1
|
Elfoly M, Mirza JY, Alaiya A, Al-Hazzani AA, Tulbah A, Al-Alwan M, Ghebeh H. PD-L1 intrinsically promotes the proliferation of breast cancer cells through the SKP2-p27/p21 axis. Cancer Cell Int 2024; 24:161. [PMID: 38725021 PMCID: PMC11084005 DOI: 10.1186/s12935-024-03354-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND PD-L1 intrinsically promotes tumor progression through multiple mechanisms, which potentially leads to resistance to anti-PD-1/PD-L1 therapies. The intrinsic effect of PD-L1 on breast cancer (BC) cell proliferation has not been fully elucidated. METHODS we used proteomics, gene expression knockdown (KD), quantitative immunofluorescence (qIF), western blots, functional assays including colony-forming assay (CFA) and real-time cell analyzer (RTCA), and in vivo data using immunohistochemistry in breast cancer patients. RESULTS PD-L1 promoted BC cell proliferation by accelerating cell cycle entry at the G1-to-S phase transition. Global proteomic analysis of the differentially expressed nuclear proteins indicated the involvement of several proliferation-related molecules, including p21CIP1/WAF1. Western blotting and qIF demonstrated the higher expression of SKP2 and the lower expression of p21CIP1/WAF1 and p27Kip1 in PD-L1 expressing (PD-L1pos) cells as compared to PD-L1 KD (PD-L1KD) cells. Xenograft-derived cells and the TCGA BC dataset confirmed this relationship in vivo. Functionally, CFA and RTCA demonstrated the central role of SKP2 in promoting PD-L1-mediated proliferation. Finally, immunohistochemistry in 74 breast cancer patients confirmed PD-L1 and SKP-p21/p27 axis relationship, as it showed a highly statistically significant correlation between SKP2 and PD-L1 expression (p < 0.001), and both correlated significantly with the proliferation marker Ki-67 (p < 0.001). On the other hand, there was a statistically significant inverse relationship between PD-L1 and p21CIP1/WAF1 expression (p = 0.005). Importantly, double negativity for p21CIP1/WAF1 and p27Kip1 correlated significantly with PD-L1 (p < 0.001), SKP2 (p = 0.002), and Ki-67 (p = 0.002). CONCLUSIONS we have demonstrated the role of the SKP2-p27/p21 axis in intrinsic PD-L1-enhanced cell cycle progression. Inhibitors of SKP2 expression can alleviate resistance to ICPIs.
Collapse
Affiliation(s)
- Marwa Elfoly
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jumanah Y Mirza
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Ayodele Alaiya
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Amal A Al-Hazzani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Monther Al-Alwan
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Hazem Ghebeh
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia.
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Ibrahim A, Toss MS, Alsaleem M, Makhlouf S, Atallah N, Green AR, Rakha EA. Novel 2 Gene Signatures Associated With Breast Cancer Proliferation: Insights From Predictive Differential Gene Expression Analysis. Mod Pathol 2024; 37:100403. [PMID: 38104894 DOI: 10.1016/j.modpat.2023.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
The use of proliferation markers provides valuable information about the rate of tumor growth, which can guide treatment decisions. However, there is still a lack of consensus regarding the optimal molecular markers or tests to use in clinical practice. Integrating gene expression data with clinical and histopathologic parameters enhances our understanding of disease processes, facilitates the identification of precise prognostic predictors, and supports the development of effective therapeutic strategies. The purpose of this study was to apply an integrated approach that combines morphologic, clinical, and bioinformatic data to reveal effective regulators of proliferation. Whole-slide images generated from hematoxylin-and-eosin-stained sections of The Cancer Genome Atlas (TCGA) breast cancer (BC) database (n = 1053) alongside their transcriptomic and clinical data were used to identify genes differentially expressed between tumors with high and low mitotic scores. Genes enriched in the cell-cycle pathway were used to predict the protein-protein interaction (PPI) network. Ten hub genes (ORC6, SKP2, SMC1B, CDKN2A, CDC25B, E2F1, E2F2, ORC1, PTTG1, and CDC25A) were identified using CytoHubba a Cytoscape plugin. In a multivariate Cox regression model, ORC6 and SKP2 were predictors of survival independent of existing methods of proliferation assessment including mitotic score and Ki67. The prognostic ability of these genes was validated using the Molecular Taxonomy of Breast Cancer International Consortium, Nottingham cohort, Uppsala cohort, and a combined multicentric cohort. The protein expression of these 2 genes was investigated on a large cohort of BC cases, and they were significantly associated with poor prognosis and patient outcome. A positive correlation between ORC6 and SKP2 mRNA and protein expression was observed. Our study has identified 2 gene signatures, ORC6 and SKP2, which play a significant role in BC proliferation. These genes surpassed both mitotic scores and Ki67 in multivariate analysis. Their identification provides potential opportunities for the development of targeted treatments for patients with BC.
Collapse
Affiliation(s)
- Asmaa Ibrahim
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, United Kingdom; Histopathology Department, Faculty of Medicine, Suez Canal University, Egypt
| | - Michael S Toss
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, United Kingdom; Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Mansour Alsaleem
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, United Kingdom; Unit of Scientific Research, Applied College, Qassim University, Saudi Arabia
| | - Shorouk Makhlouf
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, United Kingdom; Department of Pathology, Faculty of Medicine, Assiut University, Egypt
| | - Nehal Atallah
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, United Kingdom; Histopathology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Andrew R Green
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, United Kingdom
| | - Emad A Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, United Kingdom; Histopathology Department, School of Medicine, University of Nottingham, United Kingdom; Department of Pathology, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
3
|
Bhat Y, Thrishna MR, Banerjee S. Molecular targets and therapeutic strategies for triple-negative breast cancer. Mol Biol Rep 2023; 50:10535-10577. [PMID: 37924450 DOI: 10.1007/s11033-023-08868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is known for its heterogeneous complexity and is often difficult to treat. TNBC lacks the expression of major hormonal receptors like estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 and is further subdivided into androgen receptor (AR) positive and AR negative. In contrast, AR negative is also known as quadruple-negative breast cancer (QNBC). Compared to AR-positive TNBC, QNBC has a great scarcity of prognostic biomarkers and therapeutic targets. QNBC shows excessive cellular growth and proliferation of tumor cells due to increased expression of growth factors like EGF and various surface proteins. This study briefly reviews the limited data available as protein biomarkers that can be used as molecular targets in treating TNBC as well as QNBC. Targeted therapy and immune checkpoint inhibitors have recently changed cancer treatment. Many studies in medicinal chemistry continue to focus on the synthesis of novel compounds to discover new antiproliferative medicines capable of treating TNBC despite the abundance of treatments currently on the market. Drug repurposing is one of the therapeutic methods for TNBC that has been examined. Moreover, some additional micronutrients, nutraceuticals, and functional foods may be able to lower cancer risk or slow the spread of malignant diseases that have already been diagnosed with cancer. Finally, nanomedicines, or applications of nanotechnology in medicine, introduce nanoparticles with variable chemistry and architecture for the treatment of cancer. This review emphasizes the most recent research on nutraceuticals, medication repositioning, and novel therapeutic strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Yashasvi Bhat
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - M R Thrishna
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Qiao C, Huang F, He J, Wu Q, Zheng Z, Zhang T, Miao Y, Yuan Y, Chen X, Du Q, Xu Y, Wu D, Yu Z, Zheng H. Ceftazidime reduces cellular Skp2 to promote type-I interferon activity. Immunology 2023; 170:527-539. [PMID: 37641430 DOI: 10.1111/imm.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Skp2 plays multiple roles in malignant tumours. Here, we revealed that Skp2 negatively regulates type-I interferon (IFN-I)-mediated antiviral activity. We first noticed that Skp2 can promote virus infection in cells. Further studies demonstrated that Skp2 interacts with IFN-I receptor 2 (IFNAR2) and promotes K48-linked polyubiquitination of IFNAR2, which accelerates the degradation of IFNAR2 proteins. Skp2-mediated downregulation of IFNAR2 levels inhibits IFN-I signalling and IFN-I-induced antiviral activity. In addition, we uncovered for the first time that the antibiotic ceftazidime can act as a repressor of Skp2. Ceftazidime reduces cellular Skp2 levels, thus enhancing IFNAR2 stability and IFN-I antiviral activity. This study reveals a new role of Skp2 in regulating IFN-I signalling and IFN-I antiviral activity and reports the antibiotic ceftazidime as a potential repressor of Skp2.
Collapse
Affiliation(s)
- Caixia Qiao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Fan Huang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
- The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiuyi He
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Qiuyu Wu
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Zhijin Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Tingting Zhang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Ying Miao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Yukang Yuan
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Xiangjie Chen
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Qian Du
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Zhengyuan Yu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Chen M, Wang K, Han Y, Yan S, Yuan H, Liu Q, Li L, Li N, Zhu H, Lu D, Wang K, Liu F, Luo D, Zhang Y, Jiang J, Li D, Zhang L, Ji H, Zhou H, Chen Y, Qin J, Gao D. Identification of XAF1 as an endogenous AKT inhibitor. Cell Rep 2023; 42:112690. [PMID: 37384528 DOI: 10.1016/j.celrep.2023.112690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/06/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023] Open
Abstract
AKT kinase is a key regulator in cell metabolism and survival, and its activation is strictly modulated. Herein, we identify XAF1 (XIAP-associated factor) as a direct interacting protein of AKT1, which strongly binds the N-terminal region of AKT1 to block its K63-linked poly-ubiquitination and subsequent activation. Consistently, Xaf1 knockout causes AKT activation in mouse muscle and fat tissues and reduces body weight gain and insulin resistance induced by high-fat diet. Pathologically, XAF1 expression is low and anti-correlated with the phosphorylated p-T308-AKT signal in prostate cancer samples, and Xaf1 knockout stimulates the p-T308-AKT signal to accelerate spontaneous prostate tumorigenesis in mice with Pten heterozygous loss. And ectopic expression of wild-type XAF1, but not the cancer-derived P277L mutant, inhibits orthotopic tumorigenesis. We further identify Forkhead box O 1 (FOXO1) as a transcriptional regulator of XAF1, thus forming a negative feedback loop between AKT1 and XAF1. These results reveal an important intrinsic regulatory mechanism of AKT signaling.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kangjunjie Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ying Han
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shukun Yan
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, 333 Haike Road, Shanghai 201210, China
| | - Huairui Yuan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Long Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Dayun Lu
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kaihua Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Fen Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yuxue Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yong Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, 333 Haike Road, Shanghai 201210, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China.
| | - Jun Qin
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Daming Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
6
|
Bhattarai S, Saini G, Gogineni K, Aneja R. Quadruple-negative breast cancer: novel implications for a new disease. Breast Cancer Res 2020; 22:127. [PMID: 33213491 PMCID: PMC7678108 DOI: 10.1186/s13058-020-01369-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Based on the androgen receptor (AR) expression, triple-negative breast cancer (TNBC) can be subdivided into AR-positive TNBC and AR-negative TNBC, also known as quadruple-negative breast cancer (QNBC). QNBC characterization and treatment is fraught with many challenges. In QNBC, there is a greater paucity of prognostic biomarkers and therapeutic targets than AR-positive TNBC. Although the prognostic role of AR in TNBC remains controversial, many studies revealed that a lack of AR expression confers a more aggressive disease course. Literature characterizing QNBC tumor biology and uncovering novel biomarkers for improved management of the disease remains scarce. In this comprehensive review, we summarize the current QNBC landscape and propose avenues for future research, suggesting potential biomarkers and therapeutic strategies that warrant investigation.
Collapse
Affiliation(s)
- Shristi Bhattarai
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Geetanjali Saini
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Keerthi Gogineni
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA.
| |
Collapse
|
7
|
Xiong Y, Lai X, Xiang W, Zhou J, Han J, Li H, Deng H, Liu L, Peng J, Chen L. Galangin (GLN) Suppresses Proliferation, Migration, and Invasion of Human Glioblastoma Cells by Targeting Skp2-Induced Epithelial-Mesenchymal Transition (EMT). Onco Targets Ther 2020; 13:9235-9244. [PMID: 32982310 PMCID: PMC7505705 DOI: 10.2147/ott.s264209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/29/2020] [Indexed: 11/23/2022] Open
Abstract
Background Galangin (GLN), a pure natural flavonoid compound found in plants, has been shown to exert anti-cancer effects against multiple cancer types, including glioma. However, its underlying molecular mechanism remains unclear. Epithelial-to-mesenchymal transition (EMT) performs an important function in the genesis and development of cancer. Skp2, a pivotal component of SCFSkp2 E3 ubiquitin ligase, has been shown to function as an oncogene in GBM invasion that contributes to the EMT process. Thus, we explored whether GLN inhibited Skp2-mediated EMT and the mechanism underlying the Skp2 degradation pathway. Methods CCK-8 assay, wound healing assay and transwell assay were used to examine cell proliferation, migration, and invasion after treatment with or without GLN. RT-PCR and Western blotting analysis were performed to evaluate mRNA and protein expression, respectively. Co-immunoprecipitation was conducted to detect ubiquitinated Skp2 levels in vitro and in vivo after GLN treatment. Bioluminescence imaging was performed to examine the intracranial tumor size of U87 xenograft mice. Microscale thermophoresis (MST) experiment was used to detect interactions between Skp2 and GLN. Results GLN suppressed GBM cell growth, migration, and invasion, and also downregulated the expression of Skp2 and mesenchymal markers (Zeb1, N-cadherin, snail, vimentin) in vitro. Moreover, the overexpression of Skp2 in GBM cells decreased the effect of GLN on EMT. Furthermore, we demonstrated that GLN degraded skp2 protein through the ubiquitination proteasome pathway and directly interacted with skp2 protein, as shown through the MST assay. Conclusion This study is the first to identify Skp2 as a novel target of GLN for the treatment of GBM and report of Skp2 protein degradation in a ubiquitination proteasome pathway. Results from our study indicated the potential of GLN for the treatment of GBM through ubiquitin-mediated degradation of Skp2.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Xue Lai
- Day Surgery Center, Affiliated Hospital of Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Wei Xiang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Jie Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Jizhong Han
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Hao Li
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Huajiang Deng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Luotong Liu
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Jianhua Peng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| |
Collapse
|
8
|
Cheng ZJ, Cai HQ, Zhang MJ, Zhong Y, He J, Yuan Q, Hao JJ, Wang MR, Wan JH. High S phase kinase-associated protein 2 expression is a potential prognostic biomarker for glioma. Oncol Lett 2020; 20:2788-2796. [PMID: 32782596 PMCID: PMC7400960 DOI: 10.3892/ol.2020.11818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
S phase kinase-associated protein 2 (SKP2), a substrate recognizing protein, serves an important role in promoting cell cycle progression through ubiquitination and degradation of cell cycle inhibitors. In the present study, the clinical significance of SKP2 in gliomas was studied; 395 glioma specimens and 20 non-neoplastic tissues were collected and immunohistochemical analysis was performed. χ2 test was used to assess the associations between SKP2 expression and clinical parameters. Overall survival (OS) curves were plotted according to the Kaplan-Meier method. In the tested glioma samples, SKP2 expression was mainly observed in glioblastomas (GBMs). Survival analysis demonstrated that the overall survival time of the high SKP2 expression group was lower compared with the low SKP2 expression group (median OS, 10.04 months vs. 16.50 months; P=0.003). Moreover, SKP2 was independently associated with an unfavorable prognosis in GBMs. In addition, the expression of SKP2 was associated with the expression of phosphorylated retinoblastoma protein and the epidermal growth factor receptor. A combination of SKP2 expression along with isocitrate dehydrogenase 1 (IDH1) mutations and telomerase reverse transcriptase (TERT) promoter mutations was used to classify glioma patients for survival analysis. Patients with low SKP2 expression, IDH1 mutation and wild-type TERT promoter demonstrated the longest survival time. The findings of the present study, indicate that SKP2 is a potential prognostic biomarker in patients with GBMs.
Collapse
Affiliation(s)
- Zhi-Jian Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Hong-Qing Cai
- Department of Neurosurgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Min-Jie Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yi Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jie He
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Qing Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jia-Jie Hao
- Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Ming-Rong Wang
- Department of State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jing-Hai Wan
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
9
|
Li GZ, Okada T, Kim YM, Agaram NP, Sanchez-Vega F, Shen Y, Tsubokawa N, Rios J, Martin AS, Dickson MA, Qin LX, Socci ND, Singer S. Rb and p53-Deficient Myxofibrosarcoma and Undifferentiated Pleomorphic Sarcoma Require Skp2 for Survival. Cancer Res 2020; 80:2461-2471. [PMID: 32161142 DOI: 10.1158/0008-5472.can-19-1269] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/20/2022]
Abstract
Myxofibrosarcoma (MFS) and undifferentiated pleomorphic sarcoma (UPS) are highly genetically complex soft tissue sarcomas. Up to 50% of patients develop distant metastases, but current systemic therapies have limited efficacy. MFS and UPS have recently been shown to commonly harbor copy number alterations or mutations in the tumor suppressor genes RB1 and TP53. As these alterations have been shown to engender dependence on the oncogenic protein Skp2 for survival of transformed cells in mouse models, we sought to examine its function and potential as a therapeutic target in MFS/UPS. Comparative genomic hybridization and next-generation sequencing confirmed that a significant fraction of MFS and UPS patient samples (n = 94) harbor chromosomal deletions and/or loss-of-function mutations in RB1 and TP53 (88% carry alterations in at least one gene; 60% carry alterations in both). Tissue microarray analysis identified a correlation between absent Rb and p53 expression and positive expression of Skp2. Downregulation of Skp2 or treatment with the Skp2-specific inhibitor C1 revealed that Skp2 drives proliferation of patient-derived MFS/UPS cell lines deficient in both Rb and p53 by degrading p21 and p27. Inhibition of Skp2 using the neddylation-activating enzyme inhibitor pevonedistat decreased growth of Rb/p53-negative patient-derived cell lines and mouse xenografts. These results demonstrate that loss of both Rb and p53 renders MFS and UPS dependent on Skp2, which can be therapeutically exploited and could provide the basis for promising novel systemic therapies for MFS and UPS. SIGNIFICANCE: Loss of both Rb and p53 renders myxofibrosarcoma and undifferentiated pleomorphic sarcoma dependent on Skp2, which could provide the basis for promising novel systemic therapies.See related commentary by Lambert and Jones, p. 2437.
Collapse
Affiliation(s)
- George Z Li
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tomoyo Okada
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Young-Mi Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Narasimhan P Agaram
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Yawei Shen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Norifumi Tsubokawa
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jordan Rios
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Axel S Martin
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark A Dickson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Li-Xuan Qin
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nicholas D Socci
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Surgery, Weill Cornell Medical College, New York, New York
| |
Collapse
|
10
|
Cai Z, Moten A, Peng D, Hsu CC, Pan BS, Manne R, Li HY, Lin HK. The Skp2 Pathway: A Critical Target for Cancer Therapy. Semin Cancer Biol 2020; 67:16-33. [PMID: 32014608 DOI: 10.1016/j.semcancer.2020.01.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
Strictly regulated protein degradation by ubiquitin-proteasome system (UPS) is essential for various cellular processes whose dysregulation is linked to serious diseases including cancer. Skp2, a well characterized component of Skp2-SCF E3 ligase complex, is able to conjugate both K48-linked ubiquitin chains and K63-linked ubiquitin chains on its diverse substrates, inducing proteasome mediated proteolysis or modulating the function of tagged substrates respectively. Overexpression of Skp2 is observed in various human cancers associated with poor survival and adverse therapeutic outcomes, which in turn suggests that Skp2 engages in tumorigenic activity. To that end, the oncogenic properties of Skp2 are demonstrated by various genetic mouse models, highlighting the potential of Skp2 as a target for tackling cancer. In this article, we will describe the downstream substrates of Skp2 as well as upstream regulators for Skp2-SCF complex activity. We will further summarize the comprehensive oncogenic functions of Skp2 while describing diverse strategies and therapeutic platforms currently available for developing Skp2 inhibitors.
Collapse
Affiliation(s)
- Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| | - Asad Moten
- National Capital Consortium, Department of Defense, Washington DC, 20307, USA; Institute for Complex Systems, HealthNovations International, Houston, TX, 77089, USA; Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20814, USA; Center on Genomics, Vulnerable Populations, and Health Disparities, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Rajeshkumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Hong-Yu Li
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock AR 72202, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA; Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
11
|
Shi H, Li H, Yuan R, Guan W, Zhang X, Zhang S, Zhang W, Tong F, Li L, Song Z, Wang C, Yang S, Wang H. PCBP1 depletion promotes tumorigenesis through attenuation of p27 Kip1 mRNA stability and translation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:187. [PMID: 30086790 PMCID: PMC6081911 DOI: 10.1186/s13046-018-0840-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022]
Abstract
Background Poly C Binding Protein 1 (PCBP1) is an RNA-binding protein that binds and regulates translational activity of subsets of cellular mRNAs. Depletion of PCBP1 is implicated in various carcinomas, but the underlying mechanism in tumorigenesis remains elusive. Methods We performed a transcriptome-wide screen to identify novel bounding mRNA of PCBP1. The bind regions between PCBP1 with target mRNA were investigated by using point mutation and luciferase assay. Cell proliferation, cell cycle, tumorigenesis and cell apoptosis were also evaluated in ovary and colon cancer cell lines. The mechanism that PCBP1 affects p27 was analyzed by mRNA stability and ribosome profiling assays. We analyzed PCBP1 and p27 expression in ovary, colon and renal tumor samples and adjacent non-tumor tissues using RT-PCR, Western Blotting and immunohistochemistry. The prognostic significance of PCBP1 and p27 also analyzed using online databases. Results We identified cell cycle inhibitor p27Kip1 (p27) as a novel PCBP1-bound transcript. We then demonstrated that binding of PCBP1 to p27 3’UTR via its KH1 domain mainly stabilizes p27 mRNA, while enhances its translation to fuel p27 expression, prior to p27 protein degradation. The upregulated p27 consequently inhibits cell proliferation, cell cycle progression and tumorigenesis, whereas promotes cell apoptosis under paclitaxel treatment. Conversely, knockdown of PCBP1 in turn compromises p27 mRNA stability, leading to lower p27 level and tumorigenesis in vivo. Moreover, forced depletion of p27 counteracts the tumor suppressive ability of PCBP1 in the same PCBP1 over-expressing cells. Physiologically, we showed that decreases of both p27 mRNA and its protein expressions are well correlated to PCBP1 depletion in ovary, colon and renal tumor samples, independent of the p27 ubiquitin ligase Skp2 level. Correlation of PCBP1 with p27 is also found in the tamoxifen, doxorubincin and lapatinib resistant breast cancer cells of GEO database. Conclusion Our results thereby indicate that loss of PCBP1 expression firstly attenuates p27 expression at post-transcriptional level, and subsequently promotes carcinogenesis. PCBP1 could be used as a diagnostic marker to cancer patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0840-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongshun Shi
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Hui Li
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key laboratory of ministry of education, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Ronghua Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Xiaomei Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Shaoyang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Wenliang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Fang Tong
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Li Li
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Zhihong Song
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Changwei Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shulan Yang
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China. .,Center for Stem Cell Biology and Tissue Engineering, Key laboratory of ministry of education, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Jia H, Wang X, Sun Z. Exploring the molecular pathogenesis and biomarkers of high risk oral premalignant lesions on the basis of long noncoding RNA expression profiling by serial analysis of gene expression. Eur J Cancer Prev 2018; 27:370-378. [PMID: 28418939 PMCID: PMC6012059 DOI: 10.1097/cej.0000000000000346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/11/2017] [Indexed: 12/13/2022]
Abstract
Oral premalignant lesions (OPLs) have malignant transformation potential, with no reliable markers available. This study aimed to assess molecular events to identify biomarkers that can reflect high-risk lesions as predictive factors to tailor clinical decision for patients on the basis of long noncoding RNAs (lncRNA) expression profiling by serial analysis of gene expression. The GSE31021 and GSE8127 datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and lncRNAs were identified using the LIMMA package in R language. The genes targeted by lncRNAs were predicted among screened DEGs using Pearson's correlation. Gene ontology function and Kyoto Encyclopedia of Genes and Genomes pathway analyses were carried out for genes targeted by lncRNAs using the Database for Annotation, Visualization, and Integrated Discovery online tool. A total of 674 DEGs and differentially expressed lncRNAs were screened. Thirty-two interactions of 10 lncRNAs and 524 target genes were predicted. The lncRNA NEAT1 was among the top 10 lncRNAs. The coregulated target genes RP4-684O24, RP11-283I3, and RP11-350G8 were significantly enriched in the immune response and mannosyl-oligosaccharide mannosidase activity. The target genes coregulated by LINC00665 and MIR378D2 were significantly enriched in the ubiquitin-dependent protein catabolic process, ubiquitin-protein ligase activity, and neurotrophin signaling. The lncRNA NEAT1 may play an important role in high-risk lesions. The novel lncRNAs and DEGs identified in OPLs may mediate the immune response and neurotrophin signaling and show ubiquitin ligase activity. These results improve our understanding of the molecular pathogenesis of OPLs and identify some potential targets for early diagnosis of high risk OPLs.
Collapse
Affiliation(s)
- Hongcheng Jia
- Department of Oral Medicine, Beijing Stomatological Hospital
- Department of Stomatology, Beijing Ditan Hospital
| | - Xuan Wang
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zheng Sun
- Department of Oral Medicine, Beijing Stomatological Hospital
| |
Collapse
|
13
|
Suppression of APC/CCdh1 has subtype specific biological effects in acute myeloid leukemia. Oncotarget 2018; 7:48220-48230. [PMID: 27374082 PMCID: PMC5217013 DOI: 10.18632/oncotarget.10196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 06/09/2016] [Indexed: 12/17/2022] Open
Abstract
The E3 ubiquitin ligase and tumor suppressor APC/CCdh1 is crucial for cell cycle progression, development and differentiation in many cell types. However, little is known about the role of Cdh1 in hematopoiesis. Here we analyzed Cdh1 expression and function in malignant hematopoiesis. We found a significant decrease of Cdh1 in primary acute myeloid leukemia (AML) blasts compared to normal CD34+ cells. Thus, according to its important role in connecting cell cycle exit and differentiation, decreased expression of Cdh1 may be a mechanism contributing to the differentiation block in leukemogenesis. Indeed, knockdown (kd) of Cdh1 in HL-60 cell line (AML with maturation, FAB M2) led to less differentiated cells and a delay in PMA-induced differentiation. Acute promyelocytic leukemia (APL, FAB M3) is an AML subtype which is highly vulnerable to differentiation therapy with all-trans retinoic acid (ATRA). Accordingly, we found that APL is resistant to a Cdh1-kd mediated differentiation block. However, further depletion of Cdh1 in APL significantly reduced viability of leukemia cells upon ATRA-induced differentiation. Thus, low Cdh1 expression may be important in AML biology by contributing to the differentiation block and response to therapy depending on differences in the microenvironment and the additional genetic background.
Collapse
|
14
|
Jang W, Kim T, Koo JS, Kim SK, Lim DS. Mechanical cue-induced YAP instructs Skp2-dependent cell cycle exit and oncogenic signaling. EMBO J 2017; 36:2510-2528. [PMID: 28673931 DOI: 10.15252/embj.201696089] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/03/2017] [Accepted: 06/07/2017] [Indexed: 11/09/2022] Open
Abstract
Mechanical tensions are usually generated during development at spatially defined regions within tissues. Such physical cues dictate the cellular decisions of proliferation or cell cycle arrest. Yet, the mechanisms by which mechanical stress controls the cell cycle are not yet fully understood. Here, we report that mechanical cues function upstream of Skp2 transcription in human breast cancer cells. We found that YAP, the mechano-responsive oncogenic Hippo signaling effector, directly promotes Skp2 transcription. YAP inactivation induces cell cycle exit (G0) by down-regulating Skp2, causing p21/p27 to accumulate. Both Skp2 reconstitution and p21/p27 depletion can rescue the observed defect in cell cycle progression. In the context of a tissue-mimicking 3D culture system, Skp2 inactivation effectively suppresses YAP-driven oncogenesis and aberrant stiff 3D matrix-evoked epithelial tissue behaviors. Finally, we also found that the expression of Skp2 and YAP is positively correlated in breast cancer patients. Our results not only reveal the molecular mechanism by which mechanical cues induce Skp2 transcription, but also uncover a role for YAP-Skp2 oncogenic signaling in the relationship between tissue rigidity and cancer progression.
Collapse
Affiliation(s)
- Wonyul Jang
- Department of Biological Sciences, National Creative Research Initiatives Center, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Tackhoon Kim
- Department of Biological Sciences, National Creative Research Initiatives Center, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Sang-Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Dae-Sik Lim
- Department of Biological Sciences, National Creative Research Initiatives Center, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
15
|
MYC Modulation around the CDK2/p27/SKP2 Axis. Genes (Basel) 2017; 8:genes8070174. [PMID: 28665315 PMCID: PMC5541307 DOI: 10.3390/genes8070174] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/20/2022] Open
Abstract
MYC is a pleiotropic transcription factor that controls a number of fundamental cellular processes required for the proliferation and survival of normal and malignant cells, including the cell cycle. MYC interacts with several central cell cycle regulators that control the balance between cell cycle progression and temporary or permanent cell cycle arrest (cellular senescence). Among these are the cyclin E/A/cyclin-dependent kinase 2 (CDK2) complexes, the CDK inhibitor p27KIP1 (p27) and the E3 ubiquitin ligase component S-phase kinase-associated protein 2 (SKP2), which control each other by forming a triangular network. MYC is engaged in bidirectional crosstalk with each of these players; while MYC regulates their expression and/or activity, these factors in turn modulate MYC through protein interactions and post-translational modifications including phosphorylation and ubiquitylation, impacting on MYC's transcriptional output on genes involved in cell cycle progression and senescence. Here we elaborate on these network interactions with MYC and their impact on transcription, cell cycle, replication and stress signaling, and on the role of other players interconnected to this network, such as CDK1, the retinoblastoma protein (pRB), protein phosphatase 2A (PP2A), the F-box proteins FBXW7 and FBXO28, the RAS oncoprotein and the ubiquitin/proteasome system. Finally, we describe how the MYC/CDK2/p27/SKP2 axis impacts on tumor development and discuss possible ways to interfere therapeutically with this system to improve cancer treatment.
Collapse
|
16
|
Lv Y, Niu Y, Li C, Zheng X, Geng Q, Han Y. Aberrant Level of Skp2 and p27KIP1 in Intraductal Proliferative Lesions is Associated with Tumorigenesis. Cancer Invest 2017; 35:414-422. [PMID: 28514182 DOI: 10.1080/07357907.2017.1301465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yan Lv
- Department of Pathology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Niu
- Breast Cancer Research Room and Pathology Laboratory of Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Chong Li
- Department of Pathology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Zheng
- Department of Pathology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiang Geng
- Department of Pathology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanyan Han
- Department of Pathology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
17
|
Shi H, Zhang W, Zhi Q, Jiang M. Lapatinib resistance in HER2+ cancers: latest findings and new concepts on molecular mechanisms. Tumour Biol 2016; 37:10.1007/s13277-016-5467-2. [PMID: 27726101 DOI: 10.1007/s13277-016-5467-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
In the era of new and mostly effective molecular targeted therapies, human epidermal growth factor receptor 2 positive (HER2+) cancers are still intractable diseases. Lapatinib, a dual epidermal growth factor receptor (EGFR) and HER2 tyrosine kinase inhibitor, has greatly improved breast cancer prognosis in recent years after the initial introduction of trastuzumab (Herceptin). However, clinical evidence indicates the existence of both primary unresponsiveness and secondary lapatinib resistance, which leads to the failure of this agent in HER2+ cancer patients. It remains a major clinical challenge to target the oncogenic pathways with drugs having low resistance. Multiple pathways are involved in the occurrence of lapatinib resistance, including the pathways of receptor tyrosine kinase, non-receptor tyrosine kinase, autophagy, apoptosis, microRNA, cancer stem cell, tumor metabolism, cell cycle, and heat shock protein. Moreover, understanding the relationship among these mechanisms may contribute to future tumor combination therapies. Therefore, it is of urgent necessity to elucidate the precise mechanisms of lapatinib resistance and improve the therapeutic use of this agent in clinic. The present review, in the hope of providing further scientific support for molecular targeted therapies in HER2+ cancers, discusses about the latest findings and new concepts on molecular mechanisms underlying lapatinib resistance.
Collapse
Affiliation(s)
- Huiping Shi
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Weili Zhang
- Department of Gastroenterology, Xiangcheng People's Hospital, Suzhou, Jiangsu Province, 215131, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
18
|
APC/C and retinoblastoma interaction: cross-talk of retinoblastoma protein with the ubiquitin proteasome pathway. Biosci Rep 2016; 36:BSR20160152. [PMID: 27402801 PMCID: PMC5025812 DOI: 10.1042/bsr20160152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin (Ub) ligase anaphase promoting complex/cyclosome (APC/C) and the tumour suppressor retinoblastoma protein (pRB) play key roles in cell cycle regulation. APC/C is a critical regulator of mitosis and G1-phase of the cell cycle whereas pRB keeps a check on proliferation by inhibiting transition to the S-phase. APC/C and pRB interact with each other via the co-activator of APC/C, FZR1, providing an alternative pathway of regulation of G1 to S transition by pRB using a post-translational mechanism. Both pRB and FZR1 have complex roles and are implicated not only in regulation of cell proliferation but also in differentiation, quiescence, apoptosis, maintenance of chromosomal integrity and metabolism. Both are also targeted by transforming viruses. We discuss recent advances in our understanding of the involvement of APC/C and pRB in cell cycle based decisions and how these insights will be useful for development of anti-cancer and anti-viral drugs.
Collapse
|
19
|
Ma Y, Yan M, Huang H, Zhang L, Wang Q, Zhao Y, Zhao J. Associations and prognostic significance of p27 Kip1, Jab1 and Skp2 in non-Hodgkin lymphoma. Mol Clin Oncol 2016; 5:357-364. [PMID: 27703676 PMCID: PMC5038891 DOI: 10.3892/mco.2016.986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a primary tumor arising in lymph nodes and lymphoid tissue. The incidence of NHL is increasing at an annual rate of 3%. The human Jun activation domain-binding protein 1/COP9 signalosome subunit 5 (Jab1/CSN5) is a negative regulator of the cell cycle inhibitor p27Kip1 and abnormal expression of Jab1 is correlated with reduced p27 expression and associated with advanced tumor stage and poor prognosis in several human cancers. F-box protein S-phase kinase-interacting protein-2 (Skp2), the substrate recognition subunit of the Skp1-Cul1-F-box protein ubiquitin protein ligase complex, is required for the ubiquitination and consequent degradation of p27. The Skp2 protein is overexpressed in several human cancers and is associated with the degree of differentiation and the prognosis. The aim of the present study was to investigate the expression status of p27Kip1, Jab1 and Skp2 by immunohistochemistry, and assess their prognostic significance in patients with NHL. Immunohistochemical analysis revealed an inverse association between Jab1 and p27 in NHL tissue samples. Kaplan-Meier analysis demonstrated that Jab1 overexpression, Skp2 overexpression and low p27 expression were significantly associated with poor prognosis. Among clinicopathological parameters, overexpression of Jab1 was significantly associated with tumor size and International Prognostic Index (IPI), whereas Skp2 expression was significantly associated with metastasis and IPI. These findings suggest that the overexpression of Jab1 or Skp2 plays an important role in the pathogenesis of NHL. Thus, the expression of p27Kip1, Jab1 and Skp2 provided a clinical reference for the treatment of NHL.
Collapse
Affiliation(s)
- Yan Ma
- Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Meijuan Yan
- Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China; Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Huang
- Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Li Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qian Wang
- Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yaqi Zhao
- Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianmei Zhao
- Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
20
|
Huang C, Wei YX, Shen MC, Tu YH, Wang CC, Huang HC. Chrysin, Abundant in Morinda citrifolia Fruit Water-EtOAc Extracts, Combined with Apigenin Synergistically Induced Apoptosis and Inhibited Migration in Human Breast and Liver Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4235-45. [PMID: 27137679 DOI: 10.1021/acs.jafc.6b00766] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The composition of Morinda citrifolia (M. citrifolia) was determined using high-performance liquid chromatography (HPLC), and the anticancer effects of M. citrifolia extract evaluated in HepG2, Huh7, and MDA-MB-231 cancer cells. M. citrifolia fruit extracts were obtained by using five different organic solvents, including hexane (Hex), methanol (MeOH), ethyl acetate (EtOAc), chloroform (CHCl3), and ethanol (EtOH). The water-EtOAc extracts from M. citrifolia fruits was found to have the highest anticancer activity. HPLC data revealed the predominance of chrysin in water-EtOAc extracts of M. citrifolia fruit. Furthermore, the combined effects of cotreatment with apigenin and chrysin on liver and breast cancer were investigated. Treatment with apigenin plus chrysin for 72-96 h reduced HepG2 and MDA-MB-231 cell viability and induced apoptosis through down-regulation of S-phase kinase-associated protein-2 (Skp2) and low-density lipoprotein receptor-related protein 6 (LRP6) expression. However, the combination treatment for 36 h synergistically decreased MDA-MB-231 cell motility but not cell viability through down-regulation of MMP2, MMP9, fibronectin, and snail in MDA-MB-231 cells. Additionally, chrysin combined with apigenin also suppressed tumor growth in human MDA-MB-231 breast cancer cells xenograft through down-regulation of ki-67 and Skp2 protein. The experimental results showed that chrysin combined with apigenin can reduce HepG2 and MDA-MB-231 proliferation and cell motility and induce apoptosis. It also offers opportunities for exploring new drug targets, and further investigations are underway in this regard.
Collapse
Affiliation(s)
- Cheng Huang
- National Research Institute of Chinese Medicine , Taipei 11221, Taiwan, ROC
| | - Yu-Xuan Wei
- Department of Applied Science, National Hsinchu University of Education , Hsinchu 30014, Taiwan, ROC
| | - Ma-Ching Shen
- Department of Applied Science, National Hsinchu University of Education , Hsinchu 30014, Taiwan, ROC
| | - Yu-Hsuan Tu
- Department of Applied Science, National Hsinchu University of Education , Hsinchu 30014, Taiwan, ROC
| | - Chia-Chi Wang
- Department of Applied Science, National Hsinchu University of Education , Hsinchu 30014, Taiwan, ROC
| | - Hsiu-Chen Huang
- Department of Applied Science, National Hsinchu University of Education , Hsinchu 30014, Taiwan, ROC
| |
Collapse
|
21
|
Knockdown of AMPKα2 Promotes Pulmonary Arterial Smooth Muscle Cells Proliferation via mTOR/Skp2/p27(Kip1) Signaling Pathway. Int J Mol Sci 2016; 17:ijms17060844. [PMID: 27258250 PMCID: PMC4926378 DOI: 10.3390/ijms17060844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/06/2016] [Accepted: 05/24/2016] [Indexed: 12/11/2022] Open
Abstract
It has been shown that activation of adenosine monophosphate-activated protein kinase (AMPK) suppresses proliferation of a variety of tumor cells as well as nonmalignant cells. In this study, we used post-transcriptional gene silencing with small interfering RNA (siRNA) to specifically examine the effect of AMPK on pulmonary arterial smooth muscle cells (PASMCs) proliferation and to further elucidate its underlying molecular mechanisms. Our results showed that knockdown of AMPKα2 promoted primary cultured PASMCs proliferation; this was accompanied with the elevation of phosphorylation of mammalian target of rapamycin (mTOR) and S-phase kinase-associated protein 2 (Skp2) protein level and reduction of p27(Kip1). Importantly, prior silencing of mTOR with siRNA abolished AMPKα2 knockdown-induced Skp2 upregulation, p27(Kip1) reduction as well as PASMCs proliferation. Furthermore, pre-depletion of Skp2 by siRNA also eliminated p27(Kip1) downregulation and PASMCs proliferation caused by AMPKα2 knockdown. Taken together, our study indicates that AMPKα2 isoform plays an important role in regulation of PASMCs proliferation by modulating mTOR/Skp2/p27(Kip1) axis, and suggests that activation of AMPKα2 might have potential value in the prevention and treatment of pulmonary arterial hypertension.
Collapse
|
22
|
Zheng N, Zhou Q, Wang Z, Wei W. Recent advances in SCF ubiquitin ligase complex: Clinical implications. Biochim Biophys Acta Rev Cancer 2016; 1866:12-22. [PMID: 27156687 DOI: 10.1016/j.bbcan.2016.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/09/2022]
Abstract
F-box proteins, which are subunit recruiting modules of SCF (SKP1-Cullin 1-F-box protein) E3 ligase complexes, play critical roles in the development and progression of human malignancies through governing multiple cellular processes including cell proliferation, apoptosis, invasion and metastasis. Moreover, there are emerging studies that lead to the development of F-box proteins inhibitors with promising therapeutic potential. In this article, we describe how F-box proteins including but not restricted to well-established Fbw7, Skp2 and β-TRCP, are involved in tumorigenesis. However, in-depth investigation is required to further explore the mechanism and the physiological contribution of undetermined F-box proteins in carcinogenesis. Lastly, we suggest that targeting F-box proteins could possibly open new avenues for the treatment and prevention of human cancers.
Collapse
Affiliation(s)
- Nana Zheng
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Quansheng Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA 02215, USA.
| |
Collapse
|
23
|
Zhang W, Cao L, Sun Z, Xu J, Tang L, Chen W, Luo J, Yang F, Wang Y, Guan X. Skp2 is over-expressed in breast cancer and promotes breast cancer cell proliferation. Cell Cycle 2016; 15:1344-51. [PMID: 27111245 DOI: 10.1080/15384101.2016.1160986] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The F box protein Skp2 is oncogenic. Skp2 and Skp2B, an isoform of Skp2 are overexpressed in breast cancer. However, little is known regarding the mechanism by which Skp2B promotes the occurrence and development of breast cancer. Here, we determined the expression and clinical outcomes of Skp2 in breast cancer samples and cell lines using breast cancer database, and investigated the role of Skp2 and Skp2B in breast cancer cell growth, apoptosis and cell cycle arrest. We obtained Skp2 is significantly overexpressed in breast cancer samples and cell lines, and high Skp2 expression positively correlated with poor prognosis of breast cancer. Both Skp2 and Skp2B could promote breast cancer cell proliferation, inhibit cell apoptosis, change the cell cycle distribution and induce the increased S phase cells and therefore induce cell proliferation in breast cancer cells. Moreover, the 2 isoforms could both suppress PIG3 expression via independent pathways in the breast cancer cells. Skp2 suppressed p53 and inhibited PIG3-induced apoptosis, while Skp2B attenuated the function of PIG3 by inhibiting PHB. Our results indicate that Skp2 and Skp2B induce breast cancer cell development and progression, making Skp2 and Skp2B potential molecular targets for breast cancer therapy.
Collapse
Affiliation(s)
- Wenwen Zhang
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Lulu Cao
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Zijia Sun
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Jing Xu
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Lin Tang
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Weiwei Chen
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Jiayan Luo
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Fang Yang
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China
| | - Yucai Wang
- b Department of Medicine ; Rutgers New Jersey Medical School , Newark , NJ , USA
| | - Xiaoxiang Guan
- a Department of Medical Oncology , Jinling Hospital , Medical School of Nanjing University , Nanjing , China.,c Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Iskandarani A, Bhat AA, Siveen KS, Prabhu KS, Kuttikrishnan S, Khan MA, Krishnankutty R, Kulinski M, Nasr RR, Mohammad RM, Uddin S. Bortezomib-mediated downregulation of S-phase kinase protein-2 (SKP2) causes apoptotic cell death in chronic myelogenous leukemia cells. J Transl Med 2016; 14:69. [PMID: 26956626 PMCID: PMC4784454 DOI: 10.1186/s12967-016-0823-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/25/2016] [Indexed: 01/30/2023] Open
Abstract
Background Proteasome inhibitors are attractive cancer therapeutic agents because they can regulate apoptosis-related proteins. Bortezomib also known as Velcade®, a proteasome inhibitor that has been approved by the food and drug administration for treatment of patients with multiple myeloma, and many clinical trials are ongoing to examine to the efficacy of bortezomib for the treatment of other malignancies. Bortezomib has been shown to induce apoptosis and inhibit cell growth of many cancer cells. In current study, we determine whether bortezomib induces cell death/apoptosis in CML. Methods Cell viability was measured using MTT assays. Apoptosis was measured by annexin V/PI dual staining and DNA fragmentation assays. Immunoblotting was performed to examine the expression of proteins. Colony assays were performed using methylcellulose. Results Treatment of CML cells with bortezomib results in downregulation of S-phase kinase protein 2 (SKP2) and concomitant stabilization of the expression of p27Kip1. Furthermore, knockdown of SKP2 with small interference RNA specific for SKP2 caused accumulation of p27Kip1. CML cells exposed to bortezomib leads to conformational changes in Bax protein, resulting in loss of mitochondrial membrane potential and leakage of cytochrome c to the cytosol. In the cytosol, cytochrome c causes sequential activation of caspase-9, caspase-3, PARP cleavage and apoptosis. Pretreatment of CML cells with a universal inhibitor of caspases, z-VAD-fmk, prevents bortezomib-mediated apoptosis. Our data also demonstrated that bortezomib treatment of CML downregulates the expression of inhibitor of apoptosis proteins. Finally, inhibition of proteasome pathways by bortezomib suppresses colony formation ability of CML cells. Conclusions Altogether, these findings suggest that bortezomib suppresses the cell proliferation via induction of apoptosis in CML cells by downregulation of SKP2 with concomitant accumulation of p27Kip1, suggesting that proteasomal pathway may form novel therapeutic targets for better management of CML. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0823-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahmad Iskandarani
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Ajaz A Bhat
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Kodappully S Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Muzammil A Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Rihab R Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon.
| | - Ramzi M Mohammad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| |
Collapse
|
25
|
BRCA1 inhibits AR-mediated proliferation of breast cancer cells through the activation of SIRT1. Sci Rep 2016; 6:22034. [PMID: 26902145 PMCID: PMC4763204 DOI: 10.1038/srep22034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/04/2016] [Indexed: 12/25/2022] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor protein that functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. The androgen receptor (AR) is expressed in more than 70% of breast cancers and has been implicated in breast cancer pathogenesis. However, little is known about the role of BRCA1 in AR-mediated cell proliferation in human breast cancer. Here, we report that a high expression of AR in breast cancer patients was associated with shorter overall survival (OS) using a tissue microarray with 149 non-metastatic breast cancer patient samples. We reveal that overexpression of BRCA1 significantly inhibited expression of AR through activation of SIRT1 in breast cancer cells. Meanwhile, SIRT1 induction or treatment with a SIRT1 agonist, resveratrol, inhibits AR-stimulated proliferation. Importantly, this mechanism is manifested in breast cancer patient samples and TCGA database, which showed that low SIRT1 gene expression in tumor tissues compared with normal adjacent tissues predicts poor prognosis in patients with breast cancer. Taken together, our findings suggest that BRCA1 attenuates AR-stimulated proliferation of breast cancer cells via SIRT1 mediated pathway.
Collapse
|
26
|
Uddin S, Bhat AA, Krishnankutty R, Mir F, Kulinski M, Mohammad RM. Involvement of F-BOX proteins in progression and development of human malignancies. Semin Cancer Biol 2016; 36:18-32. [PMID: 26410033 DOI: 10.1016/j.semcancer.2015.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
|
27
|
Qiu L, Lv J, Chen Y, Wang J, Wu R. Expression of Skp2 and p27 kip1 proteins in hypopharyngeal squamous cell carcinoma and its clinical significance. Oncol Lett 2016; 10:3756-3760. [PMID: 26788203 DOI: 10.3892/ol.2015.3799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 05/20/2015] [Indexed: 02/02/2023] Open
Abstract
The aim of the present study was to determine the effect of S-phase kinase-associated protein 2 (Skp2) and cyclin-dependent kinase inhibitor p27kinase-interacting protein 1 (p27kip1) protein expression on the occurrence and development of hypopharyngeal squamous cell carcinoma. The protein expression levels of Skp2 and p27kip1 were detected in 42 hypopharyngeal squamous cell carcinoma and 15 normal hypopharyngeal mucous membrane specimens using the an immunohistochemical PV-9000 two-step method. The expression levels of Skp2 protein were significantly different in hypopharyngeal squamous cell carcinomas and normal hypopharyngeal mucous membranes (61.90 vs. 26.67%; P<0.05). By contrast, the protein expression levels of Skp2 were significantly positively correlated with tumor T stage (rs=0.329, P<0.05) and cervical lymph node metastasis (rs=0.402, P<0.05). Furthermore, the expression levels of p27kip1 protein were significantly different in hypopharyngeal squamous cell carcinomas and normal hypopharyngeal mucous membranes (11.9 vs. 53.33%; P<0.05), while p27kip1 protein expression was significantly negatively correlated with tumor T-stage (rs=-0.351, P<0.05) and cervical lymph node metastasis (rs=-0.371, P<0.05). Notably, a significant negative correlation was observed between the expression levels of Skp2 and p27kip1 proteins in hypopharyngeal squamous cell carcinoma (P<0.05). In addition, abnormal expression levels of Skp2 and p27kip1 proteins were observed in hypopharyngeal squamous cell carcinoma tissues. Thus, Skp2 and p27kip1 proteins may be involved in the development of hypopharyngeal squamous cell carcinoma. The current study proposed that combined detection of Skp2 and p27kip1 may be useful for assessing the characteristics and prognosis of hypopharyngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Liansheng Qiu
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jiabao Lv
- Department of Otorhinolaryngology, The Second Hospital of Xiamen, Xiamen, Fujian 361000, P.R. China
| | - Yimin Chen
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jiarong Wang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Ruishan Wu
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
28
|
The use of Gene Ontology terms and KEGG pathways for analysis and prediction of oncogenes. Biochim Biophys Acta Gen Subj 2016; 1860:2725-34. [PMID: 26801878 DOI: 10.1016/j.bbagen.2016.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/26/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Oncogenes are a type of genes that have the potential to cause cancer. Most normal cells undergo programmed cell death, namely apoptosis, but activated oncogenes can help cells avoid apoptosis and survive. Thus, studying oncogenes is helpful for obtaining a good understanding of the formation and development of various types of cancers. METHODS In this study, we proposed a computational method, called OPM, for investigating oncogenes from the view of Gene Ontology (GO) and biological pathways. All investigated genes, including validated oncogenes retrieved from some public databases and other genes that have not been reported to be oncogenes thus far, were encoded into numeric vectors according to the enrichment theory of GO terms and KEGG pathways. Some popular feature selection methods, minimum redundancy maximum relevance and incremental feature selection, and an advanced machine learning algorithm, random forest, were adopted to analyze the numeric vectors to extract key GO terms and KEGG pathways. RESULTS Along with the oncogenes, GO terms and KEGG pathways were discussed in terms of their relevance in this study. Some important GO terms and KEGG pathways were extracted using feature selection methods and were confirmed to be highly related to oncogenes. Additionally, the importance of these terms and pathways in predicting oncogenes was further demonstrated by finding new putative oncogenes based on them. CONCLUSIONS This study investigated oncogenes based on GO terms and KEGG pathways. Some important GO terms and KEGG pathways were confirmed to be highly related to oncogenes. We hope that these GO terms and KEGG pathways can provide new insight for the study of oncogenes, particularly for building more effective prediction models to identify novel oncogenes. The program is available upon request. GENERAL SIGNIFICANCE We hope that the new findings listed in this study may provide a new insight for the investigation of oncogenes. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
|
29
|
Gee HE, Buffa FM, Harris AL, Toohey JM, Carroll SL, Cooper CL, Beith J, McNeil C, Carmalt H, Mak C, Warrier S, Holliday A, Selinger C, Beckers R, Kennedy C, Graham P, Swarbrick A, Millar EKA, O'Toole SA, Molloy T. MicroRNA-Related DNA Repair/Cell-Cycle Genes Independently Associated With Relapse After Radiation Therapy for Early Breast Cancer. Int J Radiat Oncol Biol Phys 2015; 93:1104-14. [PMID: 26581147 DOI: 10.1016/j.ijrobp.2015.08.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/30/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Local recurrence and distant failure after adjuvant radiation therapy for breast cancer remain significant clinical problems, incompletely predicted by conventional clinicopathologic markers. We had previously identified microRNA-139-5p and microRNA-1274a as key regulators of breast cancer radiation response in vitro. The purpose of this study was to investigate standard clinicopathologic markers of local recurrence in a contemporary series and to establish whether putative target genes of microRNAs involved in DNA repair and cell cycle control could better predict radiation therapy response in vivo. METHODS AND MATERIALS With institutional ethics board approval, local recurrence was measured in a contemporary, prospectively collected series of 458 patients treated with radiation therapy after breast-conserving surgery. Additionally, independent publicly available mRNA/microRNA microarray expression datasets totaling >1000 early-stage breast cancer patients, treated with adjuvant radiation therapy, with >10 years of follow-up, were analyzed. The expression of putative microRNA target biomarkers--TOP2A, POLQ, RAD54L, SKP2, PLK2, and RAG1--were correlated with standard clinicopathologic variables using 2-sided nonparametric tests, and to local/distant relapse and survival using Kaplan-Meier and Cox regression analysis. RESULTS We found a low rate of isolated local recurrence (1.95%) in our modern series, and that few clinicopathologic variables (such as lymphovascular invasion) were significantly predictive. In multiple independent datasets (n>1000), however, high expression of RAD54L, TOP2A, POLQ, and SKP2 significantly correlated with local recurrence, survival, or both in univariate and multivariate analyses (P<.001). Low RAG1 expression significantly correlated with local recurrence (multivariate, P=.008). Additionally, RAD54L, SKP2, and PLK2 may be predictive, being prognostic in radiation therapy-treated patients but not in untreated matched control individuals (n=107; P<.05). CONCLUSIONS Biomarkers of DNA repair and cell cycle control can identify patients at high risk of treatment failure in those receiving radiation therapy for early breast cancer in independent cohorts. These should be further investigated prospectively, especially TOP2A and SKP2, for which targeted therapies are available.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Hormonal/therapeutic use
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/radiotherapy
- Case-Control Studies
- DNA Helicases/genetics
- DNA Helicases/metabolism
- DNA Repair
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Directed DNA Polymerase/genetics
- DNA-Directed DNA Polymerase/metabolism
- Female
- Gene Expression Profiling/methods
- Genes, cdc
- Genetic Markers
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- MicroRNAs
- Middle Aged
- Multivariate Analysis
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/mortality
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Poly-ADP-Ribose Binding Proteins
- Prospective Studies
- Radiation Tolerance/genetics
- Radiotherapy, Adjuvant
- S-Phase Kinase-Associated Proteins/genetics
- S-Phase Kinase-Associated Proteins/metabolism
- DNA Polymerase theta
Collapse
Affiliation(s)
- Harriet E Gee
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; The Chris O'Brien Lifehouse, Missenden Road, Camperdown, NSW, Australia; Central Clinical School, Sydney Medical School, University of Sydney, NSW, Australia.
| | - Francesca M Buffa
- Department of Medical Oncology, The University of Oxford, Oxford, UK
| | - Adrian L Harris
- Department of Medical Oncology, The University of Oxford, Oxford, UK
| | - Joanne M Toohey
- The Chris O'Brien Lifehouse, Missenden Road, Camperdown, NSW, Australia
| | - Susan L Carroll
- The Chris O'Brien Lifehouse, Missenden Road, Camperdown, NSW, Australia
| | - Caroline L Cooper
- Central Clinical School, Sydney Medical School, University of Sydney, NSW, Australia; Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Jane Beith
- The Chris O'Brien Lifehouse, Missenden Road, Camperdown, NSW, Australia
| | - Catriona McNeil
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; The Chris O'Brien Lifehouse, Missenden Road, Camperdown, NSW, Australia
| | - Hugh Carmalt
- The Chris O'Brien Lifehouse, Missenden Road, Camperdown, NSW, Australia
| | - Cindy Mak
- The Chris O'Brien Lifehouse, Missenden Road, Camperdown, NSW, Australia
| | - Sanjay Warrier
- The Chris O'Brien Lifehouse, Missenden Road, Camperdown, NSW, Australia
| | - Anne Holliday
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Christina Selinger
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Rhiannon Beckers
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Catherine Kennedy
- Central Clinical School, Sydney Medical School, University of Sydney, NSW, Australia
| | - Peter Graham
- Department of Radiation Oncology, Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, University of NSW, Kensington, NSW, Australia
| | - Ewan K A Millar
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; Department of Anatomical Pathology, South Eastern Area Laboratory Service, St. George Hospital, Kogarah, NSW, Australia; School of Medicine and Health Sciences, University of Western Sydney, Campbelltown, NSW, Australia; Faculty of Medicine, School of Medical Sciences, University of NSW, Kensington, NSW, Australia
| | - Sandra A O'Toole
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; Central Clinical School, Sydney Medical School, University of Sydney, NSW, Australia; Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Timothy Molloy
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
30
|
Zhao H, Faltermeier CM, Mendelsohn L, Porter PL, Clurman BE, Roberts JM. Mislocalization of p27 to the cytoplasm of breast cancer cells confers resistance to anti-HER2 targeted therapy. Oncotarget 2015; 5:12704-14. [PMID: 25587029 PMCID: PMC4350358 DOI: 10.18632/oncotarget.2871] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 02/03/2023] Open
Abstract
As a cell cycle inhibitor and tumor suppressor, p27 is frequently misregulated in human cancers. Increased degradation is the most common mechanism of misregulation, however in some cancers, p27 is mislocalized from its cell cycle inhibitory location in the nucleus, to the cytoplasm. In normal cells cytoplasmic p27 has functions that are distinct from its cell cycle-regulatory nuclear functions. Therefore, an important question is whether localization of p27 to the cytoplasm in tumor cells is primarily a mechanism for cancelling its inhibitory effect on cell proliferation, or whether cytoplasmic p27 has more direct oncogenic actions. To study p27 mislocalization in human cancers we screened a panel of common breast cancer cell lines. We observed that p27 accumulated in the cytoplasm exclusively in cell lines that are Her2+. To address the significance of p27 mislocalization in Her2+ breast cancer cells we interrogated the cellular response to the dual-Her2/EGFR kinase inhibitor, lapatinib. Knockdown of p27 using shRNA sensitized Her2+ cells to lapatinib-induced apoptosis. Moreover, expression of a constitutively cytoplasmic form of p27 (p27ΔNLS) reversed the lapatinib-induced apoptosis, suggesting that cytoplasmic p27 contributed to lapatinib resistance in Her2+ breast cancer cells by suppressing apoptosis. Our results suggest that p27 localization may be useful as a predictive biomarker of therapeutic response in patients with Her2+ breast cancers.
Collapse
Affiliation(s)
- Hui Zhao
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Claire M Faltermeier
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lori Mendelsohn
- Biology Department, Whitman College, Walla Walla, Washington, USA
| | - Peggy L Porter
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Bruce E Clurman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - James M Roberts
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
31
|
Heo J, Eki R, Abbas T. Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis. Semin Cancer Biol 2015; 36:33-51. [PMID: 26432751 DOI: 10.1016/j.semcancer.2015.09.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 01/28/2023]
Abstract
F-box proteins are substrate receptors of the SCF (SKP1-Cullin 1-F-box protein) E3 ubiquitin ligase that play important roles in a number of physiological processes and activities. Through their ability to assemble distinct E3 ubiquitin ligases and target key regulators of cellular activities for ubiquitylation and degradation, this versatile group of proteins is able to regulate the abundance of cellular proteins whose deregulated expression or activity contributes to disease. In this review, we describe the important roles of select F-box proteins in regulating cellular activities, the perturbation of which contributes to the initiation and progression of a number of human malignancies.
Collapse
Affiliation(s)
- Jinho Heo
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
32
|
Yang C, Nan H, Ma J, Jiang L, Guo Q, Han L, Zhang Y, Nan K, Guo H. High Skp2/Low p57(Kip2) Expression is Associated with Poor Prognosis in Human Breast Carcinoma. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2015; 9:13-21. [PMID: 26309408 PMCID: PMC4525793 DOI: 10.4137/bcbcr.s30101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/12/2015] [Accepted: 07/14/2015] [Indexed: 01/20/2023]
Abstract
Downregulation of p57Kip2 is involved in tumor progression, and S-phase kinase-associated protein 2 (Skp2) is an E3 ligase that regulates a variety of cell cycle proteins. However, the prognostic value of p57Kip2 and its correlation with Skp2 in breast cancer have not been fully elucidated. Here we report our study on the expression of p57Kip2 and Skp2 in 102 breast cancer patients by immunohistochemistry, and analysis of clinicopathologic parameters in relation to patient prognosis. The expression of p57Kip2 was negatively associated with Skp2 expression in breast cancer (r = −0.26, P = 0.009). Kaplan–Meier analysis indicated that both high Skp2 and low p57Kip2 correlated with poor disease-free survival (DFS) (P = 0.05), and a group with the combination of high Skp2/low p57Kip2 demonstrated even worse DFS (log-rank = 21.118, P < 0.001). In addition, univariate analysis showed that Skp2, p57Kip2, histological grade, lymph node metastasis, and estrogen and progesterone receptors (ER and PR) were all associated with DFS, and multivariate analysis revealed that lymph node metastasis and Skp2 were independent prognostic biomarkers. The correlation between p57 and Skp2 was further demonstrated in multiple breast cancer cell lines and cell cycle phases. Half-life and immunoprecipitation (IP) experiments indicated that Skp2 directly interacts with p57Kip2 and promotes its degradation, rather than its mutant p57Kip2 (T310A). Overall, our findings demonstrate that Skp2 directly degrades p57Kip2, and an inverse correlation between these proteins (high skp2/low p57Kip2) is associated with poor prognosis in breast cancer. Thus, our results indicate a combined prognostic value of these markers in breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Haocheng Nan
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Jiequn Ma
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Lili Jiang
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Qianqian Guo
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Lili Han
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Yamin Zhang
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Kejun Nan
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Hui Guo
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| |
Collapse
|
33
|
Deacetylation of HSPA5 by HDAC6 leads to GP78-mediated HSPA5 ubiquitination at K447 and suppresses metastasis of breast cancer. Oncogene 2015; 35:1517-28. [PMID: 26119938 DOI: 10.1038/onc.2015.214] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/09/2015] [Accepted: 04/26/2015] [Indexed: 12/21/2022]
Abstract
Heat-shock protein 5 (HSPA5) is a marker for poor prognosis in breast cancer patients and has an important role in cancer progression, including promoting drug resistance and metastasis. In this study, we identify that the specific lysine residue 447 (K447) of HSPA5 could be modified with polyubiquitin for subsequent degradation through the ubiquitin proteasomal system, leading to the suppression of cell migration and invasion of breast cancer. We further found that GP78, an E3 ubiquitin ligase, interacted with the C-terminal region of HSPA5 and mediated HSPA5 ubiquitination and degradation. Knock down of GP78 significantly increased the expression of HSPA5 and enhanced migration/invasive ability of breast cancer cells. Knock down of histone deacetylase-6 (HDAC6) increased the acetylation of HSPA5 at lysine residues 353 (K353) and reduced GP78-mediated ubiquitination of HSPA5 at K447 and then increased cell migration/invasion. In addition, we demonstrate that E3 ubiquitin ligase GP78 preferentially binds to deacetylated HSPA5. Notably, the expression levels of GP78 inversely correlated with HSPA5 levels in breast cancer patients. Patients with low GP78 expression significantly correlated with invasiveness of breast cancer, advanced tumor stages and poor clinical outcome. Taken together, our results provide new mechanistic insights into the understanding that deacetylation of HSPA5 by HDAC6 facilitates GP78-mediated HSPA5 ubiquitination and suggest that post-translational regulation of HSPA5 protein is critical for HSPA5-mediated metastatic properties of breast cancer.
Collapse
|
34
|
Liu C, Louhimo R, Laakso M, Lehtonen R, Hautaniemi S. Identification of sample-specific regulations using integrative network level analysis. BMC Cancer 2015; 15:319. [PMID: 25928379 PMCID: PMC4424448 DOI: 10.1186/s12885-015-1265-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background Histologically similar tumors even from the same anatomical position may still show high variability at molecular level hindering analysis of genome-wide data. Leveling the analysis to a gene regulatory network instead of focusing on single genes has been suggested to overcome the heterogeneity issue although the majority of the network methods require large datasets. Network methods that are able to function at a single sample level are needed to overcome the heterogeneity and sample size issues. Methods We present a novel network method, Differentially Expressed Regulation Analysis (DERA) that integrates expression data to biological network information at a single sample level. The sample-specific networks are subsequently used to discover samples with similar molecular functions by identification of regulations that are shared between samples or are specific for a subgroup. Results We applied DERA to identify key regulations in triple negative breast cancer (TNBC), which is characterized by lack of estrogen receptor, progesterone receptor and HER2 expression and has poorer prognosis than the other breast cancer subtypes. DERA identified 110 core regulations consisting of 28 disconnected subnetworks for TNBC. These subnetworks are related to oncogenic activity, proliferation, cancer survival, invasiveness and metastasis. Our analysis further revealed 31 regulations specific for TNBC as compared to the other breast cancer subtypes and thus form a basis for understanding TNBC. We also applied DERA to high-grade serous ovarian cancer (HGS-OvCa) data and identified several common regulations between HGS-OvCa and TNBC. The performance of DERA was compared to two pathway analysis methods GSEA and SPIA and our results shows better reproducibility and higher sensitivity in a small sample set. Conclusions We present a novel method called DERA to identify subnetworks that are similarly active for a group of samples. DERA was applied to breast cancer and ovarian cancer data showing our method is able to identify reliable and potentially important regulations with high reproducibility. R package is available at http://csbi.ltdk.helsinki.fi/pub/czliu/DERA/. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1265-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chengyu Liu
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| | - Riku Louhimo
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| | - Marko Laakso
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| | - Rainer Lehtonen
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| | - Sampsa Hautaniemi
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| |
Collapse
|
35
|
Lan L, Holland JD, Qi J, Grosskopf S, Rademann J, Vogel R, Györffy B, Wulf-Goldenberg A, Birchmeier W. Shp2 signaling suppresses senescence in PyMT-induced mammary gland cancer in mice. EMBO J 2015; 34:1493-508. [PMID: 25736378 DOI: 10.15252/embj.201489004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 02/04/2015] [Indexed: 12/26/2022] Open
Abstract
In this study, we have used techniques from cell biology, biochemistry, and genetics to investigate the role of the tyrosine phosphatase Shp2 in tumor cells of MMTV-PyMT mouse mammary glands. Genetic ablation or pharmacological inhibition of Shp2 induces senescence, as determined by the activation of senescence-associated β-gal (SA-β-gal), cyclin-dependent kinase inhibitor 1B (p27), p53, and histone 3 trimethylated lysine 9 (H3K9me3). Senescence induction leads to the inhibition of self-renewal of tumor cells and blockage of tumor formation and growth. A signaling cascade was identified that acts downstream of Shp2 to counter senescence: Src, focal adhesion kinase, and Map kinase inhibit senescence by activating the expression of S-phase kinase-associated protein 2 (Skp2), Aurora kinase A (Aurka), and the Notch ligand Delta-like 1 (Dll1), which block p27 and p53. Remarkably, the expression of Shp2 and of selected target genes predicts human breast cancer outcome. We conclude that therapies, which rely on senescence induction by inhibiting Shp2 or controlling its target gene products, may be useful in blocking breast cancer.
Collapse
Affiliation(s)
- Linxiang Lan
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Jane D Holland
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Jingjing Qi
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Stefanie Grosskopf
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | - Regina Vogel
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Balázs Györffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | - Walter Birchmeier
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| |
Collapse
|
36
|
Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells. Nat Commun 2015; 6:5906. [PMID: 25562820 PMCID: PMC4354291 DOI: 10.1038/ncomms6906] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/19/2014] [Indexed: 01/02/2023] Open
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/CFZR1 activity as an important determinant in response to CDK4/6-inhibitors. In most human tumours, the cell cycle regulators Cdk4/6-cyclinD are overactive. Here the authors use C. elegans as a model system to identify downstream regulators that are critical in the response of tumour cells to Cdk4/6 inhibitors.
Collapse
|
37
|
Song GJ, Leslie KL, Barrick S, Mamonova T, Fitzpatrick JM, Drombosky KW, Peyser N, Wang B, Pellegrini M, Bauer PM, Friedman PA, Mierke DF, Bisello A. Phosphorylation of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) by Akt promotes stability and mitogenic function of S-phase kinase-associated protein-2 (Skp2). J Biol Chem 2014; 290:2879-87. [PMID: 25492869 DOI: 10.1074/jbc.m114.609768] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of the cell cycle by the ubiquitin-proteasome system is dependent on the activity of E3 ligases. Skp2 (S-phase kinase associated protein-2) is the substrate recognition subunit of the E3 ligase that ubiquitylates the cell cycle inhibitors p21(cip1) and p27(kip1) thus promoting cell cycle progression. Increased expression of Skp2 is frequently observed in diseases characterized by excessive cell proliferation, such as cancer and neointima hyperplasia. The stability and cellular localization of Skp2 are regulated by Akt, but the molecular mechanisms underlying these effects remain only partly understood. The scaffolding protein Ezrin-Binding Phosphoprotein of 50 kDa (EBP50) contains two PDZ domains and plays a critical role in the development of neointimal hyperplasia. Here we report that EBP50 directly binds Skp2 via its first PDZ domain. Moreover, EBP50 is phosphorylated by Akt on Thr-156 within the second PDZ domain, an event that allosterically promotes binding to Skp2. The interaction with EBP50 causes cytoplasmic localization of Skp2, increases Skp2 stability and promotes proliferation of primary vascular smooth muscle cells. Collectively, these studies define a novel regulatory mechanism contributing to aberrant cell growth and highlight the importance of scaffolding function of EBP50 in Akt-dependent cell proliferation.
Collapse
Affiliation(s)
- Gyun Jee Song
- From the Department of Pharmacology and Chemical Biology, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kungpook National University, Daegu 702-701, Korea, and
| | | | - Stacey Barrick
- From the Department of Pharmacology and Chemical Biology
| | | | | | | | - Noah Peyser
- From the Department of Pharmacology and Chemical Biology
| | - Bin Wang
- From the Department of Pharmacology and Chemical Biology
| | - Maria Pellegrini
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755
| | - Philip M Bauer
- Vascular Medicine Institute, and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | | | - Dale F Mierke
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755
| | - Alessandro Bisello
- From the Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, and
| |
Collapse
|
38
|
The differential susceptibilities of MCF-7 and MDA-MB-231 cells to the cytotoxic effects of curcumin are associated with the PI3K/Akt-SKP2-Cip/Kips pathway. Cancer Cell Int 2014; 14:126. [PMID: 25530715 PMCID: PMC4272549 DOI: 10.1186/s12935-014-0126-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/10/2014] [Indexed: 01/08/2023] Open
Abstract
Background The mechanism underlying the differential cytotoxicity of curcumin in various cancer types, however, remains largely unclear. The aims of this study is to examine the concentration- and time-related effects of curcumin on two different breast cancer cells, MCF-7 and MDA-MB-231, and investigated the functional changes induced by curcumin treatment, as well as their relationship to the PI3K/Akt-SKP2-Cip/Kips pathway. Methods First, WST-1 and clonogenic assay were performed to determine the cytotoxicity of curcumin in MCF-7 and MDA-MB-231 cells. Then, the expression of CDK interacting protein/Kinase inhibitory protein (Cip/Kips) members (p27, p21 and p57) and S-phase kinase-associated protein-2 (SKP2) was investigated by QRT PCR and Western Blotting. Curcumin’s effect on PI3K (phosphatidylinositol 3-kinase) /Akt and its substrates Foxo1 and Foxo3a were then studied by Western Blotting. Small interfering RNAs (siRNAs) targeting SKP2 was used to explore the relationship between SKP2 and Cip/Kips members. Finally, WST-1 assay was tested to explore the concomitant treatment with curcumin and the inhibition of PKB or SKP2 signaling on curcumin sensitivity in MCF-7 and MDA-MB-231 cells. Results We demonstrated MCF-7 and MDA-MB-231 cells exhibited differential responses to curcumin by WST-1 and clonogenic assay (MDA-MB-231 cells was sensitive, and MCF-7 cells was resistant), which were found to be related to the differential curcumin-mediated regulation of SKP2-Cip/Kips (p21 and p27 but not p57) signaling. The differential cellular responses were further linked to the converse effects of curcumin on PI3K/Akt and its substrates Foxo1 and Foxo3a. Importantly, PI3K inhibitor wortmannin could counteract both curcumin-induced phosphorylation of Akt and up-regulation of SKP2 in MCF-7 cells. Subsequent WST-1 assay demonstrated concomitant treatment with curcumin and wortmannin or SKP2 siRNA not only further augmented curcumin sensitivity in MDA-MB-231 cells but also overcame curcumin resistance in MCF-7 cells. Conclusions Our study established PI3K/Akt-SKP2-Cip/Kips signaling pathway is involved in the mechanism of action of curcumin and revealed that the discrepant modulation of this pathway by curcumin is responsible for the differential susceptibilities of these two cell types to curcumin.
Collapse
|
39
|
Huang C, Chen YJ, Chen WJ, Lin CL, Wei YX, Huang HC. Combined treatment with chrysin and 1,2,3,4,6-penta-O-galloyl-β-D-glucose synergistically inhibits LRP6 and Skp2 activation in triple-negative breast cancer and xenografts. Mol Carcinog 2014; 54:1613-25. [DOI: 10.1002/mc.22234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/02/2014] [Accepted: 09/11/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Cheng Huang
- National Research Institute of Chinese Medicine; Taipei Taiwan ROC
| | - Yi Jing Chen
- Department of Applied Science; National Hsinchu University of Education; Hsinchu Taiwan ROC
| | - Wei-Jen Chen
- Department of Biomedical Sciences; Chung Shan Medical University; Taichung Taiwan ROC
- Department of Medical Research; Chung Shan Medical University Hospital; Taichung Taiwan ROC
| | - Chih-Li Lin
- Department of Medical Research; Chung Shan Medical University Hospital; Taichung Taiwan ROC
- Institute of Medicine; Chung Shan Medical University; Taichung Taiwan ROC
| | - Yu Xuan Wei
- Department of Applied Science; National Hsinchu University of Education; Hsinchu Taiwan ROC
| | - Hsiu Chen Huang
- Department of Applied Science; National Hsinchu University of Education; Hsinchu Taiwan ROC
| |
Collapse
|
40
|
Ezetimibe prevents the development of non‑alcoholic fatty liver disease induced by high‑fat diet in C57BL/6J mice. Mol Med Rep 2014; 10:2917-23. [PMID: 25310357 PMCID: PMC4227427 DOI: 10.3892/mmr.2014.2623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
There is currently no established treatment for non-alcoholic fatty liver disease (NAFLD), including its most extreme form, non-alcoholic steatohepatitis (NASH). Ezetimibe, an inhibitor of Niemann-Pick C1 Like 1-dependent cholesterol absorption, improves diet-induced hyperlipidemia and attenuates liver steatosis and insulin resistance. The aim of the present study was to determine whether ezetimibe treatment is able to inhibit the development of NAFLD, and to elucidate the underlying mechanism, using C57BL/6J (B6) mice maintained on a high-fat diet. Male B6 mice (20 weeks of age) were divided into the following two groups (n=7 in each group): Mice fed a high-fat diet for four weeks and mice fed a high-fat diet with 0.0064% (wt/wt) ezetimibe (5 mg/kg/day) for four weeks. Administration of ezetimibe significantly reduced liver steatosis and fibrosis. Ezetimibe reduced serum cholesterol, hepatic fat accumulation and insulin resistance in the liver of mice fed the high-fat diet. Furthermore, ezetimibe significantly reduced hepatic mRNA expression of Acc1 and Scd1, which are involved in hepatic fatty acid synthesis. Ezetimibe significantly reduced hepatic Cd36 gene expression, upregulation of which is significantly associated with insulin resistance, hyperinsulinemia and increased steatosis. The protein expression of SKP2, a viable therapeutic target in human cancer, was also reduced by ezetimibe. These findings suggest that ezetimibe may be an effective therapy for high fat-induced NAFLD, including NASH.
Collapse
|
41
|
Fagan-Solis KD, Pentecost BT, Gozgit JM, Bentley BA, Marconi SM, Otis CN, Anderton DL, Schneider SS, Arcaro KF. SKP2 overexpression is associated with increased serine 10 phosphorylation of p27 (pSer10p27) in triple-negative breast cancer. J Cell Physiol 2014; 229:1160-9. [PMID: 24443386 DOI: 10.1002/jcp.24545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/18/2013] [Indexed: 01/05/2023]
Abstract
S-phase kinase-associated protein 2 (SKP2) is an important cell cycle regulator, targeting the cyclin-dependent kinase (CDK) inhibitor p27 for degradation, and is frequently overexpressed in breast cancer. p27 regulates G1 /S transition by abrogating the activity of cyclin/CDK complexes. p27 can undergo phosphorylation at serine 10 (pSer10p27). This phosphorylation event is associated with increased cell proliferation and poor prognosis in patients with glioma. The relationship between SKP2 and pSer10p27 in breast cancer has not been previously investigated. Immunohistochemistry (IHC) of SKP2, p27, pSer10p27, and other genes involved in this pathway, was analyzed in 188 breast tumors and 50 benign reduction mammoplasty samples. IHC showed SKP2 to be more highly expressed in estrogen receptor α (ERα)-negative breast cancers and demonstrated that triple-negative tumors were more likely to have high expression of SKP2 than were non-triple negative, ERα-negative tumors. A significant positive relationship was discovered for SKP2 and pSer10p27. High levels of SKP2 and pSer10p27 were observed significantly more often in ERα-negative and triple-negative than in ERα-positive breast cancers. Use of the triple-negative TMX2-28 breast cancer cell line to address the role of SKP2 in cell cycle progression confirmed that SKP2 contributes to a more rapid cell cycle progression and may regulates pSer10p27 levels. Together, the results indicate that presence of high SKP2 plus high pSer10p27 levels in triple-negative breast cancers is associated with aggressive growth, and highlight the validity of using SKP2 inhibitors as a therapeutic approach for treating this subset of breast cancers.
Collapse
|
42
|
Blanchard Z, Mullins N, Ellipeddi P, Lage JM, McKinney S, El-Etriby R, Zhang X, Isokpehi R, Hernandez B, ElShamy WM. Geminin overexpression promotes imatinib sensitive breast cancer: a novel treatment approach for aggressive breast cancers, including a subset of triple negative. PLoS One 2014; 9:e95663. [PMID: 24789045 PMCID: PMC4005756 DOI: 10.1371/journal.pone.0095663] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 03/28/2014] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women. Triple negative breast cancer (TNBC) is an aggressive subtype that affects 10–25% mostly African American women. TNBC has the poorest prognosis of all subtypes with rapid progression leading to mortality in younger patients. So far, there is no targeted treatment for TNBC. To that end, here we show that c-Abl is one of several tyrosine kinases that phosphorylate and activate geminin’s ability to promote TNBC. Analysis of >800 breast tumor samples showed that geminin is overexpressed in ∼50% of all tumors. Although c-Abl is overexpressed in ∼90% of all tumors, it is only nuclear in geminin overexpressing tumors. In geminin-negative tumors, c-Abl is only cytoplasmic. Inhibiting c-Abl expression or activity (using imatinib or nilotinib) prevented geminin Y150 phosphorylation, inactivated the protein, and most importantly converted overexpressed geminin from an oncogene to an apoptosis inducer. In pre-clinical orthotopic breast tumor models, geminin-overexpressing cells developed aneuploid and invasive tumors, which were suppressed when c-Abl expression was blocked. Moreover, established geminin overexpressing orthotopic tumors regressed when treated with imatinib or nilotinib. Our studies support imatinib/nilotonib as a novel treatment option for patients with aggressive breast cancer (including a subset of TNBCs)-overexpressing geminin and nuclear c-Abl.
Collapse
Affiliation(s)
- Zannel Blanchard
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Nicole Mullins
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Pavani Ellipeddi
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Janice M. Lage
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Shawn McKinney
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Rana El-Etriby
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Xu Zhang
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Raphael Isokpehi
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, United States of America
| | - Brenda Hernandez
- Cancer Research Center of Hawaii, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Wael M. ElShamy
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
43
|
Abstract
F-box proteins, which are the substrate-recognition subunits of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes, have pivotal roles in multiple cellular processes through ubiquitylation and subsequent degradation of target proteins. Dysregulation of F-box protein-mediated proteolysis leads to human malignancies. Notably, inhibitors that target F-box proteins have shown promising therapeutic potential, urging us to review the current understanding of how F-box proteins contribute to tumorigenesis. As the physiological functions for many of the 69 putative F-box proteins remain elusive, additional genetic and mechanistic studies will help to define the role of each F-box protein in tumorigenesis, thereby paving the road for the rational design of F-box protein-targeted anticancer therapies.
Collapse
Affiliation(s)
- Zhiwei Wang
- 1] Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. [2] The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, P. R. China. [3]
| | - Pengda Liu
- 1] Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. [2]
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
44
|
Zhou W, Slingerland JM. Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nat Rev Cancer 2014; 14:26-38. [PMID: 24505618 DOI: 10.1038/nrc3622] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oestrogen receptor-α (ERα) is a master transcription factor that regulates cell proliferation and homeostasis in many tissues. Despite beneficial ERα functions, sustained oestrogenic exposure increases the risk and/or the progression of various cancers, including those of the breast, endometrium and ovary. Oestrogen–ERα interaction can trigger post-translational ERα modifications through crosstalk with signalling pathways to promote transcriptional activation and ubiquitin-mediated ERα proteolysis, with co-activators that have dual roles as ubiquitin ligases. These processes are reviewed herein. The elucidation of mechanisms whereby oestrogen drives both ERα transactivation and receptor proteolysis might have important therapeutic implications not only for breast cancer but also potentially for other hormone-regulated cancers.
Collapse
|
45
|
Won JR, Gao D, Chow C, Cheng J, Lau SYH, Ellis MJ, Perou CM, Bernard PS, Nielsen TO. A survey of immunohistochemical biomarkers for basal-like breast cancer against a gene expression profile gold standard. Mod Pathol 2013; 26:1438-50. [PMID: 23702728 DOI: 10.1038/modpathol.2013.97] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 12/16/2022]
Abstract
Gene expression profiling of breast cancer delineates a particularly aggressive subtype referred to as 'basal-like', which comprises ∼15% of all breast cancers, afflicts younger women and is refractory to endocrine and anti-HER2 therapies. Immunohistochemical surrogate definitions for basal-like breast cancer, such as the clinical ER/PR/HER2 triple-negative phenotype and models incorporating positive expression for CK5 (CK5/6) and/or EGFR are heavily cited. However, many additional biomarkers for basal-like breast cancer have been described in the literature. A parallel comparison of 46 proposed immunohistochemical biomarkers of basal-like breast cancer was performed against a gene expression profile gold standard on a tissue microarray containing 42 basal-like and 80 non-basal-like breast cancer cases. Ki67 and PPH3 were the most sensitive biomarkers (both 92%) positively expressed in the basal-like subtype, whereas CK14, IMP3 and NGFR were the most specific (100%). Among biomarkers surveyed, loss of INPP4B (a negative regulator of phosphatidylinositol signaling) was 61% sensitive and 99% specific with the highest odds ratio (OR) at 108, indicating the strongest association with basal-like breast cancer. Expression of nestin, a common marker of neural progenitor cells that is also associated with the triple-negative/basal-like phenotype and poor breast cancer prognosis, possessed the second highest OR at 29 among the 46 biomarkers surveyed, as well as 54% sensitivity and 96% specificity. As a positively expressed biomarker, nestin possesses technical advantages over INPP4B that make it a more ideal biomarker for identification of basal-like breast cancer. The comprehensive immunohistochemical biomarker survey presented in this study is a necessary step for determining an optimized surrogate immunopanel that best defines basal-like breast cancer in a practical and clinically accessible way.
Collapse
Affiliation(s)
- Jennifer R Won
- 1] Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada [2] Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The expression and prognosis of Emi1 and Skp2 in breast carcinoma: associated with PI3K/Akt pathway and cell proliferation. Med Oncol 2013; 30:735. [DOI: 10.1007/s12032-013-0735-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
47
|
Identification of acetylation-dependent regulatory mechanisms that govern the oncogenic functions of Skp2. Oncotarget 2013; 3:1294-300. [PMID: 23230084 PMCID: PMC3717793 DOI: 10.18632/oncotarget.740] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Skp2 (S-phase kinase associated protein 2) oncoprotein is often highly expressed in various types of human cancers. However, the mechanistic basis of its oncogenic function, as well as the upstream regulatory pathway(s) that control Skp2 activities remains not fully understood. Recently, we reported that p300 acetylates Skp2 at two conserved lysine residues K68 and K71 within its NLS (Nuclear localization signal). This modification leads to increased Skp2 stability and cytoplasmic translocation, thus contributing to elevated Skp2 oncogenic potential. Moreover, we found that the SIRT3 tumor suppressor serves as the physiological deacetylase that antagonizes p300-mediated Skp2 acetylation. Furthermore, we showed that Skp2 governs E-cadherin ubiquitination and degradation in the cytosol. Consistent with this, we observed an inverse correlation between Skp2 and E-cadherin expression in clinical breast tumor samples. Therefore, our work elucidates a novel acetylation-dependent regulatory mechanism for Skp2 oncogenic functions.
Collapse
|
48
|
Cheng H, Meng J, Wang G, Meng Y, Li Y, Wei D, Fu C, Deng K, Shen A, Wang H, Dai S. Skp2 regulates subcellular localization of PPARγ by MEK signaling pathways in human breast cancer. Int J Mol Sci 2013; 14:16554-69. [PMID: 23939428 PMCID: PMC3759925 DOI: 10.3390/ijms140816554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 11/16/2022] Open
Abstract
Nuclear hormone receptor family member PPARγ plays an important role in mammary gland tumorigenesis. Previous studies have shown PPARγ has cytoplasmic activities upon tetradecanoyl phorbol acetate (TPA) stimulation. However, the clinical pathological significance of cytoplasmic PPARγ is not completely understood in human breast cancer. Skp2 is oncogenic, and its frequent amplification and overexpression correlated with the grade of malignancy. In this study, the role of cytoplasmic PPARγ and Skp2 expression was investigated in human breast cancer progression. Therefore, immunohistochemical analysis was performed on formalin-fixed paraffin sections of 70 specimens. Furthermore, Western blot and immunofluorescence microscopy analysis were used to study the relationship between expression of cytoplasmic PPARγ and Skp2 expression in human breast cancer cells in vitro. Results showed that the expression of cytoplasmic PPARγ was positively correlated with Skp2 expression (p < 0.05), and correlated significantly with estrogen receptor (p = 0.026) and pathological grade (p = 0.029), respectively. In addition, Skp2 overexpression can provoke cytoplasmic localization of PPARγ upon MEK1-dependent mechanisms in human breast cancer cells by nuclear-cytosolic fractionation technology and immunofluorescence microscopy analysis. Using RNA interference technology, we also found that down-regulated Skp2 reduced the phosphorylation level of MEK1 and significantly reversed TPA-induced nuclear export of PPARγ in MDA-MB-231 cells. The changes in the subcellular localization of PPARγ may represent a novel target for selective interference in patients with breast cancer.
Collapse
Affiliation(s)
- Hongge Cheng
- Department of Laboratory Science, the Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou 545005, Guangxi, China; E-Mails: (H.C.); (J.M.); (G.W.); (Y.M.); (Y.L.); (D.W.); (C.F.); (K.D.)
| | - Jie Meng
- Department of Laboratory Science, the Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou 545005, Guangxi, China; E-Mails: (H.C.); (J.M.); (G.W.); (Y.M.); (Y.L.); (D.W.); (C.F.); (K.D.)
| | - Guisheng Wang
- Department of Laboratory Science, the Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou 545005, Guangxi, China; E-Mails: (H.C.); (J.M.); (G.W.); (Y.M.); (Y.L.); (D.W.); (C.F.); (K.D.)
| | - Yuming Meng
- Department of Laboratory Science, the Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou 545005, Guangxi, China; E-Mails: (H.C.); (J.M.); (G.W.); (Y.M.); (Y.L.); (D.W.); (C.F.); (K.D.)
| | - Yu Li
- Department of Laboratory Science, the Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou 545005, Guangxi, China; E-Mails: (H.C.); (J.M.); (G.W.); (Y.M.); (Y.L.); (D.W.); (C.F.); (K.D.)
| | - Dong Wei
- Department of Laboratory Science, the Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou 545005, Guangxi, China; E-Mails: (H.C.); (J.M.); (G.W.); (Y.M.); (Y.L.); (D.W.); (C.F.); (K.D.)
| | - Chunyun Fu
- Department of Laboratory Science, the Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou 545005, Guangxi, China; E-Mails: (H.C.); (J.M.); (G.W.); (Y.M.); (Y.L.); (D.W.); (C.F.); (K.D.)
| | - Kaifeng Deng
- Department of Laboratory Science, the Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou 545005, Guangxi, China; E-Mails: (H.C.); (J.M.); (G.W.); (Y.M.); (Y.L.); (D.W.); (C.F.); (K.D.)
| | - Aiguo Shen
- Department of Immunology and Microbiology, Medical College of Nantong University, Nantong 226001, Jiangsu, China; E-Mail:
| | - Huimin Wang
- Medical Laboratory Center, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Authors to whom correspondence should be addressed; E-Mails: (H.W.); (S.D.); Tel.: +86-513-8505-2102 (H.W.); +86-772-381-5334 (S.D.); Fax: +86-513-8505-2102 (H.W.); +86-772-383-7242 (S.D.)
| | - Shengming Dai
- Department of Laboratory Science, the Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou 545005, Guangxi, China; E-Mails: (H.C.); (J.M.); (G.W.); (Y.M.); (Y.L.); (D.W.); (C.F.); (K.D.)
- Authors to whom correspondence should be addressed; E-Mails: (H.W.); (S.D.); Tel.: +86-513-8505-2102 (H.W.); +86-772-381-5334 (S.D.); Fax: +86-513-8505-2102 (H.W.); +86-772-383-7242 (S.D.)
| |
Collapse
|
49
|
Huang C, Lee SY, Lin CL, Tu TH, Chen LH, Chen YJ, Huang HC. Co-treatment with quercetin and 1,2,3,4,6-penta-O-galloyl-β-D-glucose causes cell cycle arrest and apoptosis in human breast cancer MDA-MB-231 and AU565 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6430-6445. [PMID: 23731217 DOI: 10.1021/jf305253m] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Breast cancer is the most universal cancer in women, but the medications for breast cancer usually cause serious side effects and offer no effective treatment for triple-negative breast cancer. Here, we investigated the growth inhibitory effects of gallic acid (GA), (-)-epigallocatechin gallate (EGCG), or 1,2,3,4,6-penta-O-galloyl-β-D-glucose (5GG) combined with quercetin (Que) on breast cancer cells. In this study, we tested the combined effects of these compounds on estrogen receptor (ER)/human epidermal growth factor 2 (Her2)-negative (MDA-MB-231), ER-positive/Her2-negative (BT483), and ER-negative/Her2-positive (AU565) breast cancer cells. After treatment of each cell line with these compounds, we found that Que combined with 5GG induced S-phase arrest and apoptosis in MDA-BM-231 cells through downregulation of S-phase kinase protein 2 expression, but induced G2/M-phase arrest and apoptosis in AU565 cells through downregulation of Her2 expression. Additionally, Que combined with 5GG was more effective in inhibiting MDA-MB-231 cell growth than Que combined with EGCG (5GG analogue) or GA. The combination of 5GG and Que can offer great potential for the chemoprevention of ER-negative breast cancer.
Collapse
Affiliation(s)
- Cheng Huang
- National Research Institute of Chinese Medicine, Taipei 11221, Taiwan
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The transcription factor FOXP3 is widely known for its role in the development and function of immunoregulatory T cells. However, it has been discovered recently that FOXP3 is also expressed in epithelial cells of the normal human breast, ovary and prostate. Aggressive cancer of these epithelial tissues often correlates with abnormal expression of FOXP3, which can be either absent or underexpressed at transcript or protein levels. It is becoming clear that this failure of normal FOXP3 expression can result in dysregulation of the expression of a range of oncogenes which have been implicated in the development and metastasis of cancer. Recent evidence suggests that FOXP3 might also regulate chemokine receptor expression, providing a possible explanation for the chemokine-driven, tissue-specific spread that is characteristic of many cancers. This review first summarises the general structure, function and properties of FOXP3. This is followed by an analysis of the tumour-suppressive properties of this transcription factor, with particular reference to the development and chemokine-mediated spread of human breast cancer. A final section focuses on potential applications of this new knowledge for therapeutic intervention.
Collapse
|