1
|
Pion A, Kavanagh E, Joynt AT, Raraigh KS, Vanscoy L, Langfelder-Schwind E, McNamara J, Moore B, Patel S, Merlo K, Temme R, Capurro V, Pesce E, Merlo C, Pedemonte N, Cutting GR, Sharma N. Investigation of CFTR Function in Human Nasal Epithelial Cells Informs Personalized Medicine. Am J Respir Cell Mol Biol 2024; 71:577-588. [PMID: 39012815 DOI: 10.1165/rcmb.2023-0398oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/16/2024] [Indexed: 07/18/2024] Open
Abstract
We broaden the clinical versatility of human nasal epithelial (HNE) cells. HNEs were isolated from 10 participants harboring cystic fibrosis transmembrane conductance regulator (CFTR) variants: 9 with rare variants (Q359R [n = 2], G480S, R334W [n = 5], and R560T) and 1 harboring R117H;7T;TG10/5T;TG12. Cultures were differentiated at the air-liquid interface. CFTR function was measured in Ussing chambers at three conditions: baseline, ivacaftor, and elexacaftor + tezacaftor + ivacaftor (ETI). Four participants initiated modulators. Q359R HNEs had 5.4% (% wild-type) baseline CFTR function and 25.5% with ivacaftor. With therapy, sweat [Cl-] decreased and symptoms resolved. G480S HNEs had 4.1% baseline and 32.1% CFTR function with ETI. Clinically, forced expiratory volume in 1 second increased and sweat [Cl-] decreased (119 to 46 mmol/L) with ETI. In vitro cultures derived from 5 participants harboring R334W showed a moderate increase in CFTR function with exposure to modulators. For one of these participants, ETI was begun in vivo; symptoms and forced expiratory volume in 1 second improved. The c.1679G>C (R560T) HNEs had less than 4% baseline CFTR function and no modulator response. RNA analysis confirmed that c.1679G>C completely missplices. A symptomatic patient harboring R117H;7T;TG10/5T;TG12 exhibited reduced CFTR function (17.5%) in HNEs, facilitating a diagnosis of mild CF. HNEs responded to modulators (ivacaftor: 32.8%, ETI: 55.5%), and, since beginning therapy, lung function improved. We reaffirm HNE use for guiding therapeutic approaches, inform predictions on modulator response (e.g., R334W), and closely assess variants that affect splicing (e.g., c.1679G>C). Notably, functional studies in HNEs harboring R117H;7T;TG10/5T;TG12 facilitated a diagnosis of mild CF, suggesting the use for HNE functional studies as a clinical diagnostic test.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John McNamara
- Children's Respiratory and Critical Care Specialists, Minneapolis, Minnesota
| | - Brooke Moore
- Children's Respiratory and Critical Care Specialists, Minneapolis, Minnesota
| | - Shivani Patel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Renee Temme
- Genetics Department, Children's Minnesota, Minneapolis, Minnesota
| | - Valeria Capurro
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Christian Merlo
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | |
Collapse
|
2
|
Redman E, Fierville M, Cavard A, Plaisant M, Arguel MJ, Ruiz Garcia S, McAndrew EM, Girard-Riboulleau C, Lebrigand K, Magnone V, Ponzio G, Gras D, Chanez P, Abelanet S, Barbry P, Marcet B, Zaragosi LE. Cell Culture Differentiation and Proliferation Conditions Influence the In Vitro Regeneration of the Human Airway Epithelium. Am J Respir Cell Mol Biol 2024; 71:267-281. [PMID: 38843491 PMCID: PMC11376247 DOI: 10.1165/rcmb.2023-0356ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The human airway mucociliary epithelium can be recapitulated in vitro using primary cells cultured in an air-liquid interface (ALI), a reliable surrogate to perform pathophysiological studies. As tremendous variations exist among media used for ALI-cultured human airway epithelial cells, the aim of our study was to evaluate the impact of several media (BEGM, PneumaCult, Half & Half, and Clancy) on cell type distribution using single-cell RNA sequencing and imaging. Our work revealed the impact of these media on cell composition, gene expression profile, cell signaling, and epithelial morphology. We found higher proportions of multiciliated cells in PneumaCult-ALI and Half & Half, stronger EGF signaling from basal cells in BEGM-ALI, differential expression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry factor ACE2, and distinct secretome transcripts depending on the media used. We also established that proliferation in PneumaCult-Ex Plus favored secretory cell fate, showing the key influence of proliferation media on late differentiation epithelial characteristics. Altogether, our data offer a comprehensive repertoire for evaluating the effects of culture conditions on airway epithelial differentiation and will aid in choosing the most relevant medium according to the processes to be investigated, such as cilia, mucus biology, or viral infection. We detail useful parameters that should be explored to document airway epithelial cell fate and morphology.
Collapse
Affiliation(s)
- Elisa Redman
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Morgane Fierville
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
- Interdisciplinary Institute for Artificial Intelligence (3IA Côte d'Azur), Université Côte d'Azur, Sophia Antipolis, France; and
| | - Amélie Cavard
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Magali Plaisant
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Marie-Jeanne Arguel
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Sandra Ruiz Garcia
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Eamon M McAndrew
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Cédric Girard-Riboulleau
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Kevin Lebrigand
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Virginie Magnone
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Gilles Ponzio
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Delphine Gras
- Centre de Recherche en Cardiovasculaire et Nutrition, Institut National de la Santé et de la Recherche Médicale (INSERM), and Institut National de Recherche pour L'agriculture, L'alimentation et L'environnement (INRAE), Université Aix-Marseille, Marseille, France
| | - Pascal Chanez
- Centre de Recherche en Cardiovasculaire et Nutrition, Institut National de la Santé et de la Recherche Médicale (INSERM), and Institut National de Recherche pour L'agriculture, L'alimentation et L'environnement (INRAE), Université Aix-Marseille, Marseille, France
| | - Sophie Abelanet
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
- Interdisciplinary Institute for Artificial Intelligence (3IA Côte d'Azur), Université Côte d'Azur, Sophia Antipolis, France; and
| | - Brice Marcet
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Laure-Emmanuelle Zaragosi
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| |
Collapse
|
3
|
Bihler H, Sivachenko A, Millen L, Bhatt P, Patel AT, Chin J, Bailey V, Musisi I, LaPan A, Allaire NE, Conte J, Simon NR, Magaret AS, Raraigh KS, Cutting GR, Skach WR, Bridges RJ, Thomas PJ, Mense M. In vitro modulator responsiveness of 655 CFTR variants found in people with cystic fibrosis. J Cyst Fibros 2024; 23:664-675. [PMID: 38388235 DOI: 10.1016/j.jcf.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND In 2017, the US Food and Drug Administration initiated expansion of drug labels for the treatment of cystic fibrosis (CF) to include CF transmembrane conductance regulator (CFTR) gene variants based on in vitro functional studies. This study aims to identify CFTR variants that result in increased chloride (Cl-) transport function by the CFTR protein after treatment with the CFTR modulator combination elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA). These data may benefit people with CF (pwCF) who are not currently eligible for modulator therapies. METHODS Plasmid DNA encoding 655 CFTR variants and wild-type (WT) CFTR were transfected into Fisher Rat Thyroid cells that do not natively express CFTR. After 24 h of incubation with control or TEZ and ELX, and acute addition of IVA, CFTR function was assessed using the transepithelial current clamp conductance assay. Each variant's forskolin/cAMP-induced baseline Cl- transport activity, responsiveness to IVA alone, and responsiveness to the TEZ/ELX/IVA combination were measured in three different laboratories. Western blots were conducted to evaluate CFTR protein maturation and complement the functional data. RESULTS AND CONCLUSIONS 253 variants not currently approved for CFTR modulator therapy showed low baseline activity (<10 % of normal CFTR Cl- transport activity). For 152 of these variants, treatment with ELX/TEZ/IVA improved the Cl- transport activity by ≥10 % of normal CFTR function, which is suggestive of clinical benefit. ELX/TEZ/IVA increased CFTR function by ≥10 percentage points for an additional 140 unapproved variants with ≥10 % but <50 % of normal CFTR function at baseline. These findings significantly expand the number of rare CFTR variants for which ELX/TEZ/IVA treatment should result in clinical benefit.
Collapse
Affiliation(s)
- Hermann Bihler
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Linda Millen
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Priyanka Bhatt
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Justin Chin
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Violaine Bailey
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Isaac Musisi
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - André LaPan
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Joshua Conte
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Noah R Simon
- University of Washington, Seattle, WA 98195-9300, USA
| | | | - Karen S Raraigh
- Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | - Garry R Cutting
- Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | | - Robert J Bridges
- Rosalind Franklin University Medical School, Chicago, IL 60064, USA
| | - Philip J Thomas
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Martin Mense
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA.
| |
Collapse
|
4
|
Lutsch CT, Feng L, Gómez Hohn A, Brandt L, Tamm S, Janciauskiene S, Stanke F, Jonigk D, Dittrich AM, Braubach P. A Fast Scoring of Human Primary Respiratory Epithelia Grown at Air-Liquid Interface (ALI) to Assess Epithelial Morphology in Research and Personalized Medicine Settings. J Pers Med 2024; 14:109. [PMID: 38248810 PMCID: PMC10817428 DOI: 10.3390/jpm14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND In recent years, increasingly complex ALI protocols involving specialized, albeit laboratory-specific media have been established, while at the same time, many studies compile the data of only a few ALI donors in spite of site-, protocol- and donor-specific differentiation. METHODS We describe a simple morphology scoring protocol using histology material derived from epithelia grown on ALI inserts in parallel to other, more complex readouts. RESULTS Among more than 100 ALI inserts derived from different donors, significant differences in layer score (p = 0.001) and goblet cell score (p = 0.002) were observed when ALI epithelia derived from explanted lung material were compared to trachea-derived ALI cultures. Cortisol withdrawal for the final 2 days of ALI cultures influenced goblet cell density (p = 0.001). CONCLUSIONS While the histology score provides less resolution than FACS- or OMICs- based single cell analyses, the use of a subportion of the ALI epithelia grown on inserts makes it feasible to combine morphology assessment and other readouts of the same insert. This allows us to control for basic ALI morphology in research and personalized medicine settings in order to assess and, if desired, control for the impact of ALI culture protocols, site- and donor-specific influences on outcome of studies of ALI-derived epithelia.
Collapse
Affiliation(s)
- Christopher T. Lutsch
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Longhua Feng
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Ana Gómez Hohn
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Lennart Brandt
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Stephanie Tamm
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Sabina Janciauskiene
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Frauke Stanke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
- Institute of Pathology, School of Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
5
|
Bacalhau M, Camargo M, Lopes-Pacheco M. Laboratory Tools to Predict CFTR Modulator Therapy Effectiveness and to Monitor Disease Severity in Cystic Fibrosis. J Pers Med 2024; 14:93. [PMID: 38248793 PMCID: PMC10820563 DOI: 10.3390/jpm14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The implementation of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has been attaining remarkable therapeutic outcomes for CF, a life-threatening autosomal recessive genetic disease. However, there is elevated CFTR allelic heterogeneity, and various individuals carrying (ultra)rare CF genotypes remain without any approved modulator therapy. Novel translational model systems based on individuals' own cells/tissue are now available and can be used to interrogate in vitro CFTR modulator responses and establish correlations of these assessments with clinical features, aiming to provide prediction of therapeutic effectiveness. Furthermore, because CF is a progressive disease, assessment of biomarkers in routine care is fundamental in monitoring treatment effectiveness and disease severity. In the first part of this review, we aimed to focus on the utility of individual-derived in vitro models (such as bronchial/nasal epithelial cells and airway/intestinal organoids) to identify potential responders and expand personalized CF care. Thereafter, we discussed the usage of CF inflammatory biomarkers derived from blood, bronchoalveolar lavage fluid, and sputum to routinely monitor treatment effectiveness and disease progression. Finally, we summarized the progress in investigating extracellular vesicles as a robust and reliable source of biomarkers and the identification of microRNAs related to CFTR regulation and CF inflammation as novel biomarkers, which may provide valuable information for disease prognosis.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Sao Paulo Federal University, Sao Paulo 04039-060, SP, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|
6
|
Rodenburg LW, Metzemaekers M, van der Windt IS, Smits SMA, den Hertog-Oosterhoff LA, Kruisselbrink E, Brunsveld JE, Michel S, de Winter-de Groot KM, van der Ent CK, Stadhouders R, Beekman JM, Amatngalim GD. Exploring intrinsic variability between cultured nasal and bronchial epithelia in cystic fibrosis. Sci Rep 2023; 13:18573. [PMID: 37903789 PMCID: PMC10616285 DOI: 10.1038/s41598-023-45201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
The nasal and bronchial epithelium are unified parts of the respiratory tract that are affected in the monogenic disorder cystic fibrosis (CF). Recent studies have uncovered that nasal and bronchial tissues exhibit intrinsic variability, including differences in mucociliary cell composition and expression of unique transcriptional regulatory proteins which relate to germ layer origin. In the present study, we explored whether intrinsic differences between nasal and bronchial epithelial cells persist in cell cultures and affect epithelial cell functioning in CF. Comparison of air-liquid interface (ALI) differentiated epithelial cells from subjects with CF revealed distinct mucociliary differentiation states of nasal and bronchial cultures. Moreover, using RNA sequencing we identified cell type-specific signature transcription factors in differentiated nasal and bronchial epithelial cells, some of which were already poised for expression in basal progenitor cells as evidenced by ATAC sequencing. Analysis of differentiated nasal and bronchial epithelial 3D organoids revealed distinct capacities for fluid secretion, which was linked to differences in ciliated cell differentiation. In conclusion, we show that unique phenotypical and functional features of nasal and bronchial epithelial cells persist in cell culture models, which can be further used to investigate the effects of tissue-specific features on upper and lower respiratory disease development in CF.
Collapse
Affiliation(s)
- Lisa W Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands.
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands.
| | - Mieke Metzemaekers
- Department of Pulmonary Medicine, Erasmus University Medical Center, 3015 CE, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus University Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - Isabelle S van der Windt
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Shannon M A Smits
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Loes A den Hertog-Oosterhoff
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Jesse E Brunsveld
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Sabine Michel
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
| | - Karin M de Winter-de Groot
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus University Medical Center, 3015 CE, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus University Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB, Utrecht, The Netherlands
| | - Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
7
|
Dreano E, Burgel PR, Hatton A, Bouazza N, Chevalier B, Macey J, Leroy S, Durieu I, Weiss L, Grenet D, Stremler N, Ohlmann C, Reix P, Porzio M, Roux Claude P, Rémus N, Douvry B, Montcouquiol S, Cosson L, Mankikian J, Languepin J, Houdouin V, Le Clainche L, Guillaumot A, Pouradier D, Tissot A, Priou P, Mély L, Chedevergne F, Lebourgeois M, Lebihan J, Martin C, Zavala F, Da Silva J, Lemonnier L, Kelly-Aubert M, Golec A, Foucaud P, Marguet C, Edelman A, Hinzpeter A, de Carli P, Girodon E, Sermet-Gaudelus I, Pranke I. Theratyping cystic fibrosis patients to guide elexacaftor/tezacaftor/ivacaftor out-of-label prescription. Eur Respir J 2023; 62:2300110. [PMID: 37696564 DOI: 10.1183/13993003.00110-2023] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Around 20% of people with cystic fibrosis (pwCF) do not have access to the triple combination elexacaftor/tezacaftor/ivacaftor (ETI) in Europe because they do not carry the F508del allele on the CF transmembrane conductance regulator (CFTR) gene. Considering that pwCF carrying rare variants may benefit from ETI, including variants already validated by the US Food and Drug Administration (FDA), a compassionate use programme was launched in France. PwCF were invited to undergo a nasal brushing to investigate whether the pharmacological rescue of CFTR activity by ETI in human nasal epithelial cell (HNEC) cultures was predictive of the clinical response. METHODS CFTR activity correction was studied by short-circuit current in HNEC cultures at basal state (dimethyl sulfoxide (DMSO)) and after ETI incubation and expressed as percentage of normal (wild-type (WT)) CFTR activity after sequential addition of forskolin and Inh-172 (ΔI ETI/DMSO%WT). RESULTS 11 pwCF carried variants eligible for ETI according to the FDA label and 28 carried variants not listed by the FDA. ETI significantly increased CFTR activity of FDA-approved CFTR variants (I601F, G85E, S492F, M1101K, R347P, R74W;V201M;D1270N and H1085R). We point out ETI correction of non-FDA-approved variants, including N1303K, R334W, R1066C, Q552P and terminal splicing variants (4374+1G>A and 4096-3C>G). ΔI ETI/DMSO%WT was significantly correlated to change in percentage predicted forced expiratory volume in 1 s and sweat chloride concentration (p<0.0001 for both). G85E, R74W;V201M;D1270N, Q552P and M1101K were rescued more efficiently by other CFTR modulator combinations than ETI. CONCLUSIONS Primary nasal epithelial cells hold promise for expanding the prescription of CFTR modulators in pwCF carrying rare mutants. Additional variants should be discussed for ETI indication.
Collapse
Affiliation(s)
- Elise Dreano
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Pierre Régis Burgel
- Université Paris-Cité, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, AP-HP, Paris, France
- INSERM U1016, Institut Cochin, Paris, France
- ERN-LUNG CF Network, Frankfurt, Germany
| | - Aurelie Hatton
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Naim Bouazza
- Université Paris-Cité, Paris, France
- Unité de Recherche Clinique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Benoit Chevalier
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Julie Macey
- Centre de Ressources et de Compétence de la Mucoviscidose, CHU Pellegrin, Bordeaux, France
| | - Sylvie Leroy
- Centre de Ressources et de Compétence de la Mucoviscidose, CHU, Nice, France
| | - Isabelle Durieu
- Centre de Référence Adulte de la Mucoviscidose, Hospices Civils de Lyon, Université de Lyon, Équipe d'Accueil Health Services and Performance Research (HESPER) 7425, Lyon, France
| | - Laurence Weiss
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, CHU, Strasbourg, France
| | - Dominique Grenet
- Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital Foch, Suresnes, France
| | - Nathalie Stremler
- Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital de la Timone, Marseille, France
| | - Camille Ohlmann
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hospices Civils de Lyon, Bron, France
| | - Philippe Reix
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hospices Civils de Lyon, Bron, France
| | - Michele Porzio
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Strasbourg, France
| | - Pauline Roux Claude
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Besancon, France
| | - Natacha Rémus
- Centre de Ressources et de Compétence de la Mucoviscidose Mixte, CHIC, Créteil, France
| | - Benoit Douvry
- Centre de Ressources et de Compétence de la Mucoviscidose Mixte, CHIC, Créteil, France
| | - Sylvie Montcouquiol
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Clermont Ferrand, France
| | - Laure Cosson
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, CHU, Tours, France
| | - Julie Mankikian
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Tours, France
| | - Jeanne Languepin
- Centre de Ressources et de Compétence de la Mucoviscidose Mixte, CHU, Limoges, France
| | - Veronique Houdouin
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Laurence Le Clainche
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Anne Guillaumot
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Nancy, France
| | - Delphine Pouradier
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Mignot, Le Chesnay, France
| | - Adrien Tissot
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Nantes, France
| | - Pascaline Priou
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Angers, France
| | - Laurent Mély
- Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital René Sabran, Hospices Civils de Lyon, Giens, France
| | - Frederique Chedevergne
- Cystic Fibrosis National Pediatric Reference Center, Pneumo-Allergologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Muriel Lebourgeois
- Cystic Fibrosis National Pediatric Reference Center, Pneumo-Allergologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Jean Lebihan
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, Centre de Perharidy, Roscoff, France
| | - Clémence Martin
- Université Paris-Cité, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, AP-HP, Paris, France
| | - Flora Zavala
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Jennifer Da Silva
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, AP-HP, Paris, France
| | | | - Mairead Kelly-Aubert
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Anita Golec
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | | | - Christophe Marguet
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, CHU, Rouen, France
| | - Aleksander Edelman
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Alexandre Hinzpeter
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | | | - Emmanuelle Girodon
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, Paris, France
- These three authors contributed equally to this work as co-last authors
| | - Isabelle Sermet-Gaudelus
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- ERN-LUNG CF Network, Frankfurt, Germany
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Mignot, Le Chesnay, France
- These three authors contributed equally to this work as co-last authors
| | - Iwona Pranke
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- These three authors contributed equally to this work as co-last authors
| |
Collapse
|
8
|
Otter CJ, Fausto A, Tan LH, Weiss SR, Cohen NA. Infection of Primary Nasal Epithelial Cells Grown at an Air-Liquid Interface to Characterize Human Coronavirus-Host Interactions. J Vis Exp 2023:10.3791/64868. [PMID: 37811957 PMCID: PMC10811614 DOI: 10.3791/64868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Three highly pathogenic human coronaviruses (HCoVs) - SARS-CoV (2002), MERS-CoV (2012), and SARS-CoV-2 (2019) - have emerged and caused significant public health crises in the past 20 years. Four additional HCoVs cause a significant portion of common cold cases each year (HCoV-NL63, -229E, -OC43, and -HKU1), highlighting the importance of studying these viruses in physiologically relevant systems. HCoVs enter the respiratory tract and establish infection in the nasal epithelium, the primary site encountered by all respiratory pathogens. We use a primary nasal epithelial culture system in which patient-derived nasal samples are grown at an air-liquid interface (ALI) to study host-pathogen interactions at this important sentinel site. These cultures recapitulate many features of the in vivo airway, including the cell types present, ciliary function, and mucus production. We describe methods to characterize viral replication, host cell tropism, virus-induced cytotoxicity, and innate immune induction in nasal ALI cultures following HCoV infection, using recent work comparing lethal and seasonal HCoVs as an example1. An increased understanding of host-pathogen interactions in the nose has the potential to provide novel targets for antiviral therapeutics against HCoVs and other respiratory viruses that will likely emerge in the future.
Collapse
Affiliation(s)
- Clayton J Otter
- Department of Microbiology, University of Pennsylvania; Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania
| | - Alejandra Fausto
- Department of Microbiology, University of Pennsylvania; Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania
| | - Li Hui Tan
- Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania; Corporal Michael J. Crescenz VA Medical Center
| | - Susan R Weiss
- Department of Microbiology, University of Pennsylvania; Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania
| | - Noam A Cohen
- Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania; Corporal Michael J. Crescenz VA Medical Center;
| |
Collapse
|
9
|
Joynt AT, Kavanagh EW, Newby GA, Mitchell S, Eastman AC, Paul KC, Bowling AD, Osorio DL, Merlo CA, Patel SU, Raraigh KS, Liu DR, Sharma N, Cutting GR. Protospacer modification improves base editing of a canonical splice site variant and recovery of CFTR function in human airway epithelial cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:335-350. [PMID: 37547293 PMCID: PMC10400809 DOI: 10.1016/j.omtn.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
Canonical splice site variants affecting the 5' GT and 3' AG nucleotides of introns result in severe missplicing and account for about 10% of disease-causing genomic alterations. Treatment of such variants has proven challenging due to the unstable mRNA or protein isoforms that typically result from disruption of these sites. Here, we investigate CRISPR-Cas9-mediated adenine base editing for such variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. We validate a CFTR expression minigene (EMG) system for testing base editing designs for two different targets. We then use the EMG system to test non-standard single-guide RNAs with either shortened or lengthened protospacers to correct the most common cystic fibrosis-causing variant in individuals of African descent (c.2988+1G>A). Varying the spacer region length allowed placement of the editing window in a more efficient context and enabled use of alternate protospacer adjacent motifs. Using these modifications, we restored clinically significant levels of CFTR function to human airway epithelial cells from two donors bearing the c.2988+1G>A variant.
Collapse
Affiliation(s)
- Anya T. Joynt
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Erin W. Kavanagh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Shakela Mitchell
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Alice C. Eastman
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Kathleen C. Paul
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Alyssa D. Bowling
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Derek L. Osorio
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Christian A. Merlo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Shivani U. Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Karen S. Raraigh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Neeraj Sharma
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Garry R. Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Lee RE, Reidel B, Nelson MR, Macdonald JK, Kesimer M, Randell SH. Air-Liquid interface cultures to model drug delivery through the mucociliary epithelial barrier. Adv Drug Deliv Rev 2023; 198:114866. [PMID: 37196698 PMCID: PMC10336980 DOI: 10.1016/j.addr.2023.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Epithelial cells from mucociliary portions of the airways can be readily grown and expanded in vitro. When grown on a porous membrane at an air-liquid interface (ALI) the cells form a confluent, electrically resistive barrier separating the apical and basolateral compartments. ALI cultures replicate key morphological, molecular and functional features of the in vivo epithelium, including mucus secretion and mucociliary transport. Apical secretions contain secreted gel-forming mucins, shed cell-associated tethered mucins, and hundreds of additional molecules involved in host defense and homeostasis. The respiratory epithelial cell ALI model is a time-proven workhorse that has been employed in various studies elucidating the structure and function of the mucociliary apparatus and disease pathogenesis. It serves as a critical milestone test for small molecule and genetic therapies targeting airway diseases. To fully exploit the potential of this important tool, numerous technical variables must be thoughtfully considered and carefully executed.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States
| | - Boris Reidel
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mark R Nelson
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Jade K Macdonald
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Mehmet Kesimer
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States.
| |
Collapse
|
11
|
Allan KM, Astore MA, Kardia E, Wong SL, Fawcett LK, Bell JL, Visser S, Chen PC, Griffith R, Jaffe A, Sivam S, Vittorio O, Kuyucak S, Waters SA. Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient. Front Mol Biosci 2023; 10:1148501. [PMID: 37325471 PMCID: PMC10267335 DOI: 10.3389/fmolb.2023.1148501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown. Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot. Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 μA/cm2) and not enhanced with ETI (5.73 ± 0.48 μA/cm2), aligning with the individual's clinical evaluation as a non-responder to ETI. Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Katelin M Allan
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Miro A Astore
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Egi Kardia
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sharon L Wong
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Laura K Fawcett
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Jessica L Bell
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Simone Visser
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Po-Chia Chen
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Renate Griffith
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, TAS, Australia
| | - Adam Jaffe
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Sheila Sivam
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Orazio Vittorio
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Serdar Kuyucak
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Shafagh A Waters
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| |
Collapse
|
12
|
Fawcett LK, Turgutoglu N, Allan KM, Belessis Y, Widger J, Jaffe A, Waters SA. Comparing Cytology Brushes for Optimal Human Nasal Epithelial Cell Collection: Implications for Airway Disease Diagnosis and Research. J Pers Med 2023; 13:jpm13050864. [PMID: 37241034 DOI: 10.3390/jpm13050864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Primary nasal epithelial cells and culture models are used as important diagnostic, research and drug development tools for several airway diseases. Various instruments have been used for the collection of human nasal epithelial (HNE) cells but no global consensus yet exists regarding the optimal tool. This study compares the efficiency of two cytology brushes (Olympus (2 mm diameter) and Endoscan (8 mm diameter)) in collecting HNE cells. The study involved two phases, with phase one comparing the yield, morphology and cilia beat frequency (CBF) of cells collected from paediatric participants using each of the two brushes. Phase two compared nasal brushing under general anaesthetic and in the awake state, across a wide age range, via the retrospective audit of the use of the Endoscan brush in 145 participants. Results indicated no significant difference in CBF measurements between the two brushes, suggesting that the choice of brush does not compromise diagnostic accuracy. However, the Endoscan brush collected significantly more total and live cells than the Olympus brush, making it a more efficient option. Importantly, the Endoscan brush is more cost-effective, with a notable price difference between the two brushes.
Collapse
Affiliation(s)
- Laura K Fawcett
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2031, Australia
| | - Nihan Turgutoglu
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Katelin M Allan
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yvonne Belessis
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2031, Australia
| | - John Widger
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2031, Australia
| | - Adam Jaffe
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2031, Australia
| | - Shafagh A Waters
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2031, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Salinas DB, Ginsburg DK, Wee CP, Saeed MM, Brewington JJ. Gradual increase in sweat chloride concentration is associated with a higher risk of CRMS/CFSPID to CF reclassification. Pediatr Pulmonol 2023; 58:1074-1084. [PMID: 36582049 DOI: 10.1002/ppul.26296] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Universal implementation of cystic fibrosis (CF) newborn screening (NBS) has led to the diagnostic dilemma of infants with CF screen-positive, inconclusive diagnosis (CFSPID), with limited guidance regarding prognosis and standardized care. Rates of reclassification from CFSPID to CF vary and risk factors for reclassification are not well established. We investigated whether clinical characteristics are associated with the risk of reclassification from CFSPID to a CF diagnosis. METHODS Children with a positive CF NBS were recruited from two sites in California. Retrospective, longitudinal, and cross-sectional data were collected. A subset of subjects had nasal epithelial cells collected for CF transmembrane conductance regulator (CFTR) functional assessment. Multivariate logistic regression was used to assess the risk of reclassification. RESULTS A total of 112 children completed the study (CF = 53, CFSPID = 59). Phenotypic characteristics between groups showed differences in pancreatic insufficiency prevalence, immunoreactive trypsinogen (IRT) levels, and Pseudomonas aeruginosa (PSA) colonization. Spirometry measures were not different between groups. Nasal epithelial cells from 10 subjects showed 7%-30% of wild-type (WT)-CFTR (wtCFTR) function in those who reclassified and 27%-67% of wtCFTR function in those who retained the CFSPID designation. Modeling revealed that increasing sweat chloride concentration (sw[Cl- ]) and PSA colonization were independent risk factors for reclassification to CF. CONCLUSION Increasing sw[Cl- ] and a history of PSA colonization are associated with the risk of reclassification from CFSPID to CF in a population with high IRT and two CFTR variants. A close follow-up to monitor phenotypic changes remains critical in this population. The role of CFTR functional assays in this population requires further exploration.
Collapse
Affiliation(s)
- Danieli B Salinas
- Department of Pediatrics, Division of Pediatric Pulmonology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Daniella K Ginsburg
- Department of Pediatrics, Division of Pediatric Pulmonology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Choo Phei Wee
- Department of Population and Public Health Sciences, Keck School of Medicine, Southern California Clinical and Translational Science Institute (SC-CTSI), University of Southern California, Los Angeles, California, USA
| | - Muhammed M Saeed
- Division of Pediatric Pulmonology, Kaiser Permanente Los Angles Medical Center, Los Angeles, California, USA
| | - John J Brewington
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
14
|
Salinas DB, Wee CP, Bailey B, Raraigh K, Conrad D. Cystic Fibrosis Screen Positive, Inconclusive Diagnosis Genotypes in People with Cystic Fibrosis from the U.S. Patient Registry. Ann Am Thorac Soc 2023; 20:523-531. [PMID: 36409994 PMCID: PMC10112408 DOI: 10.1513/annalsats.202201-024oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Rationale: Variants within the cystic fibrosis (CF) transmembrane conductance regulator gene, CFTR, that are of unknown significance or are categorized as non-CF causing may be observed in persons with CF. These variants are frequently detected in children with inconclusive newborn screen results and, in some cases, may be associated with a benign presentation in early childhood that progresses to a CF phenotype later in life. Objectives: To analyze data from individuals enrolled in the U.S. Cystic Fibrosis Foundation Patient Registry who have received a diagnosis of CF and who have variants found in a population of children with a CF screen positive, inconclusive diagnosis (CFSPID). Methods: This retrospective review analyzed registry data from individuals with a diagnosis of CF who also harbor one or more variants of interest because of their frequency within a CFSPID population and/or their interpretation as non-CF causing. Three groups were defined by the number of CF-causing variants identified (CF-Cx2, CF-Cx1, and CF-Cx0), which were reported in addition to the variant(s) of interest. Multivariate quantile regression modeling of the outcome for forced expiratory volume in 1 second (FEV1) generated a disease severity score for each person determined by six selected variables. Median scores were calculated for the three groups. Results: Patients carrying one CF-causing variant and at least one variant of interest (CF-Cx1) had higher median disease severity scores compared with those carrying CF-Cx2, suggesting a milder phenotype (P < 0.05). However, there was no statistically significant difference in scores between CF-Cx2 and the two other groups combined (CF-Cx1 and CF-Cx0; P = 0.33). Analysis revealed that the CF-Cx1 and CF-Cx0 groups, when compared with the CF-Cx2 group, had later median diagnoses (8 years vs. newborn; P < 0.0001), lower median sweat chloride (48 mmol/L vs. 94.5 mmol/L; P < 0.0001), lower prevalence of pancreatic insufficiency (29% vs. 78%; P < 0.0001), and higher median FEV1% predicted (95% vs. 87%; P = 0.0002). Conclusions: Individuals with CF who have specific variants frequently identified in children with CFSPID have a similar range of disease severity scores compared with those who have two CF-causing variants, but a milder phenotype overall. Variants that should be given careful scrutiny because of their high prevalence are G576A+R668C, T854T, R75Q, F1052V, R1070W, R31C, and L967S.
Collapse
Affiliation(s)
- Danieli B. Salinas
- Division of Pediatric Pulmonology, Department of Pediatrics, Children’s Hospital Los Angeles, and
| | - Choo Phei Wee
- Southern California Clinical and Translational Science Institute, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Barbara Bailey
- Department of Mathematics and Statistics, San Diego State University, San Diego, California
| | - Karen Raraigh
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Douglas Conrad
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, San Diego, California
| |
Collapse
|
15
|
Ramalho AS, Amato F, Gentzsch M. Patient-derived cell models for personalized medicine approaches in cystic fibrosis. J Cyst Fibros 2023; 22 Suppl 1:S32-S38. [PMID: 36529661 PMCID: PMC9992303 DOI: 10.1016/j.jcf.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) channel that perturb anion transport across the epithelia of the airways and other organs. To treat cystic fibrosis, strategies that target mutant CFTR have been developed such as correctors that rescue folding and enhance transfer of CFTR to the apical membrane, and potentiators that increase CFTR channel activity. While there has been tremendous progress in development and approval of CFTR therapeutics for the most common (F508del) and several other CFTR mutations, around 10-20% of people with cystic fibrosis have rare mutations that are still without an effective treatment. In the current decade, there was an impressive evolution of patient-derived cell models for precision medicine. In cystic fibrosis, these models have played a crucial role in characterizing the molecular defects in CFTR mutants and identifying compounds that target these defects. Cells from nasal, bronchial, and rectal epithelia are most suitable to evaluate treatments that target CFTR. In vitro assays using cultures grown at an air-liquid interface or as organoids and spheroids allow the diagnosis of the CFTR defect and assessment of potential treatment strategies. An overview of currently established cell culture models and assays for personalized medicine approaches in cystic fibrosis will be provided in this review. These models allow theratyping of rare CFTR mutations with available modulator compounds to predict clinical efficacy. Besides evaluation of individual personalized responses to CFTR therapeutics, patient-derived culture models are valuable for testing responses to developmental treatments such as novel RNA- and DNA-based therapies.
Collapse
Affiliation(s)
- Anabela S Ramalho
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Felice Amato
- Department Of Molecular Medicine and Medical Biotechnologies and CE.IN.GE - Biotecnologie Avanzate, University of Naples Federico II, Naples, Italy
| | - Martina Gentzsch
- Marsico Lung Institute - Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Guimbellot JS, Nichols DP, Brewington JJ. Novel Applications of Biomarkers and Personalized Medicine in Cystic Fibrosis. Clin Chest Med 2022; 43:617-630. [PMID: 36344070 DOI: 10.1016/j.ccm.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As routine care in cystic fibrosis (CF) becomes increasingly personalized, new opportunities to further focus care on the individual have emerged. These opportunities are increasingly filled through research in tools aiding drug selection, drug monitoring and titration, disease-relevant biomarkers, and evaluation of therapeutic benefits. Herein, we will discuss such research tools presently being translated into the clinic to improve the personalization of care in CF.
Collapse
Affiliation(s)
- Jennifer S Guimbellot
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham; 1600 7th Avenue South, ACC 620, Birmingham, AL 35233, USA
| | - David P Nichols
- Department of Pediatrics, Division of Pulmonary Medicine, Seattle Children's Hospital, University of Washington School of Medicine, Building Cure, 1920 Terry Avenue, Office 4-209, Seattle, WA 98109, USA
| | - John J Brewington
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2021, Cincinnati, OH 45229, USA.
| |
Collapse
|
17
|
Delhove J, Alawami M, Macowan M, Lester SE, Nguyen PT, Jersmann HPA, Reynolds PN, Roscioli E. Organotypic sinonasal airway culture systems are predictive of the mucociliary phenotype produced by bronchial airway epithelial cells. Sci Rep 2022; 12:19225. [PMID: 36357550 PMCID: PMC9648462 DOI: 10.1038/s41598-022-23667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Differentiated air-liquid interface models are the current standard to assess the mucociliary phenotype using clinically-derived samples in a controlled environment. However, obtaining basal progenitor airway epithelial cells (AEC) from the lungs is invasive and resource-intensive. Hence, we applied a tissue engineering approach to generate organotypic sinonasal AEC (nAEC) epithelia to determine whether they are predictive of bronchial AEC (bAEC) models. Basal progenitor AEC were isolated from healthy participants using a cytological brushing method and differentiated into epithelia on transwells until the mucociliary phenotype was observed. Tissue architecture was assessed using H&E and alcian blue/Verhoeff-Van Gieson staining, immunofluorescence (for cilia via acetylated α-tubulin labelling) and scanning electron microscopy. Differentiation and the formation of tight-junctions were monitored over the culture period (day 1-32) by quantifying trans-epithelial electrical resistance. End point (day 32) tight junction protein expression was assessed using Western blot analysis of ZO-1, Occludin-1 and Claudin-1. Reverse transcription qPCR-array was used to assess immunomodulatory and autophagy-specific transcript profiles. All outcome measures were assessed using R-statistical software. Mucociliary architecture was comparable for nAEC and bAEC-derived cultures, e.g. cell density P = 0.55, epithelial height P = 0.88 and cilia abundance P = 0.41. Trans-epithelial electrical resistance measures were distinct from day 1-14, converged over days 16-32, and were statistically similar over the entire culture period (global P < 0.001). This agreed with end-point (day 32) measures of tight junction protein abundance which were non-significant for each analyte (P > 0.05). Transcript analysis for inflammatory markers demonstrated significant variation between nAEC and bAEC epithelial cultures, and favoured increased abundance in the nAEC model (e.g. TGFβ and IL-1β; P < 0.05). Conversely, the abundance of autophagy-related transcripts were comparable and the range of outcome measures for either model exhibited a considerably more confined uncertainty distribution than those observed for the inflammatory markers. Organotypic air-liquid interface models of nAEC are predictive of outcomes related to barrier function, mucociliary architecture and autophagy gene activity in corresponding bAEC models. However, inflammatory markers exhibited wide variation which may be explained by the sentinel immunological surveillance role of the sinonasal epithelium.
Collapse
Affiliation(s)
- Juliette Delhove
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.1694.aRespiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
| | - Moayed Alawami
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.460761.20000 0001 0323 4206Respiratory Department, Lyell McEwin Hospital, Adelaide, SA Australia
| | - Matthew Macowan
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Monash University, Melbourne, VIC Australia
| | - Susan E. Lester
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.278859.90000 0004 0486 659XDepartment of Rheumatology, The Queen Elizabeth Hospital, Adelaide, SA Australia
| | - Phan T. Nguyen
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.416075.10000 0004 0367 1221Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA Australia
| | - Hubertus P. A. Jersmann
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.416075.10000 0004 0367 1221Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA Australia
| | - Paul N. Reynolds
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.416075.10000 0004 0367 1221Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA Australia
| | - Eugene Roscioli
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.416075.10000 0004 0367 1221Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA Australia ,Adelaide Health and Medical Science, Building, Corner of North Terrace and George St, Adelaide, SA 5005 Australia
| |
Collapse
|
18
|
Wong SL, Pandzic E, Kardia E, Allan KM, Whan RM, Waters SA. Quantifying Intracellular Viral Pathogen: Specimen Preparation, Visualization and Quantification of Multiple Immunofluorescent Signals in Fixed Human Airway Epithelium Cultured at Air-Liquid Interface. J Pers Med 2022; 12:jpm12101668. [PMID: 36294807 PMCID: PMC9605096 DOI: 10.3390/jpm12101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Infection control and aggressive antibiotic therapy play an important role in the management of airway infections in individuals with cystic fibrosis (CF). The responses of airway epithelial cells to pathogens are likely to contribute to the pathobiology of CF lung disease. Primary airway epithelial cells obtained from individuals with CF, cultured and differentiated at air-liquid interface (ALI), effectively mimic the structure and function of the in vivo airway epithelium. With the recent respiratory viral pandemics, ALI cultures were extensively used to model respiratory infections in vitro to facilitate physiologically relevant respiratory research. Immunofluorescence staining and imaging were used as an effective tool to provide a fundamental understanding of host–pathogen interactions and for exploring the therapeutic potential of novel or repurposed drugs. Therefore, we described an optimized quantitative fluorescence microscopy assay for the wholemount staining and imaging of epithelial cell markers to identify distinct cell populations and pathogen-specific targets in ALI cultures of human airway epithelial cells grown on permeable support insert membranes. We present a detailed methodology using a graphical user interface (GUI) package to quantify the detected signals on a tiled whole membrane. Our method provided an imaging strategy of the entire membrane, overcoming the common issue of undersampling and enabling unbiased quantitative analysis.
Collapse
Affiliation(s)
- Sharon L. Wong
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Egi Kardia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Katelin M. Allan
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Renee M. Whan
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shafagh A. Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
- Correspondence:
| |
Collapse
|
19
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
20
|
Lee RE, Lewis CA, He L, Bulik-Sullivan EC, Gallant SC, Mascenik TM, Dang H, Cholon DM, Gentzsch M, Morton LC, Minges JT, Theile JW, Castle NA, Knowles MR, Kimple AJ, Randell SH. Small molecule eRF3a degraders rescue CFTR nonsense mutations by promoting premature termination codon readthrough. J Clin Invest 2022; 132:154571. [PMID: 35900863 PMCID: PMC9479597 DOI: 10.1172/jci154571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
The vast majority of people with cystic fibrosis (CF) are now eligible for CF transmembrane regulator (CFTR) modulator therapy. The remaining individuals with CF harbor premature termination codons (PTCs) or rare CFTR variants with limited treatment options. Although the clinical modulator response can be reliably predicted using primary airway epithelial cells, primary cells carrying rare CFTR variants are scarce. To overcome this obstacle, cell lines can be created by overexpression of mouse Bmi-1 and human TERT (hTERT). Using this approach, we developed 2 non-CF and 6 CF airway epithelial cell lines, 3 of which were homozygous for the W1282X PTC variant. The Bmi-1/hTERT cell lines recapitulated primary cell morphology and ion transport function. The 2 F508del-CFTR cell lines responded robustly to CFTR modulators, which was mirrored in the parent primary cells and in the cell donors’ clinical response. Cereblon E3 ligase modulators targeting eukaryotic release factor 3a (eRF3a) rescued W1282X-CFTR function to approximately 20% of WT levels and, when paired with G418, rescued G542X-CFTR function to approximately 50% of WT levels. Intriguingly, eRF3a degraders also diminished epithelial sodium channel (ENaC) function. These studies demonstrate that Bmi-1/hTERT cell lines faithfully mirrored primary cell responses to CFTR modulators and illustrate a therapeutic approach to rescue CFTR nonsense mutations.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Catherine A Lewis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Lihua He
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Emily C Bulik-Sullivan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Samuel C Gallant
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Teresa M Mascenik
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Deborah M Cholon
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Martina Gentzsch
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Lisa C Morton
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - John T Minges
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | | | - Neil A Castle
- Research and Development, Icagen, Durham, United States of America
| | - Michael R Knowles
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Adam J Kimple
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| |
Collapse
|
21
|
Cholon DM, Gentzsch M. Established and novel human translational models to advance cystic fibrosis research, drug discovery, and optimize CFTR-targeting therapeutics. Curr Opin Pharmacol 2022; 64:102210. [DOI: 10.1016/j.coph.2022.102210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
22
|
Wong SL, Awatade NT, Astore MA, Allan KM, Carnell MJ, Slapetova I, Chen PC, Setiadi J, Pandzic E, Fawcett LK, Widger JR, Whan RM, Griffith R, Ooi CY, Kuyucak S, Jaffe A, Waters SA. Molecular Dynamics and Theratyping in Airway and Gut Organoids Reveal R352Q-CFTR Conductance Defect. Am J Respir Cell Mol Biol 2022; 67:99-111. [PMID: 35471184 PMCID: PMC9273222 DOI: 10.1165/rcmb.2021-0337oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A significant challenge to making targeted cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies accessible to all individuals with cystic fibrosis (CF) are many mutations in the CFTR gene that can cause CF, most of which remain uncharacterized. Here, we characterized the structural and functional defects of the rare CFTR mutation R352Q, with a potential role contributing to intrapore chloride ion permeation, in patient-derived cell models of the airway and gut. CFTR function in differentiated nasal epithelial cultures and matched intestinal organoids was assessed using an ion transport assay and forskolin-induced swelling assay, respectively. CFTR potentiators (VX-770, GLPG1837, and VX-445) and correctors (VX-809, VX-445, with or without VX-661) were tested. Data from R352Q-CFTR were compared with data of 20 participants with mutations with known impact on CFTR function. R352Q-CFTR has residual CFTR function that was restored to functional CFTR activity by CFTR potentiators but not the corrector. Molecular dynamics simulations of R352Q-CFTR were carried out, which indicated the presence of a chloride conductance defect, with little evidence supporting a gating defect. The combination approach of in vitro patient-derived cell models and in silico molecular dynamics simulations to characterize rare CFTR mutations can improve the specificity and sensitivity of modulator response predictions and aid in their translational use for CF precision medicine.
Collapse
Affiliation(s)
- Sharon L Wong
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia
| | - Nikhil T Awatade
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia
| | - Miro A Astore
- The University of Sydney, 4334, School of Physics, Sydney, New South Wales, Australia
| | - Katelin M Allan
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia
| | - Michael J Carnell
- University of New South Wales, 7800, Biomedical Imaging Facility, Mark Wainwright Analytical Centre, Sydney, New South Wales, Australia
| | - Iveta Slapetova
- University of New South Wales, 7800, Biomedical Imaging Facility, Mark Wainwright Analytical Centre, Sydney, New South Wales, Australia
| | - Po-Chia Chen
- The University of Sydney, 4334, School of Physics, Sydney, New South Wales, Australia
| | - Jeffry Setiadi
- The University of Sydney, 4334, School of Physics, Sydney, New South Wales, Australia
| | - Elvis Pandzic
- University of New South Wales, 7800, Biomedical Imaging Facility, Mark Wainwright Analytical Cen, Sydney, New South Wales, Australia
| | - Laura K Fawcett
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia.,Sydney Children's Hospital Randwick, 63623, Department of Respiratory Medicine, Randwick, New South Wales, Australia
| | - John R Widger
- University of New South Wales, 7800, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), Sydney, New South Wales, Australia.,Sydney Children's Hospital Randwick, 63623, Department of Respiratory Medicine, Randwick, New South Wales, Australia
| | - Renee M Whan
- University of New South Wales, 7800, Biomedical Imaging Facility, Mark Wainwright Analytical Centre, Sydney, New South Wales, Australia
| | - Renate Griffith
- University of New South Wales, 7800, School of Chemistry, Sydney, New South Wales, Australia
| | - Chee Y Ooi
- Sydney Children's Hospital Randwick, Gastroenterology, Sydney, New South Wales, Australia
| | - Serdar Kuyucak
- The University of Sydney, 4334, School of Physics, Sydney, New South Wales, Australia
| | - Adam Jaffe
- Sydney Children`s Hospital, Respiratory Medicine, Sydney, New South Wales, Australia.,University of New South Wales, 7800, School of Women`s and Children`s Health, Sydney, New South Wales, Australia
| | - Shafagh A Waters
- Sydney Children's Hospital, Department of Respiratory Medicine, Sydney, New South Wales, Australia.,Univeristy of New South Wales, School of Women's and Children's Health, Sydney, New South Wales, Australia;
| |
Collapse
|
23
|
Abstract
Cystic fibrosis (CF), the most common genetic disease among the Caucasian population, is caused by mutations in the gene encoding for the CF transmembrane conductance regulator (CFTR), a chloride epithelial channel whose dysfunction results in severe airway obstruction and inflammation, eventually leading to respiratory failure. The discovery of the CFTR gene in 1989 provided new insights into the basic genetic defect of CF and allowed the study of potential therapies targeting the aberrant protein. In recent years, the approval of “CFTR modulators”, the first molecules designed to selectively target the underlying molecular defects caused by specific CF-causing mutations, marked the beginning of a new era in CF treatment. These drugs have been demonstrated to significantly improve lung function and ameliorate the quality of life of many patients, especially those bearing the most common CFTR mutatant F508del. However, a substantial portion of CF subjects, accounting for ~20% of the European CF population, carry rare CFTR mutations and are still not eligible for CFTR modulator therapy, partly due to our limited understanding of the molecular defects associated with these genetic alterations. Thus, the implementation of models to study the phenotype of these rare CFTR mutations and their response to currently approved drugs, as well as to compounds under research and clinical development, is of key importance. The purpose of this review is to summarize the current knowledge on the potential of CFTR modulators in rescuing the function of rare CF-causing CFTR variants, focusing on both investigational and clinically approved molecules.
Collapse
|
24
|
Raraigh KS, Paul KC, Goralski JL, Worthington EN, Faino AV, Sciortino S, Wang Y, Aksit MA, Ling H, Osorio DL, Onchiri FM, Patel SU, Merlo CA, Montemayor K, Gibson RL, West NE, Thakerar A, Bridges RJ, Sheppard DN, Sharma N, Cutting GR. CFTR bearing variant p.Phe312del exhibits function inconsistent with phenotype and negligible response to ivacaftor. JCI Insight 2022; 7:148841. [PMID: 35315358 PMCID: PMC8986068 DOI: 10.1172/jci.insight.148841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
The chloride channel dysfunction caused by deleterious cystic fibrosis transmembrane conductance regulator (CFTR) variants generally correlates with severity of cystic fibrosis (CF). However, 3 adults bearing the common severe variant p.Phe508del (legacy: F508del) and a deletion variant in an ivacaftor binding region of CFTR (p.Phe312del; legacy: F312del) manifested only elevated sweat chloride concentration (sw[Cl-]; 87-105 mEq/L). A database review of 25 individuals with F312del and a CF-causing variant revealed elevated sw[Cl-] (75-123 mEq/L) and variable CF features. F312del occurs at a higher-than-expected frequency in the general population, confirming that individuals with F312del and a CF-causing variant do not consistently develop overt CF features. In primary nasal cells, CFTR bearing F312del and F508del generated substantial chloride transport (66.0% ± 4.5% of WT-CFTR) but did not respond to ivacaftor. Single-channel analysis demonstrated that F312del did not affect current flow through CFTR, minimally altered gating, and ablated the ivacaftor response. When expressed stably in CF bronchial epithelial (CFBE41o-) cells, F312del-CFTR demonstrated residual function (50.9% ± 3.3% WT-CFTR) and a subtle decrease in forskolin response compared with WT-CFTR. F312del provides an exception to the established correlation between CFTR chloride transport and CF phenotype and informs our molecular understanding of ivacaftor response.
Collapse
Affiliation(s)
| | | | - Jennifer L Goralski
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erin N Worthington
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna V Faino
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Stanley Sciortino
- California Department of Public Health, Genetic Disease Screening Program, Richmond, California, USA
| | - Yiting Wang
- University of Bristol, Bristol, United Kingdom
| | | | - Hua Ling
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | - Amita Thakerar
- Rosalind Franklin University of Medicine and Science, Center for Genetic Diseases, North Chicago, Illinois, USA
| | - Robert J Bridges
- Rosalind Franklin University of Medicine and Science, Center for Genetic Diseases, North Chicago, Illinois, USA
| | | | | | | |
Collapse
|
25
|
Zhang X, Moore CM, Harmacek LD, Domenico J, Rangaraj VR, Ideozu JE, Knapp JR, Woods KJ, Jump S, Jia S, Prokop JW, Bowler R, Hessner MJ, Gelfand EW, Levy H. CFTR-mediated monocyte/macrophage dysfunction revealed by cystic fibrosis proband-parent comparisons. JCI Insight 2022; 7:152186. [PMID: 35315363 PMCID: PMC8986072 DOI: 10.1172/jci.insight.152186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder caused by biallelic mutations of the CF transmembrane conductance regulator (CFTR) gene. Converging evidence suggests that CF carriers with only 1 defective CFTR copy are at increased risk for CF-related conditions and pulmonary infections, but the molecular mechanisms underpinning this effect remain unknown. We performed transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) of CF child-parent trios (proband, father, and mother) and healthy control (HC) PBMCs or THP-1 cells incubated with the plasma of these participants. Transcriptomic analyses revealed suppression of cytokine-enriched immune-related genes (IL-1β, CXCL8, CREM), implicating lipopolysaccharide tolerance in innate immune cells (monocytes) of CF probands and their parents. These data suggest that a homozygous as well as a heterozygous CFTR mutation can modulate the immune/inflammatory system. This conclusion is further supported by the finding of lower numbers of circulating monocytes in CF probands and their parents, compared with HCs, and the abundance of mononuclear phagocyte subsets, which correlated with Pseudomonas aeruginosa infection, lung disease severity, and CF progression in the probands. This study provides insight into demonstrated CFTR-related innate immune dysfunction in individuals with CF and carriers of a CFTR mutation that may serve as a target for personalized therapy.
Collapse
Affiliation(s)
- Xi Zhang
- Data Science program, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois, USA.,Division of Pediatric Pulmonary Medicine, Department of Pediatrics, and
| | - Camille M Moore
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Laura D Harmacek
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Joanne Domenico
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, and
| | - Vittobai Rashika Rangaraj
- Division of Pulmonary & Sleep Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Justin E Ideozu
- Genomic Medicine, Genomics Research Center, AbbVie, North Chicago, Illinois, USA
| | - Jennifer R Knapp
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Katherine J Woods
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Stephanie Jump
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Shuang Jia
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Max McGee Center for Juvenile Diabetes, Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Russell Bowler
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Martin J Hessner
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Max McGee Center for Juvenile Diabetes, Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Division of Immunology, Microbiology and Pediatrics, Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Hara Levy
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, and
| |
Collapse
|
26
|
The L467F-F508del Complex Allele Hampers Pharmacological Rescue of Mutant CFTR by Elexacaftor/Tezacaftor/Ivacaftor in Cystic Fibrosis Patients: The Value of the Ex Vivo Nasal Epithelial Model to Address Non-Responders to CFTR-Modulating Drugs. Int J Mol Sci 2022; 23:ijms23063175. [PMID: 35328596 PMCID: PMC8952007 DOI: 10.3390/ijms23063175] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022] Open
Abstract
Loss-of-function mutations of the CFTR gene cause cystic fibrosis (CF) through a variety of molecular mechanisms involving altered expression, trafficking, and/or activity of the CFTR chloride channel. The most frequent mutation among CF patients, F508del, causes multiple defects that can be, however, overcome by a combination of three pharmacological agents that improve CFTR channel trafficking and gating, namely, elexacaftor, tezacaftor, and ivacaftor. This study was prompted by the evidence of two CF patients, compound heterozygous for F508del and a minimal function variant, who failed to obtain any beneficial effects following treatment with the triple drug combination. Functional studies on nasal epithelia generated in vitro from these patients confirmed the lack of response to pharmacological treatment. Molecular characterization highlighted the presence of an additional amino acid substitution, L467F, in cis with the F508del variant, demonstrating that both patients were carriers of a complex allele. Functional and biochemical assays in heterologous expression systems demonstrated that the double mutant L467F-F508del has a severely reduced activity, with negligible rescue by CFTR modulators. While further studies are needed to investigate the actual prevalence of the L467F-F508del allele, our results suggest that this complex allele should be taken into consideration as plausible cause in CF patients not responding to CFTR modulators.
Collapse
|
27
|
He G, Panjwani N, Avolio J, Ouyang H, Keshavjee S, Rommens JM, Gonska T, Moraes TJ, Strug LJ. Expression of cystic fibrosis lung disease modifier genes in human airway models. J Cyst Fibros 2022; 21:616-622. [DOI: 10.1016/j.jcf.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/05/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
|
28
|
Morgan R, Manfredi C, Easley KF, Watkins LD, Hunt WR, Goudy SL, Sorscher EJ, Koval M, Molina SA. A medium composition containing normal resting glucose that supports differentiation of primary human airway cells. Sci Rep 2022; 12:1540. [PMID: 35087167 PMCID: PMC8795386 DOI: 10.1038/s41598-022-05446-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
Primary cells isolated from the human respiratory tract are the state-of-the-art for in vitro airway epithelial cell research. Airway cell isolates require media that support expansion of cells in a basal state to maintain the capacity for differentiation as well as proper cellular function. By contrast, airway cell differentiation at an air-liquid interface (ALI) requires a distinct medium formulation that typically contains high levels of glucose. Here, we expanded and differentiated human basal cells isolated from the nasal and conducting airway to a mature mucociliary epithelial cell layer at ALI using a medium formulation containing normal resting glucose levels. Of note, bronchial epithelial cells expanded and differentiated in normal resting glucose medium showed insulin-stimulated glucose uptake which was inhibited by high glucose concentrations. Normal glucose containing ALI also enabled differentiation of nasal and tracheal cells that showed comparable electrophysiological profiles when assessed for cystic fibrosis transmembrane conductance regulator (CFTR) function and that remained responsive for up to 7 weeks in culture. These data demonstrate that normal glucose containing medium supports differentiation of primary nasal and lung epithelial cells at ALI, is well suited for metabolic studies, and avoids pitfalls associated with exposure to high glucose.
Collapse
Affiliation(s)
- Rachel Morgan
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Candela Manfredi
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kristen F Easley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Lionel D Watkins
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - William R Hunt
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Steven L Goudy
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric J Sorscher
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Michael Koval
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Samuel A Molina
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| |
Collapse
|
29
|
Pedemonte N. Nasal epithelial cells as a gold-standard predictive model for personalized medicine in cystic fibrosis. J Physiol 2022; 600:1285-1286. [PMID: 35038767 DOI: 10.1113/jp282586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
30
|
Rebuli ME, Brocke SA, Jaspers I. Impact of inhaled pollutants on response to viral infection in controlled exposures. J Allergy Clin Immunol 2021; 148:1420-1429. [PMID: 34252446 PMCID: PMC8569906 DOI: 10.1016/j.jaci.2021.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/09/2022]
Abstract
Air pollutants are a major source of increased risk of disease, hospitalization, morbidity, and mortality worldwide. The respiratory tract is a primary target of potential concurrent exposure to both inhaled pollutants and pathogens, including viruses. Although there are various associative studies linking adverse outcomes to co- or subsequent exposures to inhaled pollutants and viruses, knowledge about causal linkages and mechanisms by which pollutant exposure may alter human respiratory responses to viral infection is more limited. In this article, we review what is known about the impact of pollutant exposure on antiviral host defense responses and describe potential mechanisms by which pollutants can alter the viral infection cycle. This review focuses on evidence from human observational and controlled exposure, ex vivo, and in vitro studies. Overall, there are a myriad of points throughout the viral infection cycle that inhaled pollutants can alter to modulate appropriate host defense responses. These alterations may contribute to observed increases in rates of viral infection and associated morbidity and mortality in areas of the world with high ambient pollution levels or in people using tobacco products. Although the understanding of mechanisms of interaction is advancing through controlled in vivo and in vitro exposure models, more studies are needed because emerging infectious pathogens, such as severe acute respiratory syndrome coronavirus 2, present a significant threat to public health.
Collapse
Affiliation(s)
- Meghan E Rebuli
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Stephanie A Brocke
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
31
|
Noel S, Servel N, Hatton A, Golec A, Rodrat M, Ng DRS, Li H, Pranke I, Hinzpeter A, Edelman A, Sheppard DN, Sermet-Gaudelus I. Correlating genotype with phenotype using CFTR-mediated whole-cell Cl - currents in human nasal epithelial cells. J Physiol 2021; 600:1515-1531. [PMID: 34761808 DOI: 10.1113/jp282143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Dysfunction of the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR) causes a wide spectrum of disease, including cystic fibrosis (CF) and CFTR-related diseases (CFTR-RDs). Here, we investigate genotype-phenotype-CFTR function relationships using human nasal epithelial (hNE) cells from a small cohort of non-CF subjects and individuals with CF and CFTR-RDs and genotypes associated with either residual or minimal CFTR function using electrophysiological techniques. Collected hNE cells were either studied directly with the whole-cell patch-clamp technique or grown as primary cultures at an air-liquid interface after conditional reprogramming. The properties of cAMP-activated whole-cell Cl- currents in freshly isolated hNE cells identified them as CFTR-mediated. Their magnitude varied between hNE cells from individuals within the same genotype and decreased in the rank order: non-CF > CFTR residual function > CFTR minimal function. CFTR-mediated whole-cell Cl- currents in hNE cells isolated from fully differentiated primary cultures were identical to those in freshly isolated hNE cells in both magnitude and behaviour, demonstrating that conditional reprogramming culture is without effect on CFTR expression and function. For the cohort of subjects studied, CFTR-mediated whole-cell Cl- currents in hNE cells correlated well with CFTR-mediated transepithelial Cl- currents measured in vitro with the Ussing chamber technique, but not with those determined in vivo with the nasal potential difference assay. Nevertheless, they did correlate with the sweat Cl- concentration of study subjects. Thus, this study highlights the complexity of genotype-phenotype-CFTR function relationships, but emphasises the value of conditionally reprogrammed hNE cells in CFTR research and therapeutic testing. KEY POINTS: The genetic disease cystic fibrosis is caused by pathogenic variants in the cystic fibrosis transmembrane conductance regulator (CFTR), an ion channel, which controls anion flow across epithelia lining ducts and tubes in the body. This study investigated CFTR function in nasal epithelial cells from people with cystic fibrosis and CFTR variants with a range of disease severity. CFTR function varied widely in nasal epithelial cells depending on the identity of CFTR variants, but was unaffected by conditional reprogramming culture, a cell culture technique used to grow large numbers of patient-derived cells. Assessment of CFTR function in vitro in nasal epithelial cells and epithelia, and in vivo in the nasal epithelium and sweat gland highlights the complexity of genotype-phenotype-CFTR function relationships.
Collapse
Affiliation(s)
- Sabrina Noel
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Nathalie Servel
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Aurélie Hatton
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Anita Golec
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.,Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Demi R S Ng
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hongyu Li
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Iwona Pranke
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Alexandre Hinzpeter
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Aleksander Edelman
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Université de Paris, Paris, France.,Centre de Référence Maladies Rares, Mucoviscidose et Maladies Apparentées, Hôpital Necker-Enfants Malades, Paris, France.,European Reference Network on rare respiratory diseases, Frankfurt, Germany
| |
Collapse
|
32
|
A new platform for high-throughput therapy testing on iPSC-derived lung progenitor cells from cystic fibrosis patients. Stem Cell Reports 2021; 16:2825-2837. [PMID: 34678210 PMCID: PMC8581165 DOI: 10.1016/j.stemcr.2021.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
For those people with cystic fibrosis carrying rare CFTR mutations not responding to currently available therapies, there is an unmet need for relevant tissue models for therapy development. Here, we describe a new testing platform that employs patient-specific induced pluripotent stem cells (iPSCs) differentiated to lung progenitor cells that can be studied using a dynamic, high-throughput fluorescence-based assay of CFTR channel activity. Our proof-of-concept studies support the potential use of this platform, together with a Canadian bioresource that contains iPSC lines and matched nasal cultures from people with rare mutations, to advance patient-oriented therapy development. Interventions identified in the high-throughput, stem cell-based model and validated in primary nasal cultures from the same person have the potential to be advanced as therapies. A Canadian resource (CFIT) has CF donor-matched iPSCs and nasal epithelial cells Lung progenitor cells (LPCs) differentiated from iPSCs express CFTR LPCs from people with rare CFTR mutations enable high-throughput therapy testing Matching nasal cultures can validate patient-specific drug responses in LPCs
Collapse
|
33
|
Dumas MP, Xia S, Bear CE, Ratjen F. Perspectives on the translation of in-vitro studies to precision medicine in Cystic Fibrosis. EBioMedicine 2021; 73:103660. [PMID: 34740114 PMCID: PMC8577330 DOI: 10.1016/j.ebiom.2021.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
Recent strides towards precision medicine in Cystic Fibrosis (CF) have been made possible by patient-derived in-vitro assays with the potential to predict clinical response to small molecule-based therapies. Here, we discuss the status of primary and stem-cell derived tissues used to evaluate the preclinical efficacy of CFTR modulators highlighting both their potential and limitations. Validation of these assays requires correlation of in-vitro responses to in-vivo measures of clinical biomarkers of disease outcomes. While initial efforts have shown some success, this translation requires methodologies that are sensitive enough to capture treatment responses in a CF population that now predominantly has mild lung disease. Future development of in-vitro and in-vivo biomarkers will facilitate the generation of new therapeutics particularly for those patients with rare mutations where clinical trials are not feasible so that in the future every CF patient will have access to effective targeted therapies.
Collapse
Affiliation(s)
- Marie-Pier Dumas
- Respiratory Medicine, Hospital for Sick Children, Toronto, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Canada
| | - Sunny Xia
- Molecular Medicine, Hospital for Sick Children, Toronto, Canada.; Department of Physiology, University of Toronto, Toronto, Canada
| | - Christine E Bear
- Molecular Medicine, Hospital for Sick Children, Toronto, Canada.; Department of Physiology, University of Toronto, Toronto, Canada; Department of Biochemistry University of Toronto, Toronto, Canada
| | - Felix Ratjen
- Respiratory Medicine, Hospital for Sick Children, Toronto, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
34
|
Lee JA, Cho A, Huang EN, Xu Y, Quach H, Hu J, Wong AP. Gene therapy for cystic fibrosis: new tools for precision medicine. J Transl Med 2021; 19:452. [PMID: 34717671 PMCID: PMC8556969 DOI: 10.1186/s12967-021-03099-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
The discovery of the Cystic fibrosis (CF) gene in 1989 has paved the way for incredible progress in treating the disease such that the mean survival age of individuals living with CF is now ~58 years in Canada. Recent developments in gene targeting tools and new cell and animal models have re-ignited the search for a permanent genetic cure for all CF. In this review, we highlight some of the more recent gene therapy approaches as well as new models that will provide insight into personalized therapies for CF.
Collapse
Affiliation(s)
- Jin-A Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada
| | - Alex Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Elena N Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yiming Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Henry Quach
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
35
|
Abstract
There has been a growing number of infants identified as CRMS/CFSPID in countries applying genetic testing as part of cystic fibrosis (CF) newborn screening. Currently there are neither standardized protocols for follow up beyond infancy, nor established predictors to stratify this population as high or low risk of reclassification to CF or CFTR-related disorder. We report a series of 10 children who reclassified, including eight carrying CFTR variants of varying clinical consequence and seven with initial sweat chloride measurements <30 mmol/L. The overall increase in sweat chloride concentration was 5.8 mmol/L/year. Pseudomonas aeruginosa was isolated from respiratory cultures in five subjects, and reclassification was aided by human nasal epithelial cultures in two cases. In this center's experience, 6% of all CRMS/CFSPID referrals reclassified to CF over a 12-year period. The rate of sweat chloride increase, genotype, and CFTR functional assay can potentially be used as prognostic tools in the CRMS/CFSPID population.
Collapse
|
36
|
Three-Dimensional Airway Spheroids and Organoids for Cystic Fibrosis Research. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor1040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive multi-organ disease caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, with morbidity and mortality primacy related to the lung disease. The CFTR protein, a chloride/bicarbonate channel, is expressed at the apical side of airway epithelial cells and is mainly involved in appropriate ion and fluid transport across the epithelium. Although many animal and cellular models have been developed to study the pathophysiological consequences of the lack/dysfunction of CFTR, only the three-dimensional (3D) structures termed “spheroids” and “organoids” can enable the reconstruction of airway mucosa to model organ development, disease pathophysiology, and drug screening. Airway spheroids and organoids can be derived from different sources, including adult lungs and induced pluripotent stem cells (iPSCs), each with its advantages and limits. Here, we review the major features of airway spheroids and organoids, anticipating that their potential in the CF field has not been fully shown. Further work is mandatory to understand whether they can accomplish better outcomes than other culture conditions of airway epithelial cells for CF personalized therapies and tissue engineering aims.
Collapse
|
37
|
Dang LH, Hung SH, Tseng Y, Quang LX, Le NTN, Fang CL, Tseng H. Partial Decellularized Scaffold Combined with Autologous Nasal Epithelial Cell Sheet for Tracheal Tissue Engineering. Int J Mol Sci 2021; 22:ijms221910322. [PMID: 34638663 PMCID: PMC8508999 DOI: 10.3390/ijms221910322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Decellularization has emerged as a potential solution for tracheal replacement. As a fully decellularized graft failed to achieve its purposes, the de-epithelialization partial decellularization protocol appeared to be a promising approach for fabricating scaffolds with preserved mechanical properties and few immune rejection responses after transplantation. Nevertheless, a lack of appropriate concurrent epithelialization treatment can lead to luminal stenosis of the transplant and impede its eventual success. To improve re-epithelialization, autologous nasal epithelial cell sheets generated by our cell sheet engineering platform were utilized in this study under an in vivo rabbit model. The newly created cell sheets have an intact and transplantable appearance, with their specific characteristics of airway epithelial origin being highly expressed upon histological and immunohistochemical analysis. Subsequently, those cell sheets were incorporated with a partially decellularized tracheal graft for autograft transplantation under tracheal partial resection models. The preliminary results two months post operation demonstrated that the transplanted patches appeared to be wholly integrated into the host trachea with adequate healing of the luminal surface, which was confirmed via endoscopic and histologic evaluations. The satisfactory result of this hybrid scaffold protocol could serve as a potential solution for tracheal reconstructions in the future.
Collapse
Affiliation(s)
- Luong Huu Dang
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (L.H.D.); (S.-H.H.)
- Department of Otolaryngology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam;
| | - Shih-Han Hung
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (L.H.D.); (S.-H.H.)
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Yuan Tseng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Ly Xuan Quang
- Department of Otolaryngology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam;
| | - Nhi Thao Ngoc Le
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Chia-Lang Fang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - How Tseng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
38
|
Sette G, Lo Cicero S, Blaconà G, Pierandrei S, Bruno SM, Salvati V, Castelli G, Falchi M, Fabrizzi B, Cimino G, De Maria R, Biffoni M, Eramo A, Lucarelli M. Theratyping cystic fibrosis in vitro in ALI-culture and organoid models generated from patient-derived nasal epithelial Conditionally Reprogrammed Stem Cells. Eur Respir J 2021; 58:13993003.00908-2021. [PMID: 34413153 PMCID: PMC8675295 DOI: 10.1183/13993003.00908-2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/28/2021] [Indexed: 11/05/2022]
Abstract
QUESTION Cystic Fibrosis (CF) is due to pathogenic variants in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Recent improvement enabled pharmacologic therapy aiming at restoring mutated CFTR expression and function. CFTR "modulators" have revolutionised the CF therapeutic landscape, particularly the last approved Trikafta. This drug-combination is indicated by FDA and very recently by EMA for genotypes carrying at least one copy of CFTR with F508del pathogenic variant. However, several genotypes, are not eligible for Trikafta treatment, yet. MATERIALS/PATIENTS AND METHODS We exploited an innovative cellular approach allowing highly efficient in vitro-expansion of airway epithelial stem cells (AESC) through conditional reprogramming (CRC) from nasal brushing of CF patients. This approach, coupled to development of AESC-derived personalised disease models, as organoids and air liquid interface (ALI) cultures, revealed highly suitable for CFTR pharmacological-testing. RESULTS AND ANSWER TO THE QUESTION We fully validated the experimental models and implemented the CFTR functional assays and biochemical CFTR protein characterisation, that allowed to evaluate the efficacy of clinically available modulators in restoring CFTR maturation and function of each patient-derived "avatar" (theratyping). F508del homozygous genotypes, used as controls, confirmed the higher clinical activity of Trikafta in comparison with older modulators. Trikafta showed its efficacy also on three rare genotypes previously not eligible for modulators-treatment, opening the way to clinical translation. Finally, encouraging results for innovative drug combinations were also obtained.
Collapse
Affiliation(s)
- Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Co-first authors
| | - Stefania Lo Cicero
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Co-first authors
| | - Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valentina Salvati
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Benedetta Fabrizzi
- Cystic Fibrosis Care Center, Mother - Child Department, United Hospitals, Ancona, Italy
| | - Giuseppe Cimino
- Cystic Fibrosis Reference Center of Lazio Region, AOU Policlinico Umberto I, Rome, Italy
| | - Ruggero De Maria
- U.O.C. Medical Oncology, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy .,Co-last authors
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.,Co-last authors
| |
Collapse
|
39
|
Calucho M, Gartner S, Barranco P, Fernández-Álvarez P, Pérez RG, Tizzano EF. Validation of nasospheroids to assay CFTR functionality and modulator responses in cystic fibrosis. Sci Rep 2021; 11:15511. [PMID: 34330959 PMCID: PMC8324871 DOI: 10.1038/s41598-021-94798-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
The availability of a simple, robust and non-invasive in vitro airway model would be useful to study the functionality of the cystic fibrosis transmembrane regulator (CFTR) protein and to personalize modulator therapy for cystic fibrosis (CF) patients. Our aim was to validate a CFTR functional study using nasospheroids, a patient-derived nasal cell 3D-culture. We performed live-cell experiments in nasospheroids obtained from wild-type individuals and CF patients with different genotypes and phenotypes. We extended the existing method and expanded the analysis to upgrade measurements of CFTR activity using forskolin-induced shrinking. We also tested modulator drugs in CF samples. Immobilizing suspended-nasospheroids provided a high number of samples for live-cell imaging. The diversity observed in basal sizes of nasospheroids did not affect the functional analysis of CFTR. Statistical analysis with our method was simple, making this protocol easy to reproduce. Moreover, we implemented the measurement of inner fluid reservoir areas to further differentiate CFTR functionality. In summary, this rapid methodology is helpful to analyse response to modulators in CF samples to allow individualized treatment for CF patients.
Collapse
Affiliation(s)
- Maite Calucho
- Medicine Genetics Group, Vall D'Hebron Research Institute, 08035, Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron , 08035, Barcelona, Spain
| | - Silvia Gartner
- Cystic Fibrosis Unit, Hospital Universitari Vall d'Hebron, 08035, Barcelona, Spain
| | - Paula Barranco
- Medicine Genetics Group, Vall D'Hebron Research Institute, 08035, Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron , 08035, Barcelona, Spain
| | - Paula Fernández-Álvarez
- Medicine Genetics Group, Vall D'Hebron Research Institute, 08035, Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron , 08035, Barcelona, Spain
| | | | - Eduardo F Tizzano
- Medicine Genetics Group, Vall D'Hebron Research Institute, 08035, Barcelona, Spain. .,Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron , 08035, Barcelona, Spain.
| |
Collapse
|
40
|
Baldassi D, Gabold B, Merkel O. Air-liquid interface cultures of the healthy and diseased human respiratory tract: promises, challenges and future directions. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000111. [PMID: 34345878 PMCID: PMC7611446 DOI: 10.1002/anbr.202000111] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Air-liquid interface (ALI) culture models currently represent a valid instrument to recreate the typical aspects of the respiratory tract in vitro in both healthy and diseased state. They can help reducing the number of animal experiments, therefore, supporting the 3R principle. This review discusses ALI cultures and co-cultures derived from immortalized as well as primary cells, which are used to study the most common disorders of the respiratory tract, in terms of both pathophysiology and drug screening. The article displays ALI models used to simulate inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, cystic fibrosis, lung cancer, and viral infections. It also includes a focus on ALI cultures described in literature studying respiratory viruses such as SARS-CoV-2 causing the global Covid-19 pandemic at the time of writing this review. Additionally, commercially available models of ALI cultures are presented. Ultimately, the aim of this review is to provide a detailed overview of ALI models currently available and to critically discuss them in the context of the most prevalent diseases of the respiratory tract.
Collapse
Affiliation(s)
- Domizia Baldassi
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| | - Bettina Gabold
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| | - Olivia Merkel
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
41
|
Anderson JD, Liu Z, Odom LV, Kersh L, Guimbellot JS. CFTR function and clinical response to modulators parallel nasal epithelial organoid swelling. Am J Physiol Lung Cell Mol Physiol 2021; 321:L119-L129. [PMID: 34009038 DOI: 10.1152/ajplung.00639.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In vitro biomarkers to assess cystic fibrosis transmembrane conductance regulator activity are desirable for precision modulator selection and as a tool for clinical trials. Here, we describe an organoid swelling assay derived from human nasal epithelia using commercially available reagents and equipment and an automated imaging process. Cells were collected in nasal brush biopsies, expanded in vitro, and cultured as spherical organoids or as monolayers. Organoids were used in a functional swelling assay with automated measurements and analysis, whereas monolayers were used for short-circuit current measurements to assess ion channel activity. Clinical data were collected from patients on modulators. Relationships between swelling data and short-circuit current, as well as between swelling data and clinical outcome measures, were assessed. The organoid assay measurements correlated with short-circuit current measurements for ion channel activity. The functional organoid assay distinguished individual responses as well as differences between groups. The organoid assay distinguished incremental drug responses to modulator monotherapy with ivacaftor and combination therapy with ivacaftor, tezacaftor, and elexacaftor. The swelling activity paralleled the clinical response. In conclusion, an in vitro biomarker derived from patients' cells can be used to predict responses to drugs and is likely to be useful as a preclinical tool to aid in the development of novel treatments and as a clinical trial outcome measure for a variety of applications, including gene therapy or editing.
Collapse
Affiliation(s)
- Justin D Anderson
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhongyu Liu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - L Victoria Odom
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Latona Kersh
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
42
|
Silva IAL, Railean V, Duarte A, Amaral MD. Personalized Medicine Based on Nasal Epithelial Cells: Comparative Studies with Rectal Biopsies and Intestinal Organoids. J Pers Med 2021; 11:421. [PMID: 34065744 PMCID: PMC8156700 DOI: 10.3390/jpm11050421] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
As highly effective CFTR modulator therapies (HEMT) emerge, there is an unmet need to find effective drugs for people with CF (PwCF) with ultra-rare mutations who are too few for classical clinical trials and for whom there are no drug discovery programs. Therefore, biomarkers reliably predicting the benefit from CFTR modulator therapies are essential to find effective drugs for PwCF through personalized approaches termed theranostics. Here, we assess CFTR basal function and the individual responses to CFTR modulators in primary human nasal epithelial (pHNE) cells from PwCF carrying rare mutations and compare these measurements with those in native rectal biopsies and intestinal organoids, respectively, in the same individual. The basal function in pHNEs shows good correlation with CFTR basal function in rectal biopsies. In parallel, CFTR rescue in pHNEs by CFTR modulators correlates to that in intestinal organoids. Altogether, results show that pHNEs are a bona fide theranostic model to assess CFTR rescue by CFTR modulator drugs, in particular for PwCF and rare mutations.
Collapse
Affiliation(s)
| | | | | | - Margarida D. Amaral
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal; (I.A.L.S.); (V.R.); (A.D.)
| |
Collapse
|
43
|
Gecili E, Su W, Brokamp C, Andrinopoulou ER, Iii FJL, Pestian T, Clancy JP, Solomon GM, Brewington JJ, Szczesniak RD. Rapid cystic fibrosis lung-function decline and in-vitro CFTR modulation. J Cyst Fibros 2021; 20:e69-e71. [PMID: 33958278 DOI: 10.1016/j.jcf.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/23/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Emrah Gecili
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Weiji Su
- Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Cole Brokamp
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, MLC 0555, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | | | - Francis J LaRosa Iii
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, MLC 2021, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Teresa Pestian
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - John P Clancy
- Cystic Fibrosis Foundation, 4550 Montgomery Ave, Suite 1100N, Bethesda, MD 20814, USA
| | - George M Solomon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd, Birmingham, AL 35294, USA; Department of Medicine, University of Alabama at Birmingham, THT 422, 1900 University Blvd, Birmingham, AL 35294, USA
| | - John J Brewington
- Department of Pediatrics, University of Cincinnati, MLC 0555, 3230 Eden Ave, Cincinnati, OH 45267, USA; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, MLC 2021, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Rhonda D Szczesniak
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, MLC 0555, 3230 Eden Ave, Cincinnati, OH 45267, USA; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, MLC 2021, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| |
Collapse
|
44
|
Nasal Epithelial Cell-Based Models for Individualized Study in Cystic Fibrosis. Int J Mol Sci 2021; 22:ijms22094448. [PMID: 33923202 PMCID: PMC8123210 DOI: 10.3390/ijms22094448] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence of highly effective CFTR modulator therapy has led to significant improvements in health care for most patients with cystic fibrosis (CF). For some, however, these therapies remain inaccessible due to the rarity of their individual CFTR variants, or due to a lack of biologic activity of the available therapies for certain variants. One proposed method of addressing this gap is the use of primary human cell-based models, which allow preclinical therapeutic testing and physiologic assessment of relevant tissue at the individual level. Nasal cells represent one such tissue source and have emerged as a powerful model for individual disease study. The ex vivo culture of nasal cells has evolved over time, and modern nasal cell models are beginning to be utilized to predict patient outcomes. This review will discuss both historical and current state-of-the art use of nasal cells for study in CF, with a particular focus on the use of such models to inform personalized patient care.
Collapse
|
45
|
Kim D, Liao J, Scales NB, Martini C, Luan X, Abu-Arish A, Robert R, Luo Y, McKay GA, Nguyen D, Tewfik MA, Poirier CD, Matouk E, Ianowski JP, Frenkiel S, Hanrahan JW. Large pH oscillations promote host defense against human airways infection. J Exp Med 2021; 218:e20201831. [PMID: 33533914 PMCID: PMC7845918 DOI: 10.1084/jem.20201831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
The airway mucosal microenvironment is crucial for host defense against inhaled pathogens but remains poorly understood. We report here that the airway surface normally undergoes surprisingly large excursions in pH during breathing that can reach pH 9.0 during inhalation, making it the most alkaline fluid in the body. Transient alkalinization requires luminal bicarbonate and membrane-bound carbonic anhydrase 12 (CA12) and is antimicrobial. Luminal bicarbonate concentration and CA12 expression are both reduced in cystic fibrosis (CF), and mucus accumulation both buffers the pH and obstructs airflow, further suppressing the oscillations and bacterial-killing efficacy. Defective pH oscillations may compromise airway host defense in other respiratory diseases and explain CF-like airway infections in people with CA12 mutations.
Collapse
Affiliation(s)
- Dusik Kim
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
| | - Jie Liao
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
| | - Nathan B. Scales
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
| | - Carolina Martini
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
| | - Xiaojie Luan
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Asmahan Abu-Arish
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
| | - Renaud Robert
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
| | - Yishan Luo
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
| | - Geoffrey A. McKay
- Department of Medicine, McGill University, Research Institute–McGill University Health Centre, Montréal, Québec, Canada
| | - Dao Nguyen
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Research Institute–McGill University Health Centre, Montréal, Québec, Canada
| | - Marc A. Tewfik
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Research Institute–McGill University Health Centre, Montréal, Québec, Canada
- Department of Otolaryngology–Head and Neck Surgery, McGill University Health Centre, Montréal, Québec, Canada
| | - Charles D. Poirier
- Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Elias Matouk
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
- Adult Cystic Fibrosis Clinic, Montreal Chest Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - Juan P. Ianowski
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Saul Frenkiel
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Research Institute–McGill University Health Centre, Montréal, Québec, Canada
- Department of Otolaryngology–Head and Neck Surgery, McGill University Health Centre, Montréal, Québec, Canada
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Research Institute–McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
46
|
McCarty NA. Breathe-Your immune system is counting on it. J Exp Med 2021; 218:e20202643. [PMID: 33724301 PMCID: PMC7970320 DOI: 10.1084/jem.20202643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Always, but especially in these times of COVID pandemic, we know the dangers of breathing into our lungs a deadly pathogen. Fortunately, healthy lungs are equipped with an innate immune system that works to clear those pathogens. A study in this issue (2021. J. Exp. Med.https://doi.org/10.1084/jem.20201831) shows, for the first time, that breathing-induced changes in the pH of the airway surface contribute to bacterial killing, pointing to new therapeutic strategies for maintaining pulmonary health.
Collapse
Affiliation(s)
- Nael A. McCarty
- Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Inc., Atlanta, GA
| |
Collapse
|
47
|
Comegna M, Conte G, Falanga AP, Marzano M, Cernera G, Di Lullo AM, Amato F, Borbone N, D'Errico S, Ungaro F, d'Angelo I, Oliviero G, Castaldo G. Assisting PNA transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles. Sci Rep 2021; 11:6393. [PMID: 33737583 PMCID: PMC7973768 DOI: 10.1038/s41598-021-85549-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is characterized by an airway obstruction caused by a thick mucus due to a malfunctioning Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. The sticky mucus restricts drugs in reaching target cells limiting the efficiency of treatments. The development of new approaches to enhance drug delivery to the lungs represents CF treatment's main challenge. In this work, we report the production and characterization of hybrid core–shell nanoparticles (hNPs) comprising a PLGA core and a dipalmitoylphosphatidylcholine (DPPC) shell engineered for inhalation. We loaded hNPs with a 7-mer peptide nucleic acid (PNA) previously considered for its ability to modulate the post-transcriptional regulation of the CFTR gene. We also investigated the in vitro release kinetics of hNPs and their efficacy in PNA delivery across the human epithelial airway barrier using an ex vivo model based on human primary nasal epithelial cells (HNEC) from CF patients. Confocal analyses and hNPs transport assay demonstrated the ability of hNPs to overcome the mucus barrier and release their PNA cargo within the cytoplasm, where it can exert its biological function.
Collapse
Affiliation(s)
- Marika Comegna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., 80145, Naples, Italy
| | - Gemma Conte
- Di.S.T.A.Bi.F., University of Campania Luigi Vanvitelli, 81100, Caserta, Italy
| | | | - Maria Marzano
- Institute of Crystallography, National Research Council, 70126, Bari, Italy
| | - Gustavo Cernera
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., 80145, Naples, Italy
| | - Antonella Miriam Di Lullo
- ENT Section, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131, Naples, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., 80145, Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Ivana d'Angelo
- Di.S.T.A.Bi.F., University of Campania Luigi Vanvitelli, 81100, Caserta, Italy.
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., 80145, Naples, Italy
| |
Collapse
|
48
|
Kim MD, Baumlin N, Dennis JS, Yoshida M, Kis A, Aguiar C, Schmid A, Mendes E, Salathe M. Losartan reduces cigarette smoke-induced airway inflammation and mucus hypersecretion. ERJ Open Res 2021; 7:00394-2020. [PMID: 33532463 PMCID: PMC7836504 DOI: 10.1183/23120541.00394-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 11/05/2022] Open
Abstract
The aim was to determine whether losartan reduces cigarette smoke (CS)-induced airway inflammation and mucus hypersecretion in an in vitro model and a small clinical trial. Primary human bronchial epithelial cells (HBECs) were differentiated at the air-liquid interface (ALI) and exposed to CS. Expression of transforming growth factor (TGF)-β1 and the mucin MUC5AC, and expression or activity of matrix metalloproteinase (MMP)-9 were measured after CS exposure. Parameters of mucociliary clearance were evaluated by measuring airway surface liquid volumes, mucus concentrations, and conductance of cystic fibrosis transmembrane conductance regulator (CFTR) and large conductance, Ca2+-activated and voltage-dependent potassium (BK) channels. Nasal cells were collected from study participants and expression of MUC5AC, TGF-β1, and MMP-9 mRNAs was measured before and after losartan treatment. In vitro, CS exposure of HBECs caused a significant increase in mRNA expression of MUC5AC and TGF-β1 and MMP-9 activity and decreased CFTR and BK channel activities, thereby reducing airway surface liquid volumes and increasing mucus concentrations. Treatment of HBECs with losartan rescued CS-induced CFTR and BK dysfunction and caused a significant decrease in MUC5AC expression and mucus concentrations, partially by inhibiting TGF-β signalling. In a prospective clinical study, cigarette smokers showed significantly reduced mRNA expression levels of MUC5AC, TGF-β1, and MMP-9 in the upper airways after 2 months of losartan treatment. Our findings suggest that losartan may be an effective therapy to reduce inflammation and mucus hypersecretion in CS-induced chronic airway diseases.
Collapse
Affiliation(s)
- Michael D Kim
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,These authors contributed equally
| | - Nathalie Baumlin
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,These authors contributed equally
| | - John S Dennis
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Makoto Yoshida
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Adrian Kis
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carolina Aguiar
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andreas Schmid
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eliana Mendes
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthias Salathe
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
49
|
Awatade NT, Wong SL, Capraro A, Pandzic E, Slapetova I, Zhong L, Turgutoglu N, Fawcett LK, Whan RM, Jaffe A, Waters SA. Significant functional differences in differentiated Conditionally Reprogrammed (CRC)- and Feeder-free Dual SMAD inhibited-expanded human nasal epithelial cells. J Cyst Fibros 2021; 20:364-371. [PMID: 33414087 DOI: 10.1016/j.jcf.2020.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Patient-derived airway cells differentiated at Air Liquid Interface (ALI) are valuable models for Cystic fibrosis (CF) precision therapy. Different culture expansion methods have been established to extend expansion capacity of airway basal cells, while retaining functional airway epithelium physiology. Considerable variation in response to CFTR modulators is observed in cultures even within the same CFTR genotype and despite the use of similar ALI culture techniques. We aimed to address culture expansion method impact on differentiation. METHODS Nasal epithelial brushings from 14 individuals (CF=9; non-CF=5) were collected, then equally divided and expanded under conditional reprogramming culture (CRC) and feeder-serum-free "dual-SMAD inhibition" (SMADi) methods. Expanded cells from each culture were differentiated with proprietary PneumaCult™-ALI media. Morphology (Immunofluorescence), global proteomics (LC-MS/MS) and function (barrier integrity, cilia motility, and ion transport) were compared in CRCALI and SMADiALI under basal and CFTR corrector treated (VX-809) conditions. RESULTS No significant difference in the structural morphology or baseline global proteomics profile were observed. Barrier integrity and cilia motility were significantly different, despite no difference in cell junction morphology or cilia abundance. Epithelial Sodium Channels and Calcium-activated Chloride Channel activity did not differ but CFTR mediated chloride currents were significantly reduced in SMADiALI compare to their CRCALI counterparts. CONCLUSION Alteration of cellular physiological function in vitro were more prominent than structural and differentiation potential in airway ALI. Since initial expansion culture conditions significantly influence CFTR activity, this could lead to false conclusions if data from different labs are compared against each other without specific reference ranges.
Collapse
Affiliation(s)
- Nikhil T Awatade
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Sharon L Wong
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Alexander Capraro
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Elvis Pandzic
- Biomedical Imaging Facility, University of New South Wales, Sydney, NSW, Australia
| | - Iveta Slapetova
- Biomedical Imaging Facility, University of New South Wales, Sydney, NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Nihan Turgutoglu
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Laura K Fawcett
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Renee M Whan
- Biomedical Imaging Facility, University of New South Wales, Sydney, NSW, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Shafagh A Waters
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia.
| |
Collapse
|
50
|
Choice of Differentiation Media Significantly Impacts Cell Lineage and Response to CFTR Modulators in Fully Differentiated Primary Cultures of Cystic Fibrosis Human Airway Epithelial Cells. Cells 2020; 9:cells9092137. [PMID: 32967385 PMCID: PMC7565948 DOI: 10.3390/cells9092137] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
In vitro cultures of primary human airway epithelial cells (hAECs) grown at air–liquid interface have become a valuable tool to study airway biology under normal and pathologic conditions, and for drug discovery in lung diseases such as cystic fibrosis (CF). An increasing number of different differentiation media, are now available, making comparison of data between studies difficult. Here, we investigated the impact of two common differentiation media on phenotypic, transcriptomic, and physiological features of CF and non-CF epithelia. Cellular architecture and density were strongly impacted by the choice of medium. RNA-sequencing revealed a shift in airway cell lineage; one medium promoting differentiation into club and goblet cells whilst the other enriched the growth of ionocytes and multiciliated cells. Pathway analysis identified differential expression of genes involved in ion and fluid transport. Physiological assays (intracellular/extracellular pH, Ussing chamber) specifically showed that ATP12A and CFTR function were altered, impacting pH and transepithelial ion transport in CF hAECs. Importantly, the two media differentially affected functional responses to CFTR modulators. We argue that the effect of growth conditions should be appropriately determined depending on the scientific question and that our study can act as a guide for choosing the optimal growth medium for specific applications.
Collapse
|