1
|
Wei H, Zhan L, Lv X, Lin Y, Zheng J, Yang W, Liu J, Sun J, Chen S. Gut commensal Parabacteroides distasonis exerts neuroprotective effects in acute ischemic stroke with hyperuricemia via regulating gut microbiota-gut-brain axis. J Transl Med 2024; 22:999. [PMID: 39501312 PMCID: PMC11539330 DOI: 10.1186/s12967-024-05800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Hyperuricemia is considered as an independent risk factor for acute ischemic stroke (AIS), and some AIS patients are accompanied by an increase in serum uric acid. Recent studies have highlighted the important role of gut microbiota in both hyperuricemia and AIS, but there is little available data on the relationship between gut microbiota and the pathogenesis of AIS with hyperuricemia (HAS). METHODS Here we profiled the gut microbiota composition in 63 HAS patients and 269 non-HAS patients through 16s rRNA sequencing. Male rat with hyperuricemia were subjected to middle cerebral artery occlusion (MCAO) to establish HAS model and were then treated with Parabacteroides distasonis. Subsequently, the neurological deficit, pathological damages and blood-brain barrier disruption were evaluated. Moreover, the levels of ROS, inflammatory cytokines, NF-𝜿B pathway related protein, and vascular density markers were determined. RESULTS There were significant differences of gut microbiota composition between HAS patients and non-HAS patients, and a significant decrease in the abundance of Parabacteroides in HAS patients compared to non-HAS patients. Animal experiments showed that supplementation with P. distasonis increased beneficial commensal bacteria, significantly improved neurological deficits, pathological damages and BBB disruption, as well as reduced the level of serum uric acid in HAS rats. We further demonstrated that P. distasonis treatment decreased ROS level and increased SOD2 level, thereby reducing oxidative stress. Meanwhile, P. distasonis effectively inhibited NF-𝜿B signal pathway and reduced the production of inflammatory cytokines, including TNF-α and IL-1β, alleviating the inflammatory response. Notably, P. distasonis treatment increased the levels of vascular density markers including cluster of differentiation 31 (CD31) and alpha-smooth muscle actin (α-SMA), ameliorating vascular damage in HAS rats. CONCLUSIONS Together, these findings highlighted the important role of P. distasonis in the pathogenesis of HAS, and its mechanism was involved in the regulation of gut microbiota-gut-brain axis, which implied a novel strategy against HAS.
Collapse
Affiliation(s)
- Hongming Wei
- Department of Geriatrics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Lu Zhan
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinhuang Lv
- Department of Geriatrics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yan Lin
- Department of Geriatrics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jie Zheng
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenwen Yang
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jing Sun
- Department of Geriatrics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Songfang Chen
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
2
|
Ishaq M, Zhao L, Soliman MM, Althobaiti S, Al-Harthi HF, Albattal SB, Chengtao W. Ameliorative impacts of Sinapic acid against monosodium urate crystal-induced gouty arthritis and inflammation through different signaling pathways. Toxicol Res (Camb) 2024; 13:tfae130. [PMID: 39175811 PMCID: PMC11336067 DOI: 10.1093/toxres/tfae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/05/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
As known, gout a metabolic disease due to the urate crystals deposition in the joints and affect human health and state. Humans are looking for safe natural remedies from plants with safe, low cost and high effect on their health. Sinapic acid (SA) is found in plants and used as phytoconstituent in human diets. SA has strong antioxidant activity, bone-regenerative, anti-cancer, anti-allergic, and antidiabetic effects. The current study was outlined to confirm the anti-gout potential of SA against monosodium urate crystals (MSU)-induced gouty arthritis in mice. Positive gouty arthritis was conducted by administration of colchicine and MSU in the hind paw. SA was orally administered to negative and positive MSU arthritic mice at 25 and 50 mg/kg, one-hour before MSU injection (100 μg/kg intra-articular). At the end of the experiment, sampling was done for serum, histopathology, oxidative stress and gene expression analysis. The results showed that SA significantly recovered the joint edema and recovered MSU crystals-showed histopathological changes. The production of cytokines, leukocyte recruitment, oxidative stress, and nucleotide-binding domain, leucinerich-containing family, pyrin domain-containing-3 (NLRP3)-inflammasome genes expressions were increased in positive arthritic mice and ameliorated significantly by SA administration. Moreover, SA showed ameliorative impacts on air pouch model of mice as reported by the down regulation in the expression of inflammation related blood cells, proinflammatory cytokines and other transcriptional genes. In conclusion, sinapic acid showed a potential therapeutic use against side effects accompanying gouty arthritis and is good as a supplement against inflammation associated disorders.
Collapse
Affiliation(s)
- Muhammad Ishaq
- Beijing Advance Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Mohamed Mohamed Soliman
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Turabah, Taif 21995, Saudi Arabia
| | - Saed Althobaiti
- Biology Department, Turabah University College, Taif University, Turabah, Taif 21995, Saudi Arabia
| | - Helal F Al-Harthi
- Biology Department, Turabah University College, Taif University, Turabah, Taif 21995, Saudi Arabia
| | - Shatha B Albattal
- General Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Wang Chengtao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Cabău G, Gaal O, Badii M, Nica V, Mirea AM, Hotea I, Pamfil C, Popp RA, Netea MG, Rednic S, Crișan TO, Joosten LA. Hyperuricemia remodels the serum proteome toward a higher inflammatory state. iScience 2023; 26:107909. [PMID: 37810213 PMCID: PMC10550725 DOI: 10.1016/j.isci.2023.107909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Gout is an autoinflammatory disease triggered by a complex innate immune response to MSU crystals and inflammatory triggers. While hyperuricemia is an obligatory risk factor for the development of gout, the majority of individuals with hyperuricemia never develop gout but have an increased risk of developing cardiometabolic disorders. Current management of gout aims at MSU crystal dissolution by lowering serum urate. We apply a targeted proteomic analysis, using Olink inflammation panel, to a large group of individuals with gout, asymptomatic hyperuricemia, and normouricemic controls, and we show a urate-driven inflammatory signature. We add in vivo evidence of persistent immune activation linked to urate exposure and describe immune pathways involved in the pathogenesis of gout. Our results support a pro-inflammatory effect of asymptomatic hyperuricemia and pave the way for new research into targetable mechanisms in gout and cardiometabolic complications of asymptomatic hyperuricemia.
Collapse
Affiliation(s)
- Georgiana Cabău
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Orsolya Gaal
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Medeea Badii
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Valentin Nica
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Ioana Hotea
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - HINT-consortium
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Cristina Pamfil
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu A. Popp
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tania O. Crișan
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Leo A.B. Joosten
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Wang Y, Xu Y, Tan J, Ye J, Cui W, Hou J, Liu P, Li J, Wang S, Zhao Q. Anti-inflammation is an important way that Qingre-Huazhuo-Jiangsuan recipe treats acute gouty arthritis. Front Pharmacol 2023; 14:1268641. [PMID: 37881185 PMCID: PMC10597652 DOI: 10.3389/fphar.2023.1268641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023] Open
Abstract
Background: Acute gouty arthritis (AGA) significantly impairs patients' quality of life. Currently, existing therapeutic agents exhibit definite efficacy but also lead to serious adverse reactions. Therefore, it is essential to develop highly efficient therapeutic agents with minimal adverse reactions, especially within traditional Chinese medicine (TCM). Additionally, food polyphenols have shown potential in treating various inflammatory diseases. The Qingre-Huazhuo-Jiangsuan-Recipe (QHJR), a modification of Si-Miao-San (SMS), has emerged as a TCM remedy for AGA with no reported side effects. Recent research has also highlighted a strong genetic link to gout. Methods: The TCM System Pharmacology (TCMSP) database was used to collect the main chemical components of QHJR and AGA-related targets for predicting the metabolites in QHJR. HPLC-Q-Orbitrap-MS was employed to identify the ingredients of QHJR. The collected metabolites were then used to construct a Drugs-Targets Network in Cytoscape software, ranked based on their "Degree" of significance. Differentially expressed genes (DEGs) were screened in the Gene Expression Omnibus (GEO) database using GEO2R online analysis. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. The DEGs were utilized to construct a Protein-Protein Interaction (PPI) Network via the STRING database. In vivo experimental validation was conducted using colchicine, QHJR, rapamycin (RAPA), and 3-methyladenine (3-MA) as controls to observe QHJR's efficacy in AGA. Synovial tissues from rats were collected, and qRT-PCR and Western blot assays were employed to investigate Ampk-related factors (Ampk, mTOR, ULK1), autophagy-related factors (Atg5, Atg7, LC3, p62), and inflammatory-related factors (NLRP3). ELISA assays were performed to measure inflammatory-related factor levels (IL-6, IL-1β, TNF-α), and H&E staining was used to examine tissue histology. Results: Network analysis screened out a total of 94 metabolites in QHJR for AGA. HPLC-Q-Orbitrap-MS analysis identified 27 of these metabolites. Notably, five metabolites (Neochlorogenic acid, Caffeic acid, Berberine, Isoliquiritigenin, Formononetin) were not associated with any individual herbal component of QHJR in TCMSP database, while six metabolites (quercetin, luteolin, formononetin, naringenin, taxifolin, diosgenin) overlapped with the predicted results from the previous network analysis. Further network analysis highlighted key components, such as Caffeic acid, cis-resveratrol, Apigenin, and Isoliquiritigenin. Other studies have found that their treatment of AGA is achieved through reducing inflammation, consistent with this study, laying the foundation for the mechanism study of QHJR against AGA. PPI analysis identified TNF, IL-6, and IL-1β as hub genes. GO and KEGG analyses indicated that anti-inflammation was a key mechanism in AGA treatment. All methods demonstrated that inflammatory expression increased in the Model group but was reversed by QHJR. Additionally, autophagy-related expression increased following QHJR treatment. The study suggested that AMPKα and p-AMPKα1 proteins were insensitive to 3 MA and RAPA, implying that AMPK may not activate autophagy directly but through ULK1 and mTOR. Conclusion: In conclusion, this study confirms the effectiveness of QHJR, a modified formulation of SMS (a classic traditional Chinese medicine prescription for treating gout), against AGA. QHJR, as a TCM formula, offers advantages such as minimal safety concerns and potential long-term use. The study suggests that the mechanism by which QHJR treats AGA may involve the activation of the AMPK/mTOR/ULK1 pathway, thereby regulating autophagy levels, reducing inflammation, and alleviating AGA. These findings provide new therapeutic approaches and ideas for the clinical treatment of AGA.
Collapse
Affiliation(s)
- Yazhuo Wang
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Xu
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingrui Tan
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaxue Ye
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weizhen Cui
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Hou
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peiyu Liu
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianwei Li
- Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiyuan Wang
- Institute of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyang Zhao
- Institute of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Guerrero-Romero F, Simental-Mendía LE. Hyperuricemia is Associated with the Presence of Metabolically Obese Normal-Weight and Metabolically Healthy Obese Phenotypes. Endocr Res 2022; 47:124-129. [PMID: 35918814 DOI: 10.1080/07435800.2022.2108049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND It is well-recognized that hyperuricemia is a common abnormality among individuals with metabolic syndrome. AIMS The objective of this study was to determine whether hyperuricemia is associated with the metabolically obese normal-weight (MONW) and metabolically healthy obese (MHO) phenotypes. METHODS Men and women equal or greater than 18 years of age were enrolled in a cross-sectional study. Normal-weight subjects were allocated into the MONW or healthy normal-weight (HNW) groups; while obese individuals were divided into the MHO and metabolically unhealthy obese (MUO) subgroups. MONW phenotype was defined by body mass index (BMI) <25.0 kg/m2 accompanied by at least one cardiovascular risk factor (hyperglycemia, elevated blood pressure, hypertriglyceridemia, and low high-density lipoprotein cholesterol), and MHO phenotype was considered in obese subjects (BMI ≥30 kg/m2) without metabolic abnormalities. RESULTS A total of 567 individuals were enrolled; of them, normal-weight subjects were allocated into the MONW (n = 101) and control (n = 72) groups, whereas obese individuals into the MHO (n = 61) and MUO (n = 333) groups. The multiple logistic regression analysis adjusted by age, gender, and body mass index revealed that hyperuricemia is significantly associated with MONW (OR = 5.14; 95% CI: 1.37-19.29) and MHO (OR = 0.34; 95% CI: 0.14-0.82) phenotypes. CONCLUSION Results of our study showed that hyperuricemia is associated with both MONW and MHO phenotypes.
Collapse
Affiliation(s)
- Fernando Guerrero-Romero
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| | - Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| |
Collapse
|
6
|
Fang XY, Qi LW, Chen HF, Gao P, Zhang Q, Leng RX, Fan YG, Li BZ, Pan HF, Ye DQ. The Interaction Between Dietary Fructose and Gut Microbiota in Hyperuricemia and Gout. Front Nutr 2022; 9:890730. [PMID: 35811965 PMCID: PMC9257186 DOI: 10.3389/fnut.2022.890730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
With the worldwide epidemics of hyperuricemia and associated gout, the diseases with purine metabolic disorders have become a serious threat to human public health. Accumulating evidence has shown that they have been linked to increased consumption of fructose in humans, we hereby made a timely review on the roles of fructose intake and the gut microbiota in regulating purine metabolism, together with the potential mechanisms by which excessive fructose intake contributes to hyperuricemia and gout. To this end, we focus on the understanding of the interaction between a fructose-rich diet and the gut microbiota in hyperuricemia and gout to seek for safe, cheap, and side-effect-free clinical interventions. Furthermore, fructose intake recommendations for hyperuricemia and gout patients, as well as the variety of probiotics and prebiotics with uric acid-lowering effects targeting the intestinal tract are also summarized to provide reference and guidance for the further research.
Collapse
Affiliation(s)
- Xin-yu Fang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Liang-wei Qi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Hai-feng Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Peng Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Qin Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Rui-xue Leng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Yin-guang Fan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Bao-zhu Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Hai-feng Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Dong-qing Ye
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
- *Correspondence: Dong-qing Ye
| |
Collapse
|
7
|
Riaz M, Al Kury LT, Atzaz N, Alattar A, Alshaman R, Shah FA, Li S. Carvacrol Alleviates Hyperuricemia-Induced Oxidative Stress and Inflammation by Modulating the NLRP3/NF-κB Pathwayt. Drug Des Devel Ther 2022; 16:1159-1170. [PMID: 35496367 PMCID: PMC9041362 DOI: 10.2147/dddt.s343978] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/22/2022] [Indexed: 12/20/2022] Open
Abstract
Purpose Gouty arthritis is generally induced by the accumulation of monosodium urate (MSU) crystals in the joints due to elevated serum uric acid levels, potentially leading to serious pathological disorders such as nephrolithiasis, renal failure, and acute gouty arthritis. In this study, we aimed to validate the anti-gout effects of carvacrol, a phenolic monoterpene. Materials and Methods Male Sprague–Dawley rats were divided into normal saline, disease group by injecting potassium mono-oxonate (PO) at a dose of 250 mg/kg, and three treatment groups, either with carvacrol 20 mg/kg or 50 mg/kg and 10 mg/kg allopurinol. The blood and tissue samples were subsequently collected and analyzed using different biochemical and histopathological techniques. Results Our results revealed a significant increase in the serum levels of oxidative stress-related markers, namely, uric acid and C-reactive protein (CRP), and NLRP3 inflammasome-dependent inflammatory mediators, including nuclear factor kappa B (NF-κB) and tumor necrosis factor-alpha (TNF-α). Carvacrol administration for seven consecutive days exhibited significant anti-hyperuricemic and anti-inflammatory effects in a dose-dependent manner. Notably, the 50 mg/kg carvacrol treatment was observed to produce results similar to the allopurinol treatment. Furthermore, the renal safety of carvacrol was confirmed by the renal function test. Conclusion Carvacrol potentially alleviates hyperuricemia-induced oxidative stress and inflammation by regulating the ROS/NRLP3/NF-κB pathway, thereby exerting protective effects against joint degeneration.
Collapse
Affiliation(s)
- Muhammad Riaz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Lina Tariq Al Kury
- Department of Natural and Health Sciences Zayed University, Abu Dhabi, United Arab Emirates
| | - Noreen Atzaz
- Department of Pathology, Benazir Bhutto Hospital, Rawalpindi, Pakistan
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen, Shenzhen, People's Republic of China
| |
Collapse
|
8
|
Hong P, Liu Y, Wan Y, Xiong H, Xu Y. An Exponential Curve Relationship Between Serum Urate and Migraine: A Cross-Section Study From NHANES. Front Neurol 2022; 13:871783. [PMID: 35493816 PMCID: PMC9051317 DOI: 10.3389/fneur.2022.871783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 12/25/2022] Open
Abstract
Background Migraine is a common neurological disease and an important cause of disability worldwide. Serum urate is the end product of purine metabolism in Homo sapiens and other hominoids. Previous studies about the serum urate level in migraine were contradictory. Hence, we present a cross-section study to clarify the association between serum urate and migraine and explore the dose effect of serum urate on migraine. Materials and Methods The data for this cross-section study were acquired from the National Health and Nutrition Examination Survey (NHANES). A diagnosis of migraine was made through patient the self-reported and prescription medication. For data analysis, the weighted linear regression model, weighted chi-square test, logistic regression models, smooth curve fittings, and the two-piecewise linear regression model were utilized for data analysis. All data analysis was conducted on Empower software. Results Totally, 18,637 participants were enrolled in this study, of which 208 were migraineurs. The rest were set as control. There existed a statistically significant difference in mean age (p = 0.0389), gender (p< 0.0001), race (p< 0.0001), data release cycle (p = 0.048), drug usage, blood albumin (p< 0.0001), blood total protein (p< 0.0001), hemoglobin (p< 0.0001), serum iron (p< 0.0001), and serum urate (p< 0.0001) between the two groups. According to logistic regression models, there existed no consistent linear relationship between serum urate and migraine before (model 1: odd ratio (OR) = 0.83, p = 0.0004) or after adjusting for confounders (model 2: OR = 0.96, p = 0.5198; model 3: OR = 0.84, p = 0.0184). However, smooth curve fittings found an exponential curve relationship between serum urate and migraine. Furthermore, when serum urate was more than 7.8 mg/dl, higher serum urate was correlated with higher migraine occurrence (model 1: OR = 1.54, p = 0.0022; model 2: OR = 1.51, p = 0.0050; model 3: OR = 1.77, p = 0.0348). Besides, 8 out of the 208 migraineurs had a serum urate higher than 7.8 mg/dl. Conclusions In conclusion, there existed an exponential curve relationship between serum urate and migraine, with an infliction point of 7.8 mg/dl. When serum urate was more than 7.8 mg/dl, increased serum urate was correlated with higher migraine occurrence.
Collapse
Affiliation(s)
- Peiwei Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Department of Geriatric Medicine and Neurology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yao Liu
- Xindu Hospital of Traditional Chinese Medicine, Chengdu Medical College, Chengdu, China
| | - Yang Wan
- Department of Geriatric Medicine and Neurology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hai Xiong
- Department of Geriatric Medicine and Neurology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Medical College of Tibet University, Lhasa, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yanming Xu
| |
Collapse
|
9
|
Jati GAK, Assihhah N, Wati AA, Salasia SIO. Immunosuppression by piperine as a regulator of the NLRP3 inflammasome through MAPK/NF-κB in monosodium urate-induced rat gouty arthritis. Vet World 2022; 15:288-298. [PMID: 35400961 PMCID: PMC8980401 DOI: 10.14202/vetworld.2022.288-298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/05/2022] [Indexed: 01/08/2023] Open
Abstract
Background and Aim: Gouty arthritis is a metabolic disorder involving monosodium urate (MSU) crystal deposition as a key initiator of acute inflammation. Dysregulation of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome is associated with the pathogenesis of gout through the maturation of interleukin-1β. Piperine (PIP) is a phytochemical with an anti-inflammatory activity that has the potential as an alternative treatment for gout. In this study, we examined the effect of PIP in immunosuppression of gout inflammation through the regulation of the NLRP3 inflammasome.
Materials and Methods: An in silico study was done by pharmacodynamic modeling of PIP in suppressing MSU-induced inflammation through disruption of the NLRP3 inflammasome. In vivo tests, including inflammatory assessment, histopathology, cytology, estimation of lipid peroxidation index, and detection of systemic inflammatory reactants, were performed on two groups using preventive and curative protocols.
Results: In silico studies of molecular docking demonstrated the activity of PIP as a competitive inhibitor of the mitogen-activated protein kinases/nuclear factor-kappaB axis, upstream of the NLRP3 inflammasome. Analysis of gout models with curative and preventive protocols revealed the immunosuppression activity of PIP by reducing inflammatory symptoms, inhibiting tophus formation resulting from NETosis, reducing cartilage erosion, inhibiting leukocyte exudation, suppressing lipid peroxidation index, and inhibiting the production of C-reactive protein.
Conclusion: The results demonstrate the activity of PIP as an immunosuppressant in gout flare. These findings indicate the potential of PIP as a candidate for prophylactic and therapeutic agent for the treatment of gouty arthritis.
Collapse
Affiliation(s)
- Galih Aji Kuncoro Jati
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nazzun Assihhah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Anas Ardiana Wati
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Siti Isrina Oktavia Salasia
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
10
|
Snigurska IO, Bozhko VV, Miloslavsky DK, Starchenko TG. GOUT AND HYPERURICEMIA AS ADDITIONAL FACTORS OF DETERIORATION OF CARDIAC AND RENAL PATHOLOGIES. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-3-166-87-99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- I. O. Snigurska
- Government Institution “L.T.Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”
| | - V. V. Bozhko
- Government Institution “L.T.Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”
| | - D. K. Miloslavsky
- Government Institution “L.T.Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”
| | - T. G. Starchenko
- Government Institution “L.T.Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”
| |
Collapse
|
11
|
Lu YH, Geng JH, Wu DW, Chen SC, Hung CH, Kuo CH. Betel Nut Chewing Decreased Calcaneus Ultrasound T-Score in a Large Taiwanese Population Follow-Up Study. Nutrients 2021; 13:3655. [PMID: 34684655 PMCID: PMC8541161 DOI: 10.3390/nu13103655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Chewing betel nut is common in Taiwan. Although previous studies have shown that chewing betel nuts is associated with adverse health effects, findings about the impact on bone density have been inconsistent. Therefore, the aim of this study was to investigate the correlation between betel nut chewing and calcaneus ultrasound T-score in a longitudinal study of 118,856 participants from the Taiwan Biobank. Of these participants, 27,002 were followed up with for a median of 4 years. The T-score of the calcaneus was measured in the non-dominant foot using ultrasound. Multivariable analysis showed that a history of chewing betel nut (coefficient β = -0.232; p < 0.001) was significantly associated with low baseline T-score in all participants (n = 118,856). In addition, a long duration of betel nut chewing (per 1 year; coefficient β = -0.003; p = 0.022) was significantly associated with a low baseline T-score in the participants with a history of chewing betel nut (n = 7210). Further, a long duration of betel nut chewing (per 1 year; coefficient β = -0.004; p = 0.039) was significantly associated with a low ΔT-score in the participants with a history of chewing betel nut (n = 1778) after 4 years of follow-up. In conclusion, our results showed that betel nut chewing was associated with a decrease in calcaneus ultrasound T-score, and thus, it is important to stop chewing betel nut to help prevent an increased risk of osteoporosis in the Taiwanese population.
Collapse
Affiliation(s)
- Ying-Hsuan Lu
- Department of Post Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan;
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
12
|
Goldenberg M, Wang H, Walker T, Kaffenberger BH. Clinical and immunologic differences in cellulitis vs. pseudocellulitis. Expert Rev Clin Immunol 2021; 17:1003-1013. [PMID: 34263717 DOI: 10.1080/1744666x.2021.1953982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: The immunologic mechanisms between cellulitis and pseudocellulitis differ greatly, even though their clinical presentations may overlap.Areas covered: This article discusses cellulitis and common entities within the pseudocellulitis spectrum including acute lymphedema, superficial venous thrombosis, allergic contact dermatitis, lipodermatosclerosis, stasis dermatitis, erythema nodosum, cutaneous gout, and bursitis. The literature search was conducted from PubMed search engine between March and May 2021.Expert commentary: While immunologic differences in cellulitis and the various entities of pseudocellulitis are clear, there is a practice gap in applying these differences to the clinic and hospital setting. Further, existing studies are weakened by the lack of a gold-standard diagnosis in this disease category. Additional work is necessary in developing a gold-standard for the diagnosis and secondly, to project these immunologic differences as biomarkers to differentiate sterile inflammation from a potential life threatening bacterial or fungal infection.
Collapse
Affiliation(s)
- Michael Goldenberg
- Division of Dermatology, Ohio State University College of Medicine, the Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Henry Wang
- Department of Emergency Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Trent Walker
- Division of Dermatology, Ohio State University College of Medicine, the Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Benjamin H Kaffenberger
- Division of Dermatology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Paré G, Vitry J, Merchant ML, Vaillancourt M, Murru A, Shen Y, Elowe S, Lahoud MH, Naccache PH, McLeish KR, Fernandes MJ. The Inhibitory Receptor CLEC12A Regulates PI3K-Akt Signaling to Inhibit Neutrophil Activation and Cytokine Release. Front Immunol 2021; 12:650808. [PMID: 34234773 PMCID: PMC8256872 DOI: 10.3389/fimmu.2021.650808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
The myeloid inhibitory C-type lectin receptor CLEC12A limits neutrophil activation, pro-inflammatory pathways and disease in mouse models of inflammatory arthritis by a molecular mechanism that remains poorly understood. We addressed how CLEC12A-mediated inhibitory signaling counteracts activating signaling by cross-linking CLEC12A in human neutrophils. CLEC12A cross-linking induced its translocation to flotillin-rich membrane domains where its ITIM was phosphorylated in a Src-dependent manner. Phosphoproteomic analysis identified candidate signaling molecules regulated by CLEC12A that include MAPKs, phosphoinositol kinases and members of the JAK-STAT pathway. Stimulating neutrophils with uric acid crystals, the etiological agent of gout, drove the hyperphosphorylation of p38 and Akt. Ultimately, one of the pathways through which CLEC12A regulates uric acid crystal-stimulated release of IL-8 by neutrophils is through a p38/PI3K-Akt signaling pathway. In summary this work defines early molecular events that underpin CLEC12A signaling in human neutrophils to modulate cytokine synthesis. Targeting this pathway could be useful therapeutically to dampen inflammation.
Collapse
Affiliation(s)
- Guillaume Paré
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada
| | - Julien Vitry
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Michael L Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Myriam Vaillancourt
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada
| | - Andréa Murru
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Yunyun Shen
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Sabine Elowe
- Department of Pediatrics, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada.,Reproduction, Mother and Youth Health Division, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Mireille H Lahoud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Paul H Naccache
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Maria J Fernandes
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| |
Collapse
|
14
|
Shi L, Yuan Z, Liu J, Cai R, Hasnat M, Yu H, Feng J, Wang Z, Zhao Q, Wu M, Huang X, Shen F, Yin L, Yu Y, Liang T. Modified Simiaowan prevents articular cartilage injury in experimental gouty arthritis by negative regulation of STAT3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113825. [PMID: 33460754 DOI: 10.1016/j.jep.2021.113825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Simiaowan (MSW) is a traditional Chinese medicine formula that is composed of six herbs. It has been widely used in the treatment of gouty arthritis. AIM OF THE STUDY This study was designed to investigate the effect of MSW on gouty arthritis and explore the possible mechanisms. MATERIAL AND METHODS The rat gouty arthritis model was established by intra-articular injection of Monosodium Urate (MSU) crystal, and then treated with MSW for 5 days. The perimeter of the knee joints was measured in a time-dependent manner and serum samples were collected for the detection of TNF-α, IL-1β, and IL-6 protein levels by ELISA. The protein expressions of MMP-3, TIMP-3, STAT3, and p-STAT3 in cartilage tissues and C28/I2 cells were detected by Western blot, and the levels of proteoglycan in primary chondrocytes and cartilage tissues were determined by toluidine blue staining. In addition, AG490 and IL-6 were used in vitro to explore the function of IL-6/STAT3 pathway in the protective effect of MSU. RESULTS MSW reduced the joint swelling rate in gouty arthritis model and inhibited MSU induced up-regulation of IL-1β, TNF-α, and IL-6 protein levels in serum and synovial fluid. IL-1β induced an increase in p-STAT3 and MMP-3 protein expression in C28/I2 cells, as well as a decrease in TIMP-3. MSW serum inhibited the protein expression changes induced by IL-1β in vitro. Furthermore, inhibition of STAT3 signaling negated the effect of MSW serum on p-STAT3, MMP-3, and TIMP-3 protein levels in C28/I2 cells. MSW also increased the content of proteoglycan significantly both in vivo and in vitro. CONCLUSION Our data indicated that MSW protected rats from MSU-induced experimental gouty arthritis and IL-1β/IL-6/STAT3 pathway played an essential role in the protective effect of MSU against GA.
Collapse
Affiliation(s)
- Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ziqiao Yuan
- China Pharmaceutical University, Nanjing, 210009, China.
| | - Jing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Rui Cai
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210029, China.
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54600, Pakistan
| | - Hui Yu
- Nanjing Xinbai Pharmaceutical Co., Ltd, Nanjing, 210023, China.
| | - Jing Feng
- Nanjing Xinbai Pharmaceutical Co., Ltd, Nanjing, 210023, China.
| | - Zhanglian Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qianqian Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xinxin Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Fei Shen
- Nanjing Xinbai Pharmaceutical Co., Ltd, Nanjing, 210023, China.
| | - Lian Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yun Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tao Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
15
|
Jeong JH, Choi SJ, Ahn SM, Oh JS, Kim YG, Lee CK, Yoo B, Hong S. Neutrophil extracellular trap clearance by synovial macrophages in gout. Arthritis Res Ther 2021; 23:88. [PMID: 33741037 PMCID: PMC7977263 DOI: 10.1186/s13075-021-02472-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 01/27/2023] Open
Abstract
Background Monosodium urate (MSU) crystals, i.e., the central etiological factors in gouty arthritis, induce the formation of neutrophil extracellular traps (NETs). We investigated whether synovial macrophages could clear NETs as a self-resolution mechanism in acute gouty arthritis. Methods Synovial fluid mononuclear cells (SFMCs) were incubated with NETs induced by MSU crystals. NET engulfment was determined based on neutrophil elastase (NE), myeloperoxidase (MPO), and SYTOX Green signals within synovial fluid CD14+ cells. In addition, the correlations between CD14+ cells, MPO-dsDNA complexes, and expression of pro- and anti-inflammatory cytokines were analyzed in the synovial fluid CD14+ macrophages of patients with gouty arthritis. Results Synovial fluid CD14+ macrophages significantly engulfed the MSU crystal-induced NETs, as evidenced by the alteration in SYTOX Green intensity or the presence of NE and MPO in the cytoplasm of CD14+ cells. The proportion of CD14+ macrophages was significantly and inversely correlated with levels of MPO-dsDNA complex in the synovial fluid of gout patients. Synovial fluid CD14+ macrophages cultured with NETs did not show a significant induction in pro- and anti-inflammatory cytokines. Conclusion Synovial fluid macrophages may play an important role in the resolution of MSU crystal-induced gouty inflammation by clearing NETs without causing any significant immunological response. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02472-4.
Collapse
Affiliation(s)
- Ji Hye Jeong
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Su Jin Choi
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Soo Min Ahn
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Ji Seon Oh
- Clinical Research Center, Asan Medical Center, Seoul, South Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Chang-Keun Lee
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Bin Yoo
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Seokchan Hong
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
16
|
Goyal A, Agrawal N. Quercetin: A Potential Candidate For The Treatment Of Arthritis. Curr Mol Med 2021; 22:325-335. [PMID: 33719956 DOI: 10.2174/1566524021666210315125330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
Diet plays a significant role in ensuring healthy life and the bioactive compounds present in food and medicinal plants may be developed as drugs that combat various illnesses. A bioactive flavanoid, quercetin which is a dietary component possesses numerous health-promoting effects. In preclinical models of rheumatoid arthritis, gouty arthritis and osteoarthritis, quercetin has shown significant joint protective effects. Taking into account the significance of this compound, the present review discusses its anti-arthritic properties, demonstrating its mechanism of action for the treatment of arthritis with its therapeutic potential.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 [U.P.]. India
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 [U.P.]. India
| |
Collapse
|
17
|
Alberts A, Klingberg A, Hoffmeister L, Wessig AK, Brand K, Pich A, Neumann K. Binding of Macrophage Receptor MARCO, LDL, and LDLR to Disease-Associated Crystalline Structures. Front Immunol 2020; 11:596103. [PMID: 33363539 PMCID: PMC7753766 DOI: 10.3389/fimmu.2020.596103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Endogenous and exogenous crystalline structures are involved in various pathologies and diseases in humans by inducing sterile inflammation, mechanical stress, or obstruction of excretory organs. The best studied of these diseases is gout, in which crystallization of uric acid in the form of monosodium urate (MSU) mainly in synovial fluid of the joints leads to sterile inflammation. Though some of these diseases have been described for centuries, little is known about if and how the immune system recognizes the associated crystals. Thus, in this study we aimed at identifying possible recognition molecules of MSU using liquid chromatography-mass spectrometry (LC-MS) analysis of MSU-binding serum proteins. Among the strongest binding proteins, we unexpectedly found two transmembrane receptors, namely macrophage receptor with collagenous structure (MARCO) and low-density lipoprotein (LDL) receptor (LDLR). We show that recombinant versions of both human and mouse MARCO directly bind to unopsonized MSU and several other disease-associated crystals. Recombinant LDLR binds many types of crystals mainly when opsonized with serum proteins. We show that this interaction is predominantly mediated by LDL, which we found to bind to all crystalline structures tested except for cholesterol crystals. However, murine macrophages lacking LDLR expression do neither show altered phagocytosis nor interleukin-1β (IL-1β) production in response to opsonized crystals. Binding of LDL to MSU has previously been shown to inhibit the production of reactive oxygen species (ROS) by human neutrophils. We extend these findings and show that LDL inhibits neutrophil ROS production in response to most crystals tested, even cholesterol crystals. The inhibition of neutrophil ROS production only partly correlated with the inhibition of IL-1β production by peripheral blood mononuclear cells (PBMCs): LDL inhibited IL-1β production in response to large MSU crystals, but not small MSU or silica crystals. This may suggest distinct upstream signals for IL-1β production depending on the size or the shape of the crystals. Together, we identify MARCO and LDLR as potential crystal recognition receptors, and show that LDL binding to diverse disease-associated crystalline structures has variable effects on crystal-induced innate immune cell activation.
Collapse
Affiliation(s)
- Anika Alberts
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Annika Klingberg
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Leonie Hoffmeister
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Research Core Unit Proteomics & Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Konstantin Neumann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Zhong L, Li S, Wen Y, Zheng J, Liu F, Cao D, Liu Y. Expansion of Polymorphonuclear Myeloid-Derived Suppressor Cells in Patients With Gout. Front Immunol 2020; 11:567783. [PMID: 33154749 PMCID: PMC7591715 DOI: 10.3389/fimmu.2020.567783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Gout is an inflammatory joint disease caused by monosodium urate (MSU) crystals; however, the mechanism underlying MSU-induced inflammation is unclear. Previous research has suggested that inflammation or cancer can drive the expansion of myeloid-derived suppressor cells (MDSCs). In this study, the role of MDSCs in MSU-induced gout inflammation was evaluated. A total of 28 patients with gout, and 20 healthy controls were recruited for the study. MDSCs, and their functions, were analyzed by flow cytometry and a T cell co-culture assay, respectively. We observed a higher frequency of PMN-MDSCs, and a stronger immunosuppressive function, in patients with gout compared to the controls. Moreover, circulating PMN-MDSCs were positively correlated with pathological indicators, including uric acid and C-reactive protein levels. We also demonstrated that MSU can induce significant PMN-MDSC expansion, using in vivo and in vitro experiments. Finally, MSU-induced PMN-MDSCs produced higher levels of IL-1β, which mediated gout inflammatory progression. Our results demonstrate that MSU modulates the expansion and suppressive function of PMN-MDSCs, providing insights into a novel mechanism underlying the pathogenesis of MSU-induced gout. Thus, MDSCs may be useful for the development of novel therapeutic strategies for the prevention and treatment of gout.
Collapse
Affiliation(s)
- Limei Zhong
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Sitao Li
- Department of Neonatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Wen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junhui Zheng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yufeng Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou First People's Hospital, Guangzhou, China
| |
Collapse
|
19
|
Shi L, Liang T, Yang F, Zhu FF, Liu J, Jiang JQ, Wu XW, Chen AS, Yuan DP, Liang XL. Matrix Metalloproteinase-3 induces proteoglycan degradation in gouty arthritis model. Gene 2020; 765:145120. [PMID: 32896590 DOI: 10.1016/j.gene.2020.145120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/24/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gout is an inflammatory arthritis resulting from precipitation of monosodium urate (MSU) crystals in joints and surrounding tissues. However, the mechanism underlying high levels of uric acid inducing gouty arthritis has not been clarified. OBJECTIVE The purpose was to investigate the role of Matrix Metalloproteinase-3 (MMP-3) in the development of gouty arthritis from hyperuricemia. METHOD MSU crystal-induced gouty arthritis model and chondrocytes were used to evaluate changes of MMP-3 levels. Western blot, qPCR and ELISA were performed to detect MMP-3, Tissue Inhibitors of Metalloproteinase-1 (TIMP-1) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs-4 (ADAMTS-4) expressions in rabbit chondrocytes. Expression of proteoglycan was determined through toluidine blue staining. Concentrations of glycosaminoglycan, Interleukin-6 (IL-6), Interleukin-1β (IL-1β) and Tumor Necrosis Factor-α (TNF-α) in chondrocytes were assessed via ELISA kits. Concentration of uric acid in supernate was tested by Automatic Analyzer. RESULTS MMP-3 was significantly increased in rat serum, synovial fluid, cartilages and chondrocytes treated with high-level uric acid. Increased concentration of glycosaminoglycancould be observed in chondrocytes incubated with MMP-3, as well as the remarkable downregulation of proteoglycan expression. Furthermore, high-level uric acid contributed to the degradation of proteoglycan via the activation of MMP-3. IL-6, IL-1β and TNF-α concentrations were increased significantly in 35 °C compared to 37 °C with MMP-3 and high-level uric acid. CONCLUSION Our study showed that MMP-3 was enhanced by high levels of uric acid, which promoted proteoglycan degradation, and induced MSU crystallization in turn. A low temperature environment is an important factor in the development of gout.
Collapse
Affiliation(s)
- Le Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tao Liang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fan Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fang-Fang Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Qian Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Wei Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - An-Sheng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dong-Ping Yuan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xin-Li Liang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi; University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
20
|
Wu M, Huang X, Yan D, Pan H, Li F, Ren M, Zhang J, Xu M. Interactions among endotoxin, uric acid, and lactate in relation to the risk of type 2 diabetes: A population-based study. J Diabetes 2020; 12:605-615. [PMID: 32216058 DOI: 10.1111/1753-0407.13039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Blood levels of endotoxin, uric acid (UA), or lactate (LAC) are associated with type 2 diabetes mellitus (T2DM). Thus, we explored the interactions among blood endotoxin, UA, and LAC levels and the risk of T2DM. METHODS This population-based cross-sectional study included 2520 Chinese adults. Fasting blood endotoxin, UA, and LAC levels were determined and the cut-off values were obtained from the receiver operating characteristic curve analysis. The study population was classified into two or four subgroups based on low or high, or both low and high levels of endotoxin, UA, and LAC, respectively. RESULTS The odds ratios (ORs) for T2DM (all P < .05) were higher in the high groups than the low groups of endotoxin, UA, or LAC, respectively. Participants in the groups with high levels of both endotoxin and UA, endotoxin and LAC, or UA and LAC, had 4.71 (95% CI 3.01-7.37), 5.13 (95% CI 3.29-7.99), or 3.73 (95% CI 2.34-5.94) times higher risk for T2DM compared to those in groups with low levels of both endotoxin and UA, endotoxin and LAC, or UA and LAC (all P < 0.05), respectively. In the interaction analysis, an interactive effect between endotoxin and UA (P < .05), or endotoxin and LAC (P < .05), but not UA and LAC, was observed that contributed to an increased risk of T2DM. CONCLUSIONS The interaction between levels of endotoxin and UA or levels of endotoxin and LAC was related to an increased risk of T2DM in the Chinese population.
Collapse
Affiliation(s)
- Muchao Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuji Huang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hua Pan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin Zhang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingtong Xu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Bodofsky S, Merriman TR, Thomas TJ, Schlesinger N. Advances in our understanding of gout as an auto-inflammatory disease. Semin Arthritis Rheum 2020; 50:1089-1100. [PMID: 32916560 DOI: 10.1016/j.semarthrit.2020.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Gout, the most common inflammatory arthritis, is the result of hyperuricemia and inflammation induced by monosodium urate (MSU) crystal deposition. However, most people with hyperuricemia will never develop gout, implying a molecular-genetic contribution to the development of gout. Recent genomic studies reveal links between certain genetic variations and gout. We highlight recent advances in our understanding of gout as an auto-inflammatory disease. We review the auto-inflammatory aspects of gout, including the inflammasome and thirteen gout-associated inflammatory-pathway genes and associated comorbidities. This information provides important insights into emerging immune-modulating targets in the management of gout, and future novel therapeutic targets in gout treatment. Cumulatively, this has important implications for treating gout as an auto-inflammatory disease, as opposed to a purely metabolic disease.
Collapse
Affiliation(s)
- Shari Bodofsky
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States.
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - T J Thomas
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Naomi Schlesinger
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
22
|
Ma Q, Honarpisheh M, Li C, Sellmayr M, Lindenmeyer M, Böhland C, Romagnani P, Anders HJ, Steiger S. Soluble Uric Acid Is an Intrinsic Negative Regulator of Monocyte Activation in Monosodium Urate Crystal-Induced Tissue Inflammation. THE JOURNAL OF IMMUNOLOGY 2020; 205:789-800. [PMID: 32561569 DOI: 10.4049/jimmunol.2000319] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Although monosodium urate (MSU) crystals are known to trigger inflammation, published data on soluble uric acid (sUA) in this context are discrepant. We hypothesized that diverse sUA preparation methods account for this discrepancy and that an animal model with clinically relevant levels of asymptomatic hyperuricemia and gouty arthritis can ultimately clarify this issue. To test this, we cultured human monocytes with different sUA preparation solutions and found that solubilizing uric acid (UA) by prewarming created erroneous results because of UA microcrystal contaminants triggering IL-1β release. Solubilizing UA with NaOH avoided this artifact, and this microcrystal-free preparation suppressed LPS- or MSU crystal-induced monocyte activation, a process depending on the intracellular uptake of sUA via the urate transporter SLC2A9/GLUT9. CD14+ monocytes isolated from hyperuricemic patients were less responsive to inflammatory stimuli compared with monocytes from healthy individuals. Treatment with plasma from hyperuricemic patients impaired the inflammatory function of CD14+ monocytes, an effect fully reversible by removing sUA from hyperuricemic plasma. Moreover, Alb-creERT2;Glut9 lox/lox mice with hyperuricemia (serum UA of 9-11 mg/dl) showed a suppressed inflammatory response to MSU crystals compared with Glut9 lox/lox controls without hyperuricemia. Taken together, we unravel a technical explanation for discrepancies in the published literature on immune effects of sUA and identify hyperuricemia as an intrinsic suppressor of innate immunity, in which sUA modulates the capacity of monocytes to respond to danger signals. Thus, sUA is not only a substrate for the formation of MSU crystals but also an intrinsic inhibitor of MSU crystal-induced tissue inflammation.
Collapse
Affiliation(s)
- Qiuyue Ma
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Bavaria, Germany
| | - Mohsen Honarpisheh
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Bavaria, Germany
| | - Chenyu Li
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Bavaria, Germany
| | - Markus Sellmayr
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Bavaria, Germany
| | - Maja Lindenmeyer
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Bavaria, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claudia Böhland
- Department of Radiation Oncology, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Germany; and
| | - Paola Romagnani
- Department of Biomedical Experimental and Clinical Sciences "Maria Serio," University of Florence, 50139 Florence, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Bavaria, Germany
| | - Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilian University of Munich, 80336 Munich, Bavaria, Germany;
| |
Collapse
|
23
|
C-reactive protein (CRP) recognizes uric acid crystals and recruits proteases C1 and MASP1. Sci Rep 2020; 10:6391. [PMID: 32286427 PMCID: PMC7156728 DOI: 10.1038/s41598-020-63318-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/30/2020] [Indexed: 11/08/2022] Open
Abstract
Gout is caused by crystallization of uric acid in the form of monosodium urate (MSU) crystals, which induce a sterile inflammatory response that is hardly distinguishable from microbe-induced inflammatory responses. It is unclear, if MSU crystals (like microbes) are recognized by specific pattern recognition receptors. To identify possible soluble pattern recognition molecules for MSU crystals, we purified MSU-binding proteins from human body fluids. We identified C-reactive protein (CRP) as a major MSU-binding protein. Binding of CRP was strong enough to specifically deplete CRP from human serum. We found that CRP was required for fixation of complement components C1q, C1r, C1s and MASP1. Thus, we have identified a pattern recognition molecule for MSU crystals that links to the activation of complement. Notably, CRP does not show an even binding to the complete surface of the crystals. It rather binds to edges or distinct faces of the crystals.
Collapse
|
24
|
Temmoku J, Fujita Y, Matsuoka N, Urano T, Furuya MY, Asano T, Sato S, Matsumoto H, Watanabe H, Kozuru H, Yatsuhashi H, Kawakami A, Migita K. Uric acid-mediated inflammasome activation in IL-6 primed innate immune cells is regulated by baricitinib. Mod Rheumatol 2020; 31:270-275. [PMID: 32148148 DOI: 10.1080/14397595.2020.1740410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Gout is an inflammatory arthropathy caused by the deposition of monosodium urate (MSU). The synthesis and release of IL-1β is crucial for MSU-induced synovial inflammation. The aim of the present study was to investigate the mechanism of MSU crystal-induced autoinflammatory processes. METHODS In vitro studies were used to evaluate the role of IL-6 in inflammasome activation in human neutrophils cultured with MSU crystals. Human neutrophils were stimulated with MSU in the presence or absence of IL-6 priming to determine NLRP3 inflammasome activation and subsequent cleaved caspase-1 induction or IL-1β production. RESULTS IL-6 or MSU stimulation alone did not result in the efficient IL-1β production from human neutrophils. However, MSU stimulation induced marked IL-1β production from IL-6-primed neutrophils. Pretreatment with baricitinib, which blocks IL-6 receptor signaling, prevented MSU-induced cleaved caspase-1 or IL-1β induction in IL-6-primed neutrophils. Tocilizumab pretreatment also inhibited MSU-mediated IL-1β production from IL-6-primed neutrophils. CONCLUSION Priming of human neutrophils with IL-6 promotes uric acid-mediated IL-1β secretion in the absence of microbial stimulation. These results suggest that an endogenous cytokine, IL-6, is involved in MSU-mediated NLRP3 inflammasome activation and subsequent IL-1β production from innate immune cells and has a crucial role in MSU crystal-induced synovial inflammation. These findings provide insights into uric acid-mediated autoinflammation in the innate immune system.
Collapse
Affiliation(s)
- Jumpei Temmoku
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuya Fujita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoki Matsuoka
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
| | - Makiko Yashiro Furuya
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Haruki Matsumoto
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroshi Watanabe
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideko Kozuru
- Clinical Research Center, NHO Nagasaki Medical Center, Nagasaki, Japan
| | | | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan.,Clinical Research Center, NHO Nagasaki Medical Center, Nagasaki, Japan
| |
Collapse
|
25
|
The Paradoxical Role of Uric Acid in Osteoporosis. Nutrients 2019; 11:nu11092111. [PMID: 31491937 PMCID: PMC6769742 DOI: 10.3390/nu11092111] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
Because of its high prevalence worldwide, osteoporosis is considered a serious public health concern. Many known risk factors for developing osteoporosis have been identified and are crucial if planning health care needs. Recently, an association between uric acid (UA) and bone fractures had been explored. Extracellular UA exhibits antioxidant properties by effectively scavenging free radicals in human plasma, but this benefit might be disturbed by the hydrophobic lipid layer of the cell membrane. In contrast, intracellular free oxygen radicals are produced during UA degradation, and superoxide is further enhanced by interacting with NADPH oxidase. This intracellular oxidative stress, together with inflammatory cytokines induced by UA, stimulates osteoclast bone resorption and inhibits osteoblast bone formation. UA also inhibits vitamin D production and thereby results in hyper-parathyroidism, which causes less UA excretion in the intestines and renal proximal tubules by inhibiting the urate transporter ATP-binding cassette subfamily G member 2 (ABCG2). At normal or high levels, UA is associated with a reduction in bone mineral density and protects against bone fracture. However, in hyperuricemia or gout arthritis, UA increases bone fracture risk because oxidative stress and inflammatory cytokines can increase bone resorption and decrease bone formation. Vitamin D deficiency, and consequent secondary hyperparathyroidism, can further increase bone resorption and aggravated bone loss in UA-induced osteoporosis.
Collapse
|
26
|
Sirt1 inhibits gouty arthritis via activating PPARγ. Clin Rheumatol 2019; 38:3235-3242. [DOI: 10.1007/s10067-019-04697-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
|
27
|
Jeong H, Jeon CH. Clinical characteristics and risk factors for gout flare during the postsurgical period. Adv Rheumatol 2019; 59:31. [DOI: 10.1186/s42358-019-0075-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/12/2019] [Indexed: 11/10/2022] Open
|
28
|
Collins MW, Saag KG, Singh JA. Is there a role for cherries in the management of gout? Ther Adv Musculoskelet Dis 2019; 11:1759720X19847018. [PMID: 31205513 PMCID: PMC6535740 DOI: 10.1177/1759720x19847018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/28/2019] [Indexed: 01/08/2023] Open
Abstract
Despite the availability of effective urate-lowering therapy (ULT) and anti-inflammatory drugs for the treatment of gout, there is considerable interest in novel treatment approaches. Patients with gout often have a multitude of comorbidities, leading to concern over drug-drug interactions and medication adverse events. The cherry is a small nutrient-rich fruit that has garnered a great deal of attention in recent years as a nonpharmacologic option for the treatment of a multitude of disease manifestations. Perhaps a quarter of patients with gout try cherries or cherry products to treat their gout, which have antioxidant and anti-inflammatory (IL-6, TNF-α, IL-1β, IL-8, COX-I and -II) properties, hypouricemic effects, and the ability to downregulate NFkB-mediated osteoclastogenesis. Based on these properties, cherries may reduce both the acute and chronic inflammation associated with recurrent gout flares and its chronic destructive arthropathy. In this review, we explore the potential benefits of cherries and cherry products as a nonpharmacologic option for the treatment of gout.
Collapse
Affiliation(s)
- Marcum W. Collins
- UAB Hospital, 1720 2nd Avenue South, FOT 839, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
29
|
Jeong JH, Jung JH, Lee JS, Oh JS, Kim YG, Lee CK, Yoo B, Hong S. Prominent Inflammatory Features of Monocytes/Macrophages in Acute Calcium Pyrophosphate Crystal Arthritis: a Comparison with Acute Gouty Arthritis. Immune Netw 2019; 19:e21. [PMID: 31281718 PMCID: PMC6597439 DOI: 10.4110/in.2019.19.e21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/17/2019] [Accepted: 03/13/2019] [Indexed: 12/01/2022] Open
Abstract
Calcium pyrophosphate (CPP) crystals can present as acute inflammatory arthritis which is known as an acute CPP crystal arthritis. Although monocytes/macrophages have been shown to play a role in the initiation of crystal-mediated inflammatory responses, differences in their phenotypes between acute CPP crystal arthritis and acute gouty arthritis have not yet been investigated. We examined the immunological characteristics of synovial monocytes/macrophages in patients with acute CPP crystal and acute gouty arthritis. CD14+CD3−CD19−CD56− cell frequencies in synovial fluid mononuclear cells (SFMCs) were measured. Expression of pro- and anti-inflammatory cytokines and markers was determined. The SFMCs were dominated by a population of monocytes/macrophages in acute CPP crystal arthritis similar to that in acute gout. Synovial monocytes/macrophages showed the phenotypes of infiltrated monocytes as shown by expression of CD88, C-C chemokine receptor type 2, myeloid-related protein (MRP)8 and MRP14 but not proto-oncogene tyrosine-protein kinase MER. Comparatively, the CD14+ cells from patients with acute CPP crystal arthritis had similar high levels of IL-1β and TNF-α production but significantly lower expression of IL-10 and M2 marker (CD163). The monocytes/macrophages had the capacity to produce IL-8 in response to CPP crystals. Proinflammatory features were more dominant in monocytes/macrophages during acute CPP crystal arthritis than those during acute gouty arthritis.
Collapse
Affiliation(s)
- Ji Hye Jeong
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.,Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea
| | - Jae Hyung Jung
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.,Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea
| | - Jung Sun Lee
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Ji Seon Oh
- Clinical Research Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Chang-Keun Lee
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Bin Yoo
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Seokchan Hong
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
30
|
Rossaneis AC, Longhi-Balbinot DT, Bertozzi MM, Fattori V, Segato-Vendrameto CZ, Badaro-Garcia S, Zaninelli TH, Staurengo-Ferrari L, Borghi SM, Carvalho TT, Bussmann AJC, Gouveia FS, Lopes LGF, Casagrande R, Verri WA. [Ru(bpy) 2(NO)SO 3](PF 6), a Nitric Oxide Donating Ruthenium Complex, Reduces Gout Arthritis in Mice. Front Pharmacol 2019; 10:229. [PMID: 30914954 PMCID: PMC6423075 DOI: 10.3389/fphar.2019.00229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Monosodium urate crystals (MSU) deposition induces articular inflammation known as gout. This disease is characterized by intense articular inflammation and pain by mechanisms involving the activation of the transcription factor NFκB and inflammasome resulting in the production of cytokines and oxidative stress. Despite evidence that MSU induces iNOS expression, there is no evidence on the effect of nitric oxide (NO) donors in gout. Thus, the present study evaluated the effect of the ruthenium complex donor of NO {[Ru(bpy)2(NO)SO3](PF6)} (complex I) in gout arthritis. Complex I inhibited in a dose-dependent manner MSU-induced hypersensitivity to mechanical stimulation, edema and leukocyte recruitment. These effects were corroborated by a decrease of histological inflammation score and recruitment of Lysm-eGFP+ cells. Mechanistically, complex I inhibited MSU-induced mechanical hypersensitivity and joint edema by triggering the cGMP/PKG/ATP-sensitive K (+) channels signaling pathway. Complex I inhibited MSU-induced oxidative stress and pro-inflammatory cytokine production in the knee joint. These data were supported by the observation that complex I inhibited MSU-induced NFκB activation, and IL-1β expression and production. Complex I also inhibited MSU-induced activation of pro-IL-1β processing. Concluding, the present data, to our knowledge, is the first evidence that a NO donating ruthenium complex inhibits MSU-induced articular inflammation and pain. Further, complex I targets the main physiopathological mechanisms of gout arthritis. Therefore, it is envisaged that complex I and other NO donors have therapeutic potential that deserves further investigation.
Collapse
Affiliation(s)
- Ana C Rossaneis
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Daniela T Longhi-Balbinot
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Mariana M Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Carina Z Segato-Vendrameto
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Stephanie Badaro-Garcia
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Sergio M Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Thacyana T Carvalho
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Allan J C Bussmann
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Florêncio S Gouveia
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Luiz G F Lopes
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Londrina State University, Londrina, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| |
Collapse
|
31
|
Chan CW, Yap YN. Pharmacotherapeutic management of gout in patients with cardiac disease. Expert Opin Pharmacother 2018; 19:2011-2018. [DOI: 10.1080/14656566.2018.1536747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chun Wai Chan
- Department of Family Medicine, School of Medicine, International Medical University , Seremban, Negeri Sembilan Darul Khusus, Malaysia
| | - Ying Nee Yap
- School of Medicine, International Medical University , Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Yagnik D, Hills F. Urate crystals induce macrophage PAF‑AH secretion which is differentially regulated by TGFβ1 and hydrocortisone. Mol Med Rep 2018; 18:3506-3512. [DOI: 10.3892/mmr.2018.9323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/13/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Darshna Yagnik
- Department of Natural Sciences, Biomarker Research Group, School of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, UK
| | - Frank Hills
- Department of Natural Sciences, Biomarker Research Group, School of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, UK
| |
Collapse
|
33
|
Ruiz-Miyazawa KW, Pinho-Ribeiro FA, Borghi SM, Staurengo-Ferrari L, Fattori V, Amaral FA, Teixeira MM, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA. Hesperidin Methylchalcone Suppresses Experimental Gout Arthritis in Mice by Inhibiting NF-κB Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6269-6280. [PMID: 29852732 DOI: 10.1021/acs.jafc.8b00959] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Gout arthritis is a painful inflammatory disease induced by monosodium urate (MSU) crystals. We evaluate the therapeutic potential of the flavonoid hesperidin methylchalcone (HMC) in a mouse model of gout arthritis induced by intra-articular injection of MSU (100 μg/10 μL). Orally given HMC (3-30 mg/kg, 100 μL) reduced in a dose-dependent manner the MSU-induced hyperalgesia (44%, p < 0.05), edema (54%, p < 0.05), and leukocyte infiltration (70%, p < 0.05). HMC (30 mg/kg) inhibited MSU-induced infiltration of LysM-eGFP+ cells (81%, p < 0.05), synovitis (76%, p < 0.05), and oxidative stress (increased GSH, FRAP, and ABTS by 62, 78, and 73%, respectively; reduced O2- and NO by 89 and 48%, p < 0.05) and modulated cytokine production (reduced IL-1β, TNF-α, IL-6, and IL-10 by 35, 72, 37, and 46%, respectively, and increased TGF-β by 90%, p < 0.05). HMC also inhibited MSU-induced NF-κB activation (41%, p < 0.05), gp91phox (66%, p < 0.05) and NLRP3 inflammasome components mRNA expression in vivo (72, 77, 71, and 73% for NLRP3, ASC, pro-caspase-1, and pro-IL-1 β, respectively, p < 0.05), and induced Nrf2/HO-1 mRNA expression (3.9- and 5.1-fold increase, respectively, p < 0.05). HMC (30, 100, and 300 μM) did not inhibit IL-1β secretion by macrophages primed by LPS and challenged with MSU (450 μg/mL), demonstrating that the anti-inflammatory effect of HMC in gout arthritis depends on inhibiting NF-κB but not on direct inhibition of inflammasome. The pharmacological effects of HMC indicate its therapeutic potential for the treatment of gout.
Collapse
Affiliation(s)
- Kenji W Ruiz-Miyazawa
- Departamento de Ciências Patológicas , Universidade Estadual de Londrina-UEL , Rod. Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011 , 86057-970 Londrina , Paraná , Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas , Universidade Estadual de Londrina-UEL , Rod. Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011 , 86057-970 Londrina , Paraná , Brazil
| | - Sergio M Borghi
- Departamento de Ciências Patológicas , Universidade Estadual de Londrina-UEL , Rod. Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011 , 86057-970 Londrina , Paraná , Brazil
| | - Larissa Staurengo-Ferrari
- Departamento de Ciências Patológicas , Universidade Estadual de Londrina-UEL , Rod. Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011 , 86057-970 Londrina , Paraná , Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas , Universidade Estadual de Londrina-UEL , Rod. Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011 , 86057-970 Londrina , Paraná , Brazil
| | - Flavio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia , Universidade Federal de Minas Gerais , 31270-567 Belo Horizonte , Minas Gerais , Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia , Universidade Federal de Minas Gerais , 31270-567 Belo Horizonte , Minas Gerais , Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Avenida Bandeirantes s/n , 14050-490 Ribeirão Preto , São Paulo , Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Avenida Bandeirantes s/n , 14050-490 Ribeirão Preto , São Paulo , Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Avenida Bandeirantes s/n , 14050-490 Ribeirão Preto , São Paulo , Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas , Universidade Estadual de Londrina-UEL , Avenida Robert Koch, 60, Hospital Universitário , 86038-350 Londrina , Paraná , Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas , Universidade Estadual de Londrina-UEL , Rod. Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011 , 86057-970 Londrina , Paraná , Brazil
| |
Collapse
|
34
|
Wang HJ, Shi LZ, Liu CF, Liu SM, Shi ST. Association Between Uric Acid and Metabolic Syndrome in Elderly Women. Open Med (Wars) 2018; 13:172-177. [PMID: 29756053 PMCID: PMC5941695 DOI: 10.1515/med-2018-0027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/27/2018] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate the relationship between uric acid and metabolic syndrome (MetS) in elderly women. Methods A total of 468 women aged ≥60 years participating in a health examination were enrolled. The association between uric acid and MetS and its individual variables was evaluated by univariate and multivariate logistic regression models. Results A dose-response relationship was observed for the prevalence of MetS and uric acid quartiles. Subjects in the second, third and fourth quartile of uric acid had a 2.23-fold, 2.25-fold and 4.41-fold increased risk, respectively, of MetS than those in the first uric acid quartile (p for trend <0.001). Furthermore, each 1 mg/dl increment of serum uric acid level had a 1.38-fold increased risk of MetS (OR 1.38; 95% CI, 1.14-1.69; p=0.001). Conclusions Our present study demonstrated that elevated uric acid was positively associated with the prevalence of MetS in elderly women. Further random control trials are needed to elucidate the effectiveness of treatment of hyperuricaemia in reducing the incidence of MetS in elderly women.
Collapse
Affiliation(s)
- Hui-Juan Wang
- Department of Thoracic Surgery, Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Lei-Zhi Shi
- Department of Thoracic Surgery, Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Cun-Fei Liu
- Department of Cardiology, Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Shi-Min Liu
- Department of Internal Medicine, Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Song-Tao Shi
- Department of Thoracic Surgery, Linyi People's Hospital, Linyi, Shandong, 276000, China
| |
Collapse
|
35
|
Monosodium urate crystals induced ICAM-1 expression and cell-cell adhesion in renal mesangial cells: Implications for the pathogenesis of gouty nephropathy. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 53:23-32. [PMID: 29657028 DOI: 10.1016/j.jmii.2017.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Renal disease is prevalent in gouty patients and monosodium urate (MSU) crystal deposition in the kidney can be detected in some gouty nephropathy patients. MSU crystals can induce inflammatory events, we investigated the MSU-induced expression of intercellular adhesion molecule (ICAM)-1 on human renal mesangial cells (HRMCs) and the involved signal transduction mechanisms. METHODS The HRMCs cell line was purchased from ScienCell Research Laboratories. MSU crystals were made by dissolving uric acid in sodium hydroxide (NaOH) solution. The involvement of MAPKs, apoptosis-associated speck-like protein containing a CARD domain (ASC), and Toll-like receptor (TLR) was investigated using pharmacological inhibitors, transfection with short hairpin RNA (shRNA), or monoclonal antibodies. Protein expression was evaluated by Western blotting. The functional activity of ICAM-1 was evaluated with cell-cell adhesion assay and immunofluorescence analysis. RESULTS MSU stimulation increased expression of ICAM-1 and adhesion between HRMCs and human monocytic THP-1 cells. The interaction between HRMCs and THP-1 was suppressed by ICAM-1 neutralizing antibodies. MSU stimulation induced activation of mitogen-activated protein kinases, including c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK), but only p38 was responsible for MSU-induced expression of ICAM-1 and cell-cell adhesion. ASC also play a role in MSU-induced effects. Pretreatment with monoclonal antibodies against toll-like receptor (TLR)2 or TLR4 reduced MSU-induced ICAM-1 expression, cell-cell adhesion, p38 phosphorylation but the reduction of ASC activation is insignificant. CONCLUSION The MSU induced ICAM-1 expression on HRMCs and cell-cell adhesion involved TLR2/4-p38-ICAM1 pathway and TLR2/4 independent ASC-p38-ICAM1 axis. These findings might partly explain the mechanisms underlying gouty nephropathy.
Collapse
|
36
|
Lee JH, Yang JA, Shin K, Lee GH, Lee WW, Lee EY, Song YW, Lee EB, Park JK. Elderly Patients Exhibit Stronger Inflammatory Responses during Gout Attacks. J Korean Med Sci 2017; 32:1967-1973. [PMID: 29115078 PMCID: PMC5680495 DOI: 10.3346/jkms.2017.32.12.1967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/16/2017] [Indexed: 11/20/2022] Open
Abstract
Gout attacks are often accompanied by systemic inflammatory response. The aim of the retrospective study was to compare gout patients in different age groups in terms of their clinical features at gout attacks. Patients, who were treated for gout attack in two tertiary medical centers between January 2000 and April 2014, were divided into young (≤ 50 years), middle-aged, and elderly (> 65 years) groups. Patients in three age groups were compared in terms of presence of fever (> 37.8°C), C-reactive protein (CRP) levels, and erythrocyte sedimentation ratio (ESR) at the gout attacks. Monocytes, which were isolated from 10 consecutive patients who previously experienced gout attacks, were stimulated with monosodium urate (MSU) crystals and cytokine production was measured by flow cytometry. Among 254 patients analyzed in this study, 48 were young, 65 were middle-aged, and 141 were elderly. The elderly patients were more likely to have fever (51.1%) during the attack than the young (20.8%) and middle-aged (30.8%) patients (P < 0.001 by χ² test). They were also more likely to have higher ESR and CRP levels than the young patients (P = 0.002 for ESR, P < 0.001 for CRP). Patients' age correlated significantly with CRP and ESR levels (both P < 0.001). After stimulation with MSU, the production of interleukin-1β by monocytes increased with patients' age (r = 0.670, P = 0.03). In conclusion, gout attacks in elderly patients are associated with fever and higher ESR and CRP levels, often resembling a septic arthritis.
Collapse
Affiliation(s)
- Jae Hyun Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Ji Ae Yang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kichul Shin
- Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Ga Hye Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Won Woo Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Young Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yeong Wook Song
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Bong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jin Kyun Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
37
|
Calcific tendonitis of the rotator cuff: From formation to resorption. Joint Bone Spine 2017; 85:687-692. [PMID: 29195923 DOI: 10.1016/j.jbspin.2017.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/19/2017] [Indexed: 01/15/2023]
Abstract
Calcific tendonitis of the rotator cuff is due to apatite deposits in the shoulder tendons. Patients affected by calcific tendonitis have chronic shoulder pain and disability. Although the disease is frequent, about 10 to 42% of painful shoulders, mechanisms leading to this pathological mineralization are still largely unknown. Research reported in the 1990s suggested that the formation of calcific deposits is linked to cells looking like chondrocytes identified around calcium deposits within a fibrocartilage area. They were considered to be derived from tenocytes but more recently, tendon stem cells, able to differentiate into chondrocytes, were isolated. The pro-mineralizing properties of these chondrocytes-like cells, especially the role of alkaline phosphatase, are not currently clarified. The calcium deposits contain poorly crystalline carbonated apatite associated with protein. Among these proteins, only osteopontin has been consistently identified as a potential regulating factor. During the disease, spontaneous resorption can occur with migration of apatite crystals into the subacromial bursa causing severe pain and restriction of movement. In in vivo and in vitro experiments, apatite crystals were able to induce an influx of leucocytes and a release of IL-1β and IL-18 through the activation of the NLRP3 inflammasome. However, mechanisms leading to spontaneous resolution of this inflammation and disappearance of the calcification still need to be elucidated.
Collapse
|
38
|
Romi MM, Arfian N, Tranggono U, Setyaningsih WAW, Sari DCR. Uric acid causes kidney injury through inducing fibroblast expansion, Endothelin-1 expression, and inflammation. BMC Nephrol 2017; 18:326. [PMID: 29089036 PMCID: PMC5664905 DOI: 10.1186/s12882-017-0736-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Abstract
Background Uric acid (UA) plays important roles in inducing renal inflammation, intra-renal vasoconstriction and renal damage. Endothelin-1 (ET-1) is a well-known profibrotic factor in the kidney and is associated with fibroblast expansion. We examined the role of hyperuricemia conditions in causing elevation of ET-1 expression and kidney injury. Methods Hyperuricemia was induced in mice using daily intraperitoneal injection of uric acid 125 mg/Kg body weight. An NaCl injection was used in control mice. Mice were euthanized on days-7 (UA7) and 14 (UA14). We also added allopurinol groups (UAL7 and UAL14) with supplementation of allopurinol 50 mg/Kg body weight orally. Uric acid and creatinine serum were measured from blood serum. Periodic Acid Schiff (PAS) and Sirius Red staining were done for glomerulosclerosis, tubular injury and fibrosis quantification. mRNA expression examination was performed for nephrin, podocin, preproEndothelin-1 (ppET-1), MCP-1 and ICAM-1. PDGFRβ immunostaining was done for quantification of fibroblast, while α-SMA immunostaining was done for localizing myofibroblast. Western blot analysis was conducted to quantify TGF-β1, α-SMA and Endothelin A Receptor (ETAR) protein expression. Results Uric acid and creatinine levels were elevated after 7 and 14 days and followed by significant increase of glomerulosclerosis and tubular injury score in the uric acid group (p < 0.05 vs. control). Both UA7 and UA14 groups had higher fibrosis, tubular injury and glomerulosclerosis with significant increase of fibroblast cell number compared with control. RT-PCR revealed down-regulation of nephrin and podocin expression (p < 0.05 vs. control), and up-regulation of MCP-1, ET-1 and ICAM-1 expression (p < 0.05 vs. control). Western blot revealed higher expression of TGF-β1 and α-SMA protein expression. Determination of allopurinol attenuated kidney injury was based on reduction of fibroblast cell number, inflammation mediators and ppET-1 expression with reduction of TGF-β1 and α-SMA protein expression. Conclusions UA induced glomerulosclerosis, tubular injury and renal fibrosis with reduction of podocyte function and inflammatory mediator elevation. ET-1 and fibroblast expansion might modulate hyperuricemia induced renal fibrosis.
Collapse
Affiliation(s)
- Muhammad Mansyur Romi
- Department of Anatomy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Untung Tranggono
- Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Dwi Cahyani Ratna Sari
- Department of Anatomy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
39
|
Jeong JH, Hong S, Kwon OC, Ghang B, Hwang I, Kim YG, Lee CK, Yoo B. CD14 + Cells with the Phenotype of Infiltrated Monocytes Consist of Distinct Populations Characterized by Anti-inflammatory as well as Pro-inflammatory Activity in Gouty Arthritis. Front Immunol 2017; 8:1260. [PMID: 29056937 PMCID: PMC5635328 DOI: 10.3389/fimmu.2017.01260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
It has been suggested that inflammasome-mediated IL-1β production in monocytic cells is responsible for the acute inflammatory response in gouty arthritis. However, phenotypical and functional analyses of monocytes during gouty arthritis have yet to be conducted. Therefore, we investigated the characteristics of monocytes/macrophages in the synovial fluid cells of patients with acute gout. The number and frequency of monocytes/macrophages in the synovial fluid mononuclear cells (SFMCs) of patients was examined. The expression of markers for monocyte recruitment and tissue-resident macrophages, the production of pro-inflammatory and anti-inflammatory cytokines, and phagocytosis were analyzed in the monocytes/macrophages of patients with acute gout attacks. The number and frequency of CD14+CD3−CD19−CD56− monocytes/macrophages was markedly increased in the SFMCs of patients with gout compared to those of patients with rheumatoid arthritis (RA). CD14+ cells showed the phenotypes of infiltrated monocytes rather than tissue-resident macrophages, characterized by a high expression of CCR2, MRP8, and MRP14, but a low expression of MERTK and 25F9. These cells had the capacity to produce pro-inflammatory cytokines such as TNF-α and IL-1β after stimulation with lipopolysaccharides. In addition, anti-inflammatory features, including CD163 expression and IL-10 production from CD14+ cells, were significantly higher in patients with gout than in those with RA. CD14+ cells with phenotype of M2 macrophages had high phagocytic activity for monosodium urate crystals. Thus, our results indicate that monocytes/macrophages from patients with gout have the phenotype of infiltrated monocytes, and these cells consist of different populations characterized by anti-inflammatory activities as well as pro-inflammatory functions.
Collapse
Affiliation(s)
- Ji Hye Jeong
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | - Seokchan Hong
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Oh Chan Kwon
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Byeongzu Ghang
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Inseok Hwang
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Chang-Keun Lee
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Bin Yoo
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
40
|
Álvarez K, Vasquez G. Damage-associated molecular patterns and their role as initiators of inflammatory and auto-immune signals in systemic lupus erythematosus. Int Rev Immunol 2017; 36:259-270. [DOI: 10.1080/08830185.2017.1365146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética, Universidad de Antioquia, carrera 53 numero 61-30, Medellin, Colombia
| | - Gloria Vasquez
- Grupo de Inmunología Celular e Inmunogenética, Universidad de Antioquia, carrera 53 numero 61-30, Medellin, Colombia
| |
Collapse
|
41
|
Yokose K, Sato S, Asano T, Yashiro M, Kobayashi H, Watanabe H, Suzuki E, Sato C, Kozuru H, Yatsuhashi H, Migita K. TNF-α potentiates uric acid-induced interleukin-1β (IL-1β) secretion in human neutrophils. Mod Rheumatol 2017; 28:513-517. [DOI: 10.1080/14397595.2017.1369924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kohei Yokose
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Makiko Yashiro
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroko Kobayashi
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroshi Watanabe
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Eiji Suzuki
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Chikako Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideko Kozuru
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Hiroshi Yatsuhashi
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
42
|
Huang H, Yu B, Liu W, Lin Q, Chen L, Chen J, Duan L, Shi G. Serum apoprotein A1 levels are inversely associated with disease activity in gout: From a southern Chinese Han population. Medicine (Baltimore) 2017; 96:e6780. [PMID: 28445313 PMCID: PMC5413278 DOI: 10.1097/md.0000000000006780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To analyze the alteration of lipid profile and inflammatory markers in the serum of patients with gouty arthritis (GA), the levels of serum lipid profile, C-reactive protein (CRP), and erythrocyte sedimentation rates (ESRs) were measured in the serum of 69 gout patients, 35 patients with rheumatoid arthritis (RA), 23 patients with ankylosing spondylitis (AS)/spondyloarthropathy (SpA), and 25 patients with osteoarthritis (OA). The serum levels of apoprotein A1 (Apo-A1) were significantly decreased in patients with gout when compared with RA, AS/SpA, and OA patients. The serum levels of CRP were significantly increased in gouty patients when compared with RA, AS/SpA, and OA patients. Furthermore, the serum levels of ESR were significantly increased in patients with gout compared to patients with OA. Correlation analysis indicated that the levels of Apo-A1 were negatively correlated with serum ESR and CRP (r = -0.475, P < .001; r = -0.380, P = .001, respectively) in the patients with GA. Taken together, this study gives us a better understanding of the relationships between serum lipid profile and inflammatory markers in gout patients.
Collapse
|
43
|
Shi L, Zhao F, Zhu F, Liang Y, Yang F, Zhang G, Xu L, Yin L. Traditional Chinese Medicine Formula "Xiaofeng granules" suppressed gouty arthritis animal models and inhibited the proteoglycan degradation on chondrocytes induced by monosodium urate. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:254-263. [PMID: 27267827 DOI: 10.1016/j.jep.2016.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/10/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaofeng Granules (XF) is a kind of granules prepared by the famous traditional Chinese medicine formula for its efficiency in treating gouty diseases. AIM OF THE STUDY We investigated the relevance between XF that made from Modified simiaowan (MSW) as the anti-gouty arthritis drugs and protective mechanisms for cartilage matrix in order to provide the evidence for new drug application. MATERIALS AND METHODS In the present study, we evaluated the anti-gouty arthritis activity of XF in rats and rabbits models induced by MSU together with chondrocytes focusing on the link to proteoglycan degradation in vitro studies. RESULTS The results demonstrated that XF significantly reduced the swelling rate and attenuated the pathological changes in joints. The XF-containing serum were used medicated serum in cellular experiments. The in vitro data were in accordance with the in vivo results, showing that the constituents in XF-containing serum had obvious inhibitory effects on the activation of pro-inflammatory mediators in chondrocytes. Moreover, XF-containing serum substantially inhibited MSU-induced expression of glycosaminoglycans(GAG) and hydroxyproline(Hyp), and up regulated proteoglycan, which might be associated with the regulation of the balance of MMP-3/TIMP-1and ADAMTS-4/TIMP-3 inchondrocytes. CONCLUSION In conclusion, XF that made from MSW showed obvious effects on acute gouty arthritis, which also provided an effective protection on cartilage matrix degradation.
Collapse
Affiliation(s)
- Le Shi
- College of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing 210023 PR China
| | - Fangli Zhao
- College of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing 210023 PR China
| | - Fangfang Zhu
- College of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing 210023 PR China
| | - Yuqiong Liang
- College of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing 210023 PR China
| | - Fan Yang
- College of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing 210023 PR China
| | - Guangji Zhang
- College of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing 210023 PR China
| | - Li Xu
- College of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing 210023 PR China.
| | - Lian Yin
- College of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing 210023 PR China.
| |
Collapse
|
44
|
Han Q, Bing W, Di Y, Hua L, Shi-he L, Yu-hua Z, Xiu-guo H, Yu-gang W, Qi-ming F, Shih-mo Y, Ting-ting T. Kinsenoside screening with a microfluidic chip attenuates gouty arthritis through inactivating NF-κB signaling in macrophages and protecting endothelial cells. Cell Death Dis 2016; 7:e2350. [PMID: 27584788 PMCID: PMC5059859 DOI: 10.1038/cddis.2016.255] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/04/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022]
Abstract
Gouty arthritis is a rheumatic disease that is characterized by the deposition of monosodium urate (MSU) in synovial joints cause by the increased serum hyperuricemia. This study used a three-dimensional (3D) flowing microfluidic chip to screen the effective candidate against MSU-stimulated human umbilical vein endothelial cell (HUVEC) damage, and found kinsenoside (Kin) to be the leading active component of Anoectochilus roxburghi, one of the Chinese medicinal plant widely used in the treatment of gouty arthritis clinically. Cell viability and apoptosis of HUVECs were evaluated, indicating that direct Kin stimulation and conditioned medium (CM) from Kin-treated macrophages both negatively modulated with MSU crystals. Additionally, Kin was capable of attenuating MSU-induced activation of nuclear factor-κB/mitogen-activated protein kinase (NF-κB/MAPK) signaling, targeting IκB kinase-α (IKKα) and IKKβ kinases of macrophages and influencing the expressions of NF-κB downstream cytokines and subsequent HUVEC bioactivity. Inflammasome NLR pyrin domain-containing 3 (NALP3) and toll-like receptor 2 (TLR2) were also inhibited after Kin treatment. Also, Kin downregulated CD14-mediated MSU crystals uptake in macrophages. In vivo study with MSU-injected ankle joints further revealed the significant suppression of inflammatory infiltration and endothelia impairment coupled with alleviation of ankle swelling and nociceptive response via Kin treatments. Taken together, these data implicated that Kin was the most effective candidate from Anoectochilus roxburghi to treat gouty arthritis clinically.
Collapse
Affiliation(s)
- Qiao Han
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wang Bing
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yin Di
- Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Li Hua
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Li Shi-he
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Zheng Yu-hua
- Wenshan Zhengbao Orthopaedic Hospital of Yunnan Province, Wenshan, People's Republic of China
| | - Han Xiu-guo
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wang Yu-gang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fan Qi-ming
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yang Shih-mo
- Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Tang Ting-ting
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Cavalcanti NG, Marques CDL, Lins E Lins TU, Pereira MC, Rêgo MJBDM, Duarte ALBP, Pitta IDR, Pitta MGDR. Cytokine Profile in Gout: Inflammation Driven by IL-6 and IL-18? Immunol Invest 2016; 45:383-95. [PMID: 27219123 DOI: 10.3109/08820139.2016.1153651] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Gout is considered to be an autoinflammatory disease and the presence of monosodium urate (MSU) crystals stimulates activation of NPRL3 inflammasome and subsequently caspase-1, generating production of active IL-1β and IL-18. However, the association between serum cytokines levels and clinical manifestations of the disease is not yet well understood. We evaluated the serum profile of proinflammatory cytokines (IL-1β, IL-6, IL-8, IL-17A, IL-18, IL-22, and IL-23) and described their relationship with clinical and laboratory data. METHODOLOGY Thirty-nine male patients with gout (GG) were assessed for clinical and laboratory variables and cytokine levels were measured by ELISA. For the purposes of comparison, 34 males with no previous history of arthritis were also included in the study (CG). RESULTS Seventeen participants (43%) exhibited active arthritis on evaluation. Levels of IL-18 were significantly higher in patients in relation to the CG (p = 0.0013). No statistically significant differences were found between the GG and CG for the other measured cytokines. There was a moderate correlation between IL-18 and ESR (R = 0.43, p = 0.0073), CRP (R = 0.47, p = 0.0025), and serum levels of IL-6 (R = 0.36, p = 0.023). An association was observed between serum levels of IL-6 and the presence of tophi (p = 0.005) and deformities (p = 0.0008), as well as a correlation between this cytokine and ESR (R = 0.41, p = 0.011) and CRP (R = 0.48, p = 0.02). CONCLUSIONS IL-18 is associated with inflammatory activity in gout, as well as with IL-6 levels, while IL-6 is associated with clinical and laboratory activity, the presence of tophi and articular deformities, and may be a prognostic marker of this pathology.
Collapse
Affiliation(s)
- Nara Gualberto Cavalcanti
- a Rheumatology Department , Hospital das Clínicas da Universidade Federal de Pernambuco (UFPE) , Recife , Brazil
| | - Cláudia Diniz Lopes Marques
- a Rheumatology Department , Hospital das Clínicas da Universidade Federal de Pernambuco (UFPE) , Recife , Brazil
| | - Thiago Ubiratan Lins E Lins
- b Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Núcleo de Pesquisa em Inovação Suely Galdino (NUPIT-SG), Centro de Ciências Biológicas, Universidade Federal de Pernambuco , Recife , Brazil
| | - Michelly Cristiny Pereira
- b Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Núcleo de Pesquisa em Inovação Suely Galdino (NUPIT-SG), Centro de Ciências Biológicas, Universidade Federal de Pernambuco , Recife , Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- b Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Núcleo de Pesquisa em Inovação Suely Galdino (NUPIT-SG), Centro de Ciências Biológicas, Universidade Federal de Pernambuco , Recife , Brazil
| | | | - Ivan da Rocha Pitta
- b Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Núcleo de Pesquisa em Inovação Suely Galdino (NUPIT-SG), Centro de Ciências Biológicas, Universidade Federal de Pernambuco , Recife , Brazil
| | - Maira Galdino da Rocha Pitta
- b Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Núcleo de Pesquisa em Inovação Suely Galdino (NUPIT-SG), Centro de Ciências Biológicas, Universidade Federal de Pernambuco , Recife , Brazil
| |
Collapse
|
46
|
Affiliation(s)
- Bernardo S. Franklin
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn 53127, Germany; , ,
| | - Matthew S. Mangan
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn 53127, Germany; , ,
- German Center for Neurodegenerative Diseases, Bonn 53175, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn 53127, Germany; , ,
- German Center for Neurodegenerative Diseases, Bonn 53175, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
47
|
ALPK1 phosphorylates myosin IIA modulating TNF-α trafficking in gout flares. Sci Rep 2016; 6:25740. [PMID: 27169898 PMCID: PMC4864424 DOI: 10.1038/srep25740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 04/21/2016] [Indexed: 01/07/2023] Open
Abstract
Gout is characterized by the monosodium urate monohydrate (MSU)-induced arthritis. Alpha kinase-1 (ALPK1) has shown to be associated with MSU-induced inflammation and gout. Here, we used bioinformatics, proteomics, cell models, and twenty in vitro human assays to clarify some of its role in the inflammatory response to MSU. We found myosin IIA to be a frequent interacting protein partner of ALPK1, binding to its N-terminal and forming a protein complex with calmodulin and F-actin, and that MSU-induced ALPK1 phosphorylated the myosin IIA. A knockdown of endogenous ALPK1 or myosin IIA significantly reduced the MSU-induced secretion of tumour necrosis factor (TNF)-α. Furthermore, all gouty patients expressed higher basal protein levels of ALPK1, myosin IIA, and plasma TNF-α, however those medicated with colchicine has shown reduced myosin IIA and TNF-α but not ALPK1. The findings suggest ALPK1 is a kinase that participates in the regulation of Golgi-derived TNF-α trafficking through myosin IIA phosphorylation in the inflammation of gout. This novel pathway could be blocked at the level of myosin by colchicine in gout treatment.
Collapse
|
48
|
|
49
|
Therapeutic Effects of Chinese Medicine Herb Pair, Huzhang and Guizhi, on Monosodium Urate Crystal-Induced Gouty Arthritis in Rats Revealed by Anti-Inflammatory Assessments and NMR-Based Metabonomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9398435. [PMID: 26989428 PMCID: PMC4771918 DOI: 10.1155/2016/9398435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/20/2016] [Indexed: 11/18/2022]
Abstract
The present study was undertaken to evaluate the therapeutic effects of Huzhang-Guizhi herb pair (HG), firstly included in Hu-Zhang Power documented in Taiping Shenghui Fang, on monosodium urate (MSU) crystals-induced gouty arthritis in rats. We found that pretreatment with HG in rats with gouty arthritis could significantly attenuate the ankle joint swelling, and this beneficial antigout effect might be mediated, at least in part, by inhibiting tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) production in synovial fluid as well as nuclear transcription factor-κB p65 (NF-κB p65) protein expression in synovial tissue. Moreover, metabonomic analysis demonstrated that 5 and 6 potential biomarkers associated with gouty arthritis in plasma and urine, respectively, which were mainly involved in energy metabolism, amino acid metabolism, and gut microbe metabolism, were identified. HG could reverse the pathological process of MSU-induced gouty arthritis through regulating the disturbed metabolic pathways. These results provided important mechanistic insights into the protective effects of HG against MSU-induced gouty arthritis in rats.
Collapse
|
50
|
Monosodium Urate Crystal-Induced Chondrocyte Death via Autophagic Process. Int J Mol Sci 2015; 16:29265-77. [PMID: 26670233 PMCID: PMC4691108 DOI: 10.3390/ijms161226164] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 12/19/2022] Open
Abstract
Monosodium urate (MSU) crystals, which are highly precipitated in the joint cartilage, increase the production of cartilage-degrading enzymes and pro-inflammatory mediators in cartilage, thereby leading to gouty inflammation and joint damage. In this study, we investigated the effect of MSU crystals on the viability of human articular chondrocytes and the mechanism of MSU crystal-induced chondrocyte death. MSU crystals significantly decreased the viability of primary chondrocytes in a time- and dose-dependent manner. DNA fragmentation was observed in a culture medium of MSU crystal-treated chondrocytes, but not in cell lysates. MSU crystals did not activate caspase-3, a marker of apoptosis, compared with actinomycin D and TNF-α-treated cells. MSU crystals did not directly affect the expression of endoplasmic reticulum (ER) stress markers at the mRNA and protein levels. However, MSU crystals significantly increased the LC3-II level in a time-dependent manner, indicating autophagy activation. Moreover, MSU crystal-induced autophagy and subsequent chondrocyte death were significantly inhibited by 3-methyladenine, a blocker of autophagosomes formation. MSU crystals activated autophagy via inhibition of phosporylation of the Akt/mTOR signaling pathway. These results demonstrate that MSU crystals may cause the death of chondrocytes through the activation of the autophagic process rather than apoptosis or ER stress.
Collapse
|