1
|
Basu P, Maddula A, Nelson TS, Prasoon P, Winter MK, Herzog H, McCarson KE, Taylor BK. Neuropeptide Y Y2 Receptors in Sensory Neurons Tonically Suppress Nociception and Itch but Facilitate Postsurgical and Neuropathic Pain Hypersensitivity. Anesthesiology 2024; 141:946-968. [PMID: 39121458 PMCID: PMC11461131 DOI: 10.1097/aln.0000000000005184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
BACKGROUND Neuropeptide Y (NPY) Y2 receptor (Y2) antagonist BIIE0246 can both inhibit and facilitate nociception. The authors hypothesized that Y2 function depends on inflammation or nerve injury status. METHODS The authors implemented a battery of behavioral tests in mice of both sexes that received (1) no injury; (2) an incision model of postoperative pain; (3) a spared nerve injury model of neuropathic pain; and (4) a latent sensitization model of chronic postsurgical pain. In addition to Y2 gene expression assays, spinal Y2 G-protein coupling was studied with guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding assays. RESULTS The authors report that intrathecal BIIE0246 increased mechanical and cold hypersensitivity, produced behavioral signs of spontaneous nociception and itch, and produced conditioned place aversion and preference in normal, uninjured mice. BIIE0246 did not change heat hypersensitivity or motor coordination. Conditional (sensory neuron-specific) Y2 deletion prevented BIIE0246-induced mechanical and cold hypersensitivity, nocifensive behaviors, and aversion. Both conditional deletion and pharmacologic blockade of Y2 reduced mechanical and thermal hypersensitivity after incision or nerve injury. SNI did not change the sensitivity of Y2 G-protein coupling with the Y2 agonist peptide YY (3-36) (PYY3-36), but increased the population of Y2 that effectively coupled G-proteins. Intrathecal PYY3-36 failed to reduce spared nerve injury- or incision-induced hypersensitivity in C57BL/6N mice. Incision did not change Npy2r gene expression in dorsal root ganglion. CONCLUSIONS The authors conclude that Y2 at central terminals of primary afferent neurons provides tonic inhibition of mechanical and cold nociception and itch. This switches to the promotion of mechanical and thermal hyperalgesia in models of acute and chronic postsurgical and neuropathic pain, perhaps due to an increase in the population of Y2 that effectively couples to G-proteins. These results support the development of Y2 antagonists for the treatment of chronic postsurgical and neuropathic pain. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Paramita Basu
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to end Opioid Misuse, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Akshitha Maddula
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to end Opioid Misuse, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Tyler S. Nelson
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to end Opioid Misuse, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA
- Department of Molecular Pathobiology, NYU Pain Research Center, College of Dentistry, New York University, New York, NY 10010
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to end Opioid Misuse, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Michelle K. Winter
- Kansas Intellectual and Developmental Disabilities Research Center and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Herbert Herzog
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Kenneth E. McCarson
- Kansas Intellectual and Developmental Disabilities Research Center and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to end Opioid Misuse, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
2
|
Wu D, Li F, Yang F, Liu J. Validity of Plasma Neuropeptide Y in Combination with Clinical Factors in Predicting Neuralgia Following Herpes Zoster. Int J Gen Med 2024; 17:4805-4814. [PMID: 39440102 PMCID: PMC11495191 DOI: 10.2147/ijgm.s480411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Background Numerous lines of evidence suggest that neuropeptide Y (NPY) is critically involved in the modulation of neuropathic pain. Postherpetic neuralgia (PHN) is characterized by prolonged duration, severe pain, and significant treatment resistance, substantially impairing patients' quality of life. This study aims to evaluate the potential of plasma NPY levels in patients with PHN as a predictive biomarker for the development of this condition. Methods Between February 2022 and December 2023, 182 patients with herpes zoster (HZ) were recruited. Thirty-eight volunteers with no history of HZ were also recruited as controls. Clinical factors, NPY, brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) were assessed within 3 days of healing. Logistic regression analysis was used to predict the development of PHN. Results NPY levels were lower and BDNF and NGF were higher in HZ patients than those in controls. Only NPY levels were lower in patients with PHN (n = 59) compared with those without PHN (n = 123). Age, acute pain severity, and rash area were independent predictors of PHN, as were NPY levels. The area under the curve (AUC) to predict the development of PHN based on the combination of NPY levels and clinical factors was 0.873 (95% CI: 0.805 to 0.940), and the AUC was 0.804 based on only clinical factors (AUC: 0.804, 95% CI: 0.728 to 0.881). Conclusion Low plasma NPY levels are a predictor of developing PHN in patients with HZ. Combining clinical predictors with NPY levels may improve predictive accuracy.
Collapse
Affiliation(s)
- Dan Wu
- Department of Dermatology, Peking University First Hospital Ningxia Women and Children’s Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan City, Ningxia Hui Autonomous Region, 750011, People’s Republic of China
| | - Fang Li
- Department of Pathology, Peking University First Hospital Ningxia Women and Children’s Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan City, Ningxia Hui Autonomous Region, 750011, People’s Republic of China
| | - Feifei Yang
- Department of Dermatology, Tongzhou Maternal & Child Health Hospital of Beijing, Beijing City, 101101, People’s Republic of China
| | - Jun Liu
- Department of Critical Care Medicine, the First People’s Hospital of Yinchuan, Yinchuan City, Ningxia Hui Autonomous Region, 750001, People’s Republic of China
| |
Collapse
|
3
|
Basu P, Taylor BK. Neuropeptide Y Y2 receptors in acute and chronic pain and itch. Neuropeptides 2024; 108:102478. [PMID: 39461244 DOI: 10.1016/j.npep.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Pain and itch are regulated by a diverse array of neuropeptides and their receptors in superficial laminae of the spinal cord dorsal horn (DH). Neuropeptide Y (NPY) is normally expressed on DH neurons but not sensory neurons. By contrast, the Npy2r receptor (Y2) is expressed on the central and peripheral terminals of sensory neurons but not on DH neurons. Neurophysiological slice recordings indicate that Y2-selective agonists inhibits spinal neurotransmitter release from sensory neurons. However, behavioral pharmacology studies indicate that Y2 agonists exert minimal changes in nociception, even after injury. Additional discrepancies in the behavioral actions of the Y2-antagonist BIIE0246 - reports of either pronociception or antinociception - have now been resolved. In the normal state, spinally-directed (intrathecal) administration of BIIE0246 elicits ongoing nociception, hypersensitivity to sensory stimulation, and aversion. Conversely, in the setting of nerve injury and inflammation, intrathecal BIIE024 reduced not only mechanical and thermal hypersensitivity, but also a measure of the affective dimension of pain (conditioned place preference). When administered in chronic pain models of latent sensitization, BIIE0246 produced a profound reinstatement of pain-like behaviors. We propose that tissue or nerve injury induces a G protein switch in the action of NPY-Y2 signaling from antinociception in the naïve state to the inhibition of mechanical and heat hyperalgesia in the injured state, and then a switch back to antinociception to keep LS in a state of remission. This model clarifies the pharmacotherapeutic potential of Y2 research, pointing to the development of a new non-opioid pharmacotherapy for chronic pain using Y2 antagonists in patients who do not develop LS.
Collapse
Affiliation(s)
- Paramita Basu
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, United States of America
| | - Bradley K Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, United States of America; Department of Pharmacology and Chemical Biology, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
4
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525731. [PMID: 39345572 PMCID: PMC11429693 DOI: 10.1101/2023.01.26.525731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons' activity.
Collapse
Affiliation(s)
- Théo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | | | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet. Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University. Canada
| |
Collapse
|
5
|
Guo X, Xu Y, Cui Y, Zhang G, Shi Z, Song X. Fibroblast growth factor 3 contributes to neuropathic pain through Akt/mTOR signaling in mouse primary sensory neurons. Neurotherapeutics 2024; 21:e00383. [PMID: 38955643 DOI: 10.1016/j.neurot.2024.e00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/10/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Neuropathic pain (NP), a severe chronic pain condition, remains a substantial clinical challenge due to its complex pathophysiology and limited effective treatments. An association between the members of the Fibroblast Growth Factors (FGFs), particularly Fgf3, and the development of NP has become evident. In this study, utilizing a mouse model of NP, we observed a time-dependent increase in Fgf3 expression at both mRNA and protein levels within the dorsal root ganglia (DRG). Functional studies revealed that blocking Fgf3 expression mitigated nerve injury induced nociceptive hypersensitivity, suggesting its pivotal role in pain modulation. Moreover, our findings elucidate that Fgf3 contributes to pain hypersensitivity through the activation of the Akt/mTOR signaling in injured DRG neurons. These results not only shed light on the involvement of Fgf3 in nerve injury-induced NP but also highlight its potential as a promising therapeutic target for pain management. This study thereby advances our understanding of the molecular mechanisms underlying NP and opens new avenues for the development of effective treatment strategies.
Collapse
Affiliation(s)
- Xinying Guo
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yingyi Xu
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yanhua Cui
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Gaolong Zhang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Ziwen Shi
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xingrong Song
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China; Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Abdollahi M, Castaño JD, Salem JB, Beaudry F. Anandamide Modulates Thermal Avoidance in Caenorhabditis elegans Through Vanilloid and Cannabinoid Receptor Interplay. Neurochem Res 2024; 49:2423-2439. [PMID: 38847909 DOI: 10.1007/s11064-024-04186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/09/2024]
Abstract
Understanding the endocannabinoid system in C. elegans may offer insights into basic biological processes and potential therapeutic targets for managing pain and inflammation in human. It is well established that anandamide modulates pain perception by binding to cannabinoid and vanilloid receptors, regulating neurotransmitter release and neuronal activity. One objective of this study was to demonstrate the suitability of C. elegans as a model organism for assessing the antinociceptive properties of bioactive compounds and learning about the role of endocannabinoid system in C. elegans. The evaluation of the compound anandamide (AEA) revealed antinociceptive activity by impeding C. elegans nocifensive response to noxious heat. Proteomic and bioinformatic investigations uncovered several pathways activated by AEA. Enrichment analysis unveiled significant involvement of ion homeostasis pathways, which are crucial for maintaining neuronal function and synaptic transmission, suggesting AEA's impact on neurotransmitter release and synaptic plasticity. Additionally, pathways related to translation, protein synthesis, and mTORC1 signaling were enriched, highlighting potential mechanisms underlying AEA's antinociceptive effects. Thermal proteome profiling identified NPR-32 and NPR-19 as primary targets of AEA, along with OCR-2, Cathepsin B, Progranulin, Transthyretin, and ribosomal proteins. These findings suggest a complex interplay between AEA and various cellular processes implicated in nociceptive pathways and inflammation modulation. Further investigation into these interactions could provide valuable insights into the therapeutic potential of AEA and its targets for the management of pain-related conditions.
Collapse
Affiliation(s)
- Marzieh Abdollahi
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jesus D Castaño
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jennifer Ben Salem
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Qin Y, Hu X, Zhao HL, Kurban N, Chen X, Yi JK, Zhang Y, Cui SY, Zhang YH. Inhibition of Indoleamine 2,3-Dioxygenase Exerts Antidepressant-like Effects through Distinct Pathways in Prelimbic and Infralimbic Cortices in Rats under Intracerebroventricular Injection with Streptozotocin. Int J Mol Sci 2024; 25:7496. [PMID: 39000602 PMCID: PMC11242124 DOI: 10.3390/ijms25137496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
The application of intracerebroventricular injection of streptozotocin (ICV-STZ) is considered a useful animal model to mimic the onset and progression of sporadic Alzheimer's disease (sAD). In rodents, on day 7 of the experiment, the animals exhibit depression-like behaviors. Indoleamine 2,3-dioxygenase (IDO), a rate-limiting enzyme catalyzing the conversion of tryptophan (Trp) to kynurenine (Kyn), is closely related to depression and AD. The present study aimed to investigate the pathophysiological mechanisms of preliminary depression-like behaviors in ICV-STZ rats in two distinct cerebral regions of the medial prefrontal cortex, the prelimbic cortex (PrL) and infralimbic cortex (IL), both presumably involved in AD progression in this model, with a focus on IDO-related Kyn pathways. The results showed an increased Kyn/Trp ratio in both the PrL and IL of ICV-STZ rats, but, intriguingly, abnormalities in downstream metabolic pathways were different, being associated with distinct biological effects. In the PrL, the neuroprotective branch of the Kyn pathway was attenuated, as evidenced by a decrease in the kynurenic acid (KA) level and Kyn aminotransferase II (KAT II) expression, accompanied by astrocyte alterations, such as the decrease in glial fibrillary acidic protein (GFAP)-positive cells and increase in morphological damage. In the IL, the neurotoxicogenic branch of the Kyn pathway was enhanced, as evidenced by an increase in the 3-hydroxy-kynurenine (3-HK) level and kynurenine 3-monooxygenase (KMO) expression paralleled by the overactivation of microglia, reflected by an increase in ionized calcium-binding adaptor molecule 1 (Iba1)-positive cells and cytokines with morphological alterations. Synaptic plasticity was attenuated in both subregions. Additionally, microinjection of the selective IDO inhibitor 1-Methyl-DL-tryptophan (1-MT) in the PrL or IL alleviated depression-like behaviors by reversing these different abnormalities in the PrL and IL. These results suggest that the antidepressant-like effects linked to Trp metabolism changes induced by 1-MT in the PrL and IL occur through different pathways, specifically by enhancing the neuroprotective branch in the PrL and attenuating the neurotoxicogenic branch in the IL, involving distinct glial cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Su-Ying Cui
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Q.); (X.H.); (H.-L.Z.); (N.K.); (X.C.); (J.-K.Y.); (Y.Z.)
| | - Yong-He Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Q.); (X.H.); (H.-L.Z.); (N.K.); (X.C.); (J.-K.Y.); (Y.Z.)
| |
Collapse
|
8
|
Xu L, Hou L, Cao C, Li X. Ghrelin Induces the Production of Hypothalamic NPY Through the AMPK-mTOR Pathway to Alleviate Cancer-induced Bone Pain. In Vivo 2024; 38:1133-1142. [PMID: 38688635 PMCID: PMC11059913 DOI: 10.21873/invivo.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 05/02/2024]
Abstract
BACKGROUND/AIM Cancer-induced bone pain (CIBP) is one of the most common symptoms of bone metastasis of tumor cells. The hypothalamus may play a pivotal role in the regulation of CIBP. However, little is known about the exact mechanisms. MATERIALS AND METHODS First, we established a CIBP model to explore the relationship among hypothalamic ghrelin, NPY and CIBP. Then, we exogenously administered NPY and NPY receptor antagonists to investigate whether hypothalamic NPY exerted an antinociceptive effect through binding to NPY receptors. Finally, we exogenously administered ghrelin to investigate whether ghrelin alleviated CIBP by inducing the production of hypothalamic NPY through the AMPK-mTOR pathway. Body weight, food intake and behavioral indicators of CIBP were measured every 3 days. Hypothalamic ghrelin, NPY and the AMPK-mTOR pathway were also measured. RESULTS The expression of hypothalamic ghrelin and NPY was simultaneously decreased in cancer-bearing rats, which was accompanied by CIBP. Intracerebroventricular (i.c.v.) administration of NPY significantly alleviated CIBP in the short term. The antinociceptive effect of NPY was reversed with the i.c.v. administration of the Y1R and Y2R antagonists. The administration of ghrelin activated the AMPK-mTOR pathway and induced hypothalamic NPY production to alleviate CIBP. This effect of ghrelin on NPY and antinociception was reversed with the administration of a GHS-R1α antagonist. CONCLUSION Ghrelin could induce the production of hypothalamic NPY through the AMPK-mTOR pathway to alleviate CIBP, which can provide a novel therapeutic mechanism for CIBP.
Collapse
Affiliation(s)
- Longjie Xu
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Lili Hou
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, P.R. China
| | - Chun Cao
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, P.R. China;
| | - Xiaohua Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, P.R. China;
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, P.R. China
| |
Collapse
|
9
|
Morris AJ, Parker RS, Nazzal MK, Natoli RM, Fehrenbacher JC, Kacena MA, White FA. Cracking the Code: The Role of Peripheral Nervous System Signaling in Fracture Repair. Curr Osteoporos Rep 2024; 22:193-204. [PMID: 38236511 PMCID: PMC10912155 DOI: 10.1007/s11914-023-00846-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW The traditionally understated role of neural regulation in fracture healing is gaining prominence, as recent findings underscore the peripheral nervous system's critical contribution to bone repair. Indeed, it is becoming more evident that the nervous system modulates every stage of fracture healing, from the onset of inflammation to repair and eventual remodeling. RECENT FINDINGS Essential to this process are neurotrophins and neuropeptides, such as substance P, calcitonin gene-related peptide, and neuropeptide Y. These molecules fulfill key roles in promoting osteogenesis, influencing inflammation, and mediating pain. The sympathetic nervous system also plays an important role in the healing process: while local sympathectomies may improve fracture healing, systemic sympathetic denervation impairs fracture healing. Furthermore, chronic activation of the sympathetic nervous system, often triggered by stress, is a potential impediment to effective fracture healing, marking an important area for further investigation. The potential to manipulate aspects of the nervous system offers promising therapeutic possibilities for improving outcomes in fracture healing. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Ashlyn J Morris
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reginald S Parker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - Fletcher A White
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
10
|
Park M, Woo HN, Koh CS, Chang H, Kim JH, Park K, Chang JW, Lee H, Jung HH. A Single Injection of rAAV-shmTOR in Peripheral Nerve Persistently Attenuates Nerve Injury-Induced Mechanical Allodynia. Int J Mol Sci 2023; 24:15918. [PMID: 37958901 PMCID: PMC10649356 DOI: 10.3390/ijms242115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Activation of mammalian target of rapamycin (mTOR) has been known as one of the contributing factors in nociceptive sensitization after peripheral injury. Its activation followed by the phosphorylation of downstream effectors causes hyperexcitability of primary sensory neurons in the dorsal root ganglion. We investigated whether a single injection of rAAV-shmTOR would effectively downregulate both complexes of mTOR in the long-term and glial activation as well. Male SD rats were categorized into shmTOR (n = 29), shCON (n = 23), SNI (n = 13), and Normal (n = 8) groups. Treatment groups were injected with rAAV-shmTOR or rAAV-shCON, respectively. DRG tissues and sciatic nerve were harvested for Western blot and immunohistochemical analyses. Peripheral sensitization was gradually attenuated in the shmTOR group, and it reached a peak on PID 21. Western blot analysis showed that both p-mTORC1 and p-mTORC2 were downregulated in the DRG compared to shCON and SNI groups. We also found decreased expression of phosphorylated p38 and microglial activation in the DRG. We first attempted a therapeutic strategy for neuropathic pain with a low dose of AAV injection by interfering with the mTOR signaling pathway, suggesting its potential application in pain treatment.
Collapse
Affiliation(s)
- Minkyung Park
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.P.); (C.S.K.); (H.C.); (J.W.C.)
- Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ha-Na Woo
- Department of Biochemistry & Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.P.); (C.S.K.); (H.C.); (J.W.C.)
| | - Heesue Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.P.); (C.S.K.); (H.C.); (J.W.C.)
| | - Ji Hyun Kim
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
- Department of Microbiology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea
| | - Keerang Park
- Cedmogen Co., Ltd., Cheongju 28644, Republic of Korea;
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.P.); (C.S.K.); (H.C.); (J.W.C.)
- Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Heuiran Lee
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
- Department of Microbiology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.P.); (C.S.K.); (H.C.); (J.W.C.)
| |
Collapse
|
11
|
Yang P, Chen HY, Zhang X, Wang T, Li L, Su H, Li J, Guo YJ, Su SY. Electroacupuncture Attenuates Neuropathic Pain in a Rat Model of Cervical Spondylotic Radiculopathy: Involvement of Spinal Cord Synaptic Plasticity. J Pain Res 2023; 16:2447-2460. [PMID: 37483411 PMCID: PMC10362917 DOI: 10.2147/jpr.s415111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
Purpose Cervical spondylotic radiculopathy (CSR) is a common neurologic condition that causes chronic neck pain and motor functions, with neuropathic pain (NP) being the primary symptom. Although it has been established that electroacupuncture (EA) can yield an analgesic effect in clinics and synaptic plasticity plays a critical role in the development and maintenance of NP, the underlying mechanisms have not been fully elucidated. In this study, we explored the potential mechanisms underlying EA's effect on synaptic plasticity in CSR rat models. Materials and Methods The CSR rat model was established by spinal cord compression (SCC). Electroacupuncture stimulation was applied to LI4 (Hegu) and LR3 (Taichong) acupoints for 20 min once a day for 7 days. Pressure pain threshold (PPT) and mechanical pain threshold (MPT) were utilized to detect the pain response of rats. A gait score was used to evaluate the motor function of rats. Enzyme-linked immunosorbent assay (ELISA), Western blot (WB), immunohistochemistry (IHC), immunofluorescence (IF), and transmission electron microscopy (TEM) were performed to investigate the effects of EA. Results Our results showed that EA alleviated SCC-induced spontaneous pain and gait disturbance. ELISA showed that EA could decrease the concentration of pain mediators in the cervical nerve root. WB, IHC, and IF results showed that EA could downregulate the expression of synaptic proteins in spinal cord tissues and promote synaptic plasticity. TEM revealed that the EA could reverse the synaptic ultrastructural changes induced by CSR. Conclusion Our findings reveal that EA can inhibit SCC-induced NP by modulating the synaptic plasticity in the spinal cord and provide the foothold for the clinical treatment of CSR with EA.
Collapse
Affiliation(s)
- Pu Yang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Hai-Yan Chen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Xi Zhang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Tian Wang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Ling Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Hong Su
- Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Jing Li
- Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Yan-Jun Guo
- Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Sheng-Yong Su
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
12
|
Yang C, Gong Z, Zhang X, Miao S, Li B, Xie W, Wang T, Han X, Wang L, Dong Z, Yu S. Neuropeptide Y in the medial habenula alleviates migraine-like behaviors through the Y1 receptor. J Headache Pain 2023; 24:61. [PMID: 37231359 DOI: 10.1186/s10194-023-01596-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Migraine is a highly disabling health burden with multiple symptoms; however, it remains undertreated because of an inadequate understanding of its neural mechanisms. Neuropeptide Y (NPY) has been demonstrated to be involved in the modulation of pain and emotion, and may play a role in migraine pathophysiology. Changes in NPY levels have been found in patients with migraine, but whether and how these changes contribute to migraine is unknown. Therefore, the purpose of this study was to investigate the role of NPY in migraine-like phenotypes. METHODS Here, we used intraperitoneal injection of glyceryl trinitrate (GTN, 10 mg/kg) as a migraine mouse model, which was verified by light-aversive test, von Frey test, and elevated plus maze test. We then performed whole-brain imaging with NPY-GFP mice to explore the critical regions where NPY was changed by GTN treatment. Next, we microinjected NPY into the medial habenula (MHb), and further infused Y1 or Y2 receptor agonists into the MHb, respectively, to detect the effects of NPY in GTN-induced migraine-like behaviors. RESULTS GTN effectively triggered allodynia, photophobia, and anxiety-like behaviors in mice. After that, we found a decreased level of GFP+ cells in the MHb of GTN-treated mice. Microinjection of NPY attenuated GTN-induced allodynia and anxiety without affecting photophobia. Furthermore, we found that activation of Y1-but not Y2-receptors attenuated GTN-induced allodynia and anxiety. CONCLUSIONS Taken together, our data support that the NPY signaling in the MHb produces analgesic and anxiolytic effects through the Y1 receptor. These findings may provide new insights into novel therapeutic targets for the treatment of migraine.
Collapse
Affiliation(s)
- Chunxiao Yang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Zihua Gong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Medical Oncology, 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Xiaochen Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shuai Miao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Bozhi Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Wei Xie
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Tao Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Xun Han
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Liang Wang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Zhao Dong
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shengyuan Yu
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
13
|
Chen L, Lu X, Jin Q, Gao Z, Wang Y. Sensory innervation of the lumbar 5/6 intervertebral disk in mice. Front Neurol 2023; 14:1084209. [PMID: 37077575 PMCID: PMC10106599 DOI: 10.3389/fneur.2023.1084209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
IntroductionOver the years, most back pain-related biological studies focused on the pathogenesis of disk degeneration. It is known that nerve distributions at the outer layer of the annulus fibrosus (AF) may be an important contributor to back pain symptoms. However, the types and origins of sensory nerve terminals in the mouse lumbar disks have not been widely studied. Using disk microinjection and nerve retrograde tracing methods, the current study aimed to characterize the nerve types and neuropathway of the lumbar 5/6 (L5/6) disk in mice.MethodsUsing an anterior peritoneal approach, the L5/6 disk of adult C57BL/6 mice (males, 8–12 weeks) disk microinjection was performed. Fluorogold (FG) was injected into the L5/6 disk using the Hamilton syringe with a homemade glass needle driven by a pressure microinjector. The lumbar spine and bilateral thoracic 13 (Th13) to L6 DRGs were harvested at 10 days after injection. The number of FG+ neurons among different levels was counted and analyzed. Different nerve markers, including anti-neurofilament 160/200 (NF160/200), anti-calcitonin gene-related peptide (CGRP), anti-parvalbumin (PV), and anti-tyrosine hydroxylase (TH), were used to identify different types of nerve terminals in AF and their origins in DRG neurons.ResultsThere were at least three types of nerve terminals at the outer layer of L5/6 AF in mice, including NF160/200+ (indicating Aβ fibers), CGRP+ (Aδ and C fibers), and PV+ (proprioceptive fibers). No TH+ fibers (sympathetic nerve fibers and some C-low threshold mechanoreceptors) were noticed in either. Using retrograde tracing methods, we found that nerve terminals in the L5/6 disk were multi-segmentally from Th13-L6 DRGs, with L1 and L5 predominately. An immunofluorescence analysis revealed that FG+ neurons in DRGs were co-localized with NF160/200, CGRP, and PV, but not TH.ConclusionIntervertebral disks were innervated by multiple types of nerve fibers in mice, including Aβ, Aδ, C, and proprioceptive fibers. No sympathetic nerve fibers were found in AF. The nerve network of the L5/6 disk in mice was multi-segmentally innervated by the Th13-L6 DRGs (mainly L1 and L5 DRGs). Our results may serve as a reference for preclinical studies of discogenic pain in mice.
Collapse
Affiliation(s)
- Lunhao Chen
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Lu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianjun Jin
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Frontier Research Center of Brain and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Yue Wang
| |
Collapse
|