C, Wilson J, Mathioudakis AG, Stanel SC, Ustianowski A, Lindergard G, Brij S, Diar Bakerly N, Dark P, Brightling C, Rivera-Ortega P, Lord GM, Horsley A, Piper Hanley K, Felton T, Simpson A, Grainger JR, Hussell T, Mann ER. Monocyte migration profiles define disease severity in acute COVID-19 and unique features of long COVID. Eur Respir J 2023; 61:2202226. [PMID: 36922030 PMCID: PMC10040898 DOI: 10.1183/13993003.02226-2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND COVID-19 is associated with a dysregulated immune response but it is unclear how immune dysfunction contributes to the chronic morbidity persisting in many COVID-19 patients during convalescence (long COVID). METHODS We assessed phenotypical and functional changes of monocytes in COVID-19 patients during hospitalisation and up to 9 months of convalescence following COVID-19, respiratory syncytial virus or influenza A. Patients with progressive fibrosing interstitial lung disease were included as a positive control for severe, ongoing lung injury. RESULTS Monocyte alterations in acute COVID-19 patients included aberrant expression of leukocyte migration molecules, continuing into convalescence (n=142) and corresponding with specific symptoms of long COVID. Long COVID patients with unresolved lung injury, indicated by sustained shortness of breath and abnormal chest radiology, were defined by high monocyte expression of C-X-C motif chemokine receptor 6 (CXCR6) (p<0.0001) and adhesion molecule P-selectin glycoprotein ligand 1 (p<0.01), alongside preferential migration of monocytes towards the CXCR6 ligand C-X-C motif chemokine ligand 16 (CXCL16) (p<0.05), which is abundantly expressed in the lung. Monocyte CXCR6 and lung CXCL16 were heightened in patients with progressive fibrosing interstitial lung disease (p<0.001), confirming a role for the CXCR6-CXCL16 axis in ongoing lung injury. Conversely, monocytes from long COVID patients with ongoing fatigue exhibited a sustained reduction of the prostaglandin-generating enzyme cyclooxygenase 2 (p<0.01) and CXCR2 expression (p<0.05). These monocyte changes were not present in respiratory syncytial virus or influenza A convalescence. CONCLUSIONS Our data define unique monocyte signatures that define subgroups of long COVID patients, indicating a key role for monocyte migration in COVID-19 pathophysiology. Targeting these pathways may provide novel therapeutic opportunities in COVID-19 patients with persistent morbidity.
Collapse
Affiliation(s)
- Nicholas A Scott
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Equal contribution
| | - Laurence Pearmain
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Equal contribution
| | - Sean B Knight
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Respiratory Medicine, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Oliver Brand
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David J Morgan
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Christopher Jagger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sarah Harbach
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Saba Khan
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Halima A Shuwa
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Miriam Franklin
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Verena Kästele
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Thomas Williams
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ian Prise
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Flora A McClure
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pamela Hackney
- Research Innovation, Manchester University NHS Foundation Trust, Manchester, UK
| | - Lara Smith
- Research Innovation, Manchester University NHS Foundation Trust, Manchester, UK
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Criag Lawless
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James Wilson
- Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, UK
- Department of Microbiology, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Alexander G Mathioudakis
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, Manchester, UK
| | - Stefan C Stanel
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, Manchester, UK
| | - Andrew Ustianowski
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, UK
| | - Gabriella Lindergard
- Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, UK
| | - Seema Brij
- Department of Respiratory Medicine, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Nawar Diar Bakerly
- Department of Respiratory Medicine, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Paul Dark
- Department of Respiratory Medicine, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Christopher Brightling
- Department of Respiratory Sciences, Leicester NIHR BRC, University of Leicester, Leicester, UK
| | - Pilar Rivera-Ortega
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Graham M Lord
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alex Horsley
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, Manchester, UK
| | - Karen Piper Hanley
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Timothy Felton
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, Manchester, UK
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, Manchester, UK
| | - John R Grainger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Joint senior authors
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Joint senior authors
| | - Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Maternal and Fetal Health Centre, Division of Developmental Biology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Joint senior authors
| |
Collapse
|
15
|
Silva-Junior AL, Oliveira LDS, Belezia NCT, Tarragô AM, Costa AGD, Malheiro A. Immune Dynamics Involved in Acute and Convalescent COVID-19 Patients. IMMUNO 2023; 3:86-111. [DOI: 10.3390/immuno3010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
COVID-19 is a viral disease that has caused millions of deaths around the world since 2020. Many strategies have been developed to manage patients in critical conditions; however, comprehension of the immune system is a key factor in viral clearance, tissue repairment, and adaptive immunity stimulus. Participation of immunity has been identified as a major factor, along with biomarkers, prediction of clinical outcomes, and antibody production after infection. Immune cells have been proposed not only as a hallmark of severity, but also as a predictor of clinical outcomes, while dynamics of inflammatory molecules can also induce worse consequences for acute patients. For convalescent patients, mild disease was related to higher antibody production, although the factors related to the specific antibodies based on a diversity of antigens were not clear. COVID-19 was explored over time; however, the study of immunological predictors of outcomes is still lacking discussion, especially in convalescent patients. Here, we propose a review using previously published studies to identify immunological markers of COVID-19 outcomes and their relation to antibody production to further contribute to the clinical and laboratorial management of patients.
Collapse
Affiliation(s)
- Alexander Leonardo Silva-Junior
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Lucas da Silva Oliveira
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Nara Caroline Toledo Belezia
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Andréa Monteiro Tarragô
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
| | - Allyson Guimarães da Costa
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| |
Collapse
|
16
|
Root-Bernstein R. From Co-Infections to Autoimmune Disease via Hyperactivated Innate Immunity: COVID-19 Autoimmune Coagulopathies, Autoimmune Myocarditis and Multisystem Inflammatory Syndrome in Children. Int J Mol Sci 2023; 24:ijms24033001. [PMID: 36769320 PMCID: PMC9917907 DOI: 10.3390/ijms24033001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Neutrophilia and the production of neutrophil extracellular traps (NETs) are two of many measures of increased inflammation in severe COVID-19 that also accompany its autoimmune complications, including coagulopathies, myocarditis and multisystem inflammatory syndrome in children (MIS-C). This paper integrates currently disparate measures of innate hyperactivation in severe COVID-19 and its autoimmune complications, and relates these to SARS-CoV-2 activation of innate immunity. Aggregated data include activation of Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD) receptors, NOD leucine-rich repeat and pyrin-domain-containing receptors (NLRPs), retinoic acid-inducible gene I (RIG-I) and melanoma-differentiation-associated gene 5 (MDA-5). SARS-CoV-2 mainly activates the virus-associated innate receptors TLR3, TLR7, TLR8, NLRP3, RIG-1 and MDA-5. Severe COVID-19, however, is characterized by additional activation of TLR1, TLR2, TLR4, TLR5, TLR6, NOD1 and NOD2, which are primarily responsive to bacterial antigens. The innate activation patterns in autoimmune coagulopathies, myocarditis and Kawasaki disease, or MIS-C, mimic those of severe COVID-19 rather than SARS-CoV-2 alone suggesting that autoimmunity follows combined SARS-CoV-2-bacterial infections. Viral and bacterial receptors are known to synergize to produce the increased inflammation required to support autoimmune disease pathology. Additional studies demonstrate that anti-bacterial antibodies are also required to account for known autoantigen targets in COVID-19 autoimmune complications.
Collapse
|
17
|
Wimmers F, Burrell AR, Feng Y, Zheng H, Arunachalam PS, Hu M, Spranger S, Nyhoff L, Joshi D, Trisal M, Awasthi M, Bellusci L, Ashraf U, Kowli S, Konvinse KC, Yang E, Blanco M, Pellegrini K, Tharp G, Hagan T, Chinthrajah RS, Grifoni A, Sette A, Nadeau KC, Haslam DB, Bosinger SE, Wrammert J, Maecker HT, Utz PJ, Wang TT, Khurana S, Khatri P, Staat MA, Pulendran B. Systems biological assessment of the temporal dynamics of immunity to a viral infection in the first weeks and months of life. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.28.23285133. [PMID: 36778389 PMCID: PMC9915811 DOI: 10.1101/2023.01.28.23285133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dynamics of innate and adaptive immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to SARS-CoV-2 infection in infants and young children in the first weeks and months of life by analyzing blood samples collected before, during, and after infection with Omicron and Non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, were stably maintained for >300 days. Antigen-specific memory B cell (MCB) responses were durable for 150 days but waned thereafter. Somatic hypermutation of V-genes in MCB accumulated progressively over 9 months. The innate response was characterized by upregulation of activation markers on blood innate cells, and a plasma cytokine profile distinct from that seen in adults, with no inflammatory cytokines, but an early and transient accumulation of chemokines (CXCL10, IL8, IL-18R1, CSF-1, CX3CL1), and type I IFN. The latter was strongly correlated with viral load, and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell transcriptomics. Consistent with this, single-cell ATAC-seq revealed enhanced accessibility of chromatic loci targeted by interferon regulatory factors (IRFs) and reduced accessibility of AP-1 targeted loci, as well as traces of epigenetic imprinting in monocytes, during convalescence. Together, these data provide the first snapshot of immunity to infection during the initial weeks and months of life.
Collapse
Affiliation(s)
- Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tuebingen, Tuebingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), University of Tuebingen, Tuebingen, Germany
- German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Allison R. Burrell
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Sara Spranger
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lindsay Nyhoff
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine
| | - Devyani Joshi
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine
| | - Meera Trisal
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Mayanka Awasthi
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Usama Ashraf
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Katherine C. Konvinse
- Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Emily Yang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Blanco
- Stanford Genomics Service Center, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Gregory Tharp
- Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Thomas Hagan
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - R. Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kari C. Nadeau
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - David B. Haslam
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steven E. Bosinger
- Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine
| | - Holden T. Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul J. Utz
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Taia T. Wang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Mary A. Staat
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
18
|
Schultheiß C, Willscher E, Paschold L, Gottschick C, Klee B, Bosurgi L, Dutzmann J, Sedding D, Frese T, Girndt M, Höll JI, Gekle M, Mikolajczyk R, Binder M. Liquid biomarkers of macrophage dysregulation and circulating spike protein illustrate the biological heterogeneity in patients with post-acute sequelae of COVID-19. J Med Virol 2023; 95:e28364. [PMID: 36458566 PMCID: PMC9878213 DOI: 10.1002/jmv.28364] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/24/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
Post-acute sequelae of COVID-19 (PASC) are long-term consequences of SARS-CoV-2 infection that can substantially impair the quality of life. Underlying mechanisms ranging from persistent viruses to innate and adaptive immune dysregulation have been discussed. Here, we profiled the plasma of 181 individuals from the cohort study for digital health research in Germany (DigiHero), including individuals after mild to moderate COVID-19 with or without PASC and uninfected controls. We focused on soluble factors related to monocyte/macrophage biology and on circulating SARS-CoV-2 spike (S1) protein as a potential biomarker for persistent viral reservoirs. At a median time of 8 months after infection, we found pronounced dysregulation in almost all tested soluble factors, including both pro-inflammatory and pro-fibrotic cytokines. These immunological perturbations were remarkably independent of ongoing PASC symptoms per se, but further correlation and regression analyses suggested PASC-specific patterns involving CCL2/MCP-1 and IL-8 that either correlated with sCD162, sCD206/MMR, IFN-α2, IL-17A and IL-33, or IL-18 and IL-23. None of the analyzed factors correlated with the detectability or levels of circulating S1, indicating that this represents an independent subset of patients with PASC. These data confirm prior evidence of immune dysregulation and persistence of viral protein in PASC and illustrate its biological heterogeneity that still awaits correlation with clinically defined PASC subtypes.
Collapse
Affiliation(s)
- Christoph Schultheiß
- Department of Internal Medicine IV, Oncology/HematologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Edith Willscher
- Department of Internal Medicine IV, Oncology/HematologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Lisa Paschold
- Department of Internal Medicine IV, Oncology/HematologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Cornelia Gottschick
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health SciencesMedical School of the Martin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Bianca Klee
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health SciencesMedical School of the Martin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Lidia Bosurgi
- I. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Jochen Dutzmann
- Department of Cardiology and Intensive Care Medicine, Mid‐German Heart Center, University HospitalMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Daniel Sedding
- Department of Cardiology and Intensive Care Medicine, Mid‐German Heart Center, University HospitalMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Thomas Frese
- Institute of General Practice and Family MedicineMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Matthias Girndt
- Department of Internal Medicine IIMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Jessica I. Höll
- Pediatric Hematology and OncologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Michael Gekle
- Julius Bernstein‐Institute of Physiology, Faculty of MedicineMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health SciencesMedical School of the Martin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/HematologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
19
|
Godoy-Tena G, Barmada A, Morante-Palacios O, de la Calle-Fabregat C, Martins-Ferreira R, Ferreté-Bonastre AG, Ciudad L, Ruiz-Sanmartín A, Martínez-Gallo M, Ferrer R, Ruiz-Rodriguez JC, Rodríguez-Ubreva J, Vento-Tormo R, Ballestar E. Epigenetic and transcriptomic reprogramming in monocytes of severe COVID-19 patients reflects alterations in myeloid differentiation and the influence of inflammatory cytokines. Genome Med 2022; 14:134. [PMID: 36443794 PMCID: PMC9706884 DOI: 10.1186/s13073-022-01137-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND COVID-19 manifests with a wide spectrum of clinical phenotypes, ranging from asymptomatic and mild to severe and critical. Severe and critical COVID-19 patients are characterized by marked changes in the myeloid compartment, especially monocytes. However, little is known about the epigenetic alterations that occur in these cells during hyperinflammatory responses in severe COVID-19 patients. METHODS In this study, we obtained the DNA methylome and transcriptome of peripheral blood monocytes from severe COVID-19 patients. DNA samples extracted from CD14 + CD15- monocytes of 48 severe COVID-19 patients and 11 healthy controls were hybridized on MethylationEPIC BeadChip arrays. In parallel, single-cell transcriptomics of 10 severe COVID-19 patients were generated. CellPhoneDB was used to infer changes in the crosstalk between monocytes and other immune cell types. RESULTS We observed DNA methylation changes in CpG sites associated with interferon-related genes and genes associated with antigen presentation, concordant with gene expression changes. These changes significantly overlapped with those occurring in bacterial sepsis, although specific DNA methylation alterations in genes specific to viral infection were also identified. We also found these alterations to comprise some of the DNA methylation changes occurring during myeloid differentiation and under the influence of inflammatory cytokines. A progression of DNA methylation alterations in relation to the Sequential Organ Failure Assessment (SOFA) score was found to be related to interferon-related genes and T-helper 1 cell cytokine production. CellPhoneDB analysis of the single-cell transcriptomes of other immune cell types suggested the existence of altered crosstalk between monocytes and other cell types like NK cells and regulatory T cells. CONCLUSION Our findings show the occurrence of an epigenetic and transcriptional reprogramming of peripheral blood monocytes, which could be associated with the release of aberrant immature monocytes, increased systemic levels of pro-inflammatory cytokines, and changes in immune cell crosstalk in these patients.
Collapse
Affiliation(s)
- Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Anis Barmada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1RQ, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Octavio Morante-Palacios
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Anna G Ferreté-Bonastre
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Adolfo Ruiz-Sanmartín
- Intensive Care Department, Vall d'Hebron University Hospital, Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Vall d'Hebron University Hospital and Diagnostic Immunology Research Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Juan Carlos Ruiz-Rodriguez
- Intensive Care Department, Vall d'Hebron University Hospital, Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1RQ, UK
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain.
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, 200241, China.
| |
Collapse
|
20
|
Bhat S, Rishi P, Chadha VD. Understanding the epigenetic mechanisms in SARS CoV-2 infection and potential therapeutic approaches. Virus Res 2022; 318:198853. [PMID: 35777502 PMCID: PMC9236910 DOI: 10.1016/j.virusres.2022.198853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
COVID-19 pandemic caused by the Severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) has inflicted a global health challenge. Although the overwhelming escalation of mortality seen during the initial phase of the pandemic has reduced, emerging variants of SARS-CoV-2 continue to impact communities worldwide. Several studies have highlighted the association of gene specific epigenetic modifications in host cells with the pathogenesis and severity of the disease. Therefore, alongside the investigations into the virology and pathogenesis of SARS-CoV-2 infection, understanding the epigenetic mechanisms related to the disease is crucial for the rational design of effective targeted therapies. Here, we discuss the interaction of SARS-CoV-2 with the various epigenetic regulators and their subsequent contribution to the risk of disease severity and dysfunctional immune responses. Finally, we also highlight the use of epigenetically targeted drugs for the potential therapeutic interventions capable of eliminating viral infection and/or build effective immunity against it.
Collapse
Affiliation(s)
- Swati Bhat
- Center for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh 160014, India.
| | - Praveen Rishi
- Department of Microbiology, South Campus, Panjab University, Sector 25, Chandigarh 160014, India.
| | - Vijayta D Chadha
- Center for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh 160014, India.
| |
Collapse
|