1
|
Zheng Y, Peng Y, Gao Y, Yang G, Jiang Y, Zhang G, Wang L, Yu J, Huang Y, Wei Z, Liu J. Identification and dissection of prostate cancer grounded on fatty acid metabolism-correlative features for predicting prognosis and assisting immunotherapy. Comput Biol Chem 2024; 115:108323. [PMID: 39742702 DOI: 10.1016/j.compbiolchem.2024.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/24/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Fatty acid metabolism (FAM) plays a critical role in tumor progression and therapeutic resistance by enhancing lipid biosynthesis, storage, and catabolism. Dysregulated FAM is a hallmark of prostate cancer (PCa), enabling cancer cells to adapt to extracellular signals and metabolic changes, with the tumor microenvironment (TME) playing a key role. However, the prognostic significance of FAM in PCa remains unexplored. METHODS We analyzed 309 FAM-related genes to develop a prognostic model using least absolute shrinkage and selection operator (LASSO) regression based on The Cancer Genome Atlas (TCGA) database. This model stratified PCa patients into high- and low-risk groups and was validated using the Gene Expression Omnibus (GEO) database. We constructed a nomogram incorporating risk score, clinical variables (T and N stage, Gleason score, age), and assessed its performance with calibration curves. The associations between risk score, tumor mutation burden (TMB), immune checkpoint inhibitors (ICIs), and TME features were also examined. Finally, a hub gene was identified via protein-protein interaction (PPI) networks and validated. RESULTS The risk score was an independent prognostic factor for PCa. High-risk patients showed worse survival outcomes but were more responsive to immunotherapy, chemotherapy, and targeted therapies. A core gene with high expression correlated with poor prognosis, unfavorable clinicopathological features, and immune cell infiltration. CONCLUSION These findings reveal the prognostic importance of FAM in PCa, providing novel insights into prognosis and potential therapeutic targets for PCa management.
Collapse
Affiliation(s)
- Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yueqiang Peng
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yingying Gao
- Department of Clinical Laboratory, Affiliated Banan Hospital of Chongqing Medical University, Chongqing 401320, China
| | - Guo Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yu Jiang
- Department of Urology, The First Affiliated Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Gaojie Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Linfeng Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Jiang Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yong Huang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Ziling Wei
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiayu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China.
| |
Collapse
|
2
|
Proschinger S, Belen S, Adammek F, Schlagheck ML, Rademacher A, Schenk A, Warnke C, Bloch W, Zimmer P. Sportizumab - Multimodal progressive exercise over 10 weeks decreases Th17 frequency and CD49d expression on CD8 + T cells in relapsing-remitting multiple sclerosis: A randomized controlled trial. Brain Behav Immun 2024; 124:397-408. [PMID: 39675643 DOI: 10.1016/j.bbi.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) represents a neuroinflammatory autoimmune disease characterized by the predominance of circulating T cell subsets with proinflammatory characteristics and increased central nervous system (CNS)-homing potential. Substantial evidence confirms various beneficial effects of chronic exercise interventions in MS, but it is unknown how long-term multi-modal intense exercise affects MS-associated lymphocytes that are commonly targeted by medication in persons with relapsing remitting MS (pwRRMS). METHODS A total of 45 participants with defined RRMS were randomized to either the exercise (n = 22) or passive waitlist-control group (n = 23). A 10-week intervention consisting of progressive resistance and strength-endurance exercises was applied (3x/week à 60 min). Blood was drawn before (T1) and after (T2) the intervention period. Flow cytometry was used for phenotyping lymphocyte subsets. RESULTS Relative protein expression of CD49d within CD8+ T cells, quantified via mean fluorescence intensity (MFI), is significantly associated with the Expanded Disability Status Scale (p = 0.007, r = 0.440), decreased in the exercise group (p = 0.001) only, and was significantly lower in the exercise compared to the control group at T2 (p < 0.001). T helper (Th) 17 cell frequency decreased only in the exercise group (p < 0.001). CD8+CD20+ T cell frequency was significantly lower in the exercise compared to the control group at T2 (p = 0.003), without showing significant time effects. CONCLUSION The 10-week multimodal exercise intervention mainly affected circulating T cells harboring a pathophysiological phenotype in MS. The findings of a decreased frequency of pathogenic Th17 cells and the reduced CNS-homing potential of CD8+ T cells, indicated by reduced CD49d MFI, substantiate the positive effects of exercise on cellular biomarkers involved in disease activity and progression in MS. To confirm exercise-mediated beneficial effects on both disease domains, clinical endpoints (i.e., relapse rate, lesion formation, EDSS score) should be assessed together with these cellular and molecular markers in studies with a larger sample size and a duration of six to twelve months or longer.
Collapse
Affiliation(s)
- Sebastian Proschinger
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | - Sergen Belen
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany; Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Frederike Adammek
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | - Marit Lea Schlagheck
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | | | - Alexander Schenk
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | - Clemens Warnke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany.
| |
Collapse
|
3
|
Kim D, Kim G, Yu R, Lee J, Kim S, Gleason MR, Qiu K, Montauti E, Wang LL, Fang D, Choi J, Chandel NS, Weinberg S, Min B. Inhibitory co-receptor Lag3 supports Foxp3 + regulatory T cell function by restraining Myc-dependent metabolic programming. Immunity 2024; 57:2634-2650.e5. [PMID: 39236718 DOI: 10.1016/j.immuni.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Lymphocyte activation gene 3 (Lag3) is an inhibitory co-receptor expressed on activated T cells and has been proposed to regulate regulatory T (Treg) cell function. However, its precise modality and mechanisms remain elusive. We generated Treg cell-specific Lag3-mutant mouse models and found that Lag3 was essential for Treg cell control of autoimmunity. RNA sequencing analysis revealed that Lag3 mutation altered genes associated with metabolic processes, especially Myc target genes. Myc expression in Lag3-mutant Treg cells was increased to the level seen in conventional T helper (Th)1-type effector cells and directly correlated with their metabolic profiles and in vivo suppressive functions. The phosphatidylinositol 3-kinase (PI3K)-Akt-Rictor pathway was activated in Lag3-mutant Treg cells, and inhibiting PI3K, Rictor, or lactate dehydrogenase A (Ldha), a key Myc target enzyme converting pyruvate to lactate, was sufficient to restore normal metabolism and suppressive function in Lag3-mutant Treg cells. These findings indicate that Lag3 supports Treg cell suppression partly by tuning Myc-dependent metabolic programming.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Giha Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rongzhen Yu
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Juyeun Lee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mia R Gleason
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin Qiu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elena Montauti
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Samuel Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
de Kivit S, Mensink M, Kostidis S, Derks RJE, Zaal EA, Heijink M, Verleng LJ, de Vries E, Schrama E, Blomberg N, Berkers CR, Giera M, Borst J. Immune suppression by human thymus-derived effector Tregs relies on glucose/lactate-fueled fatty acid synthesis. Cell Rep 2024; 43:114681. [PMID: 39180751 DOI: 10.1016/j.celrep.2024.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Regulatory T cells (Tregs) suppress pro-inflammatory conventional T cell (Tconv) responses. As lipids impact cell signaling and function, we compare the lipid composition of CD4+ thymus-derived (t)Tregs and Tconvs. Lipidomics reveal constitutive enrichment of neutral lipids in Tconvs and phospholipids in tTregs. TNFR2-co-stimulated effector tTregs and Tconvs are both glycolytic, but only in tTregs are glycolysis and the tricarboxylic acid (TCA) cycle linked to a boost in fatty acid (FA) synthesis (FAS), supported by relevant gene expression. FA chains in tTregs are longer and more unsaturated than in Tconvs. In contrast to Tconvs, tTregs effectively use either lactate or glucose for FAS and rely on this process for proliferation. FASN and SCD1, enzymes responsible for FAS and FA desaturation, prove essential for the ability of tTregs to suppress Tconvs. These data illuminate how effector tTregs can thrive in inflamed or cancerous tissues with limiting glucose but abundant lactate levels.
Collapse
Affiliation(s)
- Sander de Kivit
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| | - Mark Mensink
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Rico J E Derks
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Esther A Zaal
- Division of Cell Biology, Metabolism, and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Lotte J Verleng
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Evert de Vries
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Ellen Schrama
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Celia R Berkers
- Division of Cell Biology, Metabolism, and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Jannie Borst
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
5
|
Raeber ME, Caspar DP, Zurbuchen Y, Guo N, Schmid J, Michler J, Martin AC, Steiner UC, Moor AE, Koning F, Boyman O. Interleukin-2 immunotherapy reveals human regulatory T cell subsets with distinct functional and tissue-homing characteristics. Immunity 2024; 57:2232-2250.e10. [PMID: 39137779 DOI: 10.1016/j.immuni.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/24/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Due to its stimulatory potential for immunomodulatory CD4+ regulatory T (Treg) cells, low-dose interleukin-2 (IL-2) immunotherapy has gained considerable attention for the treatment of autoimmune diseases. In this investigator-initiated single-arm non-placebo-controlled phase-2 clinical trial of low-dose IL-2 immunotherapy in systemic lupus erythematosus (SLE) patients, we generated a comprehensive atlas of in vivo human immune responses to low-dose IL-2. We performed an in-depth study of circulating and cutaneous immune cells by imaging mass cytometry, high-parameter flow cytometry, transcriptomics, and targeted serum proteomics. Low-dose IL-2 stimulated various circulating immune cells, including Treg cells with a skin-homing phenotype that appeared in the skin of SLE patients in close interaction with endothelial cells. Analysis of surface proteins and transcriptomes revealed different IL-2-driven Treg cell activation programs, including gut-homing CD38+, skin-homing HLA-DR+, and highly proliferative inflammation-homing CD38+ HLA-DR+ Treg cells. Collectively, these data define the distinct human Treg cell subsets that are responsive to IL-2 immunotherapy.
Collapse
Affiliation(s)
- Miro E Raeber
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland; Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland; Center of Human Immunology, University of Zurich, 8006 Zurich, Switzerland
| | - Dominic P Caspar
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Yves Zurbuchen
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Nannan Guo
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Jonas Schmid
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jan Michler
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Alina C Martin
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Urs C Steiner
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland; Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland; Center of Human Immunology, University of Zurich, 8006 Zurich, Switzerland; Faculty of Science, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
6
|
Du G, Dou C, Sun P, Wang S, Liu J, Ma L. Regulatory T cells and immune escape in HCC: understanding the tumor microenvironment and advancing CAR-T cell therapy. Front Immunol 2024; 15:1431211. [PMID: 39136031 PMCID: PMC11317284 DOI: 10.3389/fimmu.2024.1431211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Liver cancer, which most commonly manifests as hepatocellular carcinoma (HCC), is the sixth most common cancer in the world. In HCC, the immune system plays a crucial role in the growth and proliferation of tumor cells. HCC achieve immune escape through the tumor microenvironment, which significantly promotes the development of this cancer. Here, this article introduces and summarizes the functions and effects of regulatory T cells (Tregs) in the tumor microenvironment, highlighting how Tregs inhibit and regulate the functions of immune and tumor cells, cytokines, ligands and receptors, etc, thereby promoting tumor immune escape. In addition, it discusses the mechanism of CAR-T therapy for HCC and elaborate on the relationship between CAR-T and Tregs.
Collapse
Affiliation(s)
- Guangtan Du
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Cunmiao Dou
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Leina Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
7
|
Theune WC, Chen J, Theune EV, Ye X, Ménoret A, Vella AT, Wang K. Interleukin-17 directly stimulates tumor infiltrating Tregs to prevent cancer development. Front Immunol 2024; 15:1408710. [PMID: 38947320 PMCID: PMC11211274 DOI: 10.3389/fimmu.2024.1408710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Background Interleukin-17 (IL-17) family cytokines promote protective inflammation for pathogen resistance, but also facilitate autoimmunity and tumor development. A direct signal of IL-17 to regulatory T cells (Tregs) has not been reported and may help explain these dichotomous responses. Methods We generated a conditional knockout of Il17ra in Tregs by crossing Foxp3-YFP-Cre mice to Il17ra-flox mice (Il17ra ΔTreg mice). Subsequently, we adoptively transferred bone marrow cells from Il17ra ΔTreg mice to a mouse model of sporadic colorectal cancer (Cdx2-Cre +/Apc F/+), to selectively ablate IL-17 direct signaling on Tregs in colorectal cancer. Single cell RNA sequencing and bulk RNA sequencing were performed on purified Tregs from mouse colorectal tumors, and compared to those of human tumor infiltrating Treg cells. Results IL-17 Receptor A (IL-17RA) is expressed in Tregs that reside in mouse mesenteric lymph nodes and colon tumors. Ablation of IL-17RA, specifically in Tregs, resulted in increased Th17 cells, and exacerbated tumor development. Mechanistically, tumor-infiltrating Tregs exhibit a unique gene signature that is linked to their activation, maturation, and suppression function, and this signature is in part supported by the direct signaling of IL-17 to Tregs. To study pathways of Treg programming, we found that loss of IL-17RA in tumor Tregs resulted in reduced RNA splicing, and downregulation of several RNA binding proteins that are known to regulate alternative splicing and promote Treg function. Conclusion IL-17 directly signals to Tregs and promotes their maturation and function. This signaling pathway constitutes a negative feedback loop that controls cancer-promoting inflammation in CRC.
Collapse
Affiliation(s)
- William C. Theune
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Ju Chen
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Eileen Victoria Theune
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xiaoyang Ye
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
8
|
Wang W, Ding M, Wang Q, Song Y, Huo K, Chen X, Xiang Z, Liu L. Advances in Foxp3+ regulatory T cells (Foxp3+ Treg) and key factors in digestive malignancies. Front Immunol 2024; 15:1404974. [PMID: 38919615 PMCID: PMC11196412 DOI: 10.3389/fimmu.2024.1404974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Foxp3+ regulatory T cells (Foxp3+ Treg) play a role in regulating various types of tumors, but uncertainty still exists regarding the exact mechanism underlying Foxp3+ Treg activation in gastrointestinal malignancies. As of now, research has shown that Foxp3+ Treg expression, altered glucose metabolism, or a hypoxic tumor microenvironment all affect Foxp3+ Treg function in the bodies of tumor patients. Furthermore, it has been demonstrated that post-translational modifications are essential for mature Foxp3 to function properly. Additionally, a considerable number of non-coding RNAs (ncRNAs) have been implicated in the activation of the Foxp3 signaling pathway. These mechanisms regulating Foxp3 may one day serve as potential therapeutic targets for gastrointestinal malignancies. This review primarily focuses on the properties and capabilities of Foxp3 and Foxp3+Treg. It emphasizes the advancement of research on the regulatory mechanisms of Foxp3 in different malignant tumors of the digestive system, providing new insights for the exploration of anticancer treatments.
Collapse
Affiliation(s)
- Wanyao Wang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Minglu Ding
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Qiuhong Wang
- Mudanjiang Hospital for Cardiovascular Diseases, Department of Anesthesiology, Mudanjiang, Heilongjiang, China
| | - Yidan Song
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Keyuan Huo
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaojie Chen
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Zihan Xiang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Lantao Liu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
9
|
Gill JS, Bansal B, Guo K, Huang F, Singh H, Hur J, Khan N, Mathur R. Mitochondrial Oxidative Stress Regulates FOXP3+ T-Cell Activity and CD4-Mediated Inflammation in Older Adults with Frailty. Int J Mol Sci 2024; 25:6235. [PMID: 38892421 PMCID: PMC11173216 DOI: 10.3390/ijms25116235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy older adults, the immune system generally preserves its response and contributes to a long, healthy lifespan. However, rapid deterioration in immune regulation can lead to chronic inflammation, termed inflammaging, which accelerates pathological aging and diminishes the quality of life in older adults with frailty. A significant limitation in current aging research is the predominant focus on comparisons between young and older populations, often overlooking the differences between healthy older adults and those experiencing pathological aging. Our study elucidates the intricate immunological dynamics of the CD4/Treg axis in frail older adults compared to comparable age-matched healthy older adults. By utilizing publicly available RNA sequencing and single-cell RNA sequencing (scRNAseq) data from peripheral blood mononuclear cells (PBMCs), we identified a specific Treg cell subset and transcriptional landscape contributing to the dysregulation of CD4+ T-cell responses. We explored the molecular mechanisms underpinning Treg dysfunction, revealing that Tregs from frail older adults exhibit reduced mitochondrial protein levels, impairing mitochondrial oxidative phosphorylation. This impairment is driven by the TNF/NF-kappa B pathway, leading to cumulative inflammation. Further, we gained a deeper understanding of the CD4/Treg axis by predicting the effects of gene perturbations on cellular signaling networks. Collectively, these findings highlight the age-related relationship between mitochondrial dysfunction in the CD4/Treg axis and its role in accelerating aging and frailty in older adults. Targeting Treg dysfunction offers a critical basis for developing tailored therapeutic strategies aimed at improving the quality of life in older adults.
Collapse
Affiliation(s)
- Jappreet Singh Gill
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (J.S.G.); (B.B.); (H.S.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58292, USA
| | - Benu Bansal
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (J.S.G.); (B.B.); (H.S.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58292, USA
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (K.G.); (F.H.); (J.H.)
| | - Kai Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (K.G.); (F.H.); (J.H.)
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang Huang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (K.G.); (F.H.); (J.H.)
| | - Harpreet Singh
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (J.S.G.); (B.B.); (H.S.)
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (K.G.); (F.H.); (J.H.)
| | - Nadeem Khan
- Department of Oral Biology, University of Florida, Gainsville, FL 32603, USA;
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (J.S.G.); (B.B.); (H.S.)
| |
Collapse
|
10
|
Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol 2024; 21:337-353. [PMID: 38424196 DOI: 10.1038/s41571-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Accumulating evidence indicates that aberrant signalling stemming from genetic abnormalities in cancer cells has a fundamental role in their evasion of antitumour immunity. Immune escape mechanisms include enhanced expression of immunosuppressive molecules, such as immune-checkpoint proteins, and the accumulation of immunosuppressive cells, including regulatory T (Treg) cells, in the tumour microenvironment. Therefore, Treg cells are key targets for cancer immunotherapy. Given that therapies targeting molecules predominantly expressed by Treg cells, such as CD25 or GITR, have thus far had limited antitumour efficacy, elucidating how certain characteristics of cancer, particularly genetic abnormalities, influence Treg cells is necessary to develop novel immunotherapeutic strategies. Hence, Treg cell-targeted strategies based on the particular characteristics of cancer in each patient, such as the combination of immune-checkpoint inhibitors with molecularly targeted agents that disrupt the immunosuppressive networks mediating Treg cell recruitment and/or activation, could become a new paradigm of cancer therapy. In this Review, we discuss new insights on the mechanisms by which cancers generate immunosuppressive networks that attenuate antitumour immunity and how these networks confer resistance to cancer immunotherapy, with a focus on Treg cells. These insights lead us to propose the concept of 'immuno-genomic precision medicine' based on specific characteristics of cancer, especially genetic profiles, that correlate with particular mechanisms of tumour immune escape and might, therefore, inform the optimal choice of immunotherapy for individual patients.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
- Division of Cellular Signalling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
11
|
Shan Y, Xie T, Sun Y, Lu Z, Topatana W, Juengpanich S, Chen T, Han Y, Cao J, Hu J, Li S, Cai X, Chen M. Lipid metabolism in tumor-infiltrating regulatory T cells: perspective to precision immunotherapy. Biomark Res 2024; 12:41. [PMID: 38644503 PMCID: PMC11034130 DOI: 10.1186/s40364-024-00588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to the negative regulation of the immune system, as they avoid excessive inflammation and mediate tumor development. The abundance of Tregs in tumor tissues suggests that Tregs may be eliminated or functionally inhibited to stimulate antitumor immunity. However, immunotherapy targeting Tregs has been severely hampered by autoimmune diseases due to the systemic elimination of Tregs. Recently, emerging studies have shown that metabolic regulation can specifically target tumor-infiltrating immune cells, and lipid accumulation in TME is associated with immunosuppression. Nevertheless, how Tregs actively regulate metabolic reprogramming to outcompete effector T cells (Teffs), and how lipid metabolic reprogramming contributes to the immunomodulatory capacity of Tregs have not been fully discussed. This review will discuss the physiological processes by which lipid accumulation confers a metabolic advantage to tumor-infiltrating Tregs (TI-Tregs) and amplifies their immunosuppressive functions. Furthermore, we will provide a summary of the driving effects of various metabolic regulators on the metabolic reprogramming of Tregs. Finally, we propose that targeting the lipid metabolism of TI-Tregs could be efficacious either alone or in conjunction with immune checkpoint therapy.
Collapse
Affiliation(s)
- Yukai Shan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Tianao Xie
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Yuchao Sun
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Ziyi Lu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
- School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Sarun Juengpanich
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Tianen Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Yina Han
- Department of Pathology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
- School of Medicine, Zhejiang University, 310058, Hangzhou, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
- School of Medicine, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
12
|
Furment MM, Perl A. Immmunometabolism of systemic lupus erythematosus. Clin Immunol 2024; 261:109939. [PMID: 38382658 DOI: 10.1016/j.clim.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal chronic autoimmune disease which is underlain by complex dysfunction of the innate and adaptive immune systems. Although a series of well-defined genetic and environmental factors have been implicated in disease etiology, neither the development nor the persistence of SLE is well understood. Given that several disease susceptibility genes and environmental factors interact and influence inflammatory lineage specification through metabolism, the field of immunometabolism has become a forefront of cutting edge research. Along these lines, metabolic checkpoints of pathogenesis have been identified as targets of effective therapeutic interventions in mouse models and validated in clinical trials. Ongoing studies focus on mitochondrial oxidative stress, activation of the mechanistic target of rapamycin, calcium signaling, glucose utilization, tryptophan degradation, and metabolic cross-talk between gut microbiota and the host immune system.
Collapse
Affiliation(s)
- Marlene Marte Furment
- Departments of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America; Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America; Microbiology and Immunology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America.
| |
Collapse
|
13
|
Pan B, Xu Z, Du K, Gao R, Zhang J, Yin H, Shen H, Liang J, Li Y, Wang L, Li J, Xu W, Wu J. Investigation of fatty acid metabolism in chronic lymphocytic leukemia to guide clinical outcome and therapy. Ann Hematol 2024; 103:1241-1254. [PMID: 38150112 DOI: 10.1007/s00277-023-05590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the West. With CLL's heterogeneity, some people still develop disease refractory and relapse despite advances in treatment. Thus, early diagnosis and treatment of high-risk CLL patients is critical. Fatty acid (FA) metabolism contributes to tumorigenesis, progression, and therapy resistance through enhanced lipid synthesis, storage, and catabolism. In this study, we aimed to construct a prognostic model to improve the risk stratification of CLL and reveal the link between FA metabolism and CLL. The differentially expressed FA metabolism-related genes (FMGs) in CLL were filtered through univariate Cox regression analysis based on public databases. Functional enrichment was examined using prognostic FA metabolism-related gene enrichment analysis. CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) estimated immune infiltration score and immune-related pathways. Pearson's correlation analysis investigated FA metabolism-related genes and drug sensitivity. A novel prognostic model was built using least absolute shrinkage and selection operator (LASSO) Cox algorithms. This validation cohort included 36 CLL patients from our center. We obtained CLL RNA microarray profiles from public databases and identified 15 prognostic-related FMGs. CLL patients were divided into two molecular clusters based on the expression of FMGs. The Kaplan-Meier analysis revealed a significant difference in TFS (P < 0.001) and OS (P < 0.001) between the two clusters. KEGG functional analysis showed that several pathways were enriched, including the chemokine and immune-related signaling pathways. In the training and validation cohorts, patients with higher FA metabolism-related prognostic index (FAPI) levels had worse outcomes. Finally, a novel nomogram prognostic model including CLL international prognostic index (CLL-IPI) was constructed, exhibiting reliable effectiveness and accuracy. In conclusion, we established a reliable predictive signature based on FA metabolism-related genes and constructed a novel nomogram prognostic model, supporting the potential preclinical implications of FA metabolism in CLL research.
Collapse
Affiliation(s)
- Bihui Pan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Zhangdi Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Kaixin Du
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Rui Gao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiale Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Hua Yin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Haorui Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jinhua Liang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| | - Jiazhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| |
Collapse
|
14
|
Lee S, Song SG, Kim G, Kim S, Yoo HJ, Koh J, Kim YJ, Tian J, Cho E, Choi YS, Chang S, Shin HM, Jung KC, Kim JH, Kim TM, Jeon YK, Kim HY, Shong M, Kim JH, Chung DH. CRIF1 deficiency induces FOXP3 LOW inflammatory non-suppressive regulatory T cells, thereby promoting antitumor immunity. SCIENCE ADVANCES 2024; 10:eadj9600. [PMID: 38536932 PMCID: PMC10971410 DOI: 10.1126/sciadv.adj9600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
Recently identified human FOXP3lowCD45RA- inflammatory non-suppressive (INS) cells produce proinflammatory cytokines, exhibit reduced suppressiveness, and promote antitumor immunity unlike conventional regulatory T cells (Tregs). In spite of their implication in tumors, the mechanism for generation of FOXP3lowCD45RA- INS cells in vivo is unclear. We showed that the FOXP3lowCD45RA- cells in human tumors demonstrate attenuated expression of CRIF1, a vital mitochondrial regulator. Mice with CRIF1 deficiency in Tregs bore Foxp3lowINS-Tregs with mitochondrial dysfunction and metabolic reprograming. The enhanced glutaminolysis activated α-ketoglutarate-mTORC1 axis, which promoted proinflammatory cytokine expression by inducing EOMES and SATB1 expression. Moreover, chromatin openness of the regulatory regions of the Ifng and Il4 genes was increased, which facilitated EOMES/SATB1 binding. The increased α-ketoglutarate-derived 2-hydroxyglutarate down-regulated Foxp3 expression by methylating the Foxp3 gene regulatory regions. Furthermore, CRIF1 deficiency-induced Foxp3lowINS-Tregs suppressed tumor growth in an IFN-γ-dependent manner. Thus, CRIF1 deficiency-mediated mitochondrial dysfunction results in the induction of Foxp3lowINS-Tregs including FOXP3lowCD45RA- cells that promote antitumor immunity.
Collapse
Affiliation(s)
- Sangsin Lee
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Geun Song
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jung Yoo
- Laboratory of Immunology and Vaccine Innovation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Ye-Ji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jingwen Tian
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Eunji Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sunghoe Chang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Kim
- Department of Pathology, Asan Medical Center (AMC), Ulsan University College of Medicine, Seoul, Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ji Hyung Kim
- Laboratory of Immunology and Vaccine Innovation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Alvarez F, Liu Z, Bay A, Piccirillo CA. Deciphering the developmental trajectory of tissue-resident Foxp3 + regulatory T cells. Front Immunol 2024; 15:1331846. [PMID: 38605970 PMCID: PMC11007185 DOI: 10.3389/fimmu.2024.1331846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/13/2024] Open
Abstract
Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Zhiyang Liu
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Alexandre Bay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| |
Collapse
|
16
|
Cheng Y, Ferdousi F, Foronda BA, Linh TN, Ganbold M, Yada A, Arimura T, Isoda H. A comparative transcriptomics analysis reveals ethylene glycol derivatives of squalene ameliorate excessive lipogenesis and inflammatory response in 3T3-L1 preadipocytes. Heliyon 2024; 10:e26867. [PMID: 38463791 PMCID: PMC10923669 DOI: 10.1016/j.heliyon.2024.e26867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/27/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Squalene (SQ) is a natural compound with anti-inflammatory, anti-cancer, and anti-oxidant effects, but due to its low solubility, its biological properties have been greatly underestimated. This study aims to explore the differences in gene expression patterns of four newly synthesized amphipathic ethylene glycol (EG) derivatives of SQ by whole-genome transcriptomics analysis using DNA microarray to examine the mRNA expression profile of adipocytes differentiated from 3T3-L1 cells treated with SQ and its EG derivatives. Enrichment analyses of the transcriptional data showed that compared with SQ, its EG derivatives exerted different, in most cases desirable, biological responses. EG derivatives showed increased enrichment of mitochondrial functions, lipid and glucose metabolism, and inflammatory response. Mono-, di-, and tetra-SQ showed higher enrichment of the cellular component-ribosome. Histological staining showed EG derivatives prevented excessive lipid accumulation. Additionally, mitochondrial transcription factors showed upregulation in tetra-SQ-treated cells. Notably, EG derivatives showed better anti-inflammatory effects. Further, gene-disease association analysis predicted substantial improvement in the bioactivities of SQ derivatives in metabolic diseases. Cluster analyses revealed di- and tetra-SQ had more functional similarities than others, reflected in their scanning electron microscopy images; both di- and tetra-SQ self-organized into similar sizes and shapes of vesicles, subsequently improving their cation binding activities. Protein-protein interaction networks further revealed that cation binding activity might explain a major part, if not all, of the differences observed in functional analyses. Altogether, the addition of EG derivatives may improve the biological responses of SQ and thus may enhance its health-promoting potential.
Collapse
Affiliation(s)
- Yu Cheng
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan
- Alliance of Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | | | - Tran Ngoc Linh
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Munkhzul Ganbold
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Akira Yada
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Takashi Arimura
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan
- Alliance of Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
17
|
Kondo M, Kumagai S, Nishikawa H. Metabolic advantages of regulatory T cells dictated by cancer cells. Int Immunol 2024; 36:75-86. [PMID: 37837615 DOI: 10.1093/intimm/dxad035] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 10/16/2023] Open
Abstract
Cancer cells employ glycolysis for their survival and growth (the "Warburg effect"). Consequently, surrounding cells including immune cells in the tumor microenvironment (TME) are exposed to hypoglycemic, hypoxic, and low pH circumstances. Since effector T cells depend on the glycolysis for their survival and functions, the metabolically harsh TME established by cancer cells is unfavorable, resulting in the impairment of effective antitumor immune responses. By contrast, immunosuppressive cells such as regulatory T (Treg) cells can infiltrate, proliferate, survive, and exert immunosuppressive functions in the metabolically harsh TME, indicating the different metabolic dependance between effector T cells and Treg cells. Indeed, some metabolites that are harmful for effector T cells can be utilized by Treg cells; lactic acid, a harmful metabolite for effector T cells, is available for Treg cell proliferation and functions. Deficiency of amino acids such as tryptophan and glutamine in the TME impairs effector T cell activation but increases Treg cell populations. Furthermore, hypoxia upregulates fatty acid oxidation via hypoxia-inducible factor 1α (HIF-1α) and promotes Treg cell migration. Adenosine is induced by the ectonucleotidases CD39 and CD73, which are strongly induced by HIF-1α, and reportedly accelerates Treg cell development by upregulating Foxp3 expression in T cells via A2AR-mediated signals. Therefore, this review focuses on the current views of the unique metabolism of Treg cells dictated by cancer cells. In addition, potential cancer combination therapies with immunotherapy and metabolic molecularly targeted reagents that modulate Treg cells in the TME are discussed to develop "immune metabolism-based precision medicine".
Collapse
Affiliation(s)
- Masaki Kondo
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
18
|
Yang KY, Liao J, Ma Z, Tse HF, Lu L, Graca L, Lui KO. Single-cell transcriptomics of Treg reveals hallmarks and trajectories of immunological aging. J Leukoc Biol 2024; 115:19-35. [PMID: 37675661 DOI: 10.1093/jleuko/qiad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Age-related immunosenescence is characterized by progressive dysfunction of adaptive immune response and increased autoimmunity. Nevertheless, the impact of aging on CD4+ regulatory T cells that are master regulators of the immune system remains largely unclear. Here, we report cellular and molecular hallmarks of regulatory T cells derived from murine lymphoid and adipose tissues at 3, 18, and 24 mo of age, respectively, by analyzing their heterogeneity that displays dynamic changes in transcriptomic effector signatures at a single-cell resolution. Although the proportion of regulatory T cells among total Cd4+ T cells, as well as their expression levels of Foxp3, did not show any global change with time, we have identified 6 transcriptomically distinct clusters of regulatory T cells with cross-tissue conserved hallmarks of aging, including increased numbers of proinflammatory regulatory T cells, reduced precursor cells, increased immature and mature T follicular regulatory cells potentially supported by a metabolic switch from oxidative phosphorylation to glycolysis, a gradual loss of CD150hi regulatory T cells that support hematopoiesis, and increased adipose tissue-specific regulatory T cells that are associated with metabolic disease. To dissect the impact of immunosenescence on humoral immunity, we propose some potential mechanisms underlying T follicular regulatory cell-mediated dysfunction by interactome analysis on T follicular regulatory cells, T follicular helper cells, and B cells during aging. Lastly, spatiotemporal analysis further revealed trajectories of regulatory T-cell aging that demonstrate the most significant changes in marrow and adipose tissues that might contribute to the development of age-related immunosenescence and type 2 diabetes. Taken together, our findings could provide a better understanding of age-associated regulatory T-cell heterogeneity in lymphoid and adipose tissues, as well as regulatory T-cell hallmarks during progressive adaptation to aging that could be therapeutically targeted for rejuvenating the aging immune system in the future.
Collapse
Affiliation(s)
- Kevin Y Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Division of Cardiology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Jinyue Liao
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
| | - Zhangjing Ma
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
| | - Hung Fat Tse
- Division of Cardiology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Liwei Lu
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10 2nd Yuexin Road, Nanshan District, Shenzhen, China
| |
Collapse
|
19
|
Angara RK, Sladek MF, Gilk SD. ER-LD Membrane Contact Sites: A Budding Area in the Pathogen Survival Strategy. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241304196. [PMID: 39697586 PMCID: PMC11653285 DOI: 10.1177/25152564241304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
The endoplasmic reticulum (ER) and lipid droplets (LDs) are essential organelles involved in lipid synthesis, storage, and transport. Physical membrane contacts between the ER and LDs facilitate lipid and protein exchange and thus play a critical role in regulating cellular lipid homeostasis. Recent research has revealed that ER-LD membrane contact sites are targeted by pathogens seeking to exploit host lipid metabolic processes. Both viruses and bacteria manipulate ER-LD membrane contact sites to enhance their replication and survival within the host. This review discusses the research advancements elucidating the mechanisms by which pathogens manipulate the ER-LD contacts through protein molecular mimicry and host cell protein manipulation, thereby hijacking host lipid metabolic processes to facilitate pathogenesis. Understanding the crosstalk between ER and LDs during infection provides deeper insight into host lipid regulation and uncovers potential therapeutic targets for treating infectious diseases.
Collapse
Affiliation(s)
- Rajendra Kumar Angara
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Margaret F. Sladek
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Stacey D. Gilk
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
20
|
Shang Z, Ma Z, Wu E, Chen X, Tuo B, Li T, Liu X. Effect of metabolic reprogramming on the immune microenvironment in gastric cancer. Biomed Pharmacother 2024; 170:116030. [PMID: 38128177 DOI: 10.1016/j.biopha.2023.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Gastric cancer (GC) is a malignant tumor of the gastrointestinal tract with a high mortality rate worldwide, a low early detection rate and a poor prognosis. The rise of metabolomics has facilitated the early detection and treatment of GC. Metabolism in the GC tumor microenvironment (TME) mainly includes glucose metabolism, lipid metabolism and amino acid metabolism, which provide energy and nutrients for GC cell proliferation and migration. Abnormal tumor metabolism can influence tumor progression by regulating the functions of immune cells and immune molecules in the TME, thereby contributing to tumor immune escape. Thus, in this review, we summarize the impact of metabolism on the TME during GC progression. We also propose novel strategies to modulate antitumor immune responses by targeting metabolism.
Collapse
Affiliation(s)
- Zhengye Shang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Enqin Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Xingzhao Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi 563000, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
21
|
Han A, Peng T, Xie Y, Zhang W, Sun W, Xie Y, Ma Y, Wang C, Xie N. Mitochondrial-regulated Tregs: potential therapeutic targets for autoimmune diseases of the central nervous system. Front Immunol 2023; 14:1301074. [PMID: 38149252 PMCID: PMC10749924 DOI: 10.3389/fimmu.2023.1301074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Regulatory T cells (Tregs) can eliminate autoreactive lymphocytes, induce self-tolerance, and suppress the inflammatory response. Mitochondria, as the energy factories of cells, are essential for regulating the survival, differentiation, and function of Tregs. Studies have shown that patients with autoimmune diseases of the central nervous system, such as multiple sclerosis, neuromyelitis optica spectrum disorder, and autoimmune encephalitis, have aberrant Tregs and mitochondrial damage. However, the role of mitochondrial-regulated Tregs in autoimmune diseases of the central nervous system remains inconclusive. Therefore, this study reviews the mitochondrial regulation of Tregs in autoimmune diseases of the central nervous system and investigates the possible mitochondrial therapeutic targets.
Collapse
Affiliation(s)
- Aoya Han
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wanwan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenlin Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunqing Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Zhao Y, Zhang X, An M, Zhang J, Liu Y. Recent advancements in nanomedicine based lipid metabolism for tumour immunotherapy. J Drug Target 2023; 31:1050-1064. [PMID: 37962291 DOI: 10.1080/1061186x.2023.2283829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Therapy on lipid metabolism is emerging as a groundbreaking cancer treatment, offering the unprecedented opportunity to effectively treat and in several cases. Tumorigenesis is inextricably linked to lipid metabolism. In this regard, the features of lipid metabolism include lipid synthesis, decomposition, metabolism and lipid storage and mobilisation from intracellular lipid droplets. Most importantly, the regulation of lipid metabolism is central to the appropriate immune response of tumour cells, and ultimately to exert the immune efforts to realise the perspective of many anti-tumour effects. Different cancers and immune cells have different dependence on lipid metabolism, playing a pivotal role in differentiation and function of immune cells. However, what lies before the immunotherapy targeting lipid metabolism is side effects of systemic toxicity and defects of individual drugs, which strongly highlights that nanodelivery strategy is a magnet for it to enhance drug efficiency, reduce drug toxicity and improve application deficiencies. This review will first focus on emerging research progress of lipid metabolic reprogramming mechanism, and then explore the complex role of lipid metabolism in the tumour cells including the effect on immune cells and their nano-preparations of monotherapy and multiple therapies used in combination, in a shift away from conventional cancer research.HighlightsThe regulation of lipid metabolism is central to the appropriate immune response of tumour cells, and ultimately to exert the immune efforts to realise the perspective of many anti-tumour effects.Preparations of focusing lipid metabolism have side effects of systemic toxicity and defects of individual drugs. It strongly highlights that nanodelivery strategy is a magnet for it to enhance drug efficiency, reduce drug toxicity and improve application deficiencies.This review will first focus on emerging research progress of lipid metabolic reprogramming mechanism, and then explore the complex role of lipid metabolism in the tumour cells including the effect on immune cells as well as their nano-preparations of monotherapy and multiple therapies used in combination, in a shift away from conventional cancer research.
Collapse
Affiliation(s)
- Yumeng Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
23
|
Ma J, Hu W, Liu Y, Duan C, Zhang D, Wang Y, Cheng K, Yang L, Wu S, Jin B, Zhang Y, Zhuang R. CD226 maintains regulatory T cell phenotype stability and metabolism by the mTOR/Myc pathway under inflammatory conditions. Cell Rep 2023; 42:113306. [PMID: 37864795 DOI: 10.1016/j.celrep.2023.113306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023] Open
Abstract
Regulatory T (Treg) cells exhibit immunosuppressive phenotypes and particular metabolic patterns with certain degrees of plasticity. Previous studies of the effects of the co-stimulatory molecule CD226 on Treg cells are controversial. Here, we show that CD226 primarily maintains the Treg cell stability and metabolism phenotype under inflammatory conditions. Conditional deletion of CD226 within Foxp3+ cells exacerbates symptoms in murine graft versus host disease models. Treg cell-specific deletion of CD226 increases the Treg cell percentage in immune organs but weakens their immunosuppressive function with a T helper 1-like phenotype conversion under inflammation. CD226-deficient Treg cells exhibit reduced oxidative phosphorylation and increased glycolysis rates, which are regulated by the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/myelocytomatosis oncogene (Myc) pathway, and inhibition of Myc signaling restores the impaired functions of CD226-deficient Treg cells in an inflammatory disease model of colitis. This study reveals an Myc-mediated CD226 regulation of Treg cell phenotypic stability and metabolism, providing potential therapeutic strategies for targeted interventions of Treg cell-specific CD226 in inflammatory diseases.
Collapse
Affiliation(s)
- Jingchang Ma
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Wei Hu
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China; Department of Emergency, The Fifth Medical Center of Chinese PLA General Hospital, #100 Western 4th Ring Road, Beijing 100039, China
| | - Yitian Liu
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China; Institute of Medical Research, Northwestern Polytechnical University, #127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Dongliang Zhang
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Kun Cheng
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Lu Yang
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Shuwen Wu
- Institute of Medical Research, Northwestern Polytechnical University, #127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Yuan Zhang
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China; Institute of Medical Research, Northwestern Polytechnical University, #127 West Youyi Road, Xi'an, Shaanxi 710072, China.
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China; Institute of Medical Research, Northwestern Polytechnical University, #127 West Youyi Road, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
24
|
Flati I, Di Vito Nolfi M, Dall’Aglio F, Vecchiotti D, Verzella D, Alesse E, Capece D, Zazzeroni F. Molecular Mechanisms Underpinning Immunometabolic Reprogramming: How the Wind Changes during Cancer Progression. Genes (Basel) 2023; 14:1953. [PMID: 37895302 PMCID: PMC10606647 DOI: 10.3390/genes14101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolism and the immunological state are intimately intertwined, as defense responses are bioenergetically expensive. Metabolic homeostasis is a key requirement for the proper function of immune cell subsets, and the perturbation of the immune-metabolic balance is a recurrent event in many human diseases, including cancer, due to nutrient fluctuation, hypoxia and additional metabolic changes occurring in the tumor microenvironment (TME). Although much remains to be understood in the field of immunometabolism, here, we report the current knowledge on both physiological and cancer-associated metabolic profiles of immune cells, and the main molecular circuits involved in their regulation, highlighting similarities and differences, and emphasizing immune metabolic liabilities that could be exploited in cancer therapy to overcome immune resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (I.F.); (M.D.V.N.); (F.D.); (D.V.); (D.V.); (E.A.); (F.Z.)
| | | |
Collapse
|
25
|
Wang X, Sun L, Yang B, Li W, Zhang C, Yang X, Sun Y, Shen X, Gao Y, Ju B, Gao Y, Liu D, Song J, Jia X, Su Y, Jiao A, Liu H, Zhang L, Lan He, Lei L, Chen W, Zhang B. Zfp335 establishes eTreg lineage and neonatal immune tolerance by targeting Hadha-mediated fatty acid oxidation. J Clin Invest 2023; 133:e166628. [PMID: 37843279 PMCID: PMC10575732 DOI: 10.1172/jci166628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/15/2023] [Indexed: 10/17/2023] Open
Abstract
Regulatory T cells (Tregs) are instrumental in maintaining immune tolerance and preventing destructive autoimmunity, but how heterogeneous Treg populations are established remains largely unknown. Here, we show that Zfp335 deletion in Tregs failed to differentiate into effector Tregs (eTregs) and lose Treg-suppressive function and that KO mice exhibited early-onset lethal autoimmune inflammation with unrestricted activation of conventional T cells. Single-cell RNA-Seq analyses revealed that Zfp335-deficient Tregs lacked a eTreg population and showed dramatic accumulation of a dysfunctional Treg subset. Mechanistically, Zfp335-deficient Tregs displayed reduced oxidative phosphorylation and dysfunctional mitochondrial activity. Further studies revealed that Zfp335 controlled eTreg differentiation by regulating fatty acid oxidation (FAO) through direct targeting of the FAO enzyme Hadha. Importantly, we demonstrate a positive correlation between ZNF335 and HADHA expression in human eTregs. Our findings reveal that Zfp335 controls FAO-driven eTreg differentiation to establish immune tolerance.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Biao Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Wenhua Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune-Related Diseases, Xi’an, Shannxi, China
| | - Yae Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaonan Shen
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yang Gao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Bomiao Ju
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yafeng Gao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Dan Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Jiapeng Song
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Xiaoxuan Jia
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Lan He
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune-Related Diseases, Xi’an, Shannxi, China
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
26
|
Jeyamogan S, Leventhal JR, Mathew JM, Zhang ZJ. CD4 +CD25 +FOXP3 + regulatory T cells: a potential "armor" to shield "transplanted allografts" in the war against ischemia reperfusion injury. Front Immunol 2023; 14:1270300. [PMID: 37868962 PMCID: PMC10587564 DOI: 10.3389/fimmu.2023.1270300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Despite the advances in therapeutic interventions, solid organ transplantation (SOT) remains the "gold standard" treatment for patients with end-stage organ failure. Recently, vascularized composite allotransplantation (VCA) has reemerged as a feasible treatment option for patients with complex composite tissue defects. In both SOT and VCA, ischemia reperfusion injury (IRI) is inevitable and is a predominant factor that can adversely affect transplant outcome by potentiating early graft dysfunction and/or graft rejection. Restoration of oxygenated blood supply to an organ which was previously hypoxic or ischemic for a period of time triggers cellular oxidative stress, production of both, pro-inflammatory cytokines and chemokines, infiltration of innate immune cells and amplifies adaptive alloimmune responses in the affected allograft. Currently, Food and Drug Administration (FDA) approved drugs for the treatment of IRI are unavailable, therefore an efficacious therapeutic modality to prevent, reduce and/or alleviate allograft damages caused by IRI induced inflammation is warranted to achieve the best-possible transplant outcome among recipients. The tolerogenic capacity of CD4+CD25+FOXP3+ regulatory T cells (Tregs), have been extensively studied in the context of transplant rejection, autoimmunity, and cancer. It was not until recently that Tregs have been recognized as a potential cell therapeutic candidate to be exploited for the prevention and/or treatment of IRI, owing to their immunomodulatory potential. Tregs can mitigate cellular oxidative stress, produce anti-inflammatory cytokines, promote wound healing, and tissue repair and prevent the infiltration of pro-inflammatory immune cells in injured tissues. By using strategic approaches to increase the number of Tregs and to promote targeted delivery, the outcome of SOT and VCA can be improved. This review focuses on two sections: (a) the therapeutic potential of Tregs in preventing and mitigating IRI in the context of SOT and VCA and (b) novel strategies on how Tregs could be utilized for the prevention and/or treatment of IRI.
Collapse
Affiliation(s)
- Shareni Jeyamogan
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joseph R. Leventhal
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James M. Mathew
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Zheng Jenny Zhang
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Microsurgery and Pre-Clinical Research Core, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
27
|
Halvorson T, Tuomela K, Levings MK. Targeting regulatory T cell metabolism in disease: Novel therapeutic opportunities. Eur J Immunol 2023; 53:e2250002. [PMID: 36891988 DOI: 10.1002/eji.202250002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/28/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023]
Abstract
Regulatory T cells (Tregs) are essential for immune homeostasis and suppression of pathological autoimmunity but can also play a detrimental role in cancer progression via inhibition of anti-tumor immunity. Thus, there is broad applicability for therapeutic Treg targeting, either to enhance function, for example, through adoptive cell therapy (ACT), or to inhibit function with small molecules or antibody-mediated blockade. For both of these strategies, the metabolic state of Tregs is an important consideration since cellular metabolism is intricately linked to function. Mounting evidence has shown that targeting metabolic pathways can selectively promote or inhibit Treg function. This review aims to synthesize the current understanding of Treg metabolism and discuss emerging metabolic targeting strategies in the contexts of transplantation, autoimmunity, and cancer. We discuss approaches to gene editing and cell culture to manipulate Treg metabolism during ex vivo expansion for ACT, as well as in vivo nutritional and pharmacological interventions to modulate Treg metabolism in disease states. Overall, the intricate connection between metabolism and phenotype presents a powerful opportunity to therapeutically tune Treg function.
Collapse
Affiliation(s)
- Torin Halvorson
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Xiao C, Xiong W, Xu Y, Zou J, Zeng Y, Liu J, Peng Y, Hu C, Wu F. Immunometabolism: a new dimension in immunotherapy resistance. Front Med 2023; 17:585-616. [PMID: 37725232 DOI: 10.1007/s11684-023-1012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/19/2023] [Indexed: 09/21/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated unparalleled clinical responses and revolutionized the paradigm of tumor treatment, while substantial patients remain unresponsive or develop resistance to ICIs as a single agent, which is traceable to cellular metabolic dysfunction. Although dysregulated metabolism has long been adjudged as a hallmark of tumor, it is now increasingly accepted that metabolic reprogramming is not exclusive to tumor cells but is also characteristic of immunocytes. Correspondingly, people used to pay more attention to the effect of tumor cell metabolism on immunocytes, but in practice immunocytes interact intimately with their own metabolic function in a way that has never been realized before during their activation and differentiation, which opens up a whole new frontier called immunometabolism. The metabolic intervention for tumor-infiltrating immunocytes could offer fresh opportunities to break the resistance and ameliorate existing ICI immunotherapy, whose crux might be to ascertain synergistic combinations of metabolic intervention with ICIs to reap synergic benefits and facilitate an adjusted anti-tumor immune response. Herein, we elaborate potential mechanisms underlying immunotherapy resistance from a novel dimension of metabolic reprogramming in diverse tumor-infiltrating immunocytes, and related metabolic intervention in the hope of offering a reference for targeting metabolic vulnerabilities to circumvent immunotherapeutic resistance.
Collapse
Affiliation(s)
- Chaoyue Xiao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yiting Xu
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Ji'an Zou
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junqi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yurong Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
29
|
Gong M, Choi SC, Park YP, Zou X, Elshikha AS, Gerriets VA, Rathmell JC, Mohamazadeh M, Morel L. Transcriptional and metabolic programs promote the expansion of follicular helper T cells in lupus-prone mice. iScience 2023; 26:106774. [PMID: 37216123 PMCID: PMC10197114 DOI: 10.1016/j.isci.2023.106774] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The expansion of follicular helper T (Tfh) cells, which is tightly associated with the development of lupus, is reversed by the inhibition of either glycolysis or glutaminolysis in mice. Here we analyzed the gene expression and metabolome of Tfh cells and naive CD4+ T (Tn) cells in the B6.Sle1.Sle2.Sle3 (triple congenic, TC) mouse model of lupus and its congenic B6 control. Lupus genetic susceptibility in TC mice drives a gene expression signature starting in Tn cells and expanding in Tfh cells with enhanced signaling and effector programs. Metabolically, TC Tn and Tfh cells showed multiple defective mitochondrial functions. TC Tfh cells also showed specific anabolic programs including enhanced glutamate metabolism, malate-aspartate shuttle, and ammonia recycling, as well as altered dynamics of amino acid content and their transporters. Thus, our study has revealed specific metabolic programs that can be targeted to specifically limit the expansion of pathogenic Tfh cells in lupus.
Collapse
Affiliation(s)
- Minghao Gong
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Seung-Chul Choi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yuk Pheel Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Xueyang Zou
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ahmed S. Elshikha
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Valerie A. Gerriets
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey C. Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mansour Mohamazadeh
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
30
|
Wang Y, Guo Z, Isah AD, Chen S, Ren Y, Cai H. Lipid metabolism and tumor immunotherapy. Front Cell Dev Biol 2023; 11:1187989. [PMID: 37261073 PMCID: PMC10228657 DOI: 10.3389/fcell.2023.1187989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
In recent years, the relationship between lipid metabolism and tumour immunotherapy has been thoroughly investigated. An increasing number of studies have shown that abnormal gene expression and ectopic levels of metabolites related to fatty acid synthesis or fatty acid oxidation affect tumour metastasis, recurrence, and drug resistance. Tumour immunotherapy that aims to promote an antitumour immune response has greatly improved the outcomes for tumour patients. However, lipid metabolism reprogramming in tumour cells or tumour microenvironment-infiltrating immune cells can influence the antitumour response of immune cells and induce tumor cell immune evasion. The recent increase in the prevalence of obesity-related cancers has drawn attention to the fact that obesity increases fatty acid oxidation in cancer cells and suppresses the activation of immune cells, thereby weakening antitumour immunity. This article reviews the changes in lipid metabolism in cells in the tumour microenvironment and describes the relationship between lipid metabolism reprogramming in multiple cell types and tumour immunotherapy.
Collapse
Affiliation(s)
- Yue Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
- Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zongjin Guo
- Department of Interventional Radiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | | | - Shuangwei Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yongfei Ren
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huazhong Cai
- Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
31
|
Lamarche C, Ward-Hartstonge K, Mi T, Lin DTS, Huang Q, Brown A, Edwards K, Novakovsky GE, Qi CN, Kobor MS, Zebley CC, Weber EW, Mackall CL, Levings MK. Tonic-signaling chimeric antigen receptors drive human regulatory T cell exhaustion. Proc Natl Acad Sci U S A 2023; 120:e2219086120. [PMID: 36972454 PMCID: PMC10083618 DOI: 10.1073/pnas.2219086120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Regulatory T cell (Treg) therapy is a promising approach to improve outcomes in transplantation and autoimmunity. In conventional T cell therapy, chronic stimulation can result in poor in vivo function, a phenomenon termed exhaustion. Whether or not Tregs are also susceptible to exhaustion, and if so, if this would limit their therapeutic effect, was unknown. To "benchmark" exhaustion in human Tregs, we used a method known to induce exhaustion in conventional T cells: expression of a tonic-signaling chimeric antigen receptor (TS-CAR). We found that TS-CAR-expressing Tregs rapidly acquired a phenotype that resembled exhaustion and had major changes in their transcriptome, metabolism, and epigenome. Similar to conventional T cells, TS-CAR Tregs upregulated expression of inhibitory receptors and transcription factors such as PD-1, TIM3, TOX and BLIMP1, and displayed a global increase in chromatin accessibility-enriched AP-1 family transcription factor binding sites. However, they also displayed Treg-specific changes such as high expression of 4-1BB, LAP, and GARP. DNA methylation analysis and comparison to a CD8+ T cell-based multipotency index showed that Tregs naturally exist in a relatively differentiated state, with further TS-CAR-induced changes. Functionally, TS-CAR Tregs remained stable and suppressive in vitro but were nonfunctional in vivo, as tested in a model of xenogeneic graft-versus-host disease. These data are the first comprehensive investigation of exhaustion in Tregs and reveal key similarities and differences with exhausted conventional T cells. The finding that human Tregs are susceptible to chronic stimulation-driven dysfunction has important implications for the design of CAR Treg adoptive immunotherapy strategies.
Collapse
Affiliation(s)
- Caroline Lamarche
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medicine, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, MontrealH1T 2M4, QC, Canada
| | - Kirsten Ward-Hartstonge
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin9016, New Zealand
| | - Tian Mi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - David T. S. Lin
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Qing Huang
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
| | - Andrew Brown
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Karlie Edwards
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Gherman E. Novakovsky
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Christopher N. Qi
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
| | - Michael S. Kobor
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN38105
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Evan W. Weber
- Division of Oncology, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA19104
| | - Crystal L. Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Megan K Levings
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| |
Collapse
|
32
|
Nava Lauson CB, Tiberti S, Corsetto PA, Conte F, Tyagi P, Machwirth M, Ebert S, Loffreda A, Scheller L, Sheta D, Mokhtari Z, Peters T, Raman AT, Greco F, Rizzo AM, Beilhack A, Signore G, Tumino N, Vacca P, McDonnell LA, Raimondi A, Greenberg PD, Huppa JB, Cardaci S, Caruana I, Rodighiero S, Nezi L, Manzo T. Linoleic acid potentiates CD8 + T cell metabolic fitness and antitumor immunity. Cell Metab 2023; 35:633-650.e9. [PMID: 36898381 DOI: 10.1016/j.cmet.2023.02.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/19/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023]
Abstract
The metabolic state represents a major hurdle for an effective adoptive T cell therapy (ACT). Indeed, specific lipids can harm CD8+ T cell (CTL) mitochondrial integrity, leading to defective antitumor responses. However, the extent to which lipids can affect the CTL functions and fate remains unexplored. Here, we show that linoleic acid (LA) is a major positive regulator of CTL activity by improving metabolic fitness, preventing exhaustion, and stimulating a memory-like phenotype with superior effector functions. We report that LA treatment enhances the formation of ER-mitochondria contacts (MERC), which in turn promotes calcium (Ca2+) signaling, mitochondrial energetics, and CTL effector functions. As a direct consequence, the antitumor potency of LA-instructed CD8 T cells is superior in vitro and in vivo. We thus propose LA treatment as an ACT potentiator in tumor therapy.
Collapse
Affiliation(s)
- Carina B Nava Lauson
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Silvia Tiberti
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Paola A Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti," National Research Council, Rome, Italy
| | - Punit Tyagi
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Markus Machwirth
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Stefan Ebert
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Alessia Loffreda
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy
| | - Lukas Scheller
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
| | - Dalia Sheta
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
| | - Zeinab Mokhtari
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
| | - Timo Peters
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Ayush T Raman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francesco Greco
- Fondazione Pisana per la Scienza, ONLUS, San Giuliano Terme, Italy; Institute of Life Sciences, Sant' Anna School of Advanced Studies, Pisa, Italy
| | - Angela M Rizzo
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
| | - Giovanni Signore
- Fondazione Pisana per la Scienza, ONLUS, San Giuliano Terme, Italy
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza, ONLUS, San Giuliano Terme, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy
| | - Philip D Greenberg
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Simone Cardaci
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Simona Rodighiero
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy.
| |
Collapse
|
33
|
Salmond RJ. Regulation of T Cell Activation and Metabolism by Transforming Growth Factor-Beta. BIOLOGY 2023; 12:297. [PMID: 36829573 PMCID: PMC9953227 DOI: 10.3390/biology12020297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023]
Abstract
Transforming growth factor beta (TGFβ) receptor signalling regulates T cell development, differentiation and effector function. Expression of the immune-associated isoform of this cytokine, TGFβ1, is absolutely required for the maintenance of immunological tolerance in both mice and humans, whilst context-dependent TGFβ1 signalling regulates the differentiation of both anti- and pro-inflammatory T cell effector populations. Thus, distinct TGFβ-dependent T cell responses are implicated in the suppression or initiation of inflammatory and autoimmune diseases. In cancer settings, TGFβ signals contribute to the blockade of anti-tumour immune responses and disease progression. Given the key functions of TGFβ in the regulation of immune responses and the potential for therapeutic targeting of TGFβ-dependent pathways, the mechanisms underpinning these pleiotropic effects have been the subject of much investigation. This review focuses on accumulating evidence suggesting that modulation of T cell metabolism represents a major mechanism by which TGFβ influences T cell immunity.
Collapse
Affiliation(s)
- Robert J Salmond
- Leeds Institute of Medical Research at St. James's, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
34
|
Côrte-Real BF, Hamad I, Arroyo Hornero R, Geisberger S, Roels J, Van Zeebroeck L, Dyczko A, van Gisbergen MW, Kurniawan H, Wagner A, Yosef N, Weiss SNY, Schmetterer KG, Schröder A, Krampert L, Haase S, Bartolomaeus H, Hellings N, Saeys Y, Dubois LJ, Brenner D, Kempa S, Hafler DA, Stegbauer J, Linker RA, Jantsch J, Müller DN, Kleinewietfeld M. Sodium perturbs mitochondrial respiration and induces dysfunctional Tregs. Cell Metab 2023; 35:299-315.e8. [PMID: 36754020 DOI: 10.1016/j.cmet.2023.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/07/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
FOXP3+ regulatory T cells (Tregs) are central for peripheral tolerance, and their deregulation is associated with autoimmunity. Dysfunctional autoimmune Tregs display pro-inflammatory features and altered mitochondrial metabolism, but contributing factors remain elusive. High salt (HS) has been identified to alter immune function and to promote autoimmunity. By investigating longitudinal transcriptional changes of human Tregs, we identified that HS induces metabolic reprogramming, recapitulating features of autoimmune Tregs. Mechanistically, extracellular HS raises intracellular Na+, perturbing mitochondrial respiration by interfering with the electron transport chain (ETC). Metabolic disturbance by a temporary HS encounter or complex III blockade rapidly induces a pro-inflammatory signature and FOXP3 downregulation, leading to long-term dysfunction in vitro and in vivo. The HS-induced effect could be reversed by inhibition of mitochondrial Na+/Ca2+ exchanger (NCLX). Our results indicate that salt could contribute to metabolic reprogramming and that short-term HS encounter perturb metabolic fitness and long-term function of human Tregs with important implications for autoimmunity.
Collapse
Affiliation(s)
- Beatriz F Côrte-Real
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Ibrahim Hamad
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Rebeca Arroyo Hornero
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Sabrina Geisberger
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Integrative Proteomics and Metabolomics, 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10785 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Joris Roels
- VIB-UGent Center for Inflammation Research, 9052 Gent, Belgium; VIB BioImaging Core, 9052 Gent, Belgium
| | - Lauren Van Zeebroeck
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Aleksandra Dyczko
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Henry Kurniawan
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Allon Wagner
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub Investigator, San Francisco, CA 94158, USA; Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA 02139, USA; Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Susanne N Y Weiss
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany
| | - Klaus G Schmetterer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Luka Krampert
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany
| | - Stefanie Haase
- Department of Neurology, University of Regensburg, 93053 Regensburg, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10785 Berlin, Germany
| | - Niels Hellings
- Department of Immunology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, 9052 Gent, Belgium
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Dirk Brenner
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5230 Odense, Denmark
| | - Stefan Kempa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Integrative Proteomics and Metabolomics, 13125 Berlin, Germany
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, 93053 Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, 50935 Cologne, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10785 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium.
| |
Collapse
|
35
|
Pajai S, John JE, Tripathi SC. Targeting immune-onco-metabolism for precision cancer therapy. Front Oncol 2023; 13:1124715. [PMID: 36816957 PMCID: PMC9932929 DOI: 10.3389/fonc.2023.1124715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Immune cells play a key role in host defence against infection and cancer. Unlike infection, cancer is a multidimensional disease where cancer cells require continuous activation of certain pathways to sustain their growth and survival. The tumour milieu plays an important role in defining the metabolic reprogramming to support this growth and evasion from the immune system. Cancer and stromal cells modulate each other's metabolism during cancer progression or regression. The mechanism related to change in the metabolism and its role in the crosstalk between tumour and immune cells is still an area of immense importance. Current treatment modalities can be immensely complemented and benefited by targeting the immuno-oncology metabolism, that can improve patient prognosis. This emerging aspect of immune-oncology metabolism is reviewed here, discussing therapeutic possibilities within various metabolic pathways and their effect on immune and cancer cell metabolism.
Collapse
|
36
|
Ramos GP, Bamidele AO, Klatt EE, Sagstetter MR, Kurdi AT, Hamdan FH, Kosinsky RL, Gaballa JM, Nair A, Sun Z, Dasari S, Lanza IR, Rozeveld CN, Schott MB, Urrutia G, Westphal MS, Clarkson BD, Howe CL, Marietta EV, Luckey DH, Murray JA, Gonzalez M, Braga Neto MB, Gibbons HR, Smyrk TC, Johnsen S, Lomberk G, Faubion WA. G9a Modulates Lipid Metabolism in CD4 T Cells to Regulate Intestinal Inflammation. Gastroenterology 2023; 164:256-271.e10. [PMID: 36272457 PMCID: PMC9892272 DOI: 10.1053/j.gastro.2022.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Although T-cell intrinsic expression of G9a has been associated with murine intestinal inflammation, mechanistic insight into the role of this methyltransferase in human T-cell differentiation is ill defined, and manipulation of G9a function for therapeutic use against inflammatory disorders is unexplored. METHODS Human naive T cells were isolated from peripheral blood and differentiated in vitro in the presence of a G9a inhibitor (UNC0642) before being characterized via the transcriptome (RNA sequencing), chromatin accessibility (assay for transposase-accessible chromatin by sequencing), protein expression (cytometry by time of flight, flow cytometry), metabolism (mitochondrial stress test, ultrahigh performance liquid chromatography-tandem mas spectroscopy) and function (T-cell suppression assay). The in vivo role of G9a was assessed using 3 murine models. RESULTS We discovered that pharmacologic inhibition of G9a enzymatic function in human CD4 T cells led to spontaneous generation of FOXP3+ T cells (G9a-inibitors-T regulatory cells [Tregs]) in vitro that faithfully reproduce human Tregs, functionally and phenotypically. Mechanistically, G9a inhibition altered the transcriptional regulation of genes involved in lipid biosynthesis in T cells, resulting in increased intracellular cholesterol. Metabolomic profiling of G9a-inibitors-Tregs confirmed elevated lipid pathways that support Treg development through oxidative phosphorylation and enhanced lipid membrane composition. Pharmacologic G9a inhibition promoted Treg expansion in vivo upon antigen (gliadin) stimulation and ameliorated acute trinitrobenzene sulfonic acid-induced colitis secondary to tissue-specific Treg development. Finally, Tregs lacking G9a expression (G9a-knockout Tregs) remain functional chronically and can rescue T-cell transfer-induced colitis. CONCLUSION G9a inhibition promotes cholesterol metabolism in T cells, favoring a metabolic profile that facilitates Treg development in vitro and in vivo. Our data support the potential use of G9a inhibitors in the treatment of immune-mediated conditions including inflammatory bowel disease.
Collapse
Affiliation(s)
- Guilherme Piovezani Ramos
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Adebowale O Bamidele
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Emily E Klatt
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Mary R Sagstetter
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Ahmed T Kurdi
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Feda H Hamdan
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Robyn Laura Kosinsky
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Joseph M Gaballa
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Asha Nair
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Zhifu Sun
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | - Ian R Lanza
- Metabolomics Core, Mayo Clinic, Rochester, Minnesota
| | - Cody N Rozeveld
- Department of Biology, Northwestern College, Orange City, Iowa
| | - Micah B Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Guillermo Urrutia
- Genomic Sciences and Precision Medicine Center, Milwaukee, Wisconsin; Division of Research Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Maria S Westphal
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Charles L Howe
- Department of Immunology, Mayo Clinic, Rochester, Minnesota; Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Eric V Marietta
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - David H Luckey
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Joseph A Murray
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Michelle Gonzalez
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Manuel B Braga Neto
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Hunter R Gibbons
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Thomas C Smyrk
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Steven Johnsen
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Gwen Lomberk
- Genomic Sciences and Precision Medicine Center, Milwaukee, Wisconsin; Division of Research Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - William A Faubion
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Immunology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
37
|
Epithelial cell-derived cytokine TSLP activates regulatory T cells by enhancing fatty acid uptake. Sci Rep 2023; 13:1653. [PMID: 36717741 PMCID: PMC9887060 DOI: 10.1038/s41598-023-28987-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Epithelial cells control a variety of immune cells by secreting cytokines to maintain tissue homeostasis on mucosal surfaces. Regulatory T (Treg) cells are essential for immune homeostasis and for preventing tissue inflammation; however, the precise molecular mechanisms by which epithelial cell-derived cytokines function on Treg cells in the epithelial tissues are not well understood. Here, we show that peripheral Treg cells preferentially respond to thymic stromal lymphoprotein (TSLP). Although TSLP does not affect thymic Treg differentiation, TSLP receptor-deficient induced Treg cells derived from naïve CD4+ T cells are less activated in an adoptive transfer model of colitis. Mechanistically, TSLP activates induced Treg cells partially through mTORC1 activation and fatty acid uptake. Thus, TSLP modulates the activation status of induced Treg through the enhanced uptake of fatty acids to maintain homeostasis in the large intestine.
Collapse
|
38
|
Conde E, Casares N, Mancheño U, Elizalde E, Vercher E, Capozzi R, Santamaria E, Rodriguez-Madoz JR, Prosper F, Lasarte JJ, Lozano T, Hervas-Stubbs S. FOXP3 expression diversifies the metabolic capacity and enhances the efficacy of CD8 T cells in adoptive immunotherapy of melanoma. Mol Ther 2023; 31:48-65. [PMID: 36045586 PMCID: PMC9840123 DOI: 10.1016/j.ymthe.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
Regulatory T cells overwhelm conventional T cells in the tumor microenvironment (TME) thanks to a FOXP3-driven metabolic program that allows them to engage different metabolic pathways. Using a melanoma model of adoptive T cell therapy (ACT), we show that FOXP3 overexpression in mature CD8 T cells improved their antitumor efficacy, favoring their tumor recruitment, proliferation, and cytotoxicity. FOXP3-overexpressing (Foxp3UP) CD8 T cells exhibited features of tissue-resident memory-like and effector T cells, but not suppressor activity. Transcriptomic analysis of tumor-infiltrating Foxp3UP CD8 T cells showed positive enrichment in a wide variety of metabolic pathways, such as glycolysis, fatty acid (FA) metabolism, and oxidative phosphorylation (OXPHOS). Intratumoral Foxp3UP CD8 T cells exhibited an enhanced capacity for glucose and FA uptake as well as accumulation of intracellular lipids. Interestingly, Foxp3UP CD8 T cells compensated for the loss of mitochondrial respiration-driven ATP production by activating aerobic glycolysis. Moreover, in limiting nutrient conditions these cells engaged FA oxidation to drive OXPHOS for their energy demands. Importantly, their ability to couple glycolysis and OXPHOS allowed them to sustain proliferation under glucose restriction. Our findings demonstrate a hitherto unknown role for FOXP3 in the adaptation of CD8 T cells to TME that may enhance their efficacy in ACT.
Collapse
Affiliation(s)
- Enrique Conde
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Noelia Casares
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Uxua Mancheño
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Edurne Elizalde
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Enric Vercher
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Roberto Capozzi
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Eva Santamaria
- Hepatology Program, CIMA, University of Navarra, Pamplona, 31008 Navarra, Spain; CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan R Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Hemat-Oncology Program, CIMA Universidad de Navarra, Pamplona, 31008 Navarra, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Felipe Prosper
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Hemat-Oncology Program, CIMA Universidad de Navarra, Pamplona, 31008 Navarra, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Pamplona, 31008 Navarra, Spain
| | - Juan J Lasarte
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain.
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
39
|
Zhang Y, Xu X, Cheng H, Zhou F. AIM2 and Psoriasis. Front Immunol 2023; 14:1085448. [PMID: 36742336 PMCID: PMC9889639 DOI: 10.3389/fimmu.2023.1085448] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide, with multiple systemic complications, which seriously affect the quality of life and physical and mental health of patients. The pathogenesis of psoriasis is related to the environment, genetics, epigenetics, and dysregulation of immune cells such as T cells, dendritic cells (DCs), and nonimmune cells such as keratinocytes. Absent in melanoma 2 (AIM2), a susceptibility gene locus for psoriasis, has been strongly linked to the genetic and epigenetic aspects of psoriasis and increased in expression in psoriatic keratinocytes. AIM2 was found to be activated in an inflammasome-dependent way to release IL-1β and IL-18 to mediate inflammation, and to participate in immune regulation in psoriasis, or in an inflammasome-independent way by regulating the function of regulatory T(Treg) cells or programming cell death in keratinocytes as well as controlling the proliferative state of different cells. AIM2 may also play a role in the recurrence of psoriasis by trained immunity. In this review, we will elaborate on the characteristics of AIM2 and how AIM2 mediates the development of psoriasis.
Collapse
Affiliation(s)
- Yuxi Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiaoqing Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hui Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
40
|
De Martino M, Daviaud C, Hajjar E, Vanpouille-Box C. Fatty acid metabolism and radiation-induced anti-tumor immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:121-141. [PMID: 36997267 DOI: 10.1016/bs.ircmb.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fatty acid metabolic reprogramming has emerged as a major regulator of anti-tumor immune responses with large body of evidence that demonstrate its ability to impact the differentiation and function of immune cells. Therefore, depending on the metabolic cues that stem in the tumor microenvironment, the tumor fatty acid metabolism can tilt the balance of inflammatory signals to either promote or impair anti-tumor immune responses. Oxidative stressors such as reactive oxygen species generated from radiation therapy can rewire the tumor energy supply, suggesting that radiation therapy can further perturb the energy metabolism of a tumor by promoting fatty acid production. In this review, we critically discuss the network of fatty acid metabolism and how it regulates immune response especially in the context of radiation therapy.
Collapse
|
41
|
Shi L, Lim JY, Kam LC. Substrate stiffness enhances human regulatory T cell induction and metabolism. Biomaterials 2023; 292:121928. [PMID: 36455488 PMCID: PMC9772289 DOI: 10.1016/j.biomaterials.2022.121928] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Regulatory T cells (Tregs) provide an essential tolerance mechanism to suppress the immune response. Induced Tregs hold the potential to treat autoimmune diseases in adoptive therapy and can be produced with stimulating signals to CD3 and CD28 in presence of the cytokine TGF-β and IL-2. This report examines the modulation of human Treg induction by leveraging the ability of T cells to sense the mechanical stiffness of an activating substrate. Treg induction on polyacrylamide gels (PA-gels) was sensitive to the substrate's elastic modulus, increasing with greater material stiffness. Single-cell RNA-Seq analysis revealed that Treg induction on stiffer substrates involved greater use of oxidative phosphorylation (OXPHOS). Inhibition of ATP synthase significantly reduced the rate of Treg induction and abrogated the difference among gels while activation of AMPK (AMP-activated protein kinase) increased Treg induction on the softer sample but not on the harder sample. Treg induction is thus mechanosensitive and OXPHOS-dependent, providing new strategies for improving the production of these cells for cellular immunotherapy.
Collapse
Affiliation(s)
- Lingting Shi
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY, 10027, USA
| | - Jee Yoon Lim
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY, 10027, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY, 10027, USA.
| |
Collapse
|
42
|
Scherlinger M, Pan W, Hisada R, Boulougoura A, Yoshida N, Vukelic M, Umeda M, Krishfield S, Tsokos MG, Tsokos GC. Phosphofructokinase P fine-tunes T regulatory cell metabolism, function, and stability in systemic autoimmunity. SCIENCE ADVANCES 2022; 8:eadc9657. [PMID: 36449620 PMCID: PMC9710877 DOI: 10.1126/sciadv.adc9657] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/12/2022] [Indexed: 05/21/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by defective regulatory T (Treg) cells. Here, we demonstrate that a T cell-specific deletion of calcium/calmodulin-dependent protein kinase 4 (CaMK4) improves disease in B6.lpr lupus-prone mice and expands Treg cells. Mechanistically, CaMK4 phosphorylates the glycolysis rate-limiting enzyme 6-phosphofructokinase, platelet type (PFKP) and promotes aerobic glycolysis, while its end product fructose-1,6-biphosphate suppresses oxidative metabolism. In Treg cells, a CRISPR-Cas9-enabled Pfkp deletion recapitulated the metabolism of Camk4-/- Treg cells and improved their function and stability in vitro and in vivo. In SLE CD4+ T cells, PFKP enzymatic activity correlated with SLE disease activity and pharmacologic inhibition of CaMK4-normalized PFKP activity, leading to enhanced Treg cell function. In conclusion, we provide molecular insights in the defective metabolism and function of Treg cells in SLE and identify PFKP as a target to fine-tune Treg cell metabolism and thereby restore their function.
Collapse
Affiliation(s)
- Marc Scherlinger
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Rheumatology Department, Strasbourg University Hospital of Hautepierre, 1 Avenue Molière, 67200 Strasbourg, France
| | - Wenliang Pan
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Ryo Hisada
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Afroditi Boulougoura
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Nobuya Yoshida
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Milena Vukelic
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Masataka Umeda
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Suzanne Krishfield
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Maria G. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - George C. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| |
Collapse
|
43
|
ANGPTL3 deficiency associates with the expansion of regulatory T cells with reduced lipid content. Atherosclerosis 2022; 362:38-46. [PMID: 36253169 DOI: 10.1016/j.atherosclerosis.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Angiopoietin-like 3 (ANGPTL3) regulates lipid and glucose metabolism. Loss-of-function mutations in its gene, leading to ANGPTL3 deficiency, cause in humans the familial combined hypolipidemia type 2 (FHBL2) phenotype, characterized by very low concentrations of circulating lipoproteins and reduced risk of atherosclerotic cardiovascular disease. Whether this condition is accompanied by immune dysfunctions is unknown. Regulatory T cells (Tregs) are CD4 T lymphocytes endowed with immune suppressive and atheroprotective functions and sensitive to metabolic signals. By investigating FHBL2, we explored the hypothesis that Tregs expand in response to extreme hypolipidemia, through a modulation of the Treg-intrinsic lipid metabolism. METHODS Treg frequency, phenotype, and intracellular lipid content were assessed ex vivo from FHBL2 subjects and age- and sex-matched controls, through multiparameter flow cytometry. The response of CD4 T cells from healthy controls to marked hypolipidemia was tested in vitro in low-lipid culture conditions. RESULTS The ex vivo analysis revealed that FHBL2 subjects showed higher percentages of Tregs with a phenotype undistinguishable from controls and with a lower lipid content, which directly correlated with the concentrations of circulating lipoproteins. In vitro, lipid restriction induced the upregulation of genes of the mevalonate pathway, including those involved in isoprenoid biosynthesis, and concurrently increased the expression of the Treg markers FOXP3 and Helios. The latter event was found to be prenylation-dependent, and likely related to increased IL-2 production and signaling. CONCLUSIONS Our study demonstrates that FHBL2 is characterized by high Treg frequencies, a feature which may concur to the reduced atherosclerotic risk in this condition. Mechanistically, hypolipidemia may directly favor Treg expansion, through the induction of the mevalonate pathway and the prenylation of key signaling proteins.
Collapse
|
44
|
Wißfeld J, Werner A, Yan X, ten Bosch N, Cui G. Metabolic regulation of immune responses to cancer. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0381. [PMID: 36269001 PMCID: PMC9724228 DOI: 10.20892/j.issn.2095-3941.2022.0381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The tumor microenvironment is an ecosystem composed of multiple types of cells, such as tumor cells, immune cells, and cancer-associated fibroblasts. Cancer cells grow faster than non-cancerous cells and consume larger amounts of nutrients. The rapid growth characteristic of cancer cells fundamentally alters nutrient availability in the tumor microenvironment and results in reprogramming of immune cell metabolic pathways. Accumulating evidence suggests that cellular metabolism of nutrients, such as lipids and amino acids, beyond being essential to meet the bioenergetic and biosynthetic demands of immune cells, also regulates a broad spectrum of cellular signal transduction, and influences immune cell survival, differentiation, and anti-tumor effector function. The cancer immunometabolism research field is rapidly evolving, and exciting new discoveries are reported in high-profile journals nearly weekly. Therefore, all new findings in this field cannot be summarized within this short review. Instead, this review is intended to provide a brief introduction to this rapidly developing research field, with a focus on the metabolism of two classes of important nutrients-lipids and amino acids-in immune cells. We highlight recent research on the roles of lipids and amino acids in regulating the metabolic fitness and immunological functions of T cells, macrophages, and natural killer cells in the tumor microenvironment. Furthermore, we discuss the possibility of "editing" metabolic pathways in immune cells to act synergistically with currently available immunotherapies in enhancing anti-tumor immune responses.
Collapse
Affiliation(s)
- Jannis Wißfeld
- Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany,T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Anke Werner
- Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany,T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Xin Yan
- Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany,T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | - Nora ten Bosch
- Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany,T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Guoliang Cui
- Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany,T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany,Correspondence to: Guoliang Cui, E-mail:
| |
Collapse
|
45
|
de Candia P, Procaccini C, Russo C, Lepore MT, Matarese G. Regulatory T cells as metabolic sensors. Immunity 2022; 55:1981-1992. [PMID: 36351373 DOI: 10.1016/j.immuni.2022.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Compelling experimental evidence links immunity and metabolism. In this perspective, we propose forkhead-box-P3 (FoxP3)+CD4+CD25+ regulatory T (Treg) cells as key metabolic sensors controlling the immunological state in response to their intrinsic capacity to perceive nutritional changes. Treg cell high anabolic state in vivo, residency in metabolically crucial districts, and recirculation between lymphoid and non-lymphoid sites enable them to recognize the metabolic cues and adapt their intracellular metabolism and anti-inflammatory function at the paracrine and systemic levels. As privileged regulators at the interface between neuroendocrine and immune systems, the role of Treg cells in maintaining metabolic homeostasis makes these cells promising targets of therapeutic strategies aimed at restoring organismal homeostasis not only in autoimmune but also metabolic disorders.
Collapse
Affiliation(s)
- Paola de Candia
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Claudia Russo
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy.
| |
Collapse
|
46
|
Li YL, Hung WC. Reprogramming of sentinel lymph node microenvironment during tumor metastasis. J Biomed Sci 2022; 29:84. [PMID: 36266717 PMCID: PMC9583492 DOI: 10.1186/s12929-022-00868-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/15/2022] [Indexed: 11/10/2022] Open
Abstract
Metastasis is a major cause of death in patients with cancer. The two main routes for cancer cell dissemination are the blood and lymphatic systems. The underlying mechanism of hematogenous metastasis has been well characterized in the past few decades. However, our understanding of the molecular basis of lymphatic metastasis remains at a premature stage. Conceptually, cancer cells invade into lymphatic capillary, passively move to collecting lymphatic vessels, migrate into sentinel lymph node (SLN;, the first lymph node to which cancer cells spread from the primary tumor), and enter the blood circulatory system via the subclavian vein. Before arriving, cancer cells release specific soluble factors to modulate the microenvironment in SLN to establish a beachhead for successful colonization. After colonization, cancer cells inhibit anti-tumor immunity by inducing the recruitment of regulatory T cell and myeloid-derived suppressor cells, suppressing the function of dendritic cell and CD8+ T cell, and promoting the release of immunosuppressive cytokines. The development of novel strategies to reverse cancer cell-triggered SLN remodeling may re-activate immunity to reduce beachhead buildup and distant metastasis. In addition to being a microanatomic location for metastasis, the SLN is also an important site for immune modulation. Nanotechnology-based approaches to deliver lymph node-tropic antibodies or drug-conjugated nanoparticles to kill cancer cells on site are a new direction for cancer treatment. Conversely, the induction of stronger immunity by promoting antigen presentation in lymph nodes provides an alternate way to enhance the efficacy of immune checkpoint therapy and cancer vaccine. In this review article, we summarize recent findings on the reprogramming of SLN during lymphatic invasion and discuss the possibility of inhibiting tumor metastasis and eliciting anti-tumor immunity by targeting SLN.
Collapse
Affiliation(s)
- Yen-Liang Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan. .,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
47
|
Ramgopal A, Sun LK, Byersdorfer CA. The role of AMP-activated protein kinase in GVHD-causing T cells. IMMUNOMETABOLISM (COBHAM, SURREY) 2022; 4:e00009. [PMID: 36275779 PMCID: PMC9561229 DOI: 10.1097/in9.0000000000000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Allogeneic stem cell transplantation is a curative therapy for multiple hematologic disorders. However, this life-saving procedure is often complicated by acute graft-versus-host disease (GVHD), where donor T cells attack tissues in the recipient's skin, liver, and gastrointestinal tract. Previous research has demonstrated that GVHD-causing T cells undergo significant metabolic reprogramming during disease pathogenesis, with an increased reliance on oxidative metabolism. This dependence makes metabolic modulation a potential approach to treat and/or prevent GVHD. Here, we provide an overview on the metabolic changes adopted by allogeneic T cells during disease initiation, highlighting the role played by AMP-activated protein kinase (AMPK) and identifying ways in which these insights might be leveraged to therapeutic advantage clinically.
Collapse
Affiliation(s)
- Archana Ramgopal
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lee-Kai Sun
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Craig A. Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Bharath LP, Hart SN, Nikolajczyk BS. T-cell Metabolism as Interpreted in Obesity-associated Inflammation. Endocrinology 2022; 163:6657752. [PMID: 35932471 PMCID: PMC9756079 DOI: 10.1210/endocr/bqac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/19/2022]
Abstract
The appreciation of metabolic regulation of T-cell function has exploded over the past decade, as has our understanding of how inflammation fuels comorbidities of obesity, including type 2 diabetes. The likelihood that obesity fundamentally alters T-cell metabolism and thus chronic obesity-associated inflammation is high, but studies testing causal relationships remain underrepresented. We searched PubMed for key words including mitochondria, obesity, T cell, type 2 diabetes, cristae, fission, fusion, redox, and reactive oxygen species to identify foundational and more recent studies that address these topics or cite foundational work. We investigated primary papers cited by reviews found in these searches and highlighted recent work with >100 citations to illustrate the state of the art in understanding mechanisms that control metabolism and thus function of various T-cell subsets in obesity. However, "popularity" of a paper over the first 5 years after publication cannot assess long-term impact; thus, some likely important work with fewer citations is also highlighted. We feature studies of human cells, supplementing with studies from animal models that suggest future directions for human cell research. This approach identified gaps in the literature that will need to be filled before we can estimate efficacy of mitochondria-targeted drugs in clinical trials to alleviate pathogenesis of obesity-associated inflammation.
Collapse
Affiliation(s)
- Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA 01845, USA
| | - Samantha N Hart
- Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Barbara S Nikolajczyk
- Correspondence: Barbara S. Nikolajczyk, PhD, Healthy Kentucky Research Bldg. Rm. 217, 760 Press Ave, Lexington, KY 40536, USA.
| |
Collapse
|
49
|
Böttcher-Loschinski R, Rial Saborido J, Böttcher M, Kahlfuss S, Mougiakakos D. Lipotoxicity as a Barrier for T Cell-Based Therapies. Biomolecules 2022; 12:biom12091182. [PMID: 36139021 PMCID: PMC9496045 DOI: 10.3390/biom12091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Nowadays, T-cell-based approaches play an increasing role in cancer treatment. In particular, the use of (genetically engineered) T-cells has heralded a novel era for various diseases with previously poor outcomes. Concurrently, the relationship between the functional behavior of immune cells and their metabolic state, known as immunometabolism, has been found to be an important determinant for the success of immunotherapy. In this context, immune cell metabolism is not only controlled by the expression of transcription factors, enzymes and transport proteins but also by nutrient availability and the presence of intermediate metabolites. The lack of as well as an oversupply of nutrients can be detrimental and lead to cellular dysfunction and damage, potentially resulting in reduced metabolic fitness and/or cell death. This review focusses on the detrimental effects of excessive exposure of T cells to fatty acids, known as lipotoxicity, in the context of an altered lipid tumor microenvironment. Furthermore, implications of T cell-related lipotoxicity for immunotherapy will be discussed, as well as potential therapeutic approaches.
Collapse
Affiliation(s)
- Romy Böttcher-Loschinski
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| | - Judit Rial Saborido
- Medical Department 5–Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martin Böttcher
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology, and Inflammation (GCI3), Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Sascha Kahlfuss
- Health Campus Immunology, Infectiology, and Inflammation (GCI3), Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- CHaMP, Center for Health and Medical Prevention, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Medical Department 5–Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
- Health Campus Immunology, Infectiology, and Inflammation (GCI3), Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
50
|
Regulatory T cells in skeletal muscle repair and regeneration: recent insights. Cell Death Dis 2022; 13:680. [PMID: 35931697 PMCID: PMC9356005 DOI: 10.1038/s41419-022-05142-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/21/2023]
Abstract
Skeletal muscle repair and regeneration after injury is a multi-stage process, involving a dynamic inflammatory microenvironment consisting of a complex network formed by the interaction of immune cells and their secreted cytokines. The homeostasis of the inflammatory microenvironment determines whether skeletal muscle repair tissues will ultimately form scar tissue or regenerative tissue. Regulatory T cells (Tregs) regulate homeostasis within the immune system and self-immune tolerance, and play a crucial role in skeletal muscle repair and regeneration. Dysregulated Tregs function leads to abnormal repair. In this review, we discuss the role and mechanisms of Tregs in skeletal muscle repair and regeneration after injury and provide new strategies for Treg immunotherapy in skeletal muscle diseases.
Collapse
|