1
|
Marino L, Ni B, Farrar JS, Lownik JC, Pearce JV, Martin RK, Celi FS. Adipose tissue-selective ablation of ADAM10 results in divergent metabolic phenotypes following long-term dietary manipulation. Adipocyte 2024; 13:2339418. [PMID: 38706095 PMCID: PMC11073419 DOI: 10.1080/21623945.2024.2339418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10), is involved in several metabolic and inflammatory pathways. We speculated that ADAM10 plays a modulatory role in adipose tissue inflammation and metabolism. To this end, we studied adipose tissue-specific ADAM10 knock-out mice (aKO). While young, regular chow diet-fed aKO mice showed increased insulin sensitivity, following prolonged (33 weeks) high-fat diet (HFD) exposure, aKO mice developed obesity and insulin resistance. Compared to controls, aKO mice showed less inflammatory adipokine profile despite the significant increase in adiposity. In brown adipose tissue, aKO mice on HFD had changes in CD8+ T cell populations indicating a lesser inflammatory pattern. Following HFD, both aKO and control littermates demonstrated decreased adipose tissue pro-inflammatory macrophages, and increased anti-inflammatory accumulation, without differences between the genotypes. Collectively, our observations indicate that selective deletion of ADAM10 in adipocytes results in a mitigated inflammatory response, leading to increased insulin sensitivity in young mice fed with regular diet. This state of insulin sensitivity, following prolonged HFD, facilitates energy storage resulting in increased fat accumulation which ultimately leads to the development of a phenotype of obesity and insulin resistance. In conclusion, the data indicate that ADAM10 has a modulatory effect of inflammation and whole-body energy metabolism.
Collapse
Affiliation(s)
- Luigi Marino
- Department of Medicine, UConn Health, University of Connecticut, Farmington, CT, USA
| | - Bin Ni
- Alliance Pharma, Philadelphia, PA, USA
| | - Jared S. Farrar
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Joseph C. Lownik
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Janina V. Pearce
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Rebecca K. Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Francesco S. Celi
- Department of Medicine, UConn Health, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
2
|
Nikolic I, Ruiz-Garrido I, Crespo M, Romero-Becerra R, Leiva-Vega L, Mora A, León M, Rodríguez E, Leiva M, Plata-Gómez AB, Alvarez Flores MB, Torres JL, Hernández-Cosido L, López JA, Vázquez J, Efeyan A, Martin P, Marcos M, Sabio G. Lack of p38 activation in T cells increases IL-35 and protects against obesity by promoting thermogenesis. EMBO Rep 2024; 25:2635-2661. [PMID: 38730210 PMCID: PMC11169359 DOI: 10.1038/s44319-024-00149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Obesity is characterized by low-grade inflammation, energy imbalance and impaired thermogenesis. The role of regulatory T cells (Treg) in inflammation-mediated maladaptive thermogenesis is not well established. Here, we find that the p38 pathway is a key regulator of T cell-mediated adipose tissue (AT) inflammation and browning. Mice with T cells specifically lacking the p38 activators MKK3/6 are protected against diet-induced obesity, leading to an improved metabolic profile, increased browning, and enhanced thermogenesis. We identify IL-35 as a driver of adipocyte thermogenic program through the ATF2/UCP1/FGF21 pathway. IL-35 limits CD8+ T cell infiltration and inflammation in AT. Interestingly, we find that IL-35 levels are reduced in visceral fat from obese patients. Mechanistically, we demonstrate that p38 controls the expression of IL-35 in human and mouse Treg cells through mTOR pathway activation. Our findings highlight p38 signaling as a molecular orchestrator of AT T cell accumulation and function.
Collapse
Affiliation(s)
- Ivana Nikolic
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
| | - Irene Ruiz-Garrido
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - María Crespo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | | | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Marta León
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Ana Belén Plata-Gómez
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | | | - Jorge L Torres
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, 37007, Spain
- Complejo Asistencial de Zamora, Zamora, 49022, Spain
| | - Lourdes Hernández-Cosido
- Bariatric Surgery Unit, Department of General Surgery, University Hospital of Salamanca, Department of Surgery, University of Salamanca, Salamanca, 37007, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, 28029, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, 28029, Spain
| | - Alejo Efeyan
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, 28029, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, 37007, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain.
| |
Collapse
|
3
|
Xu S, Lu F, Gao J, Yuan Y. Inflammation-mediated metabolic regulation in adipose tissue. Obes Rev 2024; 25:e13724. [PMID: 38408757 DOI: 10.1111/obr.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/04/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Chronic inflammation of adipose tissue is a prominent characteristic of many metabolic diseases. Lipid metabolism in adipose tissue is consistently dysregulated during inflammation, which is characterized by substantial infiltration by proinflammatory cells and high cytokine concentrations. Adipose tissue inflammation is caused by a variety of endogenous factors, such as mitochondrial dysfunction, reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, cellular senescence, ceramides biosynthesis and mediators of lipopolysaccharides (LPS) signaling. Additionally, the gut microbiota also plays a crucial role in regulating adipose tissue inflammation. Essentially, adipose tissue inflammation arises from an imbalance in adipocyte metabolism and the regulation of immune cells. Specific inflammatory signals, including nuclear factor-κB (NF-κB) signaling, inflammasome signaling and inflammation-mediated autophagy, have been shown to be involved in the metabolic regulation. The pathogenesis of metabolic diseases characterized by chronic inflammation (obesity, insulin resistance, atherosclerosis and nonalcoholic fatty liver disease [NAFLD]) and recent research regarding potential therapeutic targets for these conditions are also discussed in this review.
Collapse
Affiliation(s)
- Shujie Xu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Gao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yuan
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Siouti E, Salagianni M, Manioudaki M, Pavlos E, Klinakis A, Galani IE, Andreakos E. Notch signaling in adipose tissue macrophages prevents diet-induced inflammation and metabolic dysregulation. Eur J Immunol 2024; 54:e2350669. [PMID: 38339772 DOI: 10.1002/eji.202350669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The importance of macrophages in adipose tissue (AT) homeostasis and inflammation is well established. However, the potential cues that regulate their function remain incompletely understood. To bridge this important gap, we sought to characterize novel pathways involved using a mouse model of diet-induced obesity. By performing transcriptomics analysis of AT macrophages (ATMs), we found that late-stage ATMs from high-fat diet mice presented with perturbed Notch signaling accompanied by robust proinflammatory and metabolic changes. To explore the hypothesis that the deregulated Notch pathway contributes to the development of AT inflammation and diet-induced obesity, we employed a genetic approach to abrogate myeloid Notch1 and Notch2 receptors. Our results revealed that the combined loss of Notch1 and Notch2 worsened obesity-related metabolic dysregulation. Body and AT weight gain was higher, blood glucose levels increased and metabolic parameters were substantially worsened in deficient mice fed high-fat diet. Moreover, serum insulin and leptin were elevated as were triglycerides. Molecular analysis of ATMs showed that deletion of Notch receptors escalated inflammation through the induction of an M1-like pro-inflammatory phenotype. Our findings thus support a protective role of myeloid Notch signaling in adipose tissue inflammation and metabolic dysregulation.
Collapse
Affiliation(s)
- Eleni Siouti
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Salagianni
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Manioudaki
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleftherios Pavlos
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Apostolos Klinakis
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, 11527, Greece
| | - Ioanna-Evdokia Galani
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
5
|
Jiang Y, Gong F. Immune cells in adipose tissue microenvironment under physiological and obese conditions. Endocrine 2024; 83:10-25. [PMID: 37768512 DOI: 10.1007/s12020-023-03521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE This review will focus on the immune cells in adipose tissue microenvironment and their regulatory roles in metabolic homeostasis of adipose tissue and even the whole body under physiological and obese conditions. METHODS This review used PubMed searches of current literature to examine adipose tissue immune cells and cytokines, as well as the complex interactions between them. RESULTS Aside from serving as a passive energy depot, adipose tissue has shown specific immunological function. Adipose tissue microenvironment is enriched with a large number of immune cells and cytokines, whose physiological regulation plays a crucial role for metabolic homeostasis. However, obesity causes pro-inflammatory alterations in these adipose tissue immune cells, which have detrimental effects on metabolism and increase the susceptibility of individuals to the obesity related diseases. CONCLUSIONS Adipose tissue microenvironment is enriched with various immune cells and cytokines, which regulate metabolic homeostasis of adipose tissue and even the whole body, whether under physiological or obese conditions. Targeting key immune cells and cytokines in adipose tissue microenvironment for obesity treatment becomes an attractive research point.
Collapse
Affiliation(s)
- Yuchen Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Gao F, Litchfield B, Wu H. Adipose tissue lymphocytes and obesity. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:5. [PMID: 38455510 PMCID: PMC10919906 DOI: 10.20517/jca.2023.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Obesity is associated with chronic inflammation in adipose tissue (AT), mainly evidenced by infiltration and phenotypic changes of various types of immune cells. Macrophages are the major innate immune cells and represent the predominant immune cell population within AT. Lymphocytes, including T cells and B cells, are adaptive immune cells and constitute another important immune cell population in AT. In obesity, CD8+ effector memory T cells, CD4+ Th1 cells, and B2 cells are increased in AT and promote AT inflammation, while regulatory T cells and Th2 cells, which usually function as immune regulatory or type 2 inflammatory cells, are reduced in AT. Immune cells may regulate the metabolism of adipocytes and other cells through various mechanisms, contributing to the development of metabolic diseases, including insulin resistance and type 2 diabetes. Efforts targeting immune cells and inflammation to prevent and treat obesity-linked metabolic disease have been explored, but have not yielded significant success in clinical studies. This review provides a concise overview of the changes in lymphocyte populations within AT and their potential role in AT inflammation and the regulation of metabolic functions in the context of obesity.
Collapse
Affiliation(s)
- Feng Gao
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
8
|
Ma Y, Jun H, Wu J. Immune cell cholinergic signaling in adipose thermoregulation and immunometabolism. Trends Immunol 2022; 43:718-727. [PMID: 35931611 PMCID: PMC9727785 DOI: 10.1016/j.it.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Research focusing on adipose immunometabolism has been expanded from inflammation in white fat during obesity development to immune cell function regulating thermogenic fat, energy expenditure, and systemic metabolism. This opinion discusses our current understanding of how resident immune cells within the thermogenic fat niche may regulate whole-body energy homeostasis. Furthermore, various types of immune cells can synthesize acetylcholine (ACh) and regulate important physiological functions. We highlight a unique subset of cholinergic macrophages within subcutaneous adipose tissue, termed cholinergic adipose macrophages (ChAMs); these macrophages interact with beige adipocytes through cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) signaling to induce adaptive thermogenesis. We posit that these newly identified thermoregulatory macrophages may broaden our view of immune system functions for maintaining metabolic homeostasis and potentially treating obesity and metabolic disorders.
Collapse
Affiliation(s)
- Yingxu Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heejin Jun
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Abstract
Adipose tissue is a complex dynamic organ with whole-body immunometabolic influence. Much of the work into understanding the role of immune cells in adipose tissue has been in the context of obesity. These investigations have also uncovered a range of typical (immune) and non-typical functions exerted by adipose tissue leukocytes. Here we provide an overview of the adipose tissue immune system, including its role as an immune reservoir in the whole-body response to infection and as a site of parasitic and viral infections. We also describe the functional roles of specialized immunological structures found within adipose tissue. However, our main focus is on the recently discovered 'non-immune' functions of adipose tissue immune cells, which include the regulation of adipocyte homeostasis, as well as responses to changing nutrient status and body temperature. In doing so, we outline the therapeutic potential of the adipose tissue immune system in health and disease.
Collapse
|
10
|
Agueda-Oyarzabal M, Emanuelli B. Immune Cells in Thermogenic Adipose Depots: The Essential but Complex Relationship. Front Endocrinol (Lausanne) 2022; 13:839360. [PMID: 35360060 PMCID: PMC8963988 DOI: 10.3389/fendo.2022.839360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/28/2022] [Indexed: 01/09/2023] Open
Abstract
Brown adipose tissue (BAT) is a unique organ in mammals capable of dissipating energy in form of heat. Additionally, white adipose tissue (WAT) can undergo browning and perform thermogenesis. In recent years, the research community has aimed to harness thermogenic depot functions for new therapeutic strategies against obesity and the metabolic syndrome; hence a comprehensive understanding of the thermogenic fat microenvironment is essential. Akin to WAT, immune cells also infiltrate and reside within the thermogenic adipose tissues and perform vital functions. As highly plastic organs, adipose depots rely on crucial interplay with these tissue resident cells to conserve their healthy state. Evidence has accumulated to show that different immune cell populations contribute to thermogenic adipose tissue homeostasis and activation through complex communicative networks. Furthermore, new studies have identified -but still not fully characterized further- numerous immune cell populations present in these depots. Here, we review the current knowledge of this emerging field by describing the immune cells that sway the thermogenic adipose depots, and the complex array of communications that influence tissue performance.
Collapse
|
11
|
Chen H, Sun L, Feng L, Yin Y, Zhang W. Role of Innate lymphoid Cells in Obesity and Insulin Resistance. Front Endocrinol (Lausanne) 2022; 13:855197. [PMID: 35574038 PMCID: PMC9091334 DOI: 10.3389/fendo.2022.855197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity, a growing chronic metabolic disease, greatly increases the risk of metabolic syndrome which includes type 2 diabetes, fatty liver and cardiovascular diseases. Obesity-associated metabolic diseases significantly contribute to mortality and reduce life expectancy. Recently, innate lymphoid cells (ILCs) have emerged as crucial regulators of metabolic homeostasis and tissue inflammation. This review focuses on the roles of ILCs in different metabolic tissues, including adipose tissue, liver, pancreas, and intestine. We briefly outline the relationship between obesity, inflammation, and insulin resistance. We then discuss how ILCs in distinct metabolic organs may function to maintain metabolic homeostasis and contribute to obesity and its associated metabolic diseases. The potential of ILCs as the therapeutic target for obesity and insulin resistance is also addressed.
Collapse
Affiliation(s)
- Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Lu Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- *Correspondence: Weizhen Zhang, ; Yue Yin,
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
- *Correspondence: Weizhen Zhang, ; Yue Yin,
| |
Collapse
|
12
|
Michailidou Z, Gomez-Salazar M, Alexaki VI. Innate Immune Cells in the Adipose Tissue in Health and Metabolic Disease. J Innate Immun 2021; 14:4-30. [PMID: 33849008 DOI: 10.1159/000515117] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022] Open
Abstract
Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.
Collapse
Affiliation(s)
- Zoi Michailidou
- Centre for Cardiovascular Sciences, Edinburgh University, Edinburgh, United Kingdom
| | - Mario Gomez-Salazar
- Centre for Cardiovascular Sciences, Edinburgh University, Edinburgh, United Kingdom
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Pan XX, Yao KL, Yang YF, Ge Q, Zhang R, Gao PJ, Ruan CC, Wu F. Senescent T Cell Induces Brown Adipose Tissue "Whitening" Via Secreting IFN-γ. Front Cell Dev Biol 2021; 9:637424. [PMID: 33748126 PMCID: PMC7969812 DOI: 10.3389/fcell.2021.637424] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Aging-associated chronic inflammation is a key contributing factor to a cluster of chronic metabolic disorders, such as cardiovascular disease, obesity, and type 2 diabetes. Immune cells particularly T cells accumulate in adipose tissue with advancing age, and there exists a cross talk between T cell and preadipocyte, contributing to age-related adipose tissue remodeling. Here, we compared the difference in morphology and function of adipose tissue between young (3-month-old) and old (18-month-old) mice and showed the phenomenon of brown adipose tissue (BAT) “whitening” in old mice. Flow cytometry analysis suggested an increased proportion of T cells in BAT of old mice comparing with the young and exhibited senescent characteristics. We take advantage of coculture system to demonstrate directly that senescent T cells inhibited brown adipocyte differentiation of preadipocytes in adipose tissue. Mechanistically, both in vitro and in vivo studies suggested that senescent T cells produced and released a higher level of IFN-γ, which plays a critical role in inhibition of preadipocyte-to-brown adipocyte differentiation. Taken together, the data indicate that senescent T cell-derived IFN-γ is a key regulator in brown adipocyte differentiation.
Collapse
Affiliation(s)
- Xiao-Xi Pan
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang-Li Yao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Feng Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Qian Ge
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Run Zhang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Fang Wu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Antony A, Lian Z, Perrard XD, Perrard J, Liu H, Cox AR, Saha P, Hennighausen L, Hartig SM, Ballantyne CM, Wu H. Deficiency of Stat1 in CD11c + Cells Alters Adipose Tissue Inflammation and Improves Metabolic Dysfunctions in Mice Fed a High-Fat Diet. Diabetes 2021; 70:720-732. [PMID: 33323395 PMCID: PMC7897343 DOI: 10.2337/db20-0634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022]
Abstract
CD11c+ macrophages/dendritic cells (MDCs) are increased and display the classically activated M1-like phenotype in obese adipose tissue (AT) and may contribute to AT inflammation and insulin resistance. Stat1 is a key transcription factor for MDC polarization into the M1-like phenotype. Here, we examined the role of Stat1 in obesity-induced AT MDC polarization and inflammation and insulin resistance using mice with specific knockout of Stat1 in MDCs (cKO). Stat1 was upregulated and phosphorylated, indicating activation, early and persistently in AT and AT MDCs of wild-type mice fed a high-fat diet (HFD). Compared with littermate controls, cKO mice fed an HFD (16 weeks) had reductions in MDC (mainly CD11c+ macrophage) M1-like polarization and interferon-γ-expressing T-helper type 1 (Th1) cells but increases in interleukin 5-expressing Th2 cells and eosinophils in perigonadal and inguinal AT, and enhanced inguinal AT browning, with increased energy expenditure. cKO mice compared with controls also had significant reductions in triglyceride content in the liver and skeletal muscle and exhibited improved insulin sensitivity and glucose tolerance. Taken together, our results demonstrate that Stat1 in MDCs plays an important role in obesity-induced MDC M1-like polarization and AT inflammation and contributes to insulin resistance and metabolic dysfunctions in obese mice.
Collapse
Affiliation(s)
- Antu Antony
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Zeqin Lian
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | | | - Jerry Perrard
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Hua Liu
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Aaron R Cox
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Pradip Saha
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Sean M Hartig
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Christie M Ballantyne
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, TX
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
15
|
Wang L, Sun P, Wu Y, Wang L. Metabolic tissue-resident CD8 + T cells: A key player in obesity-related diseases. Obes Rev 2021; 22:e13133. [PMID: 32935464 DOI: 10.1111/obr.13133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/15/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Obesity-induced low-grade chronic inflammation in the metabolic tissues, such as adipose tissue (AT) and liver tissue, in individuals with obesity is a major etiological factor for several diseases, such as insulin resistance, type 2 diabetes, fatty liver disease, atherosclerosis and cardiovascular problems, as well as cancer and autoimmune diseases. Previous studies have revealed that tissue-resident macrophages play a crucial role in this process. However, the mechanisms responsible for recruiting and activating macrophages and initiating chronic inflammation in the metabolic tissues have not yet been clearly elucidated. In the most recent decade, there has been a growing emphasis on the critical role of the adaptive CD8+ T cells in obesity-induced chronic inflammation and related metabolic diseases. In this review, we will summarize the relevant studies in both mice and human regarding the role of metabolic tissue-resident CD8+ T cells in obesity-related inflammation and diseases, as well as the possible mechanisms underlying the regulation of CD8+ T cell recruitment, activation and function in the metabolic tissues, and discuss their potential as therapeutic targets for obesity-related diseases.
Collapse
Affiliation(s)
- Lina Wang
- Institute of Immunology PLA, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Immunology, Weifang Medical University, Weifang, China
| | - Ping Sun
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Yuzhang Wu
- Institute of Immunology PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Wang
- Institute of Immunology PLA, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
16
|
Zhou H, Liu F. T cell metabolism in obesity and beyond: comments on 'DsbA-L deficiency in T cells promotes diet-induced thermogenesis through suppressing IFN-γ production'. J Mol Cell Biol 2021; 13:389-391. [PMID: 33538302 PMCID: PMC8373268 DOI: 10.1093/jmcb/mjab008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Haiyan Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX78229, USA
| |
Collapse
|
17
|
Zhou H, Peng X, Hu J, Wang L, Luo H, Zhang J, Zhang Y, Li G, Ji Y, Zhang J, Bai J, Liu M, Zhou Z, Liu F. DsbA-L deficiency in T cells promotes diet-induced thermogenesis through suppressing IFN-γ production. Nat Commun 2021; 12:326. [PMID: 33436607 PMCID: PMC7804451 DOI: 10.1038/s41467-020-20665-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 12/10/2020] [Indexed: 01/17/2023] Open
Abstract
Adipose tissue-resident T cells have been recognized as a critical regulator of thermogenesis and energy expenditure, yet the underlying mechanisms remain unclear. Here, we show that high-fat diet (HFD) feeding greatly suppresses the expression of disulfide-bond A oxidoreductase-like protein (DsbA-L), a mitochondria-localized chaperone protein, in adipose-resident T cells, which correlates with reduced T cell mitochondrial function. T cell-specific knockout of DsbA-L enhances diet-induced thermogenesis in brown adipose tissue (BAT) and protects mice from HFD-induced obesity, hepatosteatosis, and insulin resistance. Mechanistically, DsbA-L deficiency in T cells reduces IFN-γ production and activates protein kinase A by reducing phosphodiesterase-4D expression, leading to increased BAT thermogenesis. Taken together, our study uncovers a mechanism by which T cells communicate with brown adipocytes to regulate BAT thermogenesis and whole-body energy homeostasis. Our findings highlight a therapeutic potential of targeting T cells for the treatment of over nutrition-induced obesity and its associated metabolic diseases.
Collapse
MESH Headings
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Animals
- Diet, High-Fat
- Down-Regulation/drug effects
- Energy Metabolism/drug effects
- Feeding Behavior
- Glutathione Transferase/deficiency
- Glutathione Transferase/metabolism
- Insulin Resistance
- Interferon-gamma/administration & dosage
- Interferon-gamma/biosynthesis
- Interferon-gamma/pharmacology
- Male
- Mice, Knockout
- Mitochondria/drug effects
- Mitochondria/metabolism
- Obesity/genetics
- Obesity/pathology
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Thermogenesis/drug effects
- Thermogenesis/genetics
- Uncoupling Protein 1/metabolism
- Mice
Collapse
Affiliation(s)
- Haiyan Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| | - Xinyi Peng
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Jie Hu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Liwen Wang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Hairong Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Junyan Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Yacheng Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Guobao Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Yujiao Ji
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Juli Bai
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
18
|
AlZaim I, Hammoud SH, Al-Koussa H, Ghazi A, Eid AH, El-Yazbi AF. Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. Front Cardiovasc Med 2020; 7:602088. [PMID: 33282920 PMCID: PMC7705180 DOI: 10.3389/fcvm.2020.602088] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a critical regulator of systemic metabolism and bodily homeostasis as it secretes a myriad of adipokines, including inflammatory and anti-inflammatory cytokines. As the main storage pool of lipids, subcutaneous and visceral adipose tissues undergo marked hypertrophy and hyperplasia in response to nutritional excess leading to hypoxia, adipokine dysregulation, and subsequent low-grade inflammation that is characterized by increased infiltration and activation of innate and adaptive immune cells. The specific localization, physiology, susceptibility to inflammation and the heterogeneity of the inflammatory cell population of each adipose depot are unique and thus dictate the possible complications of adipose tissue chronic inflammation. Several lines of evidence link visceral and particularly perivascular, pericardial, and perirenal adipose tissue inflammation to the development of metabolic syndrome, insulin resistance, type 2 diabetes and cardiovascular diseases. In addition to the implication of the immune system in the regulation of adipose tissue function, adipose tissue immune components are pivotal in detrimental or otherwise favorable adipose tissue remodeling and thermogenesis. Adipose tissue resident and infiltrating immune cells undergo metabolic and morphological adaptation based on the systemic energy status and thus a better comprehension of the metabolic regulation of immune cells in adipose tissues is pivotal to address complications of chronic adipose tissue inflammation. In this review, we discuss the role of adipose innate and adaptive immune cells across various physiological and pathophysiological states that pertain to the development or progression of cardiovascular diseases associated with metabolic disorders. Understanding such mechanisms allows for the exploitation of the adipose tissue-immune system crosstalk, exploring how the adipose immune system might be targeted as a strategy to treat cardiovascular derangements associated with metabolic dysfunctions.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Safaa H. Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Houssam Al-Koussa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Alaa Ghazi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Pyrina I, Chung KJ, Michailidou Z, Koutsilieris M, Chavakis T, Chatzigeorgiou A. Fate of Adipose Progenitor Cells in Obesity-Related Chronic Inflammation. Front Cell Dev Biol 2020; 8:644. [PMID: 32760729 PMCID: PMC7372115 DOI: 10.3389/fcell.2020.00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Adipose progenitor cells, or preadipocytes, constitute a small population of immature cells within the adipose tissue. They are a heterogeneous group of cells, in which different subtypes have a varying degree of commitment toward diverse cell fates, contributing to white and beige adipogenesis, fibrosis or maintenance of an immature cell phenotype with proliferation capacity. Mature adipocytes as well as cells of the immune system residing in the adipose tissue can modulate the function and differentiation potential of preadipocytes in a contact- and/or paracrine-dependent manner. In the course of obesity, the accumulation of immune cells within the adipose tissue contributes to the development of a pro-inflammatory microenvironment in the tissue. Under such circumstances, the crosstalk between preadipocytes and immune or parenchymal cells of the adipose tissue may critically regulate the differentiation of preadipocytes into white adipocytes, beige adipocytes, or myofibroblasts, thereby influencing adipose tissue expansion and adipose tissue dysfunction, including downregulation of beige adipogenesis and development of fibrosis. The present review will outline the current knowledge about factors shaping cell fate decisions of adipose progenitor cells in the context of obesity-related inflammation.
Collapse
Affiliation(s)
- Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Zoi Michailidou
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Antonios Chatzigeorgiou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Eosinophil function in adipose tissue is regulated by Krüppel-like factor 3 (KLF3). Nat Commun 2020; 11:2922. [PMID: 32523103 PMCID: PMC7286919 DOI: 10.1038/s41467-020-16758-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/20/2020] [Indexed: 01/01/2023] Open
Abstract
The conversion of white adipocytes to thermogenic beige adipocytes represents a potential mechanism to treat obesity and related metabolic disorders. However, the mechanisms involved in converting white to beige adipose tissue remain incompletely understood. Here we show profound beiging in a genetic mouse model lacking the transcriptional repressor Krüppel-like factor 3 (KLF3). Bone marrow transplants from these animals confer the beige phenotype on wild type recipients. Analysis of the cellular and molecular changes reveal an accumulation of eosinophils in adipose tissue. We examine the transcriptomic profile of adipose-resident eosinophils and posit that KLF3 regulates adipose tissue function via transcriptional control of secreted molecules linked to beiging. Furthermore, we provide evidence that eosinophils may directly act on adipocytes to drive beiging and highlight the critical role of these little-understood immune cells in thermogenesis. Immune cells are important regulators of adipose tissue function, including adaptive thermogenesis. Here the authors show that mice with Krüppel-like factor 3 (KLF3) deficiency in bone marrow-derived cells have increased adipose tissue beiging which may at least in part be due to altered eosinophil paracrine signaling.
Collapse
|
21
|
Abstract
Obesity is becoming an epidemic in the United States and worldwide and increases risk for many diseases, particularly insulin resistance, type 2 diabetes mellitus, and cardiovascular disease. The mechanisms linking obesity with these diseases remain incompletely understood. Over the past 2 to 3 decades, it has been recognized that in obesity, inflammation, with increased accumulation and inflammatory polarization of immune cells, takes place in various tissues, including adipose tissue, skeletal muscle, liver, gut, pancreatic islet, and brain and may contribute to obesity-linked metabolic dysfunctions, leading to insulin resistance and type 2 diabetes mellitus. Therapies targeting inflammation have shed light on certain obesity-linked diseases, including type 2 diabetes mellitus and atherosclerotic cardiovascular disease, but remain to be tested further and confirmed in clinical trials. This review focuses on inflammation in adipose tissue and its potential role in insulin resistance associated with obesity.
Collapse
Affiliation(s)
- Huaizhu Wu
- From the Department of Medicine (H.W., C.M.B.), Baylor College of Medicine, Houston, TX.,Department of Pediatrics (H.W.), Baylor College of Medicine, Houston, TX
| | - Christie M Ballantyne
- From the Department of Medicine (H.W., C.M.B.), Baylor College of Medicine, Houston, TX.,Department of Molecular and Human Genetics (C.M.B.), Baylor College of Medicine, Houston, TX.,Center for Cardiometabolic Disease Prevention (C.M.B.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
22
|
|
23
|
Lu J, Zhao J, Meng H, Zhang X. Adipose Tissue-Resident Immune Cells in Obesity and Type 2 Diabetes. Front Immunol 2019; 10:1173. [PMID: 31191541 PMCID: PMC6540829 DOI: 10.3389/fimmu.2019.01173] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 05/08/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation is an important contributor to the pathogenesis of obesity-related type 2 diabetes (T2D). Adipose tissue-resident immune cells have been observed, and the potential contribution of these cells to metabolic dysfunction has been appreciated in recent years. This review focused on adipose tissue-resident immune cells that are dysregulated in the context of obesity and T2D. We comprehensively overviewed emerging knowledge regarding the phenotypic and functional properties of these cells and local factors that control their development. We discussed their function in controlling the immune response cascade and disease progression. We also characterized the metabolic profiles of these cells to explain the functional consequences in obese adipose tissues. Finally, we discussed the potential therapeutic targeting of adipose tissue-resident immune cells with the aim of addressing novel therapeutic approaches for the treatment of this disease.
Collapse
Affiliation(s)
- Jingli Lu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Junjie Zhao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Kalathookunnel Antony A, Lian Z, Wu H. T Cells in Adipose Tissue in Aging. Front Immunol 2018; 9:2945. [PMID: 30619305 PMCID: PMC6299975 DOI: 10.3389/fimmu.2018.02945] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Similar to obesity, aging is associated with visceral adiposity and insulin resistance. Inflammation in adipose tissue, mainly evidenced by increased accumulation and proinflammatory polarization of T cells and macrophages, has been well-documented in obesity and may contribute to the associated metabolic dysfunctions including insulin resistance. Studies show that increased inflammation, including inflammation in adipose tissue, also occurs in aging, so-called "inflamm-aging." Aging-associated inflammation in adipose tissue has some similarities but also differences compared to obesity-related inflammation. In particular, conventional T cells are elevated in adipose tissue in both obesity and aging and have been implicated in metabolic functions in obesity. However, the changes and also possibly functions of regulatory T cells (Treg) in adipose tissue are different in aging and obesity. In this review, we will summarize recent advances in research on the changes of these immune cells in adipose tissue with aging and obesity and discuss their possible contributions to metabolism and the potential of these immune cells as novel therapeutic targets for prevention and treatment of metabolic diseases associated with aging or obesity.
Collapse
Affiliation(s)
| | - Zeqin Lian
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
25
|
Abstract
Immune cells are present in the adipose tissue (AT) and regulate its function. Under lean conditions, immune cells predominantly of type 2 immunity, including eosinophils, M2-like anti-inflammatory macrophages and innate lymphoid cells 2, contribute to the maintenance of metabolic homeostasis within the AT. In the course of obesity, pro-inflammatory immune cells, such as M1-like macrophages, prevail in the AT. Inflammation in the obese AT is associated with the development of metabolic complications such as insulin resistance, type 2 diabetes and cardiovascular disease. Thus, the immune cell-adipocyte crosstalk in the AT is an important regulator of AT function and systemic metabolism. We discuss herein this crosstalk with a special focus on the role of innate immune cells in AT inflammation and metabolic homeostasis in obesity.
Collapse
Affiliation(s)
- Kyoung-Jin Chung
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Marina Nati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Triantafyllos Chavakis
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Antonios Chatzigeorgiou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| |
Collapse
|
26
|
Zhou H, Liu F. Regulation, Communication, and Functional Roles of Adipose Tissue-Resident CD4 + T Cells in the Control of Metabolic Homeostasis. Front Immunol 2018; 9:1961. [PMID: 30233575 PMCID: PMC6134258 DOI: 10.3389/fimmu.2018.01961] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/09/2018] [Indexed: 01/21/2023] Open
Abstract
Evidence accumulated over the past few years has documented a critical role for adipose tissue (AT)-resident immune cells in the regulation of local and systemic metabolic homeostasis. In the lean state, visceral adipose tissue (VAT) is predominated by anti-inflammatory T-helper 2 (Th2) and regulatory T (Treg) cell subsets. As obesity progresses, the population of Th2 and Treg cells decreases while that of the T-helper 1 (Th1) and T-helper 17 (Th17) cells increases, leading to augmented inflammation and insulin resistance. Notably, recent studies also suggest a potential role of CD4+ T cells in the control of thermogenesis and energy homeostasis. In this review, we have summarized recent advances in understanding the characteristics and functional roles of AT CD4+ T cell subsets during obesity and energy expenditure. We have also discussed new findings on the crosstalk between CD4+ T cells and local antigen-presenting cells (APCs) including adipocytes, macrophages, and dendritic cells (DCs) to regulate AT function and metabolic homeostasis. Finally, we have highlighted the therapeutic potential of targeting CD4+ T cells as an effective strategy for the treatment of obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Haiyan Zhou
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|