1
|
Ayasse N, Berg P, Sørensen MV, Svendsen SL, Weinstein AM, Leipziger J. Revisiting voltage-coupled H + secretion in the collecting duct. Am J Physiol Renal Physiol 2024; 327:F931-F945. [PMID: 39323388 DOI: 10.1152/ajprenal.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Experimental studies have shown that V-type ATPase-driven H+ secretion is dependent on transepithelial voltage. On this basis, the "voltage hypothesis" of urinary acidification by the collecting duct was derived. Accordingly, it has been supposed that the lumen-negative potential created by the reabsorption of Na+ via the epithelial Na+ channel (ENaC) enhances electrogenic H+ secretion via V-type H+-ATPase. This concept continues to be widely used to explain acid/base disorders. Importantly, however, a solid proof of principle for the voltage hypothesis in physiologically relevant situations has not been reached. Rather, it has been challenged by recent in vivo functional studies. In this review, we outline the arguments and experimental observations explaining why voltage-coupled H+ secretion in the collecting duct often appears poorly applicable for rationalizing changes in H+ secretion as a function of more or less ENaC function in the collecting duct.
Collapse
Affiliation(s)
- Niklas Ayasse
- Vth Department of Medicine, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Peder Berg
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Mads V Sørensen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Samuel L Svendsen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Qi M, Liu DM, Ji W, Wang HL. ATP6V0D2, a subunit associated with proton transport, serves an oncogenic role in esophagus cancer and is correlated with epithelial-mesenchymal transition. Esophagus 2020; 17:456-467. [PMID: 32240421 DOI: 10.1007/s10388-020-00735-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/21/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND The poor prognosis of esophagus cancer (EC) is mainly due to its high invasiveness and metastasis, so it is urgent to search effectively prognostic markers and explore their roles in the mechanism of metastasis. MATERIALS AND METHODS Based on the TCGA database, we downloaded the RNA-Seq for analyzing the expression of ATP6V0D2. QRT-PCR was used to test the mRNA levels of ATP6V0D2 in cell lines. Chi-square tests were used to evaluate the correlation between ATP6V0D2 and clinical characteristics. Prognostic values were determined by Kaplan-Meier methods and cox's regression models. CCK-8 and clone formation assays were employed to evaluate the cell viability, and Transwell assay was implemented to determine the invasive and migratory abilities. Correlations between ATP6V0D2 and motion-related markers were analyzed by the GEPIA database and confirmed by western blot. Moreover, the relationship between ATP6V0D2 and molecules related to cell cycle and apoptosis was also determined by western blot. RESULTS A significant increase was observed in 3 EC-related cell lines compared to the normal cell line. ATP6V0D2 has a connection with the poor prognosis and can be considered as an independent prognosticator for patients with EC. Besides, ATP6V0D2 can improve cells viability as well as invasive and migratory abilities. What's more, downregulation of ATP6V0D2 notably enhanced E-cadherin expression, while decreased N-cadherin, Vimentin, and MMP9 expression, whereas overexpression of ATP6V0D2 presented the opposite outcomes. Furthermore, we found that silencing ATP6V0D2 led to a significant reduction on the protein expression of Cyclin D1, CDK4, Bcl-2, whereas resulted in a notable enhancement on the Bax level. CONCLUSION ATP6V0D2 might be an independent prognosticator for EC patients, and it possibly promotes tumorigenesis by regulating epithelial-mesenchymal transition, cell cycle and apoptosis-related markers, providing the possibility that ATP6V0D2 may be a novel biomarker for the therapeutic intervention of EC.
Collapse
Affiliation(s)
- Ming Qi
- Department of Digestive Medicine, Jinan City Central Hospital Affiliated to Shandong University, Jinan, 250013, Shandong, People's Republic of China
| | - Dong-Mei Liu
- Emergency Infusion Room, Jinan City Central Hospital Affiliated to Shandong University, Jinan, 250013, Shandong, People's Republic of China
| | - Wei Ji
- Clinical Experimental Research Center, Jinan City Central Hospital Affiliated to Shandong University, Jinan, 250013, Shandong, People's Republic of China
| | - Hai-Ling Wang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, The East courtyard, No. 42 of West Culture Road, Lixia district, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Chen Y, Fry BC, Layton AT. Modeling glucose metabolism and lactate production in the kidney. Math Biosci 2017; 289:116-129. [PMID: 28495544 PMCID: PMC5533195 DOI: 10.1016/j.mbs.2017.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 01/18/2023]
Abstract
The metabolism of glucose provides most of the ATP required for energy-dependent transport processes. In the inner medulla of the mammalian kidney, limited blood flow and O2 supply yield low oxygen tension; therefore, a substantial fraction of the glucose metabolism in that region is anaerobic. Lactate is considered to be a waste product of anaerobic glycolysis, which yields two lactate molecules for each glucose molecule consumed, thereby likely leading to the production and accumulation of a significant amount of lactate in the inner medulla. To gain insights into the transport and metabolic processes in the kidney, we have developed a detailed mathematical model of the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension and glucose and lactate concentrations in the outer medulla and upper inner medulla. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. Using this model, we have identified parameters concerning glucose transport and basal metabolism, as well as lactate production via anaerobic glycolysis, that yield predicted blood glucose and lactate concentrations consistent with experimental measurements in the papillary tip. In addition, simulations indicate that the radial organization of the rat kidney may affect lactate buildup in the inner medulla.
Collapse
Affiliation(s)
- Ying Chen
- Department of Mathematics, Duke University, Durham, NC, United States
| | - Brendan C Fry
- Department of Mathematical and Computer Sciences, Metropolitan State University of Denver, Denver, CO, United States
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, NC, United States.
| |
Collapse
|
4
|
Chen Y, Sullivan JC, Edwards A, Layton AT. Sex-specific computational models of the spontaneously hypertensive rat kidneys: factors affecting nitric oxide bioavailability. Am J Physiol Renal Physiol 2017; 313:F174-F183. [PMID: 28356289 DOI: 10.1152/ajprenal.00482.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022] Open
Abstract
The goals of this study were to 1) develop a computational model of solute transport and oxygenation in the kidney of the female spontaneously hypertensive rat (SHR), and 2) apply that model to investigate sex differences in nitric oxide (NO) levels in SHR and their effects on medullary oxygenation and oxidative stress. To accomplish these goals, we first measured NO synthase (NOS) 1 and NOS3 protein expression levels in total renal microvessels of male and female SHR. We found that the expression of both NOS1 and NOS3 is higher in the renal vasculature of females compared with males. To predict the implications of that finding on medullary oxygenation and oxidative stress levels, we developed a detailed computational model of the female SHR kidney. The model was based on a published male kidney model and represents solute transport and the biochemical reactions among O2, NO, and superoxide ([Formula: see text]) in the renal medulla. Model simulations conducted using both male and female SHR kidney models predicted significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and [Formula: see text] concentration in the outer medulla and upper inner medulla. The models also predicted that increases in endothelial NO-generating capacity, even when limited to specific vascular segments, may substantially raise medullary NO and Po2 levels. Other potential sex differences in SHR, including [Formula: see text] production rate, are predicted to significantly impact oxidative stress levels, but effects on NO concentration and Po2 are limited.
Collapse
Affiliation(s)
- Ying Chen
- Department of Mathematics, Duke University, Durham, North Carolina
| | | | - Aurélie Edwards
- Sorbonne Universités, UPMC University Paris 06, Université Paris Descartes, Sorbonne Paris, France.,INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina;
| |
Collapse
|
5
|
Abstract
The mammalian kidney consumes a large amount of energy to support the reabsorptive work it needs to excrete metabolic wastes and to maintain homeostasis. Part of that energy is supplied via the metabolism of glucose. To gain insights into the transport and metabolic processes in the kidney, we have developed a detailed model of the renal medulla of the rat kidney. The model represents water and solute flows, transmural fluxes, and biochemical reactions in the luminal fluid of the nephrons and vessels. In particular, the model simulates the metabolism of oxygen and glucose. Using that model, we have identified parameters concerning glucose transport and basal metabolism that yield predicted blood glucose concentrations that are consistent with experimental measurements. The model predicts substantial axial gradients in blood glucose levels along various medullary structures. Furthermore, the model predicts that in the inner medulla, owing to the relatively limited blood flow and low tissue oxygen tension, anaerobic metabolism of glucose dominates.
Collapse
|
6
|
Fry BC, Edwards A, Layton AT. Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study. Am J Physiol Renal Physiol 2015; 310:F237-47. [PMID: 26831340 DOI: 10.1152/ajprenal.00334.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/13/2015] [Indexed: 01/05/2023] Open
Abstract
The goal of this study was to investigate the effects of nitric oxide (NO)-mediated vasodilation in preventing medullary hypoxia, as well as the likely pathways by which superoxide (O2(-)) conversely enhances medullary hypoxia. To do so, we expanded a previously developed mathematical model of solute transport in the renal medulla that accounts for the reciprocal interactions among oxygen (O2), NO, and O2(-) to include the vasoactive effects of NO on medullary descending vasa recta. The model represents the radial organization of the vessels and tubules, centered around vascular bundles in the outer medulla and collecting ducts in the inner medulla. Model simulations suggest that NO helps to prevent medullary hypoxia both by inducing vasodilation of the descending vasa recta (thus increasing O2 supply) and by reducing the active sodium transport rate (thus reducing O2 consumption). That is, the vasodilative properties of NO significantly contribute to maintaining sufficient medullary oxygenation. The model further predicts that a reduction in tubular transport efficiency (i.e., the ratio of active sodium transport per O2 consumption) is the main factor by which increased O2(-) levels lead to hypoxia, whereas hyperfiltration is not a likely pathway to medullary hypoxia due to oxidative stress. Finally, our results suggest that further increasing the radial separation between vessels and tubules would reduce the diffusion of NO towards descending vasa recta in the inner medulla, thereby diminishing its vasoactive effects therein and reducing O2 delivery to the papillary tip.
Collapse
Affiliation(s)
- Brendan C Fry
- Department of Mathematics, Duke University, Durham, North Carolina; and
| | - Aurélie Edwards
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Univ Paris 06, INSERM, Université Paris, Descartes, Sorbonne Paris Cité, UMRS 1138, ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina; and
| |
Collapse
|
7
|
Fry BC, Edwards A, Layton AT. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration. Am J Physiol Renal Physiol 2015; 308:F967-80. [PMID: 25651567 DOI: 10.1152/ajprenal.00600.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022] Open
Abstract
The goal of this study was to investigate the reciprocal interactions among oxygen (O2), nitric oxide (NO), and superoxide (O2 (-)) and their effects on medullary oxygenation and urinary output. To accomplish that goal, we developed a detailed mathematical model of solute transport in the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and O2 (-) concentration in the OM and upper IM. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. The model further predicts that due to the nonlinear interactions among O2, NO, and O2 (-), the effects of NO and O2 (-) on sodium transport, osmolality, and medullary oxygenation cannot be gleaned by considering each solute's effect in isolation. An additional simulation suggests that a sufficiently large reduction in tubular transport efficiency may be the key contributing factor, more so than oxidative stress alone, to hypertension-induced medullary hypoxia. Moreover, model predictions suggest that urine Po2 could serve as a biomarker for medullary hypoxia and a predictor of the risk for hospital-acquired acute kidney injury.
Collapse
Affiliation(s)
- Brendan C Fry
- Department of Mathematics, Duke University, Durham, North Carolina; and
| | - Aurélie Edwards
- University of Paris 6, University of Paris 5, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Centre National de la Recherche Scientifique ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina; and
| |
Collapse
|
8
|
Pannabecker TL, Layton AT. Targeted delivery of solutes and oxygen in the renal medulla: role of microvessel architecture. Am J Physiol Renal Physiol 2014; 307:F649-55. [PMID: 25056344 DOI: 10.1152/ajprenal.00276.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Renal medullary function is characterized by corticopapillary concentration gradients of various molecules. One example is the generally decreasing axial gradient in oxygen tension (Po2). Another example, found in animals in the antidiuretic state, is a generally increasing axial solute gradient, consisting mostly of NaCl and urea. This osmolality gradient, which plays a principal role in the urine concentrating mechanism, is generally considered to involve countercurrent multiplication and countercurrent exchange, although the underlying mechanism is not fully understood. Radial oxygen and solute gradients in the transverse dimension of the medullary parenchyma have been hypothesized to occur, although strong experimental evidence in support of these gradients remains lacking. This review considers anatomic features of the renal medulla that may impact the formation and maintenance of oxygen and solute gradients. A better understanding of medullary architecture is essential for more clearly defining the compartment-to-compartment flows taken by fluid and molecules that are important in producing axial and radial gradients. Preferential interactions between nephron and vascular segments provide clues as to how tubular and interstitial oxygen flows contribute to safeguarding active transport pathways in renal function in health and disease.
Collapse
Affiliation(s)
- Thomas L Pannabecker
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona; and
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina
| |
Collapse
|
9
|
Fukamachi T, Ikeda S, Saito H, Tagawa M, Kobayashi H. Expression of acidosis-dependent genes in human cancer nests. Mol Clin Oncol 2014; 2:1160-1166. [PMID: 25279216 DOI: 10.3892/mco.2014.344] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/30/2014] [Indexed: 12/28/2022] Open
Abstract
Previous studies investigating cancer cells cultured at acidic pH have shown that the expression level of ~700 genes were more than two-fold higher than those of the cells cultured in alkaline medium at pH 7.5. The aim of the present study was to confirm whether these acidosis-induced genes are expressed in human cancer tissues. Therefore, 7 genes were selected from our previous study, which encoded interleukin 32 (IL-32), lysosomal H+ transporting ATPase, V0 subunit d2 (ATP6V0D2), tumor necrosis factor receptor superfamily, member 9 (TNFRSF9), amphiregulin, schwannoma-derived growth factor (AREG), v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (ErbB3), PRR5-ARHGAP8 (LOC553158) and dimethylglycine dehydrogenase (DMGDH), and their expression was examined in human clinical specimens from patients with cancer. In addition, the expression of the gene encoding manganese superoxide dismutase (MnSOD) was examined. The specimens from patients with colon, stomach and renal cancer showed increased MnSOD, IL-32, and TNFRSF9 transcripts compared to those from non-tumorous regions of the same patients. Notably, an elevated expression of ATP6V0D2 was found in the specimens from patients with stomach cancer, whereas the expression was decreased in those from patients with colon and renal cancer. The expression of LOC553158 was upregulated in colon and stomach cancer specimens. These results indicate that the investigation of gene expression under acidic conditions is useful for the development of novel cancer markers and/or chemotherapeutic targets.
Collapse
Affiliation(s)
- Toshihiko Fukamachi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Shunsuke Ikeda
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Hiromi Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan
| | - Hiroshi Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
10
|
Fry BC, Edwards A, Sgouralis I, Layton AT. Impact of renal medullary three-dimensional architecture on oxygen transport. Am J Physiol Renal Physiol 2014; 307:F263-72. [PMID: 24899054 DOI: 10.1152/ajprenal.00149.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have developed a highly detailed mathematical model of solute transport in the renal medulla of the rat kidney to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies. The model represents the arrangement of tubules around a vascular bundle in the outer medulla and around a collecting duct cluster in the upper inner medulla. Model simulations yield marked gradients in intrabundle and interbundle interstitial fluid oxygen tension (PO2), NaCl concentration, and osmolality in the outer medulla, owing to the vigorous active reabsorption of NaCl by the thick ascending limbs. In the inner medulla, where the thin ascending limbs do not mediate significant active NaCl transport, interstitial fluid composition becomes much more homogeneous with respect to NaCl, urea, and osmolality. Nonetheless, a substantial PO2 gradient remains, owing to the relatively high oxygen demand of the inner medullary collecting ducts. Perhaps more importantly, the model predicts that in the absence of the three-dimensional medullary architecture, oxygen delivery to the inner medulla would drastically decrease, with the terminal inner medulla nearly completely deprived of oxygen. Thus model results suggest that the functional role of the three-dimensional medullary architecture may be to preserve oxygen delivery to the papilla. Additionally, a simulation that represents low medullary blood flow suggests that the separation of thick limbs from the vascular bundles substantially increases the risk of the segments to hypoxic injury. When nephrons and vessels are more homogeneously distributed, luminal PO2 in the thick ascending limb of superficial nephrons increases by 66% in the inner stripe. Furthermore, simulations predict that owing to the Bohr effect, the presumed greater acidity of blood in the interbundle regions, where thick ascending limbs are located, relative to that in the vascular bundles, facilitates the delivery of O2 to support the high metabolic requirements of the thick limbs and raises NaCl reabsorption.
Collapse
Affiliation(s)
- Brendan C Fry
- Department of Mathematics, Duke University, Durham, North Carolina; and
| | - Aurélie Edwards
- Centre National de la Recherche Scientifique ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Ioannis Sgouralis
- Department of Mathematics, Duke University, Durham, North Carolina; and
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina; and
| |
Collapse
|
11
|
Alzamora R, Thali RF, Gong F, Smolak C, Li H, Baty CJ, Bertrand CA, Auchli Y, Brunisholz RA, Neumann D, Hallows KR, Pastor-Soler NM. PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the a subunit in kidney cells. J Biol Chem 2010; 285:24676-85. [PMID: 20525692 DOI: 10.1074/jbc.m110.106278] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) is a major contributor to luminal acidification in epithelia of Wolffian duct origin. In both kidney-intercalated cells and epididymal clear cells, cAMP induces V-ATPase apical membrane accumulation, which is linked to proton secretion. We have shown previously that the A subunit in the cytoplasmic V(1) sector of the V-ATPase is phosphorylated by protein kinase A (PKA). Here we have identified by mass spectrometry and mutagenesis that Ser-175 is the major PKA phosphorylation site in the A subunit. Overexpression in HEK-293T cells of either a wild-type (WT) or phosphomimic Ser-175 to Asp (S175D) A subunit mutant caused increased acidification of HCO(3)(-)-containing culture medium compared with cells expressing vector alone or a PKA phosphorylation-deficient Ser-175 to Ala (S175A) mutant. Moreover, localization of the S175A A subunit mutant expressed in HEK-293T cells was more diffusely cytosolic than that of WT or S175D A subunit. Acute V-ATPase-mediated, bafilomycin-sensitive H(+) secretion was up-regulated by a specific PKA activator in HEK-293T cells expressing WT A subunit in HCO(3)(-)-free buffer. In cells expressing the S175D mutant, V-ATPase activity at the membrane was constitutively up-regulated and unresponsive to PKA activators, whereas cells expressing the S175A mutant had decreased V-ATPase activity that was unresponsive to PKA activation. Finally, Ser-175 was necessary for PKA-stimulated apical accumulation of the V-ATPase in a polarized rabbit cell line of collecting duct A-type intercalated cell characteristics (Clone C). In summary, these results indicate a novel mechanism for the regulation of V-ATPase localization and activity in kidney cells via direct PKA-dependent phosphorylation of the A subunit at Ser-175.
Collapse
Affiliation(s)
- Rodrigo Alzamora
- Renal-Electrolyte Division, Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gong F, Alzamora R, Smolak C, Li H, Naveed S, Neumann D, Hallows KR, Pastor-Soler NM. Vacuolar H+-ATPase apical accumulation in kidney intercalated cells is regulated by PKA and AMP-activated protein kinase. Am J Physiol Renal Physiol 2010; 298:F1162-9. [PMID: 20147366 DOI: 10.1152/ajprenal.00645.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) in type A kidney intercalated cells is a major contributor to acid excretion in the collecting duct. The mechanisms of V-ATPase-trafficking regulation in kidney intercalated cells have not been well-characterized. In developmentally related epididymal clear cells, we showed previously that PKA, acting downstream of soluble adenylyl cyclase (sAC), induces V-ATPase apical membrane accumulation. These PKA-mediated effects were inhibited by activators of the metabolic sensor AMP-activated kinase (AMPK) in clear cells. Here, we examined the regulation of V-ATPase subcellular localization in intercalated cells by PKA and AMPK in rat kidney tissue slices ex vivo. Immunofluorescence labeling of kidney slices revealed that the PKA activator N(6)-monobutyryl cAMP (6-MB-cAMP) induced V-ATPase apical membrane accumulation in collecting duct intercalated cells, whereas the V-ATPase had a more cytosolic distribution when incubated in Ringer buffer alone for 30 min. V-ATPase accumulated at the apical membrane in intercalated cells in kidney slices incubated in Ringer buffer for 75 min, an effect that was prevented by treatment with PKA inhibitor (mPKI). The V-ATPase distribution was cytosolic in intercalated cells treated with the carbonic anhydrase inhibitor acetazolamide or the sAC inhibitor KH7, effects that were overridden by 6-MB-cAMP. Preincubation of kidney slices with an AMPK activator blocked V-ATPase apical membrane accumulation induced by 6-MB-cAMP, suggesting that AMPK antagonizes cAMP/PKA effects on V-ATPase distribution. Taken together, our results suggest that in intercalated cells V-ATPase subcellular localization and therefore its activity may be coupled to acid-base status via PKA, and metabolic status via AMPK.
Collapse
Affiliation(s)
- Fan Gong
- Department of Medicine, Renal Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15263, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
The vacuolar-type H-ATPase in ovine rumen epithelium is regulated by metabolic signals. J Biomed Biotechnol 2010; 2010:525034. [PMID: 20069127 PMCID: PMC2804115 DOI: 10.1155/2010/525034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/13/2009] [Indexed: 12/21/2022] Open
Abstract
In this study, the effect of metabolic inhibition (MI) by glucose substitution with 2-deoxyglucose (2-DOG) and/or application of antimycin A on ovine rumen epithelial cells (REC) vacuolar-type H+-ATPase (vH+-ATPase) activity was investigated. Using fluorescent spectroscopy, basal pHi of REC was measured to be 7.3 ± 0.1 in HCO3−-free, glucose-containing NaCl medium. MI induced a strong pHi reduction (−0.44 ± 0.04 pH units) with a more pronounced effect of 2-DOG compared to antimycin A (−0.30 ± 0.03 versus −0.21 ± 0.03 pH units). Treatment with foliomycin, a specific vH+-ATPase inhibitor, decreased REC pHi by 0.21 ± 0.05 pH units. After MI induction, this effect was nearly abolished (−0.03 ± 0.02 pH units). In addition, membrane-associated localization of vH+-ATPase B subunit disappeared. Metabolic control of vH+-ATPase involving regulation of its assembly state by elements of the glycolytic pathway could provide a means to adapt REC ATP consumption according to energy availability.
Collapse
|
14
|
Sasaki T. Differentiation and functions of osteoclasts and odontoclasts in mineralized tissue resorption. Microsc Res Tech 2003; 61:483-95. [PMID: 12879416 DOI: 10.1002/jemt.10370] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The differentiation and functions of osteoclasts (OC) are regulated by osteoblast-derived factors such as receptor activator of NFKB ligand (RANKL) that stimulates OC formation, and a novel secreted member of the TNF receptor superfamily, osteoprotegerin (OPG), that negatively regulates osteoclastogenesis. In examination of the preosteoclast (pOC) culture, pOCs formed without any additives expressed tartrate-resistant acid phosphatase (TRAP), but showed little resorptive activity. pOC treated with RANKL became TRAP-positive OC, which expressed intense vacuolar-type H(+)-ATPase and exhibited prominent resorptive activity. Such effects of RANKL on pOC were completely inhibited by addition of OPG. OPG inhibited ruffled border formation in mature OC and reduced their resorptive activity, and also induced apoptosis of some OC. Although OPG administration significantly reduced trabecular bone loss in the femurs of ovariectomized (OVX) mice, the number of TRAP-positive OC in OPG-administered OVX mice was not significantly decreased. Rather, OPG administration caused the disappearance of ruffled borders and decreased H(+)-ATPase expression in most OC. OPG deficiency causes severe osteoporosis. We also examined RANKL localization and OC induction in periodontal ligament (PDL) during experimental movement of incisors in OPG-deficient mice. Compared to wild-type OPG (+/+) littermates, after force application, TRAP-positive OC were markedly increased in the PDL and alveolar bone was severely destroyed in OPG-deficient mice. In both wild-type and OPG-deficient mice, RANKL expression in osteoblasts and fibroblasts became stronger by force application. These in vitro and in vivo studies suggest that RANKL and OPG are important regulators of not only the terminal differentiation of OC but also their resorptive function. To determine resorptive functions of OC, we further examined the effects of specific inhibitors of H(+)-ATPase, bafilomycin A1, and lysosomal cysteine proteinases (cathepsins), E-64, on the ultrastructure, expression of these enzymes and resorptive functions of cultured OC. In bafilomycin A1-treated cultures, OC lacked ruffled borders, and H(+)-ATPase expression and resorptive activity were significantly diminished. E-64 treatment did not affect the ultrastructure and the expression of enzyme molecules in OC, but significantly reduced resorption lacuna formation, by inhibition of cathepsin activity. Lastly, we examined the expression of H(+)-ATPase, cathepsin K, and matrix metalloproteinase-9 in odontoclasts (OdC) during physiological root resorption in human deciduous teeth, and found that there were no differences in the expression of these molecules between OC and OdC. RANKL was also detected in stromal cells located on resorbing dentine surfaces. This suggests that there is a common mechanism in cellular resorption of mineralized tissues such as bone and teeth.
Collapse
Affiliation(s)
- Takahisa Sasaki
- Department of Oral Histology, School of Dentistry, Showa University, Tokyo 142-8555, Japan.
| |
Collapse
|
15
|
Abstract
Osteoclasts resorb bone by attaching to the surface and then secreting protons into an extracellular compartment formed between osteoclast and bone surface. This secretion is necessary for bone mineral solubilization and the digestion of organic bone matrix by acid proteases. This study summarizes the characterization and role of each type of ion transport and defines the main biochemical mechanisms involved in the dissolution of bone mineral during bone resorption. The primary mechanism responsible for acidification of the osteoclast-bone interface is vacuolar H+-adenosine triphosphatase (ATPase) coupled with Cl- conductance localized to the ruffled membrane. Carbonic anhydrase II (CAII) provides the proton source for extracellular acidification by H+-ATPase and the HCO3- source for the HCO3-/Cl- exchanger. Whereas some transporters are responsible for the bone resorption process, others are essential for pH regulation in the osteoclast. The HCO3-/Cl- exchanger, in association with CAII, is the major transporter for maintenance of normal intracellular pH. An Na+/H+ antiporter may also contribute to the recovery of intracellular pH during early osteoclast activation. Once this mechanism has been rendered inoperative, another conductive pathway translocates the protons and modulates cytoplasmic pH. Inward-rectifying K+ channels may also be involved by compensating for the external acidification due to H+ transport. These different effects of transport processes, either on bone resorption or pH homeostasis, increase the number of possible sites for pharmacological intervention in the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- A-V Rousselle
- Labaoratoire de Physiopathologie de la Résorption Osseuse, Faculté de Médecine, Nantes, France
| | | |
Collapse
|
16
|
Peral MJ, Calonge ML, Ilundáin AA. Cytosolic pH regulation in chicken enterocytes: Na(+)-independent regulatory cell alkalinization. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1233:84-8. [PMID: 7530492 DOI: 10.1016/0005-2736(94)00253-l] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mechanisms involved in intracellular pH (pHi) recovery from an acid load have been investigated in enterocytes isolated from chicken. Following an intracellular acidification, by abrupt withdrawal of NH4Cl, pHi alkalinized in the nominally absence of Na+ and bicarbonate. This Na(+)- and bicarbonate-independent (NBI) regulatory cell alkalinization became negligible when the pHi has reached a value of approx. 6.85. Addition of Na+ induced a rapid pHi recovery to control values. Rotenone, DCCD, vanadate, NBD-Cl, SCH 28080 and EIPA inhibited the NBI cell alkalinization, whereas bafilomycin A1, ouabain and H2-DIDS were without effect. Na(+)-dependent pHi recovery from an acid load was inhibited by EIPA and unaffected by SCH 28080 or DCCD. The rate of NBI cell alkalinization was a linear function of the electrochemical proton gradient. In high external K+ buffer plus valinomycin the line goes through the origin. Gramicidin accelerated the rate of NBI cell alkalinization, whereas it was slightly reduced by low external potassium. The results demonstrate that in intestinal epithelial cells exist at least two mechanisms for proton secretion: a Na(+)-H+ exchanger and a Na(+)- and bicarbonate-independent proton transport system. This latter mechanism appears to be a proton conductance pathway.
Collapse
Affiliation(s)
- M J Peral
- Departamento de Fisiología y Biología Animal, Facultad de Farmacia, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
17
|
Chang A, Hammond TG, Sun TT, Zeidel ML. Permeability properties of the mammalian bladder apical membrane. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C1483-92. [PMID: 7977709 DOI: 10.1152/ajpcell.1994.267.5.c1483] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The luminal surface of mammalian bladder is exposed to urine with a composition widely different from that of plasma that bathes the basolateral surface of epithelium. Therefore we predict that the bladder permeability barrier, which is likely located in the apical membrane (AM), will exhibit low permeabilities to water, urea, NH3, H+, and small nonelectrolytes. AM surface area increases as the bladder fills with urine and decreases during emptying, a process that involves cyclical endocytosis and reinsertion of membrane from a pool of AM endosomes (AME). Rigid-appearing plaques composed of three proteins, uroplakins, have been identified and occupy 70-90% of AM surface area. To determine permeability properties of the AM permeability barrier, we purified AME and measured their permeabilities. Rabbit urinary bladders were removed, and their apical surface was exposed to carboxyfluorescein (CF) or horseradish peroxidase (HRP). Exposure to hypotonic and then isotonic basolateral solutions induced endocytosis of luminal CF or HRP into AME. Electron microscopy of bladders after this treatment revealed HRP entrapped within AME bordered by plaques. AME were purified by differential and sucrose-gradient centrifugation, and CF-containing AME were purified 17.0 +/- 3-fold (SD) with respect to homogenate. Analysis of purified AME by flow cytometry showed that > 95% of vesicles contained CF entrapped from luminal solution and were selectively labeled with anti-uroplakin antibody. AME osmotic water permeability averaged 2.3 +/- 0.66 x 10(-4) cm/s and exhibited a high activation energy, indicating that AM contains no water channels. Permeability to urea and NH3 averaged 7.8 +/- 3.7 x 10(-7) and 1.5 +/- 0.3 x 10(-3) cm/s, respectively, which are exceptionally low and similar to permeabilities of other water-tight membranes, including toad urinary bladder and gastric mucosa. AME behaved as a single population in all permeability studies, which will permit future characterization of protein and lipid structure responsible for these unique permeability properties.
Collapse
Affiliation(s)
- A Chang
- Research Service, West Roxbury Veterans Affairs Medical Center, Massachusetts 02132
| | | | | | | |
Collapse
|
18
|
Gekle M, Wünsch S, Oberleithner H, Silbernagl S. Characterization of two MDCK-cell subtypes as a model system to study principal cell and intercalated cell properties. Pflugers Arch 1994; 428:157-62. [PMID: 7971172 DOI: 10.1007/bf00374853] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Madin-Darby canine kidney (MDCK) cells originate from the renal collecting duct and consist of different cell subtypes. We cloned two MDCK cell subtypes denominated as C7 and C11 with different morphology and different function. The two clones maintained their functional differences after cloning. C7 monolayers exhibit a high transepithelial resistance (Rte = 5648 +/- 206 omega.cm2, n = 20) and secrete K+ (delta K+ = 1.31 +/- 0.08 mmol/l, n = 10) into the apical medium. C11 monolayers display a low Rte (330 +/- 52 omega.cm2, n = 20) and secrete Cl- (delta Cl- = 16.9 +/- 1.8 mmol/l, n = 10) into the apical medium. Aldosterone (1 mumol/l) stimulates K+ secretion (delta K+ of 3.58 +/- 0.11 mmol/l, n = 7) in C7 cells and H+ secretion in C11 cells (delta pH = 0.060 +/- 0.007, n = 10). Aldosterone-induced stimulation of K+ secretion is inhibited by apical application of amiloride (1 mumol/l). cAMP stimulates H+ secretion in C11 cells (delta pH = -0.068 +/- 0.004, n = 10). Furthermore, C7 cells are peanut-lectin(PNA)-negative and exhibit an intracellular pH of 7.39 +/- 0.05 (n = 7), whereas C11 cells maintain intracellular pH at 7.16 +/- 0.05 (n = 8) and a major fraction of cells is PNA positive. We conclude that we have cloned two subtypes of MDCK cells which stably express different functional characteristics. The C7 subtype resembles principal cells (PC) of the renal collecting duct, whereas the C11 subtype resembles intercalated cells (ICC) of the renal collecting duct.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Gekle
- Department of Physiology, University of Würzburg, Germany
| | | | | | | |
Collapse
|
19
|
Pappas CA, Ransom BR. A depolarization-stimulated, bafilomycin-inhibitable H+ pump in hippocampal astrocytes. Glia 1993; 9:280-91. [PMID: 8112821 DOI: 10.1002/glia.440090406] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Relatively little is known about the mechanisms of pHi regulation in mammalian glial cells. We analyzed pHi regulation in rat hippocampal astrocytes in vitro using the pH-sensitive dye BCECF. All experiments were carried out in CO2/HCO3(-)-free solutions. Recovery from NH4(+)-induced acid loads was strongly dependent on the presence of extracellular Na+ and was inhibited by amiloride and its more specific analog EIPA, indicating the presence of Na(+)-H+ exchange in these cells. Removing bath Na+ or adding amiloride caused resting pHi to shift in the acid direction. Even in the absence of bath Na+ or presence of Na+/H+ inhibitors, however, these astrocytes continued to show significant recovery from acid loads. The mechanism of this amiloride-insensitive and Na(+)-independent pHi recovery process was sought and appeared to be a proton pump. In the absence of Na+, recovery from an acid load was completely blocked by the highly specific blocker of vacuolar-type (v-type) H+ ATPase, bafilomycin A1 (BA1). In normal Na+ containing solutions, exposure to BA1 caused a small acid shift in baseline pHi and slowed recovery rate from NH4(+)-induced acid loads by about 32%. The rate of Na(+)-independent pHi recovery was increased by depolarization with 50 mM [K+] solution, and this effect was rapidly reversible and blocked by BA1. These results indicate that, in CO2/HCO3(-)-free solution, pHi regulation in hippocampal astrocytes was mediated by Na(+)-H+ exchange and by a BA1-inhibitable proton pump. Because the proton pump's activity was influenced by membrane potential, this acid exporting mechanism could contribute to the depolarization-induced alkalinization that is seen in astrocytes. Although v-type H(+)-ATPase had been previously isolated from the brain, this is the first report indicating that it has a role in regulating pHi in brain cells.
Collapse
Affiliation(s)
- C A Pappas
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
20
|
Ishikawa S, Okada K, Saito T. Changes in pH affect Cl- removal and AVP action in collecting tubules. Kidney Int 1993; 44:1235-41. [PMID: 8301925 DOI: 10.1038/ki.1993.374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We examined what mechanisms are involved in the alteration by chloride (Cl-) removal of arginine vasopressin (AVP)-induced cellular cAMP production, and cellular free calcium ([Ca2+]i) mobilization in rat renal papillary collecting tubule cells in culture, using two buffer systems: bicarbonate and non-bicarbonate buffers. The first study was performed in the bicarbonate-supplemented buffer. Removal of Cl-, which was replaced by methylsulfonate or gluconate, increased cellular pH (pHi) from 7.19 to 7.26. AVP increased cellular cAMP production in a dose-dependent manner; 1 x 10(-9) and 1 x 10(-7) M AVP-induced increases in cellular cAMP production were significantly enhanced by the Cl- removal. Also, 1 x 10(-7) M AVP-mobilized [Ca2+]i was augmented by the Cl- removal (181.3 vs. 224.5 nM, P < 0.05). The second study was carried out with the Krebs-Ringer buffered saline (KRB). Removal of Cl- lowered pHi from 7.20 to 7.09. AVP-induced increases in cellular cAMP production were significantly reduced in the Cl(-)-free KRB compared to those in the KRB. The reduction was obtained with KRB containing less than 25 mM Cl-. Similar results were obtained with 2 x 10(-8) M forskolin, a diterpene activator of adenylate cyclase. 1 x 10(-7) M AVP-mobilized [Ca2+]i was also diminished by the Cl(-)-free KRB. These results indicate that Cl- depletion affects the cellular response to AVP mediated via the changes in pHi in renal papillary collecting tubule cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Ishikawa
- Department of Medicine, Jichi Medical School, Tochigi, Japan
| | | | | |
Collapse
|
21
|
Lyall V, Belcher TS, Biber TU. Na+ channel blockers inhibit voltage-dependent intracellular pH changes in principal cells of frog (Rana pipiens) skin. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. COMPARATIVE PHYSIOLOGY 1993; 105:503-11. [PMID: 8101781 DOI: 10.1016/0300-9629(93)90426-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. The relationship between Va and pHi was studied with double-barrelled microelectrodes in principal cells of frog skin (Rana pipiens) when (i) the transepithelial potential (Vt) was clamped at different values of Vt and (ii) when the pH of the apical solution was altered. 2. Under all conditions examined here, depolarization of Va was associated with an increase in pHi and hyperpolarization of Va was accompanied by a decrease in pHi. However, the changes in the basolateral cell membrane potential occurred, either in the same or opposite direction to that of Va depending on the conditions. 3. The voltage-dependent changes in pHi were not affected by H+ transport inhibitors or the complete removal of Na+, Cl- and HCO3- but were effectively inhibited by the application of amiloride (10(-4) M) or benzamil (10(-6)M) on the apical side. 4. A decrease in pH of the apical solution hyperpolarized Va and decreased pHi, an effect that was significantly attenuated when benzamil was present on the apical side. 5. The results indicate the presence of an H+ and/or OH- conductive pathway in the apical cell membrane of the principal cells. The effect of Na+ channel blockers suggests that this pathway proceeds through the apical Na+ channels.
Collapse
Affiliation(s)
- V Lyall
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0551
| | | | | |
Collapse
|
22
|
|
23
|
Ishikawa S, Sakuma N, Okada K, Saito T. Inhibition by N-ethylmaleimide of H(+)-ATPase reduces the cellular action of arginine vasopressin in cultured rat renal papillary collecting tubule cells. Life Sci 1993; 53:1345-51. [PMID: 8412500 DOI: 10.1016/0024-3205(93)90594-s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We examined whether H(+)-ATPase is involved in the control of cellular action of arginine vasopressin (AVP) to produce adenosine 3', 5'-monophosphate (cAMP) and mobilize cellular free calcium ([Ca2+]i) in rat renal papillary collecting tubule cells in culture. N-Ethylmaleimide (NEM), an inhibitor of H(+)-ATPase, reduced the cellular pH (pHi) dose-dependently. AVP increased cellular cAMP production in a dose-dependent manner. 5 x 10(-6) and 1 x 10(-5) M NEM significantly diminished the AVP-induced increase in cAMP production. 1 x 10(-7) M AVP also increased [Ca2+]i from 111.2 to 189.3 nM, which was significantly reduced by NEM in a dose-dependent manner. These results indicate that H(+)-ATPase participates the cellular action of AVP mediated via the pHi control in renal papillary collecting tubule cells.
Collapse
Affiliation(s)
- S Ishikawa
- Department of Medicine, Jichi Medical School, Tochigi, Japan
| | | | | | | |
Collapse
|
24
|
|
25
|
|
26
|
|
27
|
Affiliation(s)
- A Ilundáin
- Department of Fisiología y Biología Animal, Facultad de Farmacia, Sevilla, Spain
| |
Collapse
|
28
|
Kuwahara M, Sasaki S, Marumo F. Mineralocorticoids and acidosis regulate H+/HCO3- transport of intercalated cells. J Clin Invest 1992; 89:1388-94. [PMID: 1314849 PMCID: PMC443007 DOI: 10.1172/jci115727] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The effects of acidosis and mineralocorticoids on cellular H+/HCO3- transport mechanisms were examined in intercalated cells of the outer stripe of outer medullary collecting duct (OMCDo) from rabbit. Intracellular pH (pHi) of intercalated cells was monitored by fluorescence ratio imaging using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). pHi recovered from an acid load at 2.8 +/- 0.5 x 10(-3) pHU/s in the absence of ambient Na+. This pHi recovery rate was similar in chronic acidosis induced by NH4Cl loading, but it was enhanced (+111%) by treatment with deoxycorticosterone acetate (DOCA). In a DOCA-treated group, luminal 10 microM SCH28080 and 0.1 mM omeprazole, H(+)-K(+)-ATPase inhibitors, did not change the pHi recovery rate, while luminal 0.5 mM N-ethylmaleimide blocked the rate by 68%. DOCA, but not acidosis, increased (approximately 40%) initial pHi response to bath HCO3- or Cl- reduction in Na(+)-free condition. After an acid load in the absence of Na+ and HCO3-, pHi response to basolateral Na+ addition was stimulated (+66%) by acidosis, but not by DOCA. Our results suggest that (a) mineralocorticoids stimulate H+/HCO3- transport mechanisms involved in transepithelial H+ secretion, i.e., a luminal NEM-sensitive H+ pump and basolateral Na(+)-independent Cl(-)-HCO3- exchange; and (b) acidosis enhances the activity of basolateral Na(+)-H+ exchange that may be responsible for pHi regulation.
Collapse
Affiliation(s)
- M Kuwahara
- Second Department of Internal Medicine, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|
29
|
Kikeri D, Sun A, Zeidel ML, Hebert SC. Cellular NH4+/K+ transport pathways in mouse medullary thick limb of Henle. Regulation by intracellular pH. J Gen Physiol 1992; 99:435-61. [PMID: 1588302 PMCID: PMC2216601 DOI: 10.1085/jgp.99.3.435] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fluorescence and electrophysiological methods were used to determine the effects of intracellular pH (pHi) on cellular NH4+/K+ transport pathways in the renal medullary thick ascending limb of Henle (MTAL) from CD1 mice. Studies were performed in suspensions of MTAL tubules (S-MTAL) and in isolated, perfused MTAL segments (IP-MTAL). Steady-state pHi measured using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) averaged 7.42 +/- 0.02 (mean +/- SE) in S-MTAL and 7.26 +/- 0.04 in IP-MTAL. The intrinsic cellular buffering power of MTAL cells was 29.7 +/- 2.4 mM/pHi unit at pHi values between 7.0 and 7.6, but below a pHi of 7.0 the intrinsic buffering power increased linearly to approximately 50 mM/pHi unit at pHi 6.5. In IP-MTAL, NH4+ entered cells across apical membranes via both Ba(2+)-sensitive pathway and furosemide-sensitive Na+:K+(NH4+):2Cl- cotransport mechanisms. The K0.5 and maximal rate for combined apical entry were 0.5 mM and 83.3 mM/min, respectively. The apical Ba(2+)-sensitive cell conductance in IP-MTAL (Gc), which reflects the apical K+ conductance, was sensitive to pHi over a pHi range of 6.0-7.4 with an apparent K0.5 at pHi approximately 6.7. The rate of cellular NH4+ influx in IP-MTAL due to the apical Ba(2+)-sensitive NH4+ transport pathway was sensitive to reduction in cytosolic pH whether pHi was changed by acidifying the basolateral medium or by inhibition of the apical Na+:H+ exchanger with amiloride at a constant pHo of 7.4. The pHi sensitivities of Gc and apical, Ba(2+)-sensitive NH4+ influx in IP-MTAL were virtually identical. The pHi sensitivity of the Ba(2+)-sensitive NH4+ influx in S-MTAL when exposed to (apical+basolateral) NH4Cl was greater than that observed in IP-MTAL where NH4Cl was added only to apical membranes, suggesting an additional effect of intracellular NH4+/NH3 on NH4+ influx. NH4+ entry via apical Na+:K+ (NH4+):2Cl- cotransport in IP-MTAL was somewhat more sensitive to reductions in pHi than the Ba(2+)-sensitive NH4+ influx pathway; NH4+ entry decreased by 52.9 +/- 13.4% on reducing pHi from 7.31 +/- 0.17 to 6.82 +/- 0.14. These results suggest that pHi may provide a negative feedback signal for regulating the rate of apical NH4+ entry, and hence transcellular NH4+ transport, in the MTAL. A model incorporating these results is proposed which illustrates the role of both pHi and basolateral/intracellular NH4+/NH3 in regulating the rate of transcellular N H4+ transport in the MTAL.
Collapse
Affiliation(s)
- D Kikeri
- Harvard Center for the Study of Kidney Disease, Harvard Medical School
| | | | | | | |
Collapse
|
30
|
Nutting CW, Islam S, Ye MH, Batlle DC, Daugirdas JT. The vasorelaxant effects of acetate: role of adenosine, glycolysis, lyotropism, and pHi and Cai2+. Kidney Int 1992; 41:166-74. [PMID: 1317476 DOI: 10.1038/ki.1992.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mechanism of acetate vasorelaxation is unknown. In the rat caudal artery, acetate has a vasorelaxant effect and also increases cyclic AMP. Here we evaluate the role of adenosine, of possible glycolysis inhibition by acetate, of the lyotropic properties of acetate and other anions, and of intracellular calcium and pH. Adenosine per se did not relax the caudal artery in the range of 10(-8) to 10(-2) M. Preincubation with adenosine deaminase (ADA, 5.0 U/ml) or with 8-phenyltheophylline (8-PT, 10(-6) to 10(-4) M) increased, rather than blocked the vasorelaxant effect of acetate. Oxypurinol (10(-3) M) or the nucleoside transport inhibitor NBMPR (10(-4) M) had no effect on acetate relaxation. Whereas acetate increased tissue cyclic AMP content, 10(-3) M adenosine or 10(-6) M PIA had no effect. In strips studied under conditions of inhibited glycolysis (no glucose, with 11 mM 2-deoxyglucose, 1.0 mM pyruvate, and 0.5 mM 5-iodoacetate), acetate-induced relaxation, as well as acetate-induced cyclic AMP generation, tended to be reduced but not significantly so. Other anions relaxed vascular strips in relation to their lyotropic number, but only at higher doses, and they did not stimulate cyclic AMP formation. Acetate (10 mM) caused a transient fall in Ca2+i followed by a slight, sustained rise. A concomitant decrease in pHi was seen. DIDS, which blocks the relaxant and cyclic AMP effects of acetate, had no effect on the pHi decrease, but did decrease the rate of pHi recovery.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C W Nutting
- Department of Research and Medicine, Westside VA Medical Center, Chicago, Illinois
| | | | | | | | | |
Collapse
|
31
|
Thomson RB, Phillips JE. Electrogenic proton secretion in the hindgut of the desert locust, Schistocerca gregaria. J Membr Biol 1992; 125:133-54. [PMID: 1313114 DOI: 10.1007/bf00233353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cellular mechanisms responsible for rectal acidification in the desert locust, Schistocerca gregaria, were investigated in isolated recta mounted as flat sheets in modified Ussing chambers. Previous studies conducted in the nominal absence of exogenous CO2 and HCO3- suggested that the acidification was due to a proton-secretory rather than bicarbonate-reabsorptive mechanism (Thomson, R.B., Speight, J.D., Phillips, J.E. 1988. J. Insect Physiol. 34:829-837). This conclusion was confirmed in the present study by demonstrating that metabolic CO2 could not contribute sufficient HCO3- to the lumen to account for the rates of rectal acidification observed under the nominally CO2/HCO3(-)-free conditions used in these investigations. Rates of luminal acidification (JH+) were completely unaffected by changes in contraluminal pH, but could be progressively reduced (and eventually abolished) by imposition of either transepithelial pH gradients (lumen acid) or transepithelial electrical gradients (lumen positive). Under short-circuit current conditions, the bulk of JH+ was not dependent on Na+, K+, Cl-, Mg2+, or Ca2+ and was due to a primary electrogenic proton translocating mechanism located on the apical membrane. A small component (10-16%) of JH+ measured under these conditions could be attributed to an apical amiloride-inhibitable Na+/H+ exchange mechanism.
Collapse
Affiliation(s)
- R B Thomson
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
32
|
Brown SE, Heming TA, Benedict CR, Bidani A. ATP-sensitive Na(+)-H+ antiport in type II alveolar epithelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 261:C954-63. [PMID: 1662908 DOI: 10.1152/ajpcell.1991.261.6.c954] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Type II alveolar epithelial cells in suspension have been previously shown to possess a Na(+)-H+ antiporter that modulates recovery from an intracellular acid load in the nominal absence of HCO-3 [E. Nord, S. Brown, and E. Crandall. Am. J. Physiol. 252 (Cell Physiol. 21): C490-C498, 1987]. Such a Na(+)-dependent mechanism has also been demonstrated in cultured type II cell monolayers (K. Sano et al. Biochim. Biophys. Acta 939: 449-458, 1988). It has recently been suggested that cultured type II cells possess a H(+)-ATPase that contributes to recovery from an intracellular acid load [R. Lubman, S. Danto, and E. Crandall. Am. J. Physiol. 257 (Lung Cell. Mol. Physiol. 1): L438-L445, 1989]. The present study was undertaken to investigate and characterize the mechanisms by which cultured type II cells recover from an intracellular acid load in the nominal absence of HCO-3. Cultured type II cell monolayers were loaded with the pH-sensitive probe 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein, and the characteristics of recovery from an imposed intracellular acid load were studied. Recovery of intracellular pH (pHi) was found to be strictly Na(+)-dependent and inhibited greater than or equal to 95% by 1 mM amiloride. Initial rate of recovery was highly sensitive to pHi, with recovery rates varying inversely with increasing pHi. An acidic extracellular pH (6.5) abolished pHi recovery. Treatment of type II cells with either the sulfhydryl reagent N-ethylmaleimide, a nonspecific sulfhydryl reagent, or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, a specific vacuolar H(+)-ATPase inhibitor at the concentration tested, resulted in marginal but not statistically significant decrements in pHi recovery. Intracellular ATP depletion, using KCN or replacement of glucose by a nonmetabolizable glucose analogue, reduced pHi recovery by 70-75% relative to control values. Sensitivity to ATP was apparent even under conditions that preserved the transmembrane Na+ gradient. Taken together, these data are most consistent with a single mechanism for pHi recovery in the absence of HCO3-. We interpret this mechanism to be an ATP-sensitive Na(+)-H+ antiporter that acts to reestablish pHi in type II alveolar epithelial cells.
Collapse
Affiliation(s)
- S E Brown
- Pulmonary Research Laboratories, University of Texas Medical Branch, Galveston 77550
| | | | | | | |
Collapse
|
33
|
Cell pH Regulation in Collecting Tubules. Nephrology (Carlton) 1991. [DOI: 10.1007/978-3-662-35158-1_147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Abstract
The development of esophagitis is the result of hydrogen ion diffusion into the mucosa leading to cellular acidification and necrosis. In these studies, whether esophageal cells possess transport system(s) that can respond to cytoplasmic acidification was assessed; specifically, whether esophageal cells possess an Na+,H+ antiport was determined. Nucleated esophageal cells were isolated from rabbit esophagi using a trypsin-digestion technique that yielded 5-8 x 10(6) cells per esophagus, of which 74% +/- 3% were basal and 26% +/- 8% were squamous. Trypan blue was excluded by 95% +/- 2% of the cells. Cytoplasmic pH (pHi) was measured using the pH-sensitive fluorescence dye 2',7'-bis(2-carboxyethyl)-5 (and -6) carboxyfluorescein acetoxymethyl ester. Cells were acidified to the desired pHi by suspension in solutions with varying external pH (pHo) in the presence of nigericin. When cells acidified to pHi 6.3 were suspended in a choline chloride solution (pHo 7.4), cytoplasmic pHi did not increase. In contrast, Nao+ caused a concentration-dependent increase in the rate of cytoplasmic alkalinization with saturation occurring above 50 mmol/L Nao+. The transporter behaved according to first-order Michaelis-Menten type kinetics with respect to external Na+ and had an apparent Km for Nao+ of 38.4 mmol/L. In contrast, the transporter behaved with greater than first-order kinetics with respect to external Na+ and had an apparent Km for Nao+ of 38.4 mmol/L. In contrast, the transporter behaved with greater than first-order kinetics with respect to cytoplasmic hydrogen ion concentration. Amiloride (10(-4) mol/L) caused a reversible inhibition of Na(+)-dependent alkalinization. Amiloride-sensitive cytoplasmic alkalinization was not observed when either cholineo or Ko+ was substituted for Nao+, while Lio+ resulted in alkalinization that was 60% +/- 8% of that seen with equimolar concentrations of Nao+. The basal pHi of cells suspended in a bicarbonate-free 130 mmol/L NaCl solution (pHo 7.4) averaged 7.42 +/- 0.03 (n = 10); amiloride (10(-4) mmol/L caused the basal pHi to decrease to 7.26 +/- 0.05 (n = 10; P less than 0.0025). When cells were suspended in a choline chloride (pHo 7.4) solution, pHi averaged 7.29 +/- 0.06 (n = 10) (P less than 0.0025 compared with Nao+). These studies indicate that nucleated esophageal cells obtained from rabbits possess an amiloride-sensitive Na+,H+ antiport that functions to regulate basal pHi and responds to intracellular acidification.
Collapse
Affiliation(s)
- T J Layden
- Department of Medicine, University of Illinois, Chicago
| | | | | | | | | |
Collapse
|
35
|
Wang X, Kurtz I. H+/base transport in principal cells characterized by confocal fluorescence imaging. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 259:C365-73. [PMID: 2382707 DOI: 10.1152/ajpcell.1990.259.2.c365] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A dual-excitation inverted confocal laser-scanning microscope has been developed for measuring intracellular pH (pHi) using 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF) in individual cells in the isolated perfused cortical collecting tubule (CCT). This new microscope has superior depth discrimination, which eliminates the contribution of fluorescence information from cells outside the plane of focus. pHi was monitored in real time from a spot 0.55 microns in diameter within a single cell. Experiments were performed to examine the apical and basolateral membrane H+/base transport properties of single principal cells. The results indicate that principal cells possess a basolateral membrane Na(+)-independent Cl-/base exchanger, a Na(+)-H+ antiporter, and a Na+/base cotransporter. No evidence was found for an apical membrane Na(+)-independent Cl-/base exchanger. The data provide evidence for base efflux pathways in the principal cell and are compatible with the hypothesis that principal cells contribute importantly to H+/base transport in the CCT. The new methodology described in this report can be applied to other epithelia that are optically heterogeneous in the depth dimension.
Collapse
Affiliation(s)
- X Wang
- Department of Medicine, University of California, School of Medicine, Los Angeles 90024
| | | |
Collapse
|
36
|
Andresen MC, Yang MY. Dynamic and static conditioning pressures evoke equivalent rapid resetting in rat aortic baroreceptors. Circ Res 1990; 67:303-11. [PMID: 2376072 DOI: 10.1161/01.res.67.2.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A recent study suggested that exposure of carotid sinus baroreceptors to pulsatile pressures for a period of minutes can decrease the static threshold pressure at which they begin to discharge; that is, the exposure can sensitize baroreceptors. Another study found that the rapid resetting of carotid sinus baroreceptors to elevated conditioning pressures was reduced or eliminated by pulsatile conditioning. In the present study, we tested the responses of aortic baroreceptors in an in vitro preparation to a range of static and dynamic conditioning pressures lasting 15 minutes. Slow test ramps of increasing pressure were used to assess static discharge properties (threshold and gain). To be accepted for analysis (n = 12), each baroreceptor had to successfully complete static and dynamic test sequences for at least three different conditioning mean arterial pressure levels. We measured aortic diameter simultaneously with pressure and baroreceptor discharge. Generally, we found no significant difference between the static pressure threshold measured before and after dynamic conditioning. The static pressure threshold was linearly related to the mean level of the conditioning pressure, and no differences in the slopes of these relations (a measure of the ability of a baroreceptor to rapidly reset) were found between static and dynamic conditioning. After dynamic conditioning, discharge rates returned to near control levels in all cases within a few seconds of the return to static conditioning. Two baroreceptors exposed to the vasodilator nitroprusside throughout the experiment showed similar results. Diameter measurements indicated no role of vessel diameter changes during dynamic or static conditioning. In conclusion, we found no evidence of a long-lasting sensitization of aortic baroreceptors by dynamic pressure inputs.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M C Andresen
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
37
|
Stanton RC, Boxer DC, Seifter JL. Expression of Na(+)-H+ exchange and ATP-dependent proton extrusion in growing rat IMCD cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 258:C416-20. [PMID: 2156437 DOI: 10.1152/ajpcell.1990.258.3.c416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the last step of urinary acidification, the inner medullary collecting duct (IMCD) is thought to secrete protons into the tubular lumens by means of a H(+)-translocating adenosinetriphosphatase (H(+)-ATPase). However, recent studies have also shown the existence of Na(+)-H+ exchange activity in IMCD cells. Although the physiological function of the antiporter in IMCD cells is unknown, activation of Na(+)-H+ exchange in other cell-culture systems has been suggested to be closely associated with the process of cell growth. Thus presence of Na(+)-H+ exchange may relate to the growth phase of these cells. To examine intracellular pH (pHi) regulation in growing IMCD cells, we studied proton transport by Na(+)-dependent and Na(+)-independent mechanisms by microfluorimetry using the pHi-sensitive dye 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein acetoxymethyl ester (BCECF/AM). Actively growing cells, defined by [3H]thymidine incorporations, demonstrated an amiloride-sensitive Na(+)-dependent pHi recovery after an acid load. No pHi recovery was evident in the absence of Na+, indicating the importance of Na(+)-H+ exchange for pHi recovery. However, when evaluated in quiescent cells, Na(+)-dependent pHi recovery appeared to be diminished. Instead, a Na(+)-independent pHi recovery which was inhibitable by ATP depletion and by 1 mM N-ethylmaleimide was present, suggesting function of a H(+)-ATPase. These findings indicate that Na(+)-dependent proton extrusion activity (Na(+)-H+ exchange) but not Na(+)-independent proton extrusion activity is expressed during the rapid growth phase of IMCD cells, whereas the more quiescent cells express Na(+)-independent ATP-dependent proton extrusion activity and a possibly less active Na(+)-H+ exchanger.
Collapse
Affiliation(s)
- R C Stanton
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
38
|
Kinne RK, Grupp C, Grunewald RW. [Study of kidney function using isolated cells]. KLINISCHE WOCHENSCHRIFT 1990; 68:199-206. [PMID: 2179622 DOI: 10.1007/bf01662715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
After summarizing the progress which has been made with regard to the isolation and characterization of homogeneous cell populations from the kidney, a brief survey of current techniques available for the analysis of intracellular parameters is given. Special emphasis is thereby placed on the use of electron probe X-ray microanalysis to determine intracellular elements and on "in vivo" nuclear magnetic resonance to define metabolic pathways in isolated cells. These methods have been applied to study ion and substrate fluxes in isolated collecting duct cells and the response of these cells to changes in osmolality of the extracellular medium. This response involves initially fast water movements accompanied by changes in intracellular sodium and chloride but not potassium concentration. Longterm adaptation is achieved by the adjustment of the intracellular concentration of "organic osmolytes" such as sorbitol, myoinositol, glycerophosphorylcholine, and betaine through changes in the rate of efflux of these metabolites from the cell. In the last section the effect of experimentally induced diabetes mellitus on the osmoregulation in isolated collecting ducts is described.
Collapse
Affiliation(s)
- R K Kinne
- Max-Planck-Institut für Systemphysiologie, Dortmund
| | | | | |
Collapse
|
39
|
Hays SR, Alpern RJ. Basolateral membrane Na(+)-independent Cl-/HCO3- exchange in the inner stripe of the rabbit outer medullary collecting tubule. J Gen Physiol 1990; 95:347-67. [PMID: 2307960 PMCID: PMC2216319 DOI: 10.1085/jgp.95.2.347] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The inner stripe of the outer medullary collecting tubule is a major distal nephron segment in urinary acidification. To examine the mechanism of basolateral membrane H+/OH-/HCO3- transport in this segment, cell pH was measured microfluorometrically in the inner stripe of the rabbit outer medullary collecting tubule perfused in vitro using the pH-sensitive fluorescent dye, (2',7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein. Decreasing peritubular pH from 7.4 to 6.8 (changing [HCO3-] from 25 to 5 mM) caused a cell acidification of 0.25 +/- 0.02 pH units, while a similar luminal change resulted in a smaller cell acidification of only 0.04 +/- 0.01 pH units. Total replacement of peritubular Cl- with gluconate caused cell pH to increase by 0.18 +/- 0.04 pH units, an effect inhibited by 100 microM peritubular DIDS and independent of Na+. Direct coupling between Cl- and base was suggested by the continued presence of peritubular Cl- removal-induced cell alkalinization under the condition of a cell voltage clamp (K(+)-valinomycin). In addition, 90% of basolateral membrane H+/OH-/HCO3- permeability was inhibited by complete removal of luminal and peritubular Cl-. Peritubular Cl(-)-induced cell pH changes were inhibited two-thirds by removal of exogenous CO2/HCO3- from the system. The apparent Km for peritubular Cl- determined in the presence of 25 mM luminal and peritubular [HCO3-] was 113.5 +/- 14.8 mM. These results demonstrate that the basolateral membrane of the inner stripe of the outer medullary collecting tubule possesses a stilbene-sensitive Cl-/HCO3- exchanger which mediates 90% of basolateral membrane H+/OH-/HCO3- permeability and may be regulated by physiologic Cl- concentrations.
Collapse
Affiliation(s)
- S R Hays
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235
| | | |
Collapse
|
40
|
|
41
|
Jacobson HR, Schuster VL, Breyer MD. Characterization of the proton-secreting cell of the rabbit medullary collecting duct. Ann N Y Acad Sci 1989; 574:428-37. [PMID: 2561328 DOI: 10.1111/j.1749-6632.1989.tb25181.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- H R Jacobson
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | | | |
Collapse
|
42
|
Affiliation(s)
- E Kinne-Saffran
- Max-Planck-Institut für Systemphysiologie, Dortmund, West Germany
| |
Collapse
|
43
|
Janoshazi A, Seifter JL, Solomon AK. Interactions between anion exchange and other membrane proteins in rabbit kidney medullary collecting duct cells. J Membr Biol 1989; 112:39-49. [PMID: 2593138 DOI: 10.1007/bf01871162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In separated outer medullary collecting duct (MCD) cells, the time course of binding of the fluorescent stilbene anion exchange inhibitor, DBDS (4,4'-dibenzamido-2,2'-stilbene disulfonate), to the MCD cell analog of band 3, the red blood cell (rbc) anion exchange protein, can be measured by the stopped-flow method and the reaction time constant, tau TDBDS, can be used to report on the conformational state of the band 3 analog. In order to validate the method we have now shown that the ID50D,DBDS,MCD (0.5 +/- 0.1 microM) for the H2-DIDS (4,4'-diisothiocyano-2,2'-dihydrostilbene disulfonate) inhibition of tau DBDS is in agreement with the ID50,Cl-MCD (0.94 +/- 0.07 microM) for H2-DIDS inhibition of MCD cell Cl- flux, thus relating tau DBDS directly to anion exchange. The specific cardiac glycoside cation transport inhibitor, ouabain, not only modulates DBDS binding kinetics, but also increases the time constant for Cl- exchange by a factor of two, from tau Cl- = 0.30 +/- 0.02 sec to 0.56 +/- 0.06 sec (30 mM NaHCO3). The ID50,DBDS,MCD for the ouabain effect on DBDS binding kinetics is 0.003 +/- 0.001 microM, so that binding is about an order of magnitude tighter than that for inhibition of rbc K+ flux (KI,K+,rbc = 0.017 microM). These experiments indicate that the Na+,K+-ATPase, required to maintain cation gradients across the MCD cell membrane, is close enough to the band 3 analog that conformational information can be exchanged. Cytochalasin E (CE), which binds to the spectrin/actin complex in rbc and other cells. modulates DBDS binding kinetics with a physiological ID50,DBDS,MCD (0.076 +/- 0.005 microM); 2 microM CE also more than doubles the Cl- exchange time constant from 0.20 +/- 0.04 sec to 0.50 +/- 0.08 sec (30 mM NaHCO3). These experiments indicate that conformational information can also be exchanged between the MCD cell band 3 analog and the MCD cell cytoskeleton.
Collapse
Affiliation(s)
- A Janoshazi
- Biophysical Laboratory, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
44
|
Breyer MD, Jacobson HR. Regulation of rabbit medullary collecting duct cell pH by basolateral Na+/H+ and Cl-/base exchange. J Clin Invest 1989; 84:996-1004. [PMID: 2547843 PMCID: PMC329747 DOI: 10.1172/jci114264] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The collecting duct of the inner stripe outer medulla (OMCDi) is a major site of distal nephron acidification. Using the pH sensitive fluorescent dye 2'-7'-bis(carboxyethyl)-5,6,-carboxyfluorescein (BCECF) and quantitative spectrofluorometry to measure intracellular pH in isolated perfused OMCDi, we have characterized basolateral transport processes responsible for regulation of intracellular pH. Experiments suggesting the existence of basolateral Cl-/base exchange were performed. In HCO3- containing buffers, bath Cl- replacement resulted in reversible alkalinization of the OMCDi from 7.22 +/- 0.05 to 7.57 +/- 0.12. Similarly 0.1 mM bath 4',4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS) alkalinized the OMCDi from 7.14 +/- 0.09 to 7.34 +/- 0.09 and blocked further alkalinization by bath Cl- removal (delta = + 0.02 pH units). The concentration dependence kinetics of Cl-/base exchange revealed a K1/2 of 10 mM for external Cl- with a Vmax of 0.50 pH U/min. Experiments suggesting the existence of basolateral Na+/H+ exchange were also performed. Replacement of bath Na+ by tetramethylammonium resulted in reversible cell acidification (7.14 +/- 0.09 to 6.85 +/- 0.1). Tubules that were acidified by a brief exposure to NH4Cl displayed recovery of cell pH back to baseline at a rate that was highly dependent on bath Na+ concentration. Half maximal recovery rate was achieved at 7 mM bath Na+ and Vmax was 0.605 pH U/min. The Na+-dependent rate of cell pH recovery after acidification was blocked by 0.2 mM bath amiloride. These results suggest that intracellular pH in the OMCDi is regulated by parallel basolateral Na+/H+ exchange and Cl-/base exchange.
Collapse
Affiliation(s)
- M D Breyer
- Department of Internal Medicine, Nashville Veterans Administration Hospital, Tennessee
| | | |
Collapse
|
45
|
Bidani A, Brown SE, Heming TA, Gurich R, Dubose TD. Cytoplasmic pH in pulmonary macrophages: recovery from acid load is Na+ independent and NEM sensitive. THE AMERICAN JOURNAL OF PHYSIOLOGY 1989; 257:C65-76. [PMID: 2526587 DOI: 10.1152/ajpcell.1989.257.1.c65] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The pulmonary macrophage plays a primary role in the immunological defense of the lung. Although many studies have been devoted to elucidation of its phagocytic and secretory functions, little is known of its membrane transport properties or of how it regulates intracellular pH (pHi). The purpose of this study, therefore, was to determine base-line pHi and the mechanism(s) by which the cell recovers pHi when challenged with an intracellular acid load. Through the use of the pH-sensitive fluorescent dye, 2,7-biscarboxyethyl-5(6)-carboxy-fluorescein (BCECF), base-line pHi was estimated to be 7.24 +/- 0.03. Cells were acidified by two methods, nigericin and weak acids, while recovery (dpHi/dt) was monitored. The rate of recovery was found to be independent of external Na+ and K+ and was insensitive to amiloride. Pretreatment with 4,4'-diiso-thiocyanatostilbene-2,2'-disulfonic acid, an inhibitor of Cl- -HCO3- exchange, was also without effect on recovery from an intracellular acid load in these cells, under nominally HCO3- -free conditions. In contrast, N-ethylmaleimide (NEM) and N,N'-dicyclohexylcarbodiimide, nonspecific inhibitors of proton adenosinetriphosphatases (ATPases), virtually abolished pHi recovery. Efflux of H+ equivalents by pulmonary macrophages was measured by techniques involving both pH stat titration and the effect on fluorescence of extracellular BCECF. Basal H+ extrusion was approximately 2.75 +/- 0.64 nmol H+.min-1.10(6) cells-1 and was enhanced to approximately 26.0 +/- 6.95 nmol H+.min-1.10(6) cells-1 in acid-loaded cell suspensions. The basal rate of H+ extrusion was reduced to approximately 0.84 +/- 0.31 nmol H+.min-1.10(6) cells-1 in the presence of 1 mM NEM. These results suggest that recovery of cytoplasmic pH from an intracellular acid load, as well as regulation of pHi, under the conditions examined, is not mediated by a Na+-H+ exchanger in these cells. Rather, the data are consistent with the presence of an H+-ATPase in the plasma membrane of pulmonary macrophages.
Collapse
Affiliation(s)
- A Bidani
- Department of Medicine, University of Texas Medical Branch, Galveston 77550
| | | | | | | | | |
Collapse
|
46
|
Teti A, Blair HC, Teitelbaum SL, Kahn AJ, Koziol C, Konsek J, Zambonin-Zallone A, Schlesinger PH. Cytoplasmic pH regulation and chloride/bicarbonate exchange in avian osteoclasts. J Clin Invest 1989; 83:227-33. [PMID: 2910910 PMCID: PMC303666 DOI: 10.1172/jci113863] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Osteoclasts resorb bone by first attaching to the bone surface and then secreting protons into an isolated extracellular compartment formed at the cell-bone attachment site. This secretion of protons (local acidification) is required to solubilize bone hydroxyapatite crystals and for activity of bone collagen-degrading acid proteases. However, the large quantity of protons required, 2 mol/mol of calcium, would result in an equal accumulation of cytosolic base equivalents. This alkaline load must be corrected to maintain cytosolic pH within physiologic limits. In this study, we have measured cytoplasmic pH with pH-sensitive fluorescent compounds, while varying the extracellular ionic composition of the medium, to determine the nature of the compensatory mechanism used by osteoclasts during bone resorption. Our data show that osteoclasts possess a chloride/bicarbonate exchanger that enables them to maintain normal intracellular pH in the face of a significant proton efflux. This conclusion follows from the demonstration of a dramatic cytoplasmic acidification when osteoclasts that have been incubated in bicarbonate-containing medium are transferred into bicarbonate-free medium. This acidification is absolutely dependent on and proportional to medium [Cl-]. Furthermore, acidification is inhibited by the classic inhibitor of red cell anion exchange, 4,4'-diisothiocyanatostilbene-2,2'-disulfonate, and by diphenylamine-2-carboxylate, an inhibitor of chloride specific channels. However, the acidification process is neither energy nor sodium dependent. The physiologic importance of chloride/bicarbonate exchange is demonstrated by the chloride dependence of recovery from an endogenous or exogenous alkaline load in osteoclasts. We conclude that chloride/bicarbonate exchange is in large part responsible for cytoplasmic pH homeostasis of active osteoclasts, showing that these cells are similar to renal tubular epithelial cells in their regulation of intracellular pH.
Collapse
Affiliation(s)
- A Teti
- Institute of Human Anatomy, University of Bari Medical School, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Swallow CJ, Grinstein S, Rotstein OD. Cytoplasmic pH regulation in macrophages by an ATP-dependent and N,N′-dicyclohexylcarbodiimide-sensitive mechanism. Possible involvement of a plasma membrane proton pump. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77672-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Madsen KM, Clapp WL, Verlander JW. Structure and function of the inner medullary collecting duct. Kidney Int 1988; 34:441-54. [PMID: 3059025 DOI: 10.1038/ki.1988.201] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Kinne RK, Pavenstädt-Grupp I, Grupp C, Jans A, Grunewald RW. [Transport mechanisms and metabolic processes in isolated cells of the collecting tubule of the kidney papilla]. KLINISCHE WOCHENSCHRIFT 1988; 66:836-42. [PMID: 2846946 DOI: 10.1007/bf01728944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Taking into account recent results obtained with isolated papillary collecting duct cells the metabolic pathways and membrane transport systems of collecting duct cells are reviewed. The plasma membranes contain a luminal proton AT-Pase and a contraluminal Cl-/HCO3- exchanger which are involved in proton secretion; a luminal sodium channel and a contraluminal Na+/K+-AT-Pase for sodium reabsorption; a K+ channel for potassium secretion, and a Na+/K+/Cl- cotransport system for chloride transport and/or volume regulation. The plasma membranes also possess transport systems for organic substrates and organic osmolytes. D-glucose, the main substrate of the papillary collecting duct is taken up into the cell by a sodium-independent D-glucose transport system with a Km of 1.2 mM. The plasma membrane also contains mechanisms which mediate sorbitol release into the medium. This mechanism is stimulated when cells are exposed to media with a low osmolality and inhibited when cells are exposed to media with a high osmolality. D-glucose is used as metabolic substrate in anaerobic and aerobic glycolysis and as precursor for sorbitol synthesis via the aldose reductase, which is highly enriched in papillary collecting duct cells. The cells also show gluconeogenic activity as evidenced by incorporation of labeled carbon from L-alanine into glycerol, sorbitol, and myo-inositol. Accordingly, the cells show fructose-1,6-biphosphatase activity. Sorbitol synthesis in contrast to sorbitol permeability is not affected by osmolarity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R K Kinne
- Max-Planck-Institut für Systemphysiologie, Dortmund
| | | | | | | | | |
Collapse
|
50
|
Zeidel ML, Kikeri D, Silva P, Burrowes M, Brenner BM. Atrial natriuretic peptides inhibit conductive sodium uptake by rabbit inner medullary collecting duct cells. J Clin Invest 1988; 82:1067-74. [PMID: 2458385 PMCID: PMC303621 DOI: 10.1172/jci113663] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The inner medullary collecting duct (IMCD) effects net sodium reabsorption under the control of volume regulatory hormones, including atrial natriuretic peptides (ANP). These studies examined the mechanisms of sodium transport and its regulation by ANP in fresh suspensions of IMCD cells. Sodium uptake was inhibited by amiloride but insensitive to furosemide, bu-metanide, and hydrochlorthiazide. These results are consistent with uptake mediated by a sodium channel or Na+/H+ exchange. To determine the role of sodium channels, cells were hyperpolarized by preincubation in high potassium medium followed by dilution into potassium-free medium. Membrane potential measurements using the cyanine dye, Di(S)-C3-5 verified a striking hyperpolarization of IMCD cells using this protocol. Hyperpolarization increased the apparent initial rate of sodium uptake fourfold. Amiloride and ANP inhibited potential-stimulated sodium uptake 73% and 65%, respectively; the two agents together were not additive. Addition of 5 mM sodium to hyperpolarized cells resulted in a significant amiloride-sensitive depolarization. Half-maximal inhibition of potential-driven sodium uptake occurred at 3 X 10(-7) M amiloride, and 5 X 10(-11) M ANP. We conclude that sodium enters IMCD cells via a conductive, amiloride-sensitive sodium channel, which is regulated by ANP. ANP inhibition of luminal sodium entry in the IMCD appears to contribute to the marked natriuretic effect of this hormone in vivo.
Collapse
Affiliation(s)
- M L Zeidel
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|