1
|
Mannion JM, Rahimi RA. Tissue-Resident Th2 Cells in Type 2 Immunity and Allergic Diseases. Immunol Rev 2025; 330:e70006. [PMID: 39981858 PMCID: PMC11897987 DOI: 10.1111/imr.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Type 2 immunity represents a unique immune module that provides host protection against macro-parasites and noxious agents such as venoms and toxins. In contrast, maladaptive type 2 immune responses cause allergic diseases. While multiple cell types play important roles in type 2 immunity, recent studies in humans and murine models of chronic allergic diseases have shown that a distinct population of tissue-resident, CD4+ T helper type 2 (Th2) cells play a critical role in chronic allergic inflammation. The rules regulating Th2 cell differentiation have remained less well defined than other T cell subsets, but recent studies have shed new light into the specific mechanisms controlling Th2 cell biology in vivo. Here, we review our current understanding of the checkpoints regulating the development and function of tissue-resident Th2 cells with a focus on chronic allergic diseases. We discuss evidence for a barrier tissue checkpoint in initial Th2 cell priming, including the role of neuropeptides, damage-associated molecular patterns, and dendritic cell macro-clusters. Furthermore, we review the evidence for a second barrier tissue checkpoint that instructs the development of multi-cytokine producing, tissue-resident Th2 cells that orchestrate allergic inflammation. Lastly, we discuss potential approaches to therapeutically target tissue-resident Th2 cells in chronic allergic diseases.
Collapse
Affiliation(s)
- Jenny M Mannion
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rod A Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Hanzawa S, Sugiura M, Nakae S, Masuo M, Morita H, Matsumoto K, Takeda K, Okumura K, Nakamura M, Ohno T, Miyazaki Y. The Prostaglandin D2 Receptor CRTH2 Contributes to Airway Hyperresponsiveness during Airway Inflammation Induced by Sensitization without an Adjuvant in Mice. Int Arch Allergy Immunol 2024; 185:752-760. [PMID: 38599205 DOI: 10.1159/000537840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/13/2024] [Indexed: 04/12/2024] Open
Abstract
INTRODUCTION Prostaglandin D2 (PGD2), which is produced mainly by Th2 cells and mast cells, promotes a type-2 immune response by activating Th2 cells, mast cells, eosinophils, and group 2 innate lymphoid cells (ILC2s) via its receptor, chemoattractant receptor-homologous molecules on Th2 cells (CRTH2). However, the role of CRTH2 in models of airway inflammation induced by sensitization without adjuvants, in which both IgE and mast cells may play major roles, remain unclear. METHODS Wild-type (WT) and CRTH2-knockout (KO) mice were sensitized with ovalbumin (OVA) without an adjuvant and then challenged intranasally with OVA. Airway inflammation was assessed based on airway hyperresponsiveness (AHR), lung histology, number of leukocytes, and levels of type-2 cytokines in the bronchoalveolar lavage fluid (BALF). RESULTS AHR was significantly reduced after OVA challenge in CRTH2 KO mice compared to WT mice. The number of eosinophils, levels of type-2 cytokines (IL-4, IL-5, and IL-13) in BALF, and IgE concentration in serum were decreased in CRTH2 KO mice compared to WT mice. However, lung histological changes were comparable between WT and CRTH2 KO mice. CONCLUSION CRTH2 is responsible for the development of asthma responses in a mouse model of airway inflammation that features prominent involvement of both IgE and mast cells.
Collapse
Affiliation(s)
- Satoshi Hanzawa
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Shuuwa General Hospital, Saitama, Japan
| | - Makiko Sugiura
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| | - Masahiro Masuo
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsukuni Ohno
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Vijeyakumaran M, Jawhri MA, Fortunato J, Solomon L, Shrestha Palikhe N, Vliagoftis H, Cameron L. Dual activation of estrogen receptor alpha and glucocorticoid receptor upregulate CRTh2-mediated type 2 inflammation; mechanism driving asthma severity in women? Allergy 2023; 78:767-779. [PMID: 36207765 DOI: 10.1111/all.15543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Type 2-high asthma is characterized by elevated levels of circulating Th2 cells and eosinophils, cells that express chemoattractant-homologous receptor expressed on Th2 cells (CRTh2). Severe asthma is more common in women than men; however, the underlying mechanism(s) remain elusive. Here we examined whether the relationship between severe asthma and type 2 inflammation differs by sex and if estrogen influences Th2 cell response to glucocorticoid (GC). METHODS Type 2 inflammation and the proportion of blood Th2 cells (CD4+ CRTh2+ ) were assessed in whole blood from subjects with asthma (n = 66). The effects of GC and estrogen receptor alpha (ERα) agonist on in vitro differentiated Th2 cells were examined. Expression of CRTh2, type 2 cytokines and degree of apoptosis (Annexin V+ , 7-AAD) were determined by flow cytometry, qRT-PCR, western blot and ELISA. RESULTS In severe asthma, the proportion of circulating Th2 cells and hospitalizations were higher in women than men. Women with severe asthma also had more Th2 cells and serum IL-13 than women with mild/moderate asthma. Th2 cells, eosinophils and CRTh2 mRNA correlated with clinical characteristics associated with asthma control in women but not men. In vitro, GC and ERα agonist treated Th2 cells exhibited less apoptosis, more CRTh2 as well as IL-5 and IL-13 following CRTh2 activation than Th2 cells treated with GC alone. CONCLUSION Women with severe asthma had higher levels of circulating Th2 cells than men, which may be due to estrogen modifying the effects of GC, enhancing Th2 cell survival and type 2 cytokine production.
Collapse
Affiliation(s)
- Meerah Vijeyakumaran
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - MohdWessam Al Jawhri
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Jenna Fortunato
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Lauren Solomon
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Nami Shrestha Palikhe
- Division of Pulmonary Medicine, Department of Medicine and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa Cameron
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
4
|
Rische CH, Thames AN, Krier-Burris RA, O’Sullivan JA, Bochner BS, Scott EA. Drug delivery targets and strategies to address mast cell diseases. Expert Opin Drug Deliv 2023; 20:205-222. [PMID: 36629456 PMCID: PMC9928520 DOI: 10.1080/17425247.2023.2166926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Current and developing mast cell therapeutics are reliant on small molecule drugs and biologics, but few are truly selective for mast cells. Most have cellular and disease-specific limitations that require innovation to overcome longstanding challenges to selectively targeting and modulating mast cell behavior. This review is designed to serve as a frame of reference for new approaches that utilize nanotechnology or combine different drugs to increase mast cell selectivity and therapeutic efficacy. AREAS COVERED Mast cell diseases include allergy and related conditions as well as malignancies. Here, we discuss the targets of existing and developing therapies used to treat these disease pathologies, classifying them into cell surface, intracellular, and extracellular categories. For each target discussed, we discuss drugs that are either the current standard of care, under development, or have indications for potential use. Finally, we discuss how novel technologies and tools can be used to take existing therapeutics to a new level of selectivity and potency against mast cells. EXPERT OPINION There are many broadly and very few selectively targeted therapeutics for mast cells in allergy and malignant disease. Combining existing targeting strategies with technology like nanoparticles will provide novel platforms to treat mast cell disease more selectively.
Collapse
Affiliation(s)
- Clayton H. Rische
- Northwestern University McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Ariel N. Thames
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
- Northwestern University McCormick School of Engineering, Department of Chemical and Biological Engineering, Evanston, IL, USA
| | - Rebecca A. Krier-Burris
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Jeremy A. O’Sullivan
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Bruce S. Bochner
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Evan A. Scott
- Northwestern University McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Microbiolgy-Immunology, Chicago, IL, USA
| |
Collapse
|
5
|
Mary R, Chalmin F, Accogli T, Bruchard M, Hibos C, Melin J, Truntzer C, Limagne E, Derangère V, Thibaudin M, Humblin E, Boidot R, Chevrier S, Arnould L, Richard C, Klopfenstein Q, Bernard A, Urade Y, Harker JA, Apetoh L, Ghiringhelli F, Végran F. Hematopoietic Prostaglandin D2 Synthase Controls Tfh/Th2 Communication and Limits Tfh Antitumor Effects. Cancer Immunol Res 2022; 10:900-916. [PMID: 35612500 DOI: 10.1158/2326-6066.cir-21-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/06/2021] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
T follicular helper (Tfh) cells are a subset of CD4+ T cells essential in immunity and have a role in helping B cells produce antibodies against pathogens. However, their role during cancer progression remains unknown. The mechanism of action of Tfh cells remains elusive because contradictory data have been reported on their protumor or antitumor responses in human and murine tumors. Like Tfh cells, Th2 cells are also involved in humoral immunity and are regularly associated with tumor progression and poor prognosis, mainly through their secretion of IL4. Here, we showed that Tfh cells expressed hematopoietic prostaglandin D2 (PGD2) synthase in a pSTAT1/pSTAT3-dependent manner. Tfh cells produced PGD2, which led to recruitment of Th2 cells via the PGD2 receptor chemoattractant receptor homologous molecule expressed on Th type 2 cells (CRTH2) and increased their effector functions. This cross-talk between Tfh and Th2 cells promoted IL4-dependent tumor growth. Correlation between Th2 cells, Tfh cells, and hematopoietic PGD2 synthase was observed in different human cancers and associated with outcome. This study provides evidence that Tfh/Th2 cross-talk through PGD2 limits the antitumor effects of Tfh cells and, therefore, could serve as a therapeutic target.
Collapse
Affiliation(s)
- Romain Mary
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Fanny Chalmin
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Théo Accogli
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Mélanie Bruchard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | - Christophe Hibos
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Joséphine Melin
- LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | | | - Valentin Derangère
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | - Etienne Humblin
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,Precision Immunology Institute, New York, New York
| | - Romain Boidot
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | | | - Corentin Richard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | - Antoine Bernard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Yoshihiro Urade
- Intemational Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - James A Harker
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Lionel Apetoh
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - François Ghiringhelli
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | - Frédérique Végran
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
6
|
Hachim IY, Hachim MY, Talaat IM, López-Ozuna VM, Saheb Sharif-Askari N, Al Heialy S, Halwani R, Hamid Q. The Molecular Basis of Gender Variations in Mortality Rates Associated With the Novel Coronavirus (COVID-19) Outbreak. Front Mol Biosci 2021; 8:728409. [PMID: 34604307 PMCID: PMC8484873 DOI: 10.3389/fmolb.2021.728409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023] Open
Abstract
Since the outbreak of the novel coronavirus disease (COVID-19) at the end of 2019, the clinical presentation of the disease showed a great heterogeneity with a diverse impact among different subpopulations. Emerging evidence from different parts of the world showed that male patients usually had a longer disease course as well as worse outcome compared to female patients. A better understanding of the molecular mechanisms behind this difference might be a fundamental step for more effective and personalized response to this disease outbreak. For that reason, here we investigate the molecular basis of gender variations in mortality rates related to COVID-19 infection. To achieve this, we used publicly available lung transcriptomic data from 141 females and compare it to 286 male lung tissues. After excluding Y specific genes, our results showed a shortlist of 73 genes that are differentially expressed between the two groups. Further analysis using pathway enrichment analysis revealed downregulation of a group of genes that are involved in the regulation of hydrolase activity including (CHM, DDX3X, FGFR3, SFRP2, and NLRP2) in males lungs compared to females. This pathway is believed to be essential for immune response and antimicrobial activity in the lung tissues. In contrast, our results showed an increased upregulation of angiotensin II receptor type 1 (AGTR1), a member of the renin-angiotensin system (RAS) that plays a role in angiotensin-converting enzyme 2 (ACE2) activity modulation in male lungs compared to females. Finally, our results showed a differential expression of genes involved in the immune response including the NLRP2 and PTGDR2 in lung tissues of both genders, further supporting the notion of the sex-based immunological differences. Taken together, our results provide an initial evidence of the molecular mechanisms that might be involved in the differential outcomes observed in both genders during the COVID-19 outbreak. This maybe essential for the discovery of new targets and more precise therapeutic options to treat COVID-19 patients from different clinical and epidemiological characteristics with the aim of improving their outcome.
Collapse
Affiliation(s)
- Ibrahim Y. Hachim
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Dubai, United Arab Emirates
| | - Mahmood Y. Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Iman Mamdouh Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Dubai, United Arab Emirates
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Rabih Halwani
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Dubai, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Qutayba Hamid
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Dubai, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
CD52-targeted depletion by Alemtuzumab ameliorates allergic airway hyperreactivity and lung inflammation. Mucosal Immunol 2021; 14:899-911. [PMID: 33731828 PMCID: PMC8225558 DOI: 10.1038/s41385-021-00388-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 02/04/2023]
Abstract
Allergic asthma is a chronic inflammatory disorder associated with airway hyperreactivity (AHR) whose global prevalence is increasing at an alarming rate. Group 2 innate lymphoid cells (ILC2s) and T helper 2 (TH2) cells are producers of type 2 cytokines, which may contribute to development of AHR. In this study, we explore the potential of CD52-targeted depletion of type 2 immune cells for treating allergic AHR. Here we show that anti-CD52 therapy can prevent and remarkably reverse established IL-33-induced AHR by reducing airway resistance and alleviating lung inflammation. We further show that CD52 depletion prevents and treats allergic AHR induced by clinically relevant allergens such as Alternaria alternata and house dust mite. Importantly, we leverage various humanized mice models of AHR to show new therapeutic applications for Alemtuzumab, an anti-CD52 depleting antibody that is currently FDA approved for treatment of multiple sclerosis. Our results demonstrate that CD52 depletion is a viable therapeutic option for reduction of pulmonary inflammation, abrogation of eosinophilia, improvement of lung function, and thus treatment of allergic AHR. Taken together, our data suggest that anti-CD52 depleting monoclonal antibodies, such as Alemtuzumab, can serve as viable therapeutic drugs for amelioration of TH2- and ILC2-dependent AHR.
Collapse
|
8
|
PET Imaging of GPR44 by Antagonist [ 11C]MK-7246 in Pigs. Biomedicines 2021; 9:biomedicines9040434. [PMID: 33923731 PMCID: PMC8073488 DOI: 10.3390/biomedicines9040434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
A validated imaging marker for beta-cell mass would improve understanding of diabetes etiology and enable new strategies in therapy development. We previously identified the membrane-spanning protein GPR44 as highly expressed and specific to the beta cells of the pancreas. The selective GPR44 antagonist MK-7246 was radiolabeled with carbon-11 and the resulting positron-emission tomography (PET) tracer [11C]MK-7246 was evaluated in a pig model and in vitro cell lines. The [11C]MK-7246 compound demonstrated mainly hepatobiliary excretion with a clearly defined pancreas, no spillover from adjacent tissues, and pancreatic binding similar in magnitude to the previously evaluated GPR44 radioligand [11C]AZ12204657. The binding could be blocked by preadministration of nonradioactive MK-7246, indicating a receptor-binding mechanism. [11C]MK-7246 showed strong potential as a PET ligand candidate for visualization of beta-cell mass (BCM) and clinical translation of this methodology is ongoing.
Collapse
|
9
|
Cavagnero KJ, Doherty TA. Lipid-mediated innate lymphoid cell recruitment and activation in aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 2021; 126:135-142. [PMID: 32950684 PMCID: PMC7855910 DOI: 10.1016/j.anai.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To synthesize investigations into the role of lipid-mediated recruitment and activation of group 2 innate lymphoid cells (ILC2s) in aspirin-exacerbated respiratory disease (AERD). DATA SOURCES A comprehensive literature review of reports pertaining to cellular mechanisms, cytokine, and lipid mediators in AERD, as well as ILC2 activation and recruitment, was performed using PubMed and Google Scholar. STUDY SELECTIONS Selections of studies were based on reports of lipid mediators in AERD, cytokine mediators in AERD, type 2 effector cells in AERD, platelets in AERD, AERD treatment, ILC2s in allergic airway disease, and ILC2 activation, inhibition, and trafficking. RESULTS The precise mechanisms of AERD pathogenesis are not well understood. Greater levels of proinflammatory lipid mediators and type 2 cytokines are found in tissues derived from patients with AERD relative to controls. After pathognomonic cyclooxygenase-1 inhibitor reactions, proinflammatory mediator concentrations (prostaglandin D2 and cysteinyl leukotrienes) are rapidly increased, as are ILC2 levels in the nasal mucosa. The ILC2s, which potently generate type 2 cytokines in response to lipid mediator stimulation, may play a key role in AERD pathogenesis. CONCLUSION Although the literature suggests that lipid-mediated ILC2 activation may occur in AERD, there is a dearth of definitive evidence. Future investigations leveraging novel next-generation single-cell sequencing approaches along with recently developed AERD murine models will better define lipid mediator-induced ILC2 trafficking in patients with AERD.
Collapse
Affiliation(s)
- Kellen J Cavagnero
- Department of Medicine, University of California, San Diego, La Jolla, California; Department of Dermatology, University of California, San Diego, La Jolla, California
| | - Taylor A Doherty
- Department of Medicine, University of California, San Diego, La Jolla, California; Veterans Affairs San Diego Health Care System, La Jolla, California.
| |
Collapse
|
10
|
Zhang YH, Li Z, Zeng T, Chen L, Li H, Huang T, Cai YD. Detecting the Multiomics Signatures of Factor-Specific Inflammatory Effects on Airway Smooth Muscles. Front Genet 2021; 11:599970. [PMID: 33519902 PMCID: PMC7838645 DOI: 10.3389/fgene.2020.599970] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Smooth muscles are a specific muscle subtype that is widely identified in the tissues of internal passageways. This muscle subtype has the capacity for controlled or regulated contraction and relaxation. Airway smooth muscles are a unique type of smooth muscles that constitute the effective, adjustable, and reactive wall that covers most areas of the entire airway from the trachea to lung tissues. Infection with SARS-CoV-2, which caused the world-wide COVID-19 pandemic, involves airway smooth muscles and their surrounding inflammatory environment. Therefore, airway smooth muscles and related inflammatory factors may play an irreplaceable role in the initiation and progression of several severe diseases. Many previous studies have attempted to reveal the potential relationships between interleukins and airway smooth muscle cells only on the omics level, and the continued existence of numerous false-positive optimal genes/transcripts cannot reflect the actual effective biological mechanisms underlying interleukin-based activation effects on airway smooth muscles. Here, on the basis of newly presented machine learning-based computational approaches, we identified specific regulatory factors and a series of rules that contribute to the activation and stimulation of airway smooth muscles by IL-13, IL-17, or the combination of both interleukins on the epigenetic and/or transcriptional levels. The detected discriminative factors (genes) and rules can contribute to the identification of potential regulatory mechanisms linking airway smooth muscle tissues and inflammatory factors and help reveal specific pathological factors for diseases associated with airway smooth muscle inflammation on multiomics levels.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Vitte J, Diallo AB, Boumaza A, Lopez A, Michel M, Allardet-Servent J, Mezouar S, Sereme Y, Busnel JM, Miloud T, Malergue F, Morange PE, Halfon P, Olive D, Leone M, Mege JL. A Granulocytic Signature Identifies COVID-19 and Its Severity. J Infect Dis 2020; 222:1985-1996. [PMID: 32941618 PMCID: PMC7543529 DOI: 10.1093/infdis/jiaa591] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023] Open
Abstract
Background An unbiased approach of SARS-CoV-2-induced immune dysregulation has not been undertaken so far. We aimed to identify previously unreported immune markers able to discriminate COVID-19 patients from healthy controls and to predict mild and severe disease. Methods An observational, prospective, multicentric study was conducted in patients with confirmed COVID-19: mild/moderate (n=7) and severe (n=19). Immunophenotyping of whole blood leukocytes was performed in patients upon hospital ward or intensive care unit admission and in healthy controls (n=25). Clinically relevant associations were identified through unsupervised analysis. Results Granulocytic (neutrophil, eosinophil and basophil) markers were enriched during COVID-19 and discriminated between mild and severe patients. Increased counts of CD15 +CD16 + neutrophils, decreased granulocytic expression of integrin CD11b, and Th2-related CRTH2 downregulation in eosinophils and basophils established a COVID-19 signature. Severity was associated with the emergence of PDL1 checkpoint expression in basophils and eosinophils. This granulocytic signature was accompanied by monocyte and lymphocyte immunoparalysis. Correlation with validated clinical scores supported pathophysiological relevance. Conclusion Phenotypic markers of circulating granulocytes are strong discriminators between infected and uninfected individuals as well as between severity stages. COVID-19 alters the frequency and functional phenotypes of granulocyte subsets with the emergence of CRTH2 as a disease biomarker.
Collapse
Affiliation(s)
- Joana Vitte
- Aix-Marseille University, Institut de Recherche pour le Développement, APHM Hôpitaux Universitaires de Marseille, UMR-D258 Microbes, Évolution, Phylogénie et Infection, Marseille, France.,Institut Hospitalo-universitaire, Méditerranée Infection, Marseille, France
| | - Aïssatou Bailo Diallo
- Aix-Marseille University, Institut de Recherche pour le Développement, APHM Hôpitaux Universitaires de Marseille, UMR-D258 Microbes, Évolution, Phylogénie et Infection, Marseille, France.,Institut Hospitalo-universitaire, Méditerranée Infection, Marseille, France
| | - Asma Boumaza
- Aix-Marseille University, Institut de Recherche pour le Développement, APHM Hôpitaux Universitaires de Marseille, UMR-D258 Microbes, Évolution, Phylogénie et Infection, Marseille, France.,Institut Hospitalo-universitaire, Méditerranée Infection, Marseille, France
| | - Alexandre Lopez
- Aix-Marseille University, Institut de Recherche pour le Développement, APHM Hôpitaux Universitaires de Marseille, UMR-D258 Microbes, Évolution, Phylogénie et Infection, Marseille, France.,Institut Hospitalo-universitaire, Méditerranée Infection, Marseille, France.,Aix-Marseille University, APHM Hôpitaux Universitaires de Marseille, Hôpital Nord, Service d'Anesthésie et de Réanimation, Marseille, France
| | - Moïse Michel
- Aix-Marseille University, Institut de Recherche pour le Développement, APHM Hôpitaux Universitaires de Marseille, UMR-D258 Microbes, Évolution, Phylogénie et Infection, Marseille, France.,Institut Hospitalo-universitaire, Méditerranée Infection, Marseille, France
| | | | | | - Youssouf Sereme
- Aix-Marseille University, Institut de Recherche pour le Développement, APHM Hôpitaux Universitaires de Marseille, UMR-D258 Microbes, Évolution, Phylogénie et Infection, Marseille, France.,Institut Hospitalo-universitaire, Méditerranée Infection, Marseille, France
| | | | | | | | - Pierre-Emmanuel Morange
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille University INSERM, INRAE, APHM Hôpitaux Universitaires de Marseille, Hôpital Timone, Service d'Hématologie, Marseille, France
| | - Philippe Halfon
- Internal Medicine and Infectious Diseases Department, Hôpital Européen-Laboratoire Alphabio, Marseille, France
| | - Daniel Olive
- Aix-Marseille University, Institut Paoli-Calmettes, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Marseille, France
| | - Marc Leone
- Aix-Marseille University, Institut de Recherche pour le Développement, APHM Hôpitaux Universitaires de Marseille, UMR-D258 Microbes, Évolution, Phylogénie et Infection, Marseille, France.,Institut Hospitalo-universitaire, Méditerranée Infection, Marseille, France.,Aix-Marseille University, APHM Hôpitaux Universitaires de Marseille, Hôpital Nord, Service d'Anesthésie et de Réanimation, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille University, Institut de Recherche pour le Développement, APHM Hôpitaux Universitaires de Marseille, UMR-D258 Microbes, Évolution, Phylogénie et Infection, Marseille, France.,Institut Hospitalo-universitaire, Méditerranée Infection, Marseille, France.,Aix-Marseille University, APHM Hôpitaux Universitaires de Marseille, Hôpital de la Conception, Service d'Immunologie, Marseille, France
| |
Collapse
|
12
|
Xu CJ, Gruzieva O, Qi C, Esplugues A, Gehring U, Bergström A, Mason D, Chatzi L, Porta D, Lodrup Carlsen KC, Baïz N, Madore AM, Alenius H, van Rijkom B, Jankipersadsing SA, van der Vlies P, Kull I, van Hage M, Bustamante M, Lertxundi A, Torrent M, Santorelli G, Fantini MP, Hovland V, Pesce G, Fyhrquist N, Laatikainen T, Nawijn MC, Li Y, Wijmenga C, Netea MG, Bousquet J, Anto JM, Laprise C, Haahtela T, Annesi-Maesano I, Carlsen KH, Gori D, Kogevinas M, Wright J, Söderhäll C, Vonk JM, Sunyer J, Melén E, Koppelman GH. Shared DNA methylation signatures in childhood allergy: The MeDALL study. J Allergy Clin Immunol 2020; 147:1031-1040. [PMID: 33338541 DOI: 10.1016/j.jaci.2020.11.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Differential DNA methylation associated with allergy might provide novel insights into the shared or unique etiology of asthma, rhinitis, and eczema. OBJECTIVE We sought to identify DNA methylation profiles associated with childhood allergy. METHODS Within the European Mechanisms of the Development of Allergy (MeDALL) consortium, we performed an epigenome-wide association study of whole blood DNA methylation by using a cross-sectional design. Allergy was defined as having symptoms from at least 1 allergic disease (asthma, rhinitis, or eczema) and positive serum-specific IgE to common aeroallergens. The discovery study included 219 case patients and 417 controls at age 4 years and 228 case patients and 593 controls at age 8 years from 3 birth cohorts, with replication analyses in 325 case patients and 1111 controls. We performed additional analyses on 21 replicated sites in 785 case patients and 2124 controls by allergic symptoms only from 8 cohorts, 3 of which were not previously included in analyses. RESULTS We identified 80 differentially methylated CpG sites that showed a 1% to 3% methylation difference in the discovery phase, of which 21 (including 5 novel CpG sites) passed genome-wide significance after meta-analysis. All 21 CpG sites were also significantly differentially methylated with allergic symptoms and shared between asthma, rhinitis, and eczema. The 21 CpG sites mapped to relevant genes, including ACOT7, LMAN3, and CLDN23. All 21 CpG sties were differently methylated in asthma in isolated eosinophils, and 10 were replicated in respiratory epithelium. CONCLUSION Reduced whole blood DNA methylation at 21 CpG sites was significantly associated with childhood allergy. The findings provide novel insights into the shared molecular mechanisms underlying asthma, rhinitis, and eczema.
Collapse
Affiliation(s)
- Cheng-Jian Xu
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Centre for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ana Esplugues
- Nursing Department, Faculty of Nursing and Chiropody, Universitat de València, València, Spain; FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, València, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dan Mason
- Bradford Institute for Health Research, Bradford, United Kingdom
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Daniela Porta
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Karin C Lodrup Carlsen
- Division of Paediatric and Adolescent Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Nour Baïz
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | - Anne-Marie Madore
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bianca van Rijkom
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Soesma A Jankipersadsing
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pieter van der Vlies
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; HZPC Research BV, Metslawier, The Netherlands
| | - Inger Kull
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Mariona Bustamante
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Aitana Lertxundi
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Preventive Medicine and Public Health Department, University of Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; Health Research institute Biodonostia, Donostia-San Sebastian, Gipuzkoa, Spain
| | - Matias Torrent
- Health Research Institute of the Balearic Islands, Spain; ib-salut, Area de Salut de Menorca, Spain
| | | | - Maria Pia Fantini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Vegard Hovland
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Giancarlo Pesce
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | | | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Human Microbiome Program, Medicum, University of Helsinki, Helsinki, Finland
| | - Tiina Laatikainen
- Finnish Institute for Health and Welfare, Helsinki, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Martijn C Nawijn
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yang Li
- Centre for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jean Bousquet
- University Hospital, Montpellier, France; Department of Dermatology, Charité, Berlin, Germany
| | - Josep M Anto
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada; Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada; Centre de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Québec, Canada
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Isabella Annesi-Maesano
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | - Kai-Håkon Carlsen
- Division of Paediatric and Adolescent Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - John Wright
- Bradford Institute for Health Research, Bradford, United Kingdom
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Judith M Vonk
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jordi Sunyer
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs' Children's Hospital, Stockholm, Sweden
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Comparative efficacy of glucocorticoid receptor agonists on Th2 cell function and attenuation by progesterone. BMC Immunol 2020; 21:54. [PMID: 33076829 PMCID: PMC7574173 DOI: 10.1186/s12865-020-00383-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Corticosteroids (CS)s suppress cytokine production and induce apoptosis of inflammatory cells. Prednisone and dexamethasone are oral CSs prescribed for treating asthma exacerbations. While prednisone is more commonly prescribed, dexamethasone is long acting and a more potent glucocorticoid receptor (GR) agonist. It can be administered as a one or two dose regime, unlike the five to seven days required for prednisone, a feature that increases compliance. We compared the relative ability of these two oral CSs to suppress type 2 inflammation. Since progesterone has affinity for the GR and women are more likely to relapse following an asthma exacerbation, we assessed its influence on CS action. RESULTS Dexamethasone suppressed the level of IL-5 and IL-13 mRNA within Th2 cells with ~ 10-fold higher potency than prednisolone (the active form of prednisone). Dexamethasone induced a higher proportion of apoptotic and dying cells than prednisolone, at all concentrations examined. Addition of progesterone reduced the capacity of both CS to drive cell death, though dexamethasone maintained significantly more killing activity. Progesterone blunted dexamethasone-induction of FKBP5 mRNA, indicating that the mechanism of action was by interference of the CS:GR complex. CONCLUSIONS Dexamethasone is both more potent and effective than prednisolone in suppressing type 2 cytokine levels and mediating apoptosis. Progesterone attenuated these anti-inflammatory effects, indicating its potential influence on CS responses in vivo. Collectively, our data suggest that when oral CS is required, dexamethasone may be better able to control type 2 inflammation, eliminate Th2 cells and ultimately lead to improved long-term outcomes. Further research in asthmatics is needed.
Collapse
|
14
|
Xia J, Abdu S, Maguire TJA, Hopkins C, Till SJ, Woszczek G. Prostaglandin D 2 receptors in human mast cells. Allergy 2020; 75:1477-1480. [PMID: 31876962 DOI: 10.1111/all.14161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jiao Xia
- School of Immunology & Microbial Sciences King's College London London UK
- ENT Department Beijing Friendship Hospital Capital Medical University Beijing China
| | - Semah Abdu
- School of Immunology & Microbial Sciences King's College London London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| | - Thomas J. A. Maguire
- School of Immunology & Microbial Sciences King's College London London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| | - Claire Hopkins
- ENT Department Guy's and St Thomas' NHS Foundation Trust London UK
| | - Stephen J. Till
- School of Immunology & Microbial Sciences King's College London London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| | - Grzegorz Woszczek
- School of Immunology & Microbial Sciences King's College London London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| |
Collapse
|
15
|
Patients with psoriatic arthritis have higher levels of FeNO than those with only psoriasis, which may reflect a higher prevalence of a subclinical respiratory involvement. Clin Rheumatol 2020; 39:2981-2988. [PMID: 32240433 DOI: 10.1007/s10067-020-05050-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Psoriatic arthritis (PsA) patients are often affected by numerous comorbidities. However, contrasting results have been reported with regard to the respiratory involvement in PsA patients. The aim of this study was to evaluate the presence of subclinical airway inflammation in non-smoking PsA patients compared to patients with only psoriasis using the fraction of exhaled nitric oxide (FeNO) as an indirect marker of airway inflammation. METHODS The study included 164 non-smoking psoriatic patients (Psoriasis Area of Severity Index or PASI score > 10): 82 with and 82 without PsA, who underwent FeNO tests at different flow rates (30, 50, 100, 200 mL/s). PsA patients were evaluated with Disease Activity in PSoriatic Arthritis Score (DAPSA). Both study groups were compared in terms of FeNO values and its association with the PASI score. The correlations between the variables were evaluated by means of Pearson's coefficient. RESULTS Patient with PsA had higher levels of FeNO than those with psoriasis but without arthritis (at 30 mL/s, 71.09 ± 18.40 ppb vs 66.88 ± 19.12 ppb (NS); at 50 mL/s, 36.61 ± 9.30 ppb vs 30.88 ± 9.73 ppb (p < 0.001); at 100 mL/s, 19.09 ± 4.66 ppb vs 16.63 ± 4.90 ppb (p < 0.001); and at 200 mL/s, 10.88 ± 2.53 ppb vs 9.43 ± 2.55 ppb (p < 0.001), respectively). PASI score correlated to FeNO only in psoriatic patients without arthritis. However, CASPAR index correlated with FeNO (FeNO30: r = 0.81, p < 0.001; FeNO50: r = 0.84, p < 0.001; FeNO100: r = 0.71, p < 0.001; FeNO200: r = 0.58, p < 0.001). DAPSA was also correlated with FeNO to all flows (FeNO30: r = 0.43, p < 0.001; FeNO50: r = 0.33, p < 0.001; FeNO100: r = 0.34, p < 0.001; FeNO200: r = 0.25, p < 0.001). CONCLUSIONS PsA patients seem to have more commonly subclinical airway inflammation than those with only psoriasis. Further studies are needed to replicate these findings. Key Points • Fraction of exhaled nitric oxide (FeNO) is a useful device to detect and monitor airway inflammation not only in asthma but also in systemic inflammatory diseases such as psoriatic arthritis and psoriasis. • Clinicians should be aware to check respiratory diseases in patients with psoriatic arthritis.
Collapse
|
16
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
17
|
Helfrich S, Mindt BC, Fritz JH, Duerr CU. Group 2 Innate Lymphoid Cells in Respiratory Allergic Inflammation. Front Immunol 2019; 10:930. [PMID: 31231357 PMCID: PMC6566538 DOI: 10.3389/fimmu.2019.00930] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
Millions of people worldwide are suffering from allergic inflammatory airway disorders. These conditions are regarded as a consequence of multiple imbalanced immune events resulting in an inadequate response with the exact underlying mechanisms still being a subject of ongoing research. Several cell populations have been proposed to be involved but it is becoming increasingly evident that group 2 innate lymphoid cells (ILC2s) play a key role in the initiation and orchestration of respiratory allergic inflammation. ILC2s are important mediators of inflammation but also tissue remodeling by secreting large amounts of signature cytokines within a short time period. Thereby, ILC2s instruct innate but also adaptive immune responses. Here, we will discuss the recent literature on allergic inflammation of the respiratory tract with a focus on ILC2 biology. Furthermore, we will highlight different therapeutic strategies to treat pulmonary allergic inflammation and their potential influence on ILC2 function as well as discuss the perspective of using human ILC2s for diagnostic purposes.
Collapse
Affiliation(s)
- Sofia Helfrich
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Barbara C Mindt
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montréal, QC, Canada
| | - Jörg H Fritz
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montréal, QC, Canada.,Department of Physiology, McGill University, Montréal, QC, Canada
| | - Claudia U Duerr
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
18
|
Wenink MH, Leijten EFA, Cupedo T, Radstake TRDJ. Review: Innate Lymphoid Cells: Sparking Inflammatory Rheumatic Disease? Arthritis Rheumatol 2019; 69:885-897. [PMID: 28217945 DOI: 10.1002/art.40068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/07/2017] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Tom Cupedo
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
19
|
Pulmonary group 2 innate lymphoid cells: surprises and challenges. Mucosal Immunol 2019; 12:299-311. [PMID: 30664706 PMCID: PMC6436699 DOI: 10.1038/s41385-018-0130-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) are a recently described subset of innate lymphocytes with important immune and homeostatic functions at multiple tissue sites, especially the lung. These cells expand locally after birth and during postnatal lung maturation and are present in the lung and other peripheral organs. They are modified by a variety of processes and mediate inflammatory responses to respiratory pathogens, inhaled allergens and noxious particles. Here, we review the emerging roles of ILC2s in pulmonary homeostasis and discuss recent and surprising advances in our understanding of how hormones, age, neurotransmitters, environmental challenges, and infection influence ILC2s. We also review how these responses may underpin the development, progression and severity of pulmonary inflammation and chronic lung diseases and highlight some of the remaining challenges for ILC2 biology.
Collapse
|
20
|
Maric J, Ravindran A, Mazzurana L, Van Acker A, Rao A, Kokkinou E, Ekoff M, Thomas D, Fauland A, Nilsson G, Wheelock CE, Dahlén SE, Ferreirós N, Geisslinger G, Friberg D, Heinemann A, Konya V, Mjösberg J. Cytokine-induced endogenous production of prostaglandin D 2 is essential for human group 2 innate lymphoid cell activation. J Allergy Clin Immunol 2018; 143:2202-2214.e5. [PMID: 30578872 DOI: 10.1016/j.jaci.2018.10.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 08/08/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) play a key role in the initiation and maintenance of type 2 immune responses. The prostaglandin (PG) D2-chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) receptor axis potently induces cytokine production and ILC2 migration. OBJECTIVE We set out to examine PG production in human ILC2s and the implications of such endogenous production on ILC2 function. METHODS The effects of the COX-1/2 inhibitor flurbiprofen, the hematopoietic prostaglandin D2 synthase (HPGDS) inhibitor KMN698, and the CRTH2 antagonist CAY10471 on human ILC2s were determined by assessing receptor and transcription factor expression, cytokine production, and gene expression with flow cytometry, ELISA, and quantitative RT-PCR, respectively. Concentrations of lipid mediators were measured by using liquid chromatography-tandem mass spectrometry and ELISA. RESULTS We show that ILC2s constitutively express HPGDS and upregulate COX-2 upon IL-2, IL-25, and IL-33 plus thymic stromal lymphopoietin stimulation. Consequently, PGD2 and its metabolites can be detected in ILC2 supernatants. We reveal that endogenously produced PGD2 is essential in cytokine-induced ILC2 activation because blocking of the COX-1/2 or HPGDS enzymes or the CRTH2 receptor abolishes ILC2 responses. CONCLUSION PGD2 produced by ILC2s is, in a paracrine/autocrine manner, essential in cytokine-induced ILC2 activation. Hence we provide the detailed mechanism behind how CRTH2 antagonists represent promising therapeutic tools for allergic diseases by controlling ILC2 function.
Collapse
Affiliation(s)
- Jovana Maric
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, and BioTechMed, Graz, Austria; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Avinash Ravindran
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, and Clinical Immunology and transfusion medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Mazzurana
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Aline Van Acker
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anna Rao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Maria Ekoff
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, and Clinical Immunology and transfusion medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Pharmazentrum Frankfurt/ZAFES, Frankfurt, Germany
| | - Alexander Fauland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, and Clinical Immunology and transfusion medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Pharmazentrum Frankfurt/ZAFES, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Pharmazentrum Frankfurt/ZAFES, Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project group Translational Medicine & Pharmacology TMP, Frankfurt, Germany
| | - Danielle Friberg
- Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Stockholm, Sweden; Department of Surgical Science, Uppsala University, Uppsala, Sweden
| | - Akos Heinemann
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, and BioTechMed, Graz, Austria
| | - Viktoria Konya
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, and BioTechMed, Graz, Austria; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
21
|
Muehling LM, Lawrence MG, Woodfolk JA. Pathogenic CD4 + T cells in patients with asthma. J Allergy Clin Immunol 2017; 140:1523-1540. [PMID: 28442213 PMCID: PMC5651193 DOI: 10.1016/j.jaci.2017.02.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 02/08/2023]
Abstract
Asthma encompasses a variety of clinical phenotypes that involve distinct T cell-driven inflammatory processes. Improved understanding of human T-cell biology and the influence of innate cytokines on T-cell responses at the epithelial barrier has led to new asthma paradigms. This review captures recent knowledge on pathogenic CD4+ T cells in asthmatic patients by drawing on observations in mouse models and human disease. In patients with allergic asthma, TH2 cells promote IgE-mediated sensitization, airway hyperreactivity, and eosinophilia. Here we discuss recent discoveries in the myriad molecular pathways that govern the induction of TH2 differentiation and the critical role of GATA-3 in this process. We elaborate on how cross-talk between epithelial cells, dendritic cells, and innate lymphoid cells translates to T-cell outcomes, with an emphasis on the actions of thymic stromal lymphopoietin, IL-25, and IL-33 at the epithelial barrier. New concepts on how T-cell skewing and epitope specificity are shaped by multiple environmental cues integrated by dendritic cell "hubs" are discussed. We also describe advances in understanding the origins of atypical TH2 cells in asthmatic patients, the role of TH1 cells and other non-TH2 types in asthmatic patients, and the features of T-cell pathogenicity at the single-cell level. Progress in technologies that enable highly multiplexed profiling of markers within a single cell promise to overcome barriers to T-cell discovery in human asthmatic patients that could transform our understanding of disease. These developments, along with novel T cell-based therapies, position us to expand the assortment of molecular targets that could facilitate personalized treatments.
Collapse
Affiliation(s)
- Lyndsey M Muehling
- Allergy Division, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Monica G Lawrence
- Allergy Division, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Judith A Woodfolk
- Allergy Division, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va.
| |
Collapse
|
22
|
|
23
|
Eosinophils and eosinophil-associated diseases: An update. J Allergy Clin Immunol 2017; 141:505-517. [PMID: 29045815 DOI: 10.1016/j.jaci.2017.09.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023]
Abstract
The goal of this series is to offer a survey of the latest literature for clinicians and scientists alike, providing a list of important recent advances relevant to the broad field of allergy and immunology. This particular assignment was to cover the topic of eosinophils. In an attempt to highlight major ideas, themes, trends, and advances relevant to basic and clinical aspects of eosinophil biology, a search of articles published since 2015 in the Journal of Allergy and Clinical Immunology and other high-impact journals was performed. Articles were then reviewed and organized, and then key findings were summarized. Given space limitations, many outstanding articles could not be included, but the hope is that what follows provides a succinct overview of recently published work that has significantly added to our knowledge of eosinophils and eosinophil-associated diseases.
Collapse
|
24
|
Poon AH, Choy DF, Chouiali F, Ramakrishnan RK, Mahboub B, Audusseau S, Mogas A, Harris JM, Arron JR, Laprise C, Hamid Q. Increased Autophagy-Related 5 Gene Expression Is Associated with Collagen Expression in the Airways of Refractory Asthmatics. Front Immunol 2017; 8:355. [PMID: 28424691 PMCID: PMC5372794 DOI: 10.3389/fimmu.2017.00355] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/13/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Fibrosis, particularly excessive collagen deposition, presents a challenge for treating asthmatic individuals. At present, no drugs can remove or reduce excessive collagen in asthmatic airways. Hence, the identification of pathways involved in collagen deposition would help to generate therapeutic targets to interfere with the airway remodeling process. Autophagy, a cellular degradation process, has been shown to be dysregulated in various fibrotic diseases, and genetic association studies in independent human populations have identified autophagy-related 5 (ATG5) to be associated with asthma pathogenesis. Hence, the dysregulation of autophagy may contribute to fibrosis in asthmatic airways. OBJECTIVE This study aimed to determine if (1) collagen deposition in asthmatic airways is associated with ATG5 expression and (2) ATG5 protein expression is associated with asthma per se and severity. METHODS Gene expression of transforming growth factor beta 1, various asthma-related collagen types [collagen, type I, alpha 1; collagen, type II, alpha 1; collagen, type III, alpha 1; collagen, type V, alpha 1 (COL5A1) and collagen, type V, alpha 2], and ATG5 were measured using mRNA isolated from bronchial biopsies of refractory asthmatic subjects and assessed for pairwise associations. Protein expression of ATG5 in the airways was measured and associations were assessed for asthma per se, severity, and lung function. MAIN RESULTS In refractory asthmatic individuals, gene expression of ATG5 was positively associated with COL5A1 in the airways. No association was detected between ATG5 protein expression and asthma per se, severity, and lung function. CONCLUSION AND CLINICAL RELEVANCE Positive correlation between the gene expression patterns of ATG5 and COL5A1 suggests that dysregulated autophagy may contribute to subepithelial fibrosis in the airways of refractory asthmatic individuals. This finding highlights the therapeutic potential of ATG5 in ameliorating airway remodeling in the difficult-to-treat refractory asthmatic individuals.
Collapse
Affiliation(s)
- Audrey H Poon
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - David F Choy
- Biomarker Discovery - OMNI, Genentech Inc., South San Francisco, CA, USA
| | - Fazila Chouiali
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | - Bassam Mahboub
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Severine Audusseau
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Andrea Mogas
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Jeffrey M Harris
- OMNI Early Clinical Development, Genentech Inc., South San Francisco, CA, USA
| | - Joseph R Arron
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Catherine Laprise
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Department of Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Qutayba Hamid
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
25
|
Tran JC, Tran D, Hilderbrand A, Andersen N, Huang T, Reif K, Hotzel I, Stefanich EG, Liu Y, Wang J. Automated Affinity Capture and On-Tip Digestion to Accurately Quantitate in Vivo Deamidation of Therapeutic Antibodies. Anal Chem 2016; 88:11521-11526. [PMID: 27797494 DOI: 10.1021/acs.analchem.6b02766] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deamidation of therapeutic antibodies may result in decreased drug activity and undesirable changes in pharmacokinetics and immunogenicity. Therefore, it is necessary to monitor the deamidation levels [during storage] and after in vivo administration. Because of the complexity of in vivo samples, immuno-affinity capture is widely used for specific enrichment of the target antibody prior to LC-MS. However, the conventional use of bead-based methods requires large sample volumes and extensive processing steps. Furthermore, with automation difficulties and extended sample preparation time, bead-based approaches may increase artificial deamidation. To overcome these challenges, we developed an automated platform to perform tip-based affinity capture of antibodies from complex matrixes with rapid digestion and peptide elution into 96-well microtiter plates followed by LC-MS analysis. Detailed analyses showed that the new method presents high repeatability and reproducibility with both intra and inter assay CVs < 8%. Using the automated platform, we successfully quantified the levels of deamidation of a humanized monoclonal antibody in cynomolgus monkeys over a time period of 12 weeks after administration. Moreover, we found that deamidation kinetics between in vivo samples and samples stressed in vitro at neutral pH were consistent, suggesting that the in vitro stress test may be used as a method to predict the liability to deamidation of therapeutic antibodies in vivo.
Collapse
Affiliation(s)
- John C Tran
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Daniel Tran
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Amy Hilderbrand
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Nisana Andersen
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Tao Huang
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Karin Reif
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Isidro Hotzel
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Eric G Stefanich
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Yichin Liu
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| | - Jianyong Wang
- Biochemical and Cellular Pharmacology, ‡Protein Analytical Chemistry, §Immunology, ∥Antibody Engineering, and ⊥Preclinical and Translational Pharmacokinetics, Genentech, Inc. , South San Francisco, California 94080-4990, United States
| |
Collapse
|
26
|
Abstract
IgG4-related hepatobiliary diseases are part of a multiorgan fibroinflammatory condition termed IgG4-related disease, and include IgG4-related sclerosing cholangitis (IgG4-SC) and IgG4-related hepatopathy. These diseases can present with biliary strictures and/or mass lesions, making them difficult to differentiate from primary sclerosing cholangitis (PSC) or other hepatobiliary malignancies. Diagnosis is based on a combination of clinical, biochemical, radiological and histological findings. However, a gold standard diagnostic test is lacking, warranting the identification of more specific disease markers. Novel assays - such as the serum IgG4:IgG1 ratio and IgG4:IgG RNA ratio (which distinguish IgG4-SC from PSC with high serum IgG4 levels), and plasmablast expansion to recognize IgG4-SC with normal serum IgG4 levels - require further validation. Steroids and other immunosuppressive therapies can lead to clinical and radiological improvement when given in the inflammatory phase of the disease, but evidence for the efficacy of treatment regimens is limited. Progressive fibrosclerotic disease, liver cirrhosis and an increased risk of malignancy are now recognized outcomes. Insights into the genetic and immunological features of the disease have increased over the past decade, with an emphasis on HLAs, T cells, circulating memory B cells and plasmablasts, chemokine-mediated trafficking, as well as the role of the innate immune system.
Collapse
|
27
|
Rajapaksa KS, Huang T, Sharma N, Liu S, Solon M, Reyes A, Paul S, Yee A, Tao J, Chalasani S, Bien-Ly N, Barck K, Carano RAD, Wang J, Rangell L, Bremer M, Danilenko DM, Katavolos P, Hotzel I, Reif K, Austin CD. Preclinical Safety Profile of a Depleting Antibody against CRTh2 for Asthma: Well Tolerated Despite Unexpected CRTh2 Expression on Vascular Pericytes in the Central Nervous System and Gastric Mucosa. Toxicol Sci 2016; 152:72-84. [PMID: 27103662 DOI: 10.1093/toxsci/kfw067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CRTh2 is expressed on immune cells that drive asthma pathophysiology. Current treatment options for severe asthma are inadequate and therapeutic antibody-mediated depletion of CRTh2-expressing cells represents a promising new therapeutic strategy. Here we report for the first time that CRTh2 is not only expressed on immune cells, but also on microvasculature in the central nervous system (CNS) and gastric mucosa in humans. Microvascular expression of CRTh2 raises a safety concern because a therapeutic antiCRTh2 antibody with enhanced depletion capacity could lead to vascular damage. To evaluate this safety risk, we characterized microvascular expression in human and in transgenic mice expressing human CRTh2 protein (hCRTh2.BAC.Tg) and found that CRTh2 is not localized to microvascular endothelium that is directly exposed to circulating therapeutic antibody, but rather, to pericytes that in the CNS are shielded from direct circulatory exposure by the blood-brain barrier. Immunohistochemical visualization of an intravenously administered antiCRTh2 antibody in transgenic mice revealed localization to microvascular pericytes in the gastric mucosa but not in the CNS, suggesting the blood-brain barrier effectively limits pericyte exposure to circulating therapeutic antibody in the CNS. Repeated dosing with a depleting antiCRTh2 antibody in hCRTh2.BAC.Tg mice revealed linear pharmacokinetics and no drug-related adverse findings in any tissues, including the CNS and gastric mucosa, despite complete depletion of CRTh2 expressing circulating eosinophils and basophils. Collectively, these studies demonstrate that the likelihood of drug-related CNS or gastrointestinal toxicity in humans treated with a therapeutic depleting antiCRTh2 antibody is low despite pericyte expression of CRTh2 in these tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meire Bremer
- OMNI Biomarker Development, Genentech Inc, South San Francisco, California, 94080
| | | | | | | | - Karin Reif
- Immunology Preclinical and Translational Pharmacokinetics
| | | |
Collapse
|