1
|
Cissé OH, Ma L, Kovacs JA. Retracing the evolution of Pneumocystis species, with a focus on the human pathogen Pneumocystis jirovecii. Microbiol Mol Biol Rev 2024; 88:e0020222. [PMID: 38587383 PMCID: PMC11332345 DOI: 10.1128/mmbr.00202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
SUMMARYEvery human being is presumed to be infected by the fungus Pneumocystis jirovecii at least once in his or her lifetime. This fungus belongs to a large group of species that appear to exclusively infect mammals, with P. jirovecii being the only one known to cause disease in humans. The mystery of P. jirovecii origin and speciation is just beginning to unravel. Here, we provide a review of the major steps of P. jirovecii evolution. The Pneumocystis genus likely originated from soil or plant-associated organisms during the period of Cretaceous ~165 million years ago and successfully shifted to mammals. The transition coincided with a substantial loss of genes, many of which are related to the synthesis of nutrients that can be scavenged from hosts or cell wall components that could be targeted by the mammalian immune system. Following the transition, the Pneumocystis genus cospeciated with mammals. Each species specialized at infecting its own host. Host specialization is presumably built at least partially upon surface glycoproteins, whose protogene was acquired prior to the genus formation. P. jirovecii appeared at ~65 million years ago, overlapping with the emergence of the first primates. P. jirovecii and its sister species P. macacae, which infects macaques nowadays, may have had overlapping host ranges in the distant past. Clues from molecular clocks suggest that P. jirovecii did not cospeciate with humans. Molecular evidence suggests that Pneumocystis speciation involved chromosomal rearrangements and the mounting of genetic barriers that inhibit gene flow among species.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Meier CS, Pagni M, Richard S, Mühlethaler K, Almeida JMGCF, Nevez G, Cushion MT, Calderón EJ, Hauser PM. Fungal antigenic variation using mosaicism and reassortment of subtelomeric genes' repertoires. Nat Commun 2023; 14:7026. [PMID: 37919276 PMCID: PMC10622565 DOI: 10.1038/s41467-023-42685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Surface antigenic variation is crucial for major pathogens that infect humans. To escape the immune system, they exploit various mechanisms. Understanding these mechanisms is important to better prevent and fight the deadly diseases caused. Those used by the fungus Pneumocystis jirovecii that causes life-threatening pneumonia in immunocompromised individuals remain poorly understood. Here, though this fungus is currently not cultivable, our detailed analysis of the subtelomeric sequence motifs and genes encoding surface proteins suggests that the system involves the reassortment of the repertoire of ca. 80 non-expressed genes present in each strain, from which single genes are retrieved for mutually exclusive expression. Dispersion of the new repertoires, supposedly by healthy carrier individuals, appears very efficient because identical alleles are observed in patients from different countries. Our observations reveal a unique strategy of antigenic variation. They also highlight the possible role in genome rearrangements of small imperfect mirror sequences forming DNA triplexes.
Collapse
Affiliation(s)
- Caroline S Meier
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sophie Richard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Konrad Mühlethaler
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - João M G C F Almeida
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Gilles Nevez
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France
- Infections respiratoires fongiques (IFR), Université d'Angers, Université de Brest, Brest, France
| | - Melanie T Cushion
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
- Cincinnati VAMC, Medical Research Service, Cincinnati, OH, 45220, USA
| | - Enrique J Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocίo/Consejo Superior de Investigaciones Cientίficas/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Epidemiologίa y Salud Pública, Servicio de Medicina Interna, Hospital Universitario Virgen del Rocίo, Departamento de Medicina, Facultad de Medicina, Seville, Spain
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Kottom TJ, Carmona EM, Limper AH. Lung Epithelial Cell Line Immune Responses to Pneumocystis. J Fungi (Basel) 2023; 9:729. [PMID: 37504718 PMCID: PMC10381464 DOI: 10.3390/jof9070729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Pneumocystis sp. are fungal pathogens and members of the Ascomycota phylum. Immunocompetent individuals can readily eliminate the fungus, whereas immunocompromised individuals can develop Pneumocystis jirovecii pneumonia (PJP). Currently, over 500,000 cases occur worldwide, and the organism is listed on the recently released WHO fungal priority pathogens list. Overall, the number of PJP cases over the last few decades in developed countries with the use of highly effective antiretroviral therapy has decreased, but the cases of non-HIV individuals using immunosuppressive therapies have significantly increased. Even with relatively effective current anti-Pneumocystis therapies, the mortality rate remains 30-60% in non-HIV patients and 10-20% during initial episodes of PJP in HIV/AIDS patients. Although the role of alveolar macrophages is well studied and established, there is also well-established and emerging evidence regarding the role of epithelial cells in the immune response to fungi. This mini review provides a brief overview summarizing the innate immune response of the lung epithelium and various continuously cultured mammalian cell lines to Pneumocystis.
Collapse
Affiliation(s)
- Theodore J. Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, MN 55905, USA; (E.M.C.); (A.H.L.)
| | | | | |
Collapse
|
4
|
Kottom TJ, Carmona EM, Limper AH. Gene Expression in Lung Epithelial Cells Following Interaction with Pneumocystis carinii and its Specific Life Forms Yields Insights into Host Gene Responses to Infection. Microbiol Immunol 2022; 66:238-251. [PMID: 35229348 PMCID: PMC9090966 DOI: 10.1111/1348-0421.12972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
Pneumocystis spp. interacts with epithelial cells in the alveolar spaces of the lung. It is thought that the binding of Pneumocystis to host cell epithelium is needed for life cycle completion and proliferation. The effect of this interaction on lung epithelial cells have previously shown that the trophic form of this organism greatly inhibits p34 cdc2 activity, a serine/threonine kinase required for transition from G2 to M phase in the cell cycle. To gain further insight into the host response during Pneumocystis pneumonia (PCP), we used microarray technology to profile epithelial cell (A549) gene expression patterns following Pneumocystis carinii interaction. Furthermore, we isolated separate populations of cyst and trophic forms of P. carinii, which were then applied to the lung epithelial cells. Differential expression of genes involved in various cellular functions dependent on the specific P. carinii life form in contact with the A549 cell were identified. The reliability of our data was further confirmed by Northern blot analysis on a number of selected up or down regulated transcripts. The transcriptional response to P. carinii was dominated by cytokines, apoptotic, and anti-apoptotic related genes. These results reveal several previously unknown effects of P. carinii on the lung epithelial cell and provide insight into the complex interactions of host and pathogen. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| |
Collapse
|
5
|
Ma L, Chen Z, Huang DW, Cissé OH, Rothenburger JL, Latinne A, Bishop L, Blair R, Brenchley JM, Chabé M, Deng X, Hirsch V, Keesler R, Kutty G, Liu Y, Margolis D, Morand S, Pahar B, Peng L, Van Rompay KKA, Song X, Song J, Sukura A, Thapar S, Wang H, Weissenbacher-Lang C, Xu J, Lee CH, Jardine C, Lempicki RA, Cushion MT, Cuomo CA, Kovacs JA. Diversity and Complexity of the Large Surface Protein Family in the Compacted Genomes of Multiple Pneumocystis Species. mBio 2020; 11:e02878-19. [PMID: 32127451 PMCID: PMC7064768 DOI: 10.1128/mbio.02878-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022] Open
Abstract
Pneumocystis, a major opportunistic pathogen in patients with a broad range of immunodeficiencies, contains abundant surface proteins encoded by a multicopy gene family, termed the major surface glycoprotein (Msg) gene superfamily. This superfamily has been identified in all Pneumocystis species characterized to date, highlighting its important role in Pneumocystis biology. In this report, through a comprehensive and in-depth characterization of 459 msg genes from 7 Pneumocystis species, we demonstrate, for the first time, the phylogeny and evolution of conserved domains in Msg proteins and provide a detailed description of the classification, unique characteristics, and phylogenetic relatedness of five Msg families. We further describe, for the first time, the relative expression levels of individual msg families in two rodent Pneumocystis species, the substantial variability of the msg repertoires in P. carinii from laboratory and wild rats, and the distinct features of the expression site for the classic msg genes in Pneumocystis from 8 mammalian host species. Our analysis suggests multiple functions for this superfamily rather than just conferring antigenic variation to allow immune evasion as previously believed. This study provides a rich source of information that lays the foundation for the continued experimental exploration of the functions of the Msg superfamily in Pneumocystis biology.IMPORTANCEPneumocystis continues to be a major cause of disease in humans with immunodeficiency, especially those with HIV/AIDS and organ transplants, and is being seen with increasing frequency worldwide in patients treated with immunodepleting monoclonal antibodies. Annual health care associated with Pneumocystis pneumonia costs ∼$475 million dollars in the United States alone. In addition to causing overt disease in immunodeficient individuals, Pneumocystis can cause subclinical infection or colonization in healthy individuals, which may play an important role in species preservation and disease transmission. Our work sheds new light on the diversity and complexity of the msg superfamily and strongly suggests that the versatility of this superfamily reflects multiple functions, including antigenic variation to allow immune evasion and optimal adaptation to host environmental conditions to promote efficient infection and transmission. These findings are essential to consider in developing new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Zehua Chen
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Da Wei Huang
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie L Rothenburger
- Department of Pathobiology, Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | | | - Lisa Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert Blair
- Tulane National Primate Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Jason M Brenchley
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Magali Chabé
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Xilong Deng
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Vanessa Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebekah Keesler
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Geetha Kutty
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Margolis
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Serge Morand
- Institut des Sciences de l'Evolution, Université de Montpellier 2, Montpellier, France
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Li Peng
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Xiaohong Song
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Antti Sukura
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sabrina Thapar
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Honghui Wang
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Chao-Hung Lee
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Claire Jardine
- Department of Pathobiology, Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Richard A Lempicki
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Melanie T Cushion
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christina A Cuomo
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Bishop LR, Davis AS, Bradshaw K, Gamez M, Cisse OH, Wang H, Ma L, Kovacs JA. Characterization of p57, a Stage-Specific Antigen of Pneumocystis murina. J Infect Dis 2019; 218:282-290. [PMID: 29471356 DOI: 10.1093/infdis/jiy099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/15/2018] [Indexed: 11/14/2022] Open
Abstract
Pneumocystis has a large multicopy gene family encoding proteins related to the major surface glycoprotein (Msg), whose functions are largely unknown. We expressed one such protein of Pneumocystis murina, p57, which is encoded by 3 highly conserved genes, and demonstrated by immunoblot that immunocompetent mice that were immunized with crude Pneumocystis antigens or that had cleared Pneumocystis infection developed antibodies to p57. Using hyperimmune anti-p57 serum combined with immunolabeling, we found that p57 was expressed by small trophic forms and intracystic bodies, whereas it was not expressed on larger trophic forms or externally by cysts. Expression of p57 and Msg by trophic forms was largely mutually exclusive. Treatment of infected animals with caspofungin inhibited cyst formation and markedly decreased p57 expression. While p57 expression was seen in immunocompetent mice infected with Pneumocystis, immunization with recombinant p57 did not result in altered cytokine expression by lymphocytes or in diminished infection in such mice. Thus, p57 appears to be a stage-specific antigen of Pneumocystis that is expressed on intracystic bodies and young trophic forms and may represent a mechanism to conserve resources in organisms during periods of limited exposure to host immune responses.
Collapse
Affiliation(s)
- Lisa R Bishop
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, NIH, Bethesda, Maryland
| | - A Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Kaitlynn Bradshaw
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Monica Gamez
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Ousmane H Cisse
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, NIH, Bethesda, Maryland
| | - Honghui Wang
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, NIH, Bethesda, Maryland
| | - Liang Ma
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, NIH, Bethesda, Maryland
| | - Joseph A Kovacs
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, NIH, Bethesda, Maryland
| |
Collapse
|
7
|
Is the unique camouflage strategy of Pneumocystis associated with its particular niche within host lungs? PLoS Pathog 2019; 15:e1007480. [PMID: 30677096 PMCID: PMC6345417 DOI: 10.1371/journal.ppat.1007480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
8
|
Pendland JC, Lopez-Lastra C, Boucias DG. Laminin-binding sites on cell walls of the entomopathogenNomuraea rileyiassociated with growth and adherence to host tissues. Mycologia 2018. [DOI: 10.1080/00275514.1994.12026417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- J. C. Pendland
- Department of Entomology and Nematology, Bldg. 970, Hull Road, Gainesville, Florida 32611-0620
| | - C. Lopez-Lastra
- Department of Entomology and Nematology, Bldg. 970, Hull Road, Gainesville, Florida 32611-0620
| | - D. G. Boucias
- Department of Entomology and Nematology, Bldg. 970, Hull Road, Gainesville, Florida 32611-0620
| |
Collapse
|
9
|
Abstract
Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different.IMPORTANCEPneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms of antigenic variation used by this pathogen to escape the human immune system, a strategy commonly used by pathogenic microorganisms. Using a new DNA sequencing technology generating long reads, we could characterize the highly repetitive gene families encoding the proteins that are present on the cellular surface of this pest. These gene families are localized in the regions close to the ends of all chromosomes, the subtelomeres. Such chromosomal localization was found to favor genetic recombinations between members of each gene family and to allow diversification of these proteins continuously over time. This pathogen seems to use a strategy of antigenic variation consisting of the continuous production of new subpopulations composed of cells that are antigenically different. Such a strategy is unique among human pathogens.
Collapse
|
10
|
Abstract
Pneumocystis carinii pneumonia (PCP) remains a serious infection in the immunocompromised host (in the absence of HIV infection) and presents significant management and diagnostic challenges to ICU physicians. Non-HIV PCP is generally abrupt in onset, and follows a fulminate course with high rates of hospitalization, ICT admission, respiratory failure, and requirement for intubation. Mortality is generally high, especially if mechanical ventilation is required. Non-invasive ventilatory support may be considered, although the rapid progression to respiratory failure often necessitates intubation at the time of presentation. Bronchoscopy is often required to establish the diagnosis, and empirical antimicrobial treatment specifically targeted to P. carinii should be initiated while awaiting confirmation. Adjunctive corticosteroids may accelerate recovery, although their use has not yet been established in non-HIV PCP. For the ICU physicians to diagnose PCP, the non-specific presentation of an acute febrile illness and respiratory distress with diffuse pulmonary infiltrates requires a high clinical index of suspician, familiarity with clinical conditions associated with increased risk for PCP, and a low threshold for bronchoscopy to establish the diagnosis.
Collapse
Affiliation(s)
- Geoffrey S. Gilmartin
- Division of Pulmonary and Critical Care, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Henry Koziel
- Division of Pulmonary and Critical Care, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA.,
| |
Collapse
|
11
|
Skalski JH, Kottom TJ, Limper AH. Pathobiology of Pneumocystis pneumonia: life cycle, cell wall and cell signal transduction. FEMS Yeast Res 2015; 15:fov046. [PMID: 26071598 DOI: 10.1093/femsyr/fov046] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/28/2022] Open
Abstract
Pneumocystis is a genus of ascomycetous fungi that are highly morbid pathogens in immunosuppressed humans and other mammals. Pneumocystis cannot easily be propagated in culture, which has greatly hindered understanding of its pathobiology. The Pneumocystis life cycle is intimately associated with its mammalian host lung environment, and life cycle progression is dependent on complex interactions with host alveolar epithelial cells and the extracellular matrix. The Pneumocystis cell wall is a varied and dynamic structure containing a dominant major surface glycoprotein, β-glucans and chitins that are important for evasion of host defenses and stimulation of the host immune system. Understanding of Pneumocystis cell signaling pathways is incomplete, but much has been deduced by comparison of the Pneumocystis genome with homologous genes and proteins in related fungi. In this mini-review, the pathobiology of Pneumocystis is reviewed, with particular focus on the life cycle, cell wall components and cell signal transduction.
Collapse
Affiliation(s)
- Joseph H Skalski
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Theodore J Kottom
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Abstract
To infect the host and cause disease, many medically important fungi invade normally nonphagocytic host cells, such as endothelial cells and epithelial cells. Host cell invasion is a two-step process consisting of adherence followed by invasion. There are two general mechanisms of host cell invasion, induced endocytosis and active penetration. Furthermore, fungi can traverse epithelial or endothelial cell barriers either by proteolytic degradation of intercellular tight junctions or via a Trojan horse mechanism in which they are transported by leukocytes. Although these mechanisms of host cell invasion have been best studied using Candida albicans and Cryptococcus neoformans, it is probable that other invasive fungi also use one or more of these mechanisms to invade host cells. Identification of these invasion mechanisms holds promise to facilitate the development of new approaches to inhibit fungal invasion and thereby prevent disease.
Collapse
Affiliation(s)
- Donald C Sheppard
- Departments of Microbiology and Immunology and Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Scott G Filler
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502 David Geffen School of Medicine at UCLA, Los Angeles, California 90025
| |
Collapse
|
13
|
|
14
|
Kutty G, England KJ, Kovacs JA. Expression of Pneumocystis jirovecii major surface glycoprotein in Saccharomyces cerevisiae. J Infect Dis 2013; 208:170-9. [PMID: 23532098 DOI: 10.1093/infdis/jit131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The major surface glycoprotein (Msg), which is the most abundant protein expressed on the cell surface of Pneumocystis organisms, plays an important role in the attachment of this organism to epithelial cells and macrophages. In the present study, we expressed Pneumocystis jirovecii Msg in Saccharomyces cerevisiae, a phylogenetically related organism. Full-length P. jirovecii Msg was expressed with a DNA construct that used codons optimized for expression in yeast. Unlike in Pneumocystis organisms, recombinant Msg localized to the plasma membrane of yeast rather than to the cell wall. Msg expression was targeted to the yeast cell wall by replacing its signal peptide, serine-threonine-rich region, and glycophosphatidylinositol anchor signal region with the signal peptide of cell wall protein α-agglutinin of S. cerevisiae, the serine-threonine-rich region of epithelial adhesin (Epa1) of Candida glabrata, and the carboxyl region of the cell wall protein (Cwp2) of S. cerevisiae, respectively. Immunofluorescence analysis and treatment with β-1,3 glucanase demonstrated that the expressed Msg fusion protein localized to the yeast cell wall. Surface expression of Msg protein resulted in increased adherence of yeast to A549 alveolar epithelial cells. Heterologous expression of Msg in yeast will facilitate studies of the biologic properties of Pneumocystis Msg.
Collapse
Affiliation(s)
- Geetha Kutty
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
15
|
Bishop LR, Helman D, Kovacs JA. Discordant antibody and cellular responses to Pneumocystis major surface glycoprotein variants in mice. BMC Immunol 2012; 13:39. [PMID: 22788748 PMCID: PMC3411419 DOI: 10.1186/1471-2172-13-39] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 07/12/2012] [Indexed: 11/29/2022] Open
Abstract
Background The major surface glycoprotein (Msg) of Pneumocystis is encoded by approximately 50 to 80 unique but related genes. Msg diversity may represent a mechanism for immune escape from host T cell responses. We examined splenic T cell proliferative and cytokine as well as serum antibody responses to recombinant and native Pneumocystis antigens in immunized or Pneumocystis-infected mice. In addition, immune responses were examined in 5 healthy humans. Results Proliferative responses to each of two recombinant Msg variant proteins were seen in mice immunized with either recombinant protein, but no proliferation to these antigens was seen in mice immunized with crude Pneumocystis antigens or in mice that had cleared infection, although the latter animals demonstrated proliferative responses to crude Pneumocystis antigens and native Msg. IL-17 and MCP-3 were produced in previously infected animals in response to the same antigens, but not to recombinant antigens. Antibody responses to the recombinant P. murina Msg variant proteins were seen in all groups of animals, demonstrating that all groups were exposed to and mounted immune responses to Msg. No human PBMC samples proliferated following stimulation with P. jirovecii Msg, while antibody responses were detected in sera from 4 of 5 samples. Conclusions Cross-reactive antibody responses to Msg variants are common, while cross-reactive T cell responses are uncommon; these results support the hypothesis that Pneumocystis utilizes switching of Msg variant expression to avoid host T cell responses.
Collapse
Affiliation(s)
- Lisa R Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1662, USA
| | | | | |
Collapse
|
16
|
Kutty G, Maldarelli F, Achaz G, Kovacs JA. Variation in the major surface glycoprotein genes in Pneumocystis jirovecii. J Infect Dis 2008; 198:741-9. [PMID: 18627244 DOI: 10.1086/590433] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The genome of Pneumocystis, which causes life-threatening pneumonia in immunosuppressed patients, contains a multicopy gene family that encodes the major surface glycoprotein (Msg). Pneumocystis can vary the expressed Msg, presumably as a mechanism to avoid host immune responses. Analysis of 24 msg-gene sequences obtained from a single human isolate of Pneumocystis demonstrated that the sequences segregate into 2 branches. Results of a number of analyses suggest that recombination between msg genes is an important mechanism for generating msg diversity. Intrabranch recombination occurred more frequently than interbranch recombination. Restriction-fragment length polymorphism analysis of human isolates of Pneumocystis demonstrated substantial variation in the repertoire of the msg-gene family, variation that was not observed in laboratory isolates of Pneumocystis in rats or mice; this may be the result of examining outbred versus captive populations. Increased diversity in the Msg repertoire, generated in part by recombination, increases the potential for antigenic variation in this abundant surface protein.
Collapse
Affiliation(s)
- Geetha Kutty
- Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
17
|
Ulanova M, Gravelle S, Barnes R. The role of epithelial integrin receptors in recognition of pulmonary pathogens. J Innate Immun 2008; 1:4-17. [PMID: 20375562 PMCID: PMC7190199 DOI: 10.1159/000141865] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 04/30/2008] [Indexed: 12/19/2022] Open
Abstract
Integrins are a large family of heterodimeric transmembrane cell adhesion receptors. During the last decade, it has become clear that integrins significantly participate in various host-pathogen interactions involving pathogenic bacteria, fungi, and viruses. Many bacteria possess adhesins that can bind either directly or indirectly to integrins. However, there appears to be an emerging role for integrins beyond simply adhesion molecules. Given the conserved nature of integrin structure and function, and the diversity of the pathogens which use integrins, it appears that they may act as pattern recognition receptors important for the innate immune response. Several clinically significant bacterial pathogens target lung epithelial integrins, and this review will focus on exploring various structures and mechanisms involved in these interactions.
Collapse
Affiliation(s)
- Marina Ulanova
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ont., Canada.
| | | | | |
Collapse
|
18
|
Kottom TJ, Kennedy CC, Limper AH. Pneumocystis PCINT1, a molecule with integrin-like features that mediates organism adhesion to fibronectin. Mol Microbiol 2007; 67:747-61. [PMID: 18179594 DOI: 10.1111/j.1365-2958.2007.06093.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pneumocystis species cause severe pneumonia during chronic immunosuppression, especially in patients with AIDS or malignancy. Adhesion of Pneumocystis to extracellular matrix proteins, particularly fibronectin, associated with alveolar epithelial cell surfaces, triggers organism proliferative pathways. Herein, we report the characterization of a novel Pneumocystis molecule with considerable structural features of an integrin-like extracellular matrix adhesion receptor. A PCINT1115 bp probe was initially identified from partial sequence present within the Pneumocystis genome project database. A full-length 3018 bp cDNA was subsequently obtained with extensive homology to the C-terminal region of Candida albicans INT1 (31% blastx), a gene originally described as encoding an integrin-like molecule implicated in adhesion, growth, and virulence. Sequence analysis of PCINT1 indicated that the Pneumocystis molecule contained both a putative internal RGD motif and four Metal Ion-Dependent Attachment Sites (MIDAS) motifs required for coordination of divalent cations, as well as a specific tyrosine residue found in the cytoplasmic tails of some integrin receptors and C. albicans INT1. Northern, Western and immunofluorescence studies demonstrated that the trophic forms of Pneumocystis, known to be the life cycle forms that tightly adhere to lung epithelium, expressed the molecule to a substantially greater degree than cystic forms. Heterologous expression of PCINT1 in yeast followed by application to human fibronectin-coated surfaces demonstrated these yeast display PCINT1 on their surfaces and subsequently gain the ability to bind fibronectin in a cation dependent fashion. Taken together, these results indicate that Pneumocystis expresses a novel integrin-like PCINT1 molecule sufficient to mediate interactions with extracellular matrix fibronectin, an integral component of host-cell organism interactions during this infection.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Division of Pulmonary, Critical Care and Internal Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
19
|
Abstract
Basic aspects of cell biology of Pneumocystis carinii are reviewed with major emphasis on its life cycle and the structural organization of the trophozoites and cyst forms. Initially considered as a protozoan it is now established that Pneumocystis belongs to the Fungi Kingdom. Its life cycle includes two basic forms: (a) trophozoites, which are haploid cells that divide by binary fission and may conjugate with each other forming an early procyst and (b) cysts where division takes place through a meiotic process with the formation of eight nuclei followed by cytoplasmic delimitation and formation of intracystic bodies which are subsequently released and transformed into trophozoites. Basic aspects of the structure of the two developmental stages of P. carinii are reviewed.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
20
|
Wang J, Gigliotti F, Maggirwar S, Johnston C, Finkelstein JN, Wright TW. Pneumocystis carinii activates the NF-kappaB signaling pathway in alveolar epithelial cells. Infect Immun 2005; 73:2766-77. [PMID: 15845480 PMCID: PMC1087330 DOI: 10.1128/iai.73.5.2766-2777.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pneumocystis carinii pneumonia (PcP) is a clinically important infection of immunocompromised patients. Although the interaction of Pneumocystis with the alveolar epithelium has been well documented, very little information regarding the epithelial response to Pneumocystis is currently available. In order to study Pneumocystis-epithelium interactions, a murine cell line derived specifically from an alveolar epithelial cell (AEC) was utilized. The coculture of murine AECs with mouse Pneumocystis induced a dose- and time-dependent release of the CXC chemokine MIP-2. Importantly, the specific removal of Pneumocystis from the preparation, or the pretreatment of AECs with sulfasalazine, a potent and specific inhibitor of NF-kappaB, nearly completely abrogated the chemokine response to Pneumocystis. Since the murine MIP-2 promoter contains consensus kappaB binding sequences, the ability of Pneumocystis to stimulate NF-kappaB signaling in AECs was examined. Pneumocystis stimulation of an AEC line stably transfected with a kappaB-dependent reporter construct triggered the NF-kappaB signaling pathway and reporter production. These data were confirmed in gel shift assays, providing direct evidence that Pneumocystis induced the nuclear translocation of the p50/p65 heterodimeric form of NF-kappaB. Maximal NF-kappaB activation was dependent upon direct contact with viable Pneumocystis organisms. These data demonstrate that Pneumocystis activates NF-kappaB signaling in AECs and establish a reporter cell line for studying NF-kappaB activation in AECs. Given the global regulatory functions of the NF-kappaB family, these findings suggest that Pneumocystis directly alters AEC gene expression in a manner that promotes pulmonary immune and inflammatory responses.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatrics, P.O. Box 850, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Species of the genus Pneumocystis exist as opportunistic fungal pathogens and are associated with severe pneumonia and pulmonary complications in immunocompromised individuals. Although prophylactic therapy for Pneumocystis has significantly decreased the overall incidence of infection, more than 80% of cases in current patient populations are considered breakthrough cases. In the HIV-infected population, in the years following the initiation of highly active antiretroviral therapy (HAART), significant reductions in the incidence of Pneumocystis infection were observed, although trends over the last several years suggest that the incidence of Pneumocystis has plateaued rather than decreased. Furthermore, with the more prominent usage of immunosuppressive therapies, the frequency of Pneumocystis infection in the HIV-negative population, such as those with hematologic malignancies and those who have undergone transplantation, has risen significantly. Investigating host defense mechanisms against P. carinii has historically been problematic due to the difficulty in achieving continuous in vitro propagation of proliferating Pneumocytis organisms. Nevertheless, clinical and experimental studies have documented that host defense against Pneumocystis involves a concerted effort between innate, cell-mediated (T lymphocyte) and humoral (B lymphocyte) responses. However, the pulmonary environment is a tissue site where heightened inflammatory responses can often lead to inflammation-mediated injury, thereby contributing to the pathogenesis of Pneumocystis infection. Accordingly, clearance of Pneumocystis from the pulmonary environment is dependent on a delicate equilibrium between the inflammatory response and immune-mediated clearance of the organism. Furthermore, innate and adaptive responses against Pneumocystis are strikingly similar to those against other medically-important fungi, thus providing additional evidence that Pneumocystis exists as a fungal organism.
Collapse
Affiliation(s)
- Chad Steele
- Department of Pediatrics, Division of Pulmonology Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | |
Collapse
|
22
|
Lasbury ME, Lin P, Tschang D, Durant PJ, Lee CH. Effect of bronchoalveolar lavage fluid from Pneumocystis carinii-infected hosts on phagocytic activity of alveolar macrophages. Infect Immun 2004; 72:2140-7. [PMID: 15039336 PMCID: PMC375193 DOI: 10.1128/iai.72.4.2140-2147.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alveolar macrophages from Pneumocystis carinii-infected rats are defective in phagocytosis. To investigate whether this defect is due to a certain factor present in P. carinii-infected lungs, alveolar macrophages from uninfected rats were incubated with bronchoalveolar lavage (BAL) fluid samples from P. carinii-infected rats. Alveolar macrophages treated with these BAL fluid samples became defective in phagocytosis but remained normal when treated with BAL fluid samples from noninfected or Toxoplasma gondii-infected rats. The suppressive activity of the BAL fluid samples from P. carinii-infected rats on phagocytosis was retained when the BAL fluid samples were passed through a filter with a pore size of 0.45 microm but was lost when the BAL fluid samples were digested with proteases such as trypsin, pepsin, papain, or endopeptidase Gly-C. Lipid fractions of these BAL fluid samples had no suppressive activity on phagocytosis. The suppressive activity of these BAL fluid samples was also lost when they were incubated with concanavalin A-agarose beads, suggesting that the inhibitor is a glycoprotein. The inhibitor was estimated to be larger than 100,000 Da by exclusion filtration. After binding to the concanavalin A-agarose beads, the inhibitor in BAL fluid samples and P. carinii lysate could be eluted with 200 mM methylmannose. Treatment of both the crude BAL fluid samples and P. carinii lysate and the 200 mM methylmannose eluate with antibody against the major surface glycoprotein of P. carinii eliminated their suppressive activity. These results suggest that the factor capable of suppressing the phagocytic activity of alveolar macrophages is P. carinii major surface glycoprotein or one or more of its derivatives.
Collapse
Affiliation(s)
- Mark E Lasbury
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
23
|
Rebiere-Huët J, Di Martino P, Hulen C. Inhibition ofPseudomonas aeruginosaadhesion to fibronectin by PA-IL and monosaccharides: involvement of a lectin-like process. Can J Microbiol 2004; 50:303-12. [PMID: 15213738 DOI: 10.1139/w04-015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa adherence to fibronectin has been shown to be important to bacterial colonization and infection. To better understand the mechanisms involved in this interaction, the role of the carbohydrate moiety of the fibronectin molecule in P. aeruginosa adhesion was studied. Strain NK 125 502 adhered to immobilized fibronectin with an adherence index of 4.8 × 105CFU/µg. Periodic oxidation of fibronectin markedly reduced the adhesion of P. aeruginosa, while a neuraminidase treatment increased bacteria adhesion. N-Acetylgalactosamine, N-acetylglucosamine, sialic acid, and also lectin PA-IL worked as efficient inhibitors in adhesion assays: 59%, 70.7%, 100%, and 60% of inhibition, respectively. We have demonstrated here the involvement of a lectin-like process in the interaction of P. aeruginosa NK 125 502 with immobilized fibronectin.Key words: Pseudomonas aeruginosa, fibronectin, adherence, lectins.
Collapse
Affiliation(s)
- Julie Rebiere-Huët
- Equipe de recherche sur les relations matrice extracellulaire-cellules, Université de Cergy-Pontoise, Unité de Formation et de Recherche Sciences et Techniques, Cergy-Pontoise, France
| | | | | |
Collapse
|
24
|
Abstract
Pneumocystis jiroveci (P. carinii) is an opportunistic pathogen that has gained particular prominence since the onset of the AIDS epidemic. Among several important advances in diagnosis and management, appropriately targeting chemoprophylaxis to HIV-infected patients at high clinical risk for P. jiroveci pneumonia and the introduction of effective combination anti-retroviral therapy (including highly active antiretroviral therapy [HAART]) have contributed to the reduced incidence of P. jiroveci pneumonia. Despite the success of these clinical interventions, P. jiroveci pneumonia remains the most common opportunistic pneumonia and the most common life-threatening infectious complication in HIV-infected patients. Trimethoprim/sulfamethoxazole (cotrimoxazole) remains the first-line agent for effective therapy and chemoprophylaxis, and corticosteroids represent an important adjunctive agent in the treatment of moderate-to-severe P. jiroveci pneumonia. However, problems of chemoprophylaxis and treatment failures, high rates of adverse drug reactions and drug intolerance to first-line antimicrobials, high rates of relapse or recurrence with second-line agents, and newer concerns about the development of P. jiroveci drug resistance represent formidable challenges to the management and treatment of AIDS-related P. jiroveci pneumonia. With the expanding global problem of HIV infection, the intolerance or unavailability of HAART to many individuals and limited access to healthcare for HIV-infected patients, P. jiroveci pneumonia will remain a major worldwide problem in the HIV-infected population. New drugs under development as anti-Pneumocystis agents such as echinocandins and pneumocandins, which inhibit beta-glucan synthesis, or sordarins, which inhibit fungal protein synthesis, show promise as effective agents. Continued basic research into the biology and genetics of P. jiroveci and host defense response to P. jiroveci will allow the development of newer antimicrobials and immunomodulatory therapeutic agents to more effectively treat life-threatening pneumonia caused by this organism.
Collapse
Affiliation(s)
- Naimish Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, 330 Brookline Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
25
|
Kottom TJ, Köhler JR, Thomas CF, Fink GR, Limper AH. Lung epithelial cells and extracellular matrix components induce expression of Pneumocystis carinii STE20, a gene complementing the mating and pseudohyphal growth defects of STE20 mutant yeast. Infect Immun 2003; 71:6463-71. [PMID: 14573668 PMCID: PMC219549 DOI: 10.1128/iai.71.11.6463-6471.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Revised: 04/21/2003] [Accepted: 08/11/2003] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis carinii causes severe pneumonia in immunocompromised hosts. The binding of P. carinii to alveolar epithelial cells and extracellular matrix constituents such as fibronectin and vitronectin is a central feature of infection, which initiates proliferation of the organism. Herein, we demonstrate that P. carinii binding to lung cells specifically alters the gene expression of the organism, regulating fungal growth. Subtractive hybridization was performed to isolate P. carinii genes expressed following binding to mammalian extracellular matrix constituents. P. carinii STE20 (PCSTE20), a gene participating in mating and pseudohyphal growth of other fungi, was identified following adherence to the extracellular matrix constituents fibronectin, vitronectin, collagen, and lung epithelial cells. The expression of PCSTE20 and a related P. carinii mitogen-activated protein kinase (MAPK) kinase gene, also implicated in signaling of mating, were both specifically upregulated by binding to matrix protein. The expression of general cyclin-dependent kinases and other MAPKs not involved in mating pathways were not altered by organism binding. PCSTE20 expression was also strongly enhanced following organism attachment to A549 lung epithelial cells. When expressed in a Saccharomyces cerevisiae ste20Delta mutant, PCSTE20 suppressed defects in both mating and pseudohyphal growth. These findings are consistent with the observed proliferation and filopodial extension of Pneumocystis organisms adherent to the epithelium in the lungs of immunocompromised hosts. PCSTE20 expression appears to represent a significant component in the regulation of the life cycle of this intractable opportunistic pathogen.
Collapse
Affiliation(s)
- Theodore J Kottom
- Departments of Internal Medicine and Biochemistry, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
26
|
Yong SJ, Vuk-Pavlovic Z, Standing JE, Crouch EC, Limper AH. Surfactant protein D-mediated aggregation of Pneumocystis carinii impairs phagocytosis by alveolar macrophages. Infect Immun 2003; 71:1662-71. [PMID: 12654779 PMCID: PMC152070 DOI: 10.1128/iai.71.4.1662-1671.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis carinii remains an important and potentially fatal cause of opportunistic pneumonia. Animal studies reveal that substantial quantities of surfactant protein D (SP-D) accumulate in the airspaces during P. carinii pneumonia and are particularly abundant in aggregates of organisms. Due to the multimeric structure of SP-D, we hypothesized that SP-D mediates aggregation of the organism. From previous clinical studies it is known that aggregated organisms are conspicuous in sections of lung tissue and bronchoalveolar lavage (BAL) fluids of humans with active P. carinii pneumonia. Herein, we observe that SP-D levels increased at least fourfold in BAL fluids of patients with P. carinii pneumonia. Next, a spectrophotometric sedimentation assay was developed to assess the aggregation of P. carinii in vitro by SP-D. P. carinii organisms were first stripped with glutathione to remove bound SP-D and subsequently incubated in the presence of SP-D and 2 mM calcium. P. carinii incubated with natural SP-D (10 micro g/ml) containing dodecamers and higher-order forms exhibited aggregation and enhanced sedimentation compared to that of glutathione-stripped P. carinii. Aggregation was also enhanced by the concentrated supernatant of rat BAL fluid, and this effect was abolished by the selective removal of SP-D from the lavage fluid. P. carinii aggregation was reduced by maltose, mannose, and EDTA, consistent with the role of the SP-D C-type lectin domain (CRD) in the aggregation event. Comparisons of different molecular forms of SP-D showed that dodecamers-but not trimeric subunits-mediate optimal aggregation of P. carinii. Aggregation of P. carinii by SP-D was shown to be responsible for the impaired phagocytosis of the organisms by alveolar macrophages. Thus, SP-D-mediated aggregation of P. carinii may represent one means by which the organism avoids elimination by the host.
Collapse
Affiliation(s)
- Suk-Joong Yong
- Thoracic Diseases Research Unit, Division of Pulmonary, Critical Care, and Internal Medicine, 8-24 Stabile Building, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
27
|
Xu Z, Lance B, Vargas C, Arpinar B, Bhandarkar S, Kraemer E, Kochut KJ, Miller JA, Wagner JR, Weise MJ, Wunderlich JK, Stringer J, Smulian G, Cushion MT, Arnold J. Mapping by sequencing the Pneumocystis genome using the ordering DNA sequences V3 tool. Genetics 2003; 163:1299-313. [PMID: 12702676 PMCID: PMC1462508 DOI: 10.1093/genetics/163.4.1299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A bioinformatics tool called ODS3 has been created for mapping by sequencing. The tool allows the creation of integrated genomic maps from genetic, physical mapping, and sequencing data and permits an integrated genome map to be stored, retrieved, viewed, and queried in a stand-alone capacity, in a client/server relationship with the Fungal Genome Database (FGDB), and as a web-browsing tool for the FGDB. In that ODS3 is programmed in Java, the tool promotes platform independence and supports export of integrated genome-mapping data in the extensible markup language (XML) for data interchange with other genome information systems. The tool ODS3 is used to create an initial integrated genome map of the AIDS-related fungal pathogen, Pneumocystis carinii. Contig dynamics would indicate that this physical map is approximately 50% complete with approximately 200 contigs. A total of 10 putative multigene families were found. Two of these putative families were previously characterized in P. carinii, namely the major surface glycoproteins (MSGs) and HSP70 proteins; three of these putative families (not previously characterized in P. carinii) were found to be similar to families encoding the HSP60 in Schizosaccharomyces pombe, the heat-shock psi protein in S. pombe, and the RNA synthetase family (i.e., MES1) in Saccharomyces cerevisiae. Physical mapping data are consistent with the 16S, 5.8S, and 26S rDNA genes being single copy in P. carinii. No other fungus outside this genus is known to have the rDNA genes in single copy.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rebière-Huët J, Guérillon J, Pimenta AL, Di Martino P, Orange N, Hulen C. Porins of Pseudomonas fluorescens MFO as fibronectin-binding proteins. FEMS Microbiol Lett 2002; 215:121-6. [PMID: 12393211 DOI: 10.1111/j.1574-6968.2002.tb11380.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bacterial adherence is a complex phenomenon involving specific interactions between receptors, including matricial fibronectin, and bacterial ligands. We show here that fibronectin and outer membrane proteins of Pseudomonas fluorescens were able to inhibit adherence of P. fluorescens to fibronectin-coated wells. We identified at least six fibronectin-binding proteins with molecular masses of 70, 55, 44, 37, 32 and 28 kDa. The presence of native (32 kDa) and heat-modified forms (37 kDa) of OprF was revealed by immuno-analysis and the 44-kDa band was composed of three proteins, their N-terminal sequences showing homologies with Pseudomonas aeruginosa porins (OprD, OprE1 and OprE3).
Collapse
Affiliation(s)
- J Rebière-Huët
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, UFR Sciences et Techniques St Martin, Université de Cergy-Pontoise, 2, avenue Adolphe Chauvin, P.O. Box 222, 95 302 Cedex, Cergy-Pontoise, France
| | | | | | | | | | | |
Collapse
|
29
|
Santoni G, Spreghini E, Lucciarini R, Amantini C, Piccoli M. Involvement of alpha(v)beta3 integrin-like receptor and glycosaminoglycans in Candida albicans germ tube adhesion to vitronectin and to a human endothelial cell line. Microb Pathog 2001; 31:159-72. [PMID: 11562169 DOI: 10.1006/mpat.2001.0459] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was undertaken to investigate the expression of alpha(v)beta3 and alpha(v)beta5 integrin-like vitronectin receptors (VNRs) on Candida albicans germ tube and their involvement in its adhesion to vitronectin (VN) and human endothelial cells. By immunofluorescence and FACS analysis, several monoclonal antibodies directed against human alpha(v) or beta3 integrin subunit or alpha(v)beta3 and alpha(v)beta5 heterodimers, positively stained C. albicans germ tubes. C. albicans germ tubes specifically adhered (45-50%) to VN and this adhesion was markedly inhibited by RGD-, but not RGE-containing peptides. Adhesion of C. albicans germ tubes to VN was strongly inhibited by anti-alphav, anti-beta3 or anti-alpha(v)beta3, but not by alpha(v)beta5 monoclonal antibody. C. albicans germ tube adhesion to VN was also inhibited by glycosaminoglycans (GAGs) such as heparin or chondroitin sulphate. Finally, we show that C. albicans germ tubes adhere to the human EA.hy 926 endothelial cell line. This adhesion is markedly blocked by anti-beta3 monoclonal antibody, GRGDSP peptide or heparin, and is completely abolished by their combination. Overall these results indicate that C. albicans germ tube adherence to VN and to a human endothelial cell line is mediated by alpha(v)beta3, but not by alpha(v)beta5-like integrin, and depends on GAGs which may act by regulating alpha(v)beta3 integrin-like/VN adhesive interaction.
Collapse
Affiliation(s)
- G Santoni
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, Camerino, Italy.
| | | | | | | | | |
Collapse
|
30
|
Vuk-Pavlovic Z, Standing JE, Crouch EC, Limper AH. Carbohydrate recognition domain of surfactant protein D mediates interactions with Pneumocystis carinii glycoprotein A. Am J Respir Cell Mol Biol 2001; 24:475-84. [PMID: 11306442 DOI: 10.1165/ajrcmb.24.4.3504] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pneumocystis carinii continues to cause severe pneumonia in immunocompromised patients. Surfactant protein D (SP-D), a lung collectin, markedly accumulates during P. carinii pneumonia and binds to glycoprotein A (gpA) on the surface of P. carinii, thereby enhancing interactions with alveolar macrophages. Herein, we report the structural basis of the interaction of SP-D with gpA. We demonstrate that natural SP-D binds to purified gpA in the presence of 2 mM calcium in a saturable, concentration-dependent manner, which is abolished by 10 mM ethylenediaminetetraacetic acid. Increasing concentrations of calcium under otherwise cation-free conditions significantly enhance SP-D binding to gpA, whereas manganese and magnesium cations have minimal effect. Maximal SP-D binding occurs at pH 7.4, with significant inhibition at pH 4. SP-D binding to gpA is also competitively inhibited by maltose>glucose>mannose>N-acetyl-glucosamine. Comparison of the binding of various natural and recombinant forms of SP-D to gpA reveals that the number of carbohydrate recognition domains (CRDs) in a given SP-D form determines the relative extent of binding to gpA. Maximal binding is observed with natural SP-D (dodecamers and higher order SP-D complexes) followed by recombinant dodecamers. In contrast, recombinant full-length trimers exhibit substantially less binding, which is similar to that observed with a recombinant truncated molecule consisting of the CRD and neck regions, and containing trimers of this portion of the molecule. Taken together, these findings strongly indicate that the CRD of SP-D mediates interaction with P. carinii gpA through its attached oligosaccharides and that the extent of SP-D binding to P. carinii is greatest with dodecamers and higher order forms of SP-D.
Collapse
Affiliation(s)
- Z Vuk-Pavlovic
- Thoracic Diseases Research Unit, Division of Pulmonary, Critical Care, and Internal Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
31
|
Wu M, Kelley MR, Hansen WK, Martin WJ. Reduction of BCNU toxicity to lung cells by high-level expression of O(6)-methylguanine-DNA methyltransferase. Am J Physiol Lung Cell Mol Physiol 2001; 280:L755-61. [PMID: 11238017 DOI: 10.1152/ajplung.2001.280.4.l755] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) is an important cause of pulmonary toxicity. BCNU alkylates DNA at the O(6) position of guanine. O(6)-methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that removes alkyl groups from the O(6) position of guanine. To determine whether overexpression of MGMT in a lung cell reduces BCNU toxicity, the MGMT gene was transfected into A549 cells, a lung epithelial cell line. Transfected A549 cell populations demonstrated high levels of MGMT RNA, MGMT protein, and DNA repair activity. The overexpression of MGMT in lung epithelial cells provided protection from the cytotoxic effects of BCNU. Control A549 cells incubated with 100 microM BCNU had a cell survival rate of 12.5 +/- 1.2%; however, A549 cells overexpressing MGMT had a survival rate of 71.8 +/- 2.7% (P < 0.001). We also demonstrated successful transfection of MGMT into human pulmonary artery endothelial cells and a primary culture of rat type II alveolar epithelial cells with overexpression of MGMT, resulting in significant protection from BCNU toxicity. These data suggest that overexpression of DNA repair proteins such as MGMT in lung cells may protect the lung cells from cytotoxic effects of cancer chemotherapy drugs such as BCNU.
Collapse
Affiliation(s)
- M Wu
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Internal Medicine, Indiana University School of Medicine, 1001 W. 10th Street, OPW 425, Indianapolis, IN 46202. USA
| | | | | | | |
Collapse
|
32
|
Abstract
This article reviews the molecular genetic data pertaining to the major surface glycoprotein (MSG) gene family of Pneumocystis carinii and its role in surface variation and compares this fungal system to antigenic variation systems in the protozoan Trypanosoma brucei and the bacteria Borrelia spp.
Collapse
Affiliation(s)
- J R Stringer
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA.
| | | |
Collapse
|
33
|
Jalil A, Moja P, Lambert C, Perol M, Cotte L, Livrozet JM, Boibieux A, Vergnon JM, Lucht F, Tran R, Contini C, Genin C. Decreased production of local immunoglobulin A to Pneumocystis carinii in bronchoalveolar lavage fluid from human immunodeficiency virus-positive patients. Infect Immun 2000; 68:1054-60. [PMID: 10678907 PMCID: PMC97248 DOI: 10.1128/iai.68.3.1054-1060.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An enzyme-linked immunosorbent assay and a Western blot analysis were developed to study the antibody response to Pneumocystis carinii in serum and bronchoalveolar lavage fluid from 27 human immunodeficiency virus 27 (HIV)-infected patients with P. carinii pneumonia (Pcp), 32 patients without Pcp, and 51 HIV-negative controls. Urea was used for the correct dilution of epithelial lining fluid, and albumin was used to evaluate transudation from plasma for the assessment of local production of antibodies to P. carinii. By contrast with those of immunoglobulin G (IgG), IgA responses to P. carinii were increased in serum from HIV-positive patients compared to negative controls. Local production of antibodies to P. carinii, especially IgA, was decreased in patients with Pcp. In a study of 10 patients of each group, IgG and IgA responses to gp116 from P. carinii were lower in patients with Pcp than in other groups. These results suggest that, in addition to alveolar macrophages, local antibodies may play a role in host defense against P. carinii.
Collapse
Affiliation(s)
- A Jalil
- Groupe Immunité des Muqueuses et Agents Pathogènes, University of Saint-Etienne, Saint-Etienne, Hôpital de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schaffzin JK, Garbe TR, Stringer JR. Major surface glycoprotein genes from Pneumocystis carinii f. sp. ratti. Fungal Genet Biol 1999; 28:214-26. [PMID: 10669586 DOI: 10.1006/fgbi.1999.1171] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pneumocystis carinii occurs in a variety of mammals, each of which harbors one or more genetically distinct "special forms" of the microbe. Laboratory rats can be infected by two special forms, P. carinii f. sp. ratti and P. carinii f. sp. carinii. P. carinii f. sp. carinii has a variable antigen, the major surface glycoprotein (MSG), the expression of which is controlled by genetic recombination. Recombination may involve the CRJE, a 23-bp DNA sequence element invariant among P. carinii f. sp. carinii MSG genes. To better understand the role of the CRJE in MSG gene expression and to explore the possible role of MSG in P. carinii infection in rats, P. carinii f. sp. ratti MSG genes were studied. These genes were found to be related to MSG genes of P. carinii f. sp. carinii, but less so than MSG genes from P. carinii f. sp. carinii are to each other. P. carinii f. sp. ratti MSG genes were present throughout the genome and were expressed as an abundant mRNA species slightly smaller than that found in P. carinii f. sp. carinii. P. carinii f. sp. ratti MSG transcripts included a CRJE-like sequence only 78% identical to the CRJE of P. carinii f. sp. carinii. Comparison of MSG proteins from the two rat special forms of P. carinii to those from human, ferret, and mouse P. carinii did not support the hypothesis that growth in the rat lung requires certain primary MSG peptide sequences.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Fungal/chemistry
- Antigens, Fungal/genetics
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Cloning, Molecular
- Ferrets
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Genes, Fungal
- Humans
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Pneumocystis/chemistry
- Pneumocystis/classification
- Pneumocystis/genetics
- Pneumocystis/metabolism
- Pneumonia, Pneumocystis/microbiology
- Polymerase Chain Reaction
- Rats
- Recombination, Genetic
- Sequence Alignment
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- J K Schaffzin
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | | | | |
Collapse
|
35
|
Wright TW, Johnston CJ, Harmsen AG, Finkelstein JN. Chemokine gene expression during Pneumocystis carinii-driven pulmonary inflammation. Infect Immun 1999; 67:3452-60. [PMID: 10377126 PMCID: PMC116531 DOI: 10.1128/iai.67.7.3452-3460.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe combined immunodeficient (SCID) mice lack functional lymphocytes and therefore develop Pneumocystis carinii pneumonia. However, when infected SCID mice are immunologically reconstituted with congenic spleen cells, a protective inflammatory cascade is initiated. Proinflammatory cytokines are produced, and lymphocytes and macrophages are recruited specifically to alveolar sites of infection. Importantly, uninfected regions of the lung remain free from inflammatory involvement, suggesting that there are specific mechanisms that limit inflammation in the infected lung. Therefore, to determine whether chemokines are involved in targeting the P. carinii-driven inflammatory response, steady-state mRNA levels of several chemokines were measured in the lungs of both reconstituted and nonreconstituted P. carinii-infected SCID mice. Despite significant organism burdens in the lungs of 8- and 10-week-old SCID mice, there was no evidence of elevated chemokine gene expression, which is consistent with the lack of an inflammatory response in these animals. However, when 8-week-old infected SCID mice were immunologically reconstituted, signs of focal pulmonary inflammation were observed, and levels of RANTES, MCP-1, lymphotactin, MIP-1alpha, MIP-1beta, and MIP-2 mRNAs were all significantly elevated. Chemokine mRNA abundance was elevated at day 10 postreconstitution (PR), was maximal at day 12 PR, and returned to baseline by day 22 PR. In situ hybridization demonstrated that during the peak of inflammation, RANTES gene expression was localized to sites of inflammatory cell infiltration and P. carinii infection. Thus, these observations indicate that chemokines play a role in the focal targeting of inflammatory cell recruitment to sites of P. carinii infection after the passive transfer of lymphocytes to the host.
Collapse
Affiliation(s)
- T W Wright
- Departments of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
36
|
Walzer PD. Immunological features of Pneumocystis carinii infection in humans. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:149-55. [PMID: 10066645 PMCID: PMC95678 DOI: 10.1128/cdli.6.2.149-155.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- P D Walzer
- Veterans Affairs Medical Center, Cincinnati, Ohio 45220, USA.
| |
Collapse
|
37
|
Zhu S, Kachel DL, Martin WJ, Matalon S. Nitrated SP-A does not enhance adherence of Pneumocystis carinii to alveolar macrophages. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:L1031-9. [PMID: 9843839 DOI: 10.1152/ajplung.1998.275.6.l1031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We investigated whether nitration of surfactant apoprotein (SP) A alters its ability to bind to mannose-containing saccharides on Pneumocystis carinii and its potential role in the mediation of P. carinii adherence to alveolar macrophages. Human SP-A was nitrated by incubation with tetranitromethane at pH 8.0 or synthetic peroxynitrite (ONOO-) at pH 7.4, which resulted in significant nitration of tyrosines in its carbohydrate recognition domain [0.63 +/- 0.001 (SE) and 1.25 +/- 0.02 mol nitrotyrosine/mol monomeric SP-A, respectively; n = 3 samples]. Binding of SP-A to P. carinii was calcium dependent and competitively inhibited by alpha-methyl-D-mannopyranoside. Nitration of SP-A by ONOO- or tetranitromethane decreases its binding to P. carinii by increasing its dissociation constant from 7.8 x 10(-9) to 1.6 x 10(-8) or 2.4 x 10(-8) M, respectively, without significantly affecting the number of binding sites (7.1 x 10(6)/P. carinii organisms, assuming that the native molecular mass of oligomeric SP-A is 650 kDa). Furthermore, ONOO--nitrated SP-A failed to mediate the adherence and phagocytosis of P. carinii to rat alveolar macrophages as observed with normal SP-A. Binding of SP-A to rat alveolar macrophages was not altered by nitration. These results indicate that nitration of SP-A interferes with its ability to serve as a ligand for P. carinii adherence to alveolar macrophages at the site of the SP-A moleculeP. carinii interaction.
Collapse
Affiliation(s)
- S Zhu
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | | | | | | |
Collapse
|
38
|
Guadiz G, Haidaris CG, Maine GN, Simpson-Haidaris PJ. The carboxyl terminus of Pneumocystis carinii glycoprotein A encodes a functional glycosylphosphatidylinositol signal sequence. J Biol Chem 1998; 273:26202-9. [PMID: 9748303 DOI: 10.1074/jbc.273.40.26202] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pneumocystis carinii pneumonia is a hallmark disease associated with AIDS. An abundant glycoprotein, termed gpA, on the surface of P. carinii is considered an important factor in host-parasite interactions. The primary structure of ferret P. carinii gpA contains a carboxyl-terminal sequence characteristic of a signal for glycosylphosphatidylinositol (GPI) anchors. Here we report the capacity for this gpA carboxyl sequence to direct attachment of a secreted protein, human growth hormone (hGH), to the membranes of COS cells. A control fusion protein (hGHDAF37) was obtained which, under the direction of the GPI signal from decay accelerating factor, directs hGH cell surface expression. A construct (phGH2-1A30) was created similar to hGHDAF37 by fusing hGH to the putative GPI signal sequence encoded in the terminal 30 residues from a ferret P. carinii gpA cDNA clone. By indirect immunofluorescent staining, hGH was detected on the surface of COS cells transfected with phGH2-1A30; this surface location was confirmed by confocal laser cytometry. Metabolic labeling with [3H]ethanolamine and subsequent immunopurification of hGH from cells transfected with phGH2-1A30 confirmed that a lipid moiety characteristic of a conventional GPI anchor was linked covalently to hGH, and cell surface hGH2-1A30 fusion protein was sensitive to enzymatic cleavage by phosphatidylinositol-phospholipase C. Furthermore, hGH2-1A30 recombinant protein cofractionated with 5'-nucleotidase, a classical GPI-anchored membrane marker. Together, these results indicate that the carboxyl-terminal residues of ferret P. carinii gpA constitute a biologically functional GPI consensus domain, thus providing a potential mechanism for antigenic variation of P. carinii gpA during P. carinii pneumonia.
Collapse
Affiliation(s)
- G Guadiz
- Departments, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
39
|
Koziel H, Eichbaum Q, Kruskal BA, Pinkston P, Rogers RA, Armstrong MY, Richards FF, Rose RM, Ezekowitz RA. Reduced binding and phagocytosis of Pneumocystis carinii by alveolar macrophages from persons infected with HIV-1 correlates with mannose receptor downregulation. J Clin Invest 1998; 102:1332-44. [PMID: 9769325 PMCID: PMC508980 DOI: 10.1172/jci560] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The macrophage mannose receptor, a pattern recognition molecule and component of innate immunity, mediates binding and phagocytosis of Pneumocystis carinii and likely represents an important clearance mechanism in the lungs of immunocompetent hosts. The purpose of this study was to examine the ability of alveolar macrophages from HIV-infected individuals to bind and phagocytose P. carinii, and to investigate the role of the macrophage mannose receptor in mediating this interaction. Compared with healthy individuals, alveolar macrophage phagocytosis of P. carinii from HIV+ persons was reduced up to 74% (P = 0.02), primarily reflecting a reduction in the number of organisms associated with each macrophage (P = 0.019). Furthermore, macrophages from HIV+ individuals demonstrated up to an 80% (P < 0.05) reduction in mannose receptor surface expression and endocytosis. Mannose receptor affinity was unaltered, and mRNA levels were modestly reduced (P < 0.05). Cells from HIV+ individuals with CD4(+) counts < 200 cells/mm3 (representing individuals at high clinical risk for P. carinii pneumonia) demonstrated the lowest levels of P. carinii phagocytosis and mannose receptor endocytosis. In vitro HIV infection of alveolar macrophages from healthy individuals reduced mannose receptor endocytosis to 53.2% (P < 0.05) and P. carinii binding and phagocytosis to 67.4% (P < 0.05) of control. Our studies suggest that HIV infection may alter innate immunity in the lungs, and that impaired alveolar macrophage mannose receptor-mediated binding and phagocytosis of P. carinii may contribute to the susceptibility of HIV-infected individuals to this opportunistic pulmonary pathogen.
Collapse
Affiliation(s)
- H Koziel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nakamura Y. The major surface antigen of Pneumocystis carinii. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1998; 22:67-74. [PMID: 9792062 DOI: 10.1111/j.1574-695x.1998.tb01188.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Y Nakamura
- Department of Tumor Biology, Institute of Medical Science, University of Tokyo, Japan.
| |
Collapse
|
41
|
Mei Q, Turner RE, Sorial V, Klivington D, Angus CW, Kovacs JA. Characterization of major surface glycoprotein genes of human Pneumocystis carinii and high-level expression of a conserved region. Infect Immun 1998; 66:4268-73. [PMID: 9712777 PMCID: PMC108515 DOI: 10.1128/iai.66.9.4268-4273.1998] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To facilitate studies of Pneumocystis carinii infection in humans, we undertook to better characterize and to express the major surface glycoprotein (MSG) of human P. carinii, an important protein in host-pathogen interactions. Seven MSG genes were cloned from a single isolate by PCR or genomic library screening and were sequenced. The predicted proteins, like rat MSGs, were closely related but unique variants, with a high level of conservation among cysteine residues. A conserved immunodominant region (of approximately 100 amino acids) near the carboxy terminus was expressed at high levels in Escherichia coli and used in Western blot studies. All 49 of the serum samples, which were taken from healthy controls as well as from patients with and without P. carinii pneumonia, were reactive with this peptide by Western blotting, supporting the hypothesis that most adult humans have been infected with P. carinii at some point. This recombinant MSG fragment, which is the first human P. carinii antigen available in large quantities, may be a useful reagent for investigating the epidemiology of P. carinii infection in humans.
Collapse
MESH Headings
- AIDS-Related Opportunistic Infections/blood
- AIDS-Related Opportunistic Infections/immunology
- AIDS-Related Opportunistic Infections/microbiology
- Adult
- Amino Acid Sequence
- Animals
- Antibodies, Fungal/blood
- Antibodies, Fungal/immunology
- Antigens, Fungal/genetics
- Antigens, Fungal/immunology
- Base Sequence
- Cell Line
- Cloning, Molecular
- Conserved Sequence
- DNA, Fungal
- Fungal Proteins/genetics
- Fungal Proteins/immunology
- Gene Expression
- Genes, Fungal
- Genetic Variation
- Humans
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Molecular Sequence Data
- Pneumocystis/genetics
- Pneumocystis/immunology
- Pneumonia, Pneumocystis/blood
- Pneumonia, Pneumocystis/immunology
- Pneumonia, Pneumocystis/microbiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Sequence Homology, Amino Acid
- Spodoptera
Collapse
Affiliation(s)
- Q Mei
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
42
|
Simpson-Haidaris PJ, Courtney MA, Wright TW, Goss R, Harmsen A, Gigliotti F. Induction of fibrinogen expression in the lung epithelium during Pneumocystis carinii pneumonia. Infect Immun 1998; 66:4431-9. [PMID: 9712798 PMCID: PMC108536 DOI: 10.1128/iai.66.9.4431-4439.1998] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1998] [Accepted: 06/30/1998] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis carinii is an important pulmonary pathogen responsible for morbidity and mortality in patients with AIDS. The acute-phase response (APR), the primary mechanism used by the body to restore homeostasis following infection, is characterized by increased levels of circulating fibrinogen (FBG). Although the liver is the primary site of increased FBG synthesis during the APR, we unexpectedly discovered that FBG is synthesized and secreted by lung alveolar epithelial cells in vitro during an inflammatory stimulus. Therefore, we sought to determine whether lung epithelial cells produce FBG in vivo using animal models of P. carinii pneumonia (PCP). Inflammation was noted by an influx of macrophages to P. carinii-infected alveoli. Northern hybridization revealed that gamma-FBG mRNA increased two- to fivefold in P. carinii-infected lung tissue, while RNA in situ hybridization demonstrated increased levels of gamma-FBG mRNA in the lung epithelium. Immunoelectron microscopy detected lung epithelial cell-specific production of FBG, suggesting induction of a localized inflammatory response resembling the APR. A systemic APR was confirmed by a two- to fivefold upregulation of the levels of hepatic gamma-FBG mRNA in animals with PCP, resulting in a corresponding increase in levels of FBG in plasma. Furthermore, immunoelectron microscopy revealed the presence of FBG at the junction of cell membranes of trophic forms of P. carinii organisms aggregated along the alveolar epithelium. These results implicate FBG in the pathogenesis of PCP in a manner similar to that of the adhesive glycoproteins fibronectin and vitronectin, which are known to participate in intra-alveolar aggregation of organisms and adherence of P. carinii to the lung epithelium.
Collapse
Affiliation(s)
- P J Simpson-Haidaris
- Departments of Medicine-Vascular Medicine Unit, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Benfield TL, Lundgren JD. The Pneumocystis carinii major surface glycoprotein (MSG): its potential involvement in the pathophysiology of pneumocystosis. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1998; 22:129-34. [PMID: 9792071 DOI: 10.1111/j.1574-695x.1998.tb01197.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- T L Benfield
- Department of Infectious Diseases, University of Copenhagen, Hvidovre Hospital, Denmark.
| | | |
Collapse
|
44
|
Theus SA, Smulian AG, Steele P, Linke MJ, Walzer PD. Immunization with the major surface glycoprotein of Pneumocystis carinii elicits a protective response. Vaccine 1998; 16:1149-57. [PMID: 9682373 DOI: 10.1016/s0264-410x(98)80113-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pneumocystis carinii, a leading opportunistic pulmonary pathogen, contains a major surface glycoprotein (MSG) which plays a central role in its interaction with the host. Naive Lewis rats were immunized with varying concentrations of purified native MSG and a recombinant form of the protein (MSG-B), placed in a conventional rat colony with exposure to P. carinii, and immunosuppressed with corticosteroids for 10 weeks to induce the development of pneumocystosis. Immunization elicited humoral and cellular immune responses to MSG which persisted throughout the experiment. Compared with animals immunized with ovalbumin or adjuvant alone, the MSG-immunized rats had improved survival (29 vs 66%, p < 0.001), lowered organism burden (log10 9.03 +/- 0.33/lung vs 7.51 +/- 0.38/lung, p < 0.001), less alveolar involvement as assessed by lung histologic score (3.54 +/- 0.42 vs 2.50 +/- 0.42, p < 0.01) and lung weight:body weight ratio (18.2 +/- 1.4 vs 14.6 +/- 1.7, p < 0.01). Animals immunized with MSG-B also showed a significantly lower organism burden, lung histologic score and lung weight:body weight ratio than control rats. Thus, MSG is the first P. carinii antigen which can elicit a protective response in the immunosuppressed rat model of pneumocystosis and this finding supports the rationale of developing a P. carinii vaccine.
Collapse
Affiliation(s)
- S A Theus
- Department of Internal Medicine, Cincinnati Veterans' Affairs Medical Center, Ohio 45220, USA
| | | | | | | | | |
Collapse
|
45
|
Beck JM, Preston AM, Wagner JG, Wilcoxen SE, Hossler P, Meshnick SR, Paine R. Interaction of rat Pneumocystis carinii and rat alveolar epithelial cells in vitro. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:L118-25. [PMID: 9688943 DOI: 10.1152/ajplung.1998.275.1.l118] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During Pneumocystis carinii pneumonia, P. carinii trophic forms adhere tightly to type I alveolar epithelial cells (AECs). However, the manner in which the interaction between P. carinii organisms and AECs results in clinical pneumonia has not been explored. To investigate this interaction in vitro, we established a culture system using rat P. carinii and primary cultures of rat AECs. We hypothesized that binding of P. carinii to AECs would alter the metabolic, structural, and barrier functions of confluent AECs. Using fluorescently labeled P. carinii, we demonstrated that P. carinii bound to AECs in a dose-dependent manner. During P. carinii-AEC interaction, both the AECs and the P. carinii organisms remained metabolically active. Immunofluorescent staining demonstrated that AEC expression of the junctional proteins E-cadherin and occludin and the structural protein cytokeratin 8 were unaffected by P. carinii binding. To evaluate the effect of P. carinii on AEC barrier function, transepithelial resistance across AEC monolayers was measured during interaction with organisms. Culture with P. carinii did not result in loss of AEC barrier function but in fact increased AEC transepithelial resistance in a dose- and time-dependent manner. We conclude that the direct interaction of P. carinii with AECs does not disrupt AEC metabolic, structural, or barrier function. Therefore, we speculate that additional inflammatory cells and/or their signals are required to induce the epithelial derangements characteristic of P. carinii pneumonia.
Collapse
Affiliation(s)
- J M Beck
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Broomall KR, Morris RE, Walzer PD, Smulian AG. Zymolyase treatment exposes p55 antigen of Pneumocystis carinii. J Eukaryot Microbiol 1998; 45:284-9. [PMID: 9627988 DOI: 10.1111/j.1550-7408.1998.tb04537.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rats exposed to Pneumocystis carinii mount antibody responses to a broad band migrating on western blot with an apparent molecular weight of 45-55 kDa. One antigen within this band, designated p55, is uniformly recognized by P. carinii exposed rats. Although the gene encoding the p55 antigen had been previously cloned, the location of this antigen within the organism was unknown. Prior attempts to localize the protein were unsuccessful. A monospecific polyclonal antiserum raised against a carboxyl-terminal 15-oligomer peptide yielded specific reactivity with a single 55 kDa band on a western blot of P. carinii. Using this antiserum, little to no reactivity could be detected with P. carinii organisms by immunofluorescence assay (IFA). However, zymolyase treatment of P. carinii dramatically increased the intensity and proportion of organisms reactive by IFA. Zymolyase, an enzyme with beta-1,3 glucanase activity, has previously been shown to remove the electron dense outer layer of the P. carinii cell wall, exposing an electron lucent layer. Immunoelectron microscopy performed on zymolyase treated organisms showed the majority of labeling occurs within the cell wall.
Collapse
Affiliation(s)
- K R Broomall
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Ohio, USA
| | | | | | | |
Collapse
|
47
|
Haidaris CG, Fisher DJ, Gigliotti F, Simpson-Haidaris PJ. Antigenic properties of recombinant glycosylated and nonglycosylated Pneumocystis carinii glycoprotein A polypeptides expressed in baculovirus-infected insect cells. Mol Biotechnol 1998; 9:91-7. [PMID: 9658387 DOI: 10.1007/bf02760811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since a continuous culture system is not yet available for the opportunistic fungal pathogen Pneumocystis carinii, obtaining suitable amounts of purified P. carinii antigens free of mammalian-host lung contaminants is difficult. Hence, production of recombinant antigen possessing epitopes found in native P. carinii antigens is critical for immunological studies. We utilized the baculovirus expression vector system (BEVS) in insect cells to determine whether B-cell epitopes present in the protein core of a native P. carinii surface glycoprotein were conserved in the recombinant polypeptide, and to investigate its glycosylation by insect cells. B-cell epitopes were retained, but the insect cells appeared to hyperglycosylate the recombinant protein.
Collapse
Affiliation(s)
- C G Haidaris
- Department of Microbiology and Immunology, University of Rochester, School of Medicine and Dentistry, NY 14642, USA.
| | | | | | | |
Collapse
|
48
|
Limper AH, Edens M, Anders RA, Leof EB. Pneumocystis carinii inhibits cyclin-dependent kinase activity in lung epithelial cells. J Clin Invest 1998; 101:1148-55. [PMID: 9486986 PMCID: PMC508667 DOI: 10.1172/jci659] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pneumocystis carinii remains an important cause of pneumonia in patients with AIDS. Attachment of the organism to epithelial cells is a central event in establishing infection, impairing the growth potential of lung epithelial cells and thereby slowing repair. In light of investigations documenting a central role for cyclin-dependent kinases in controlling the cell cycle, we addressed the hypothesis that P. carinii inhibits epithelial cell growth by interfering with host epithelial cyclin-dependent kinase (cdk) activity. We observed that P. carinii significantly impaired growth of cultured mink lung epithelial cells, with effects observed after 48-72 h of treatment. However, the kinase activity associated with p34cdc2 or p33cdk2 was maximally inhibited as early as 24 h after P. carinii exposure. The inhibitory effect on cyclin-dependent kinase activity was mediated by the trophozoite form of P. carinii, in that highly purified trophozoites exerted marked inhibition of p34cdc2 activity. Growth impairment was similarly preceded by P. carinii-induced alteration in the state of epithelial cell p34cdc2 phosphorylation, with no change in p34cdc2 or p33cdk2 protein levels. These data strongly suggest that the antiproliferative activity of P. carinii on respiratory epithelium is mediated in part through modulation of the host cell cycle machinery.
Collapse
Affiliation(s)
- A H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary, Critical Care, and Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
49
|
Linke MJ, Sunkin SM, Andrews RP, Stringer JR, Walzer PD. Expression, structure, and location of epitopes of the major surface glycoprotein of Pneumocystis carinii f. sp. carinii. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1998; 5:50-7. [PMID: 9455880 PMCID: PMC121391 DOI: 10.1128/cdli.5.1.50-57.1998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The major surface glycoprotein (MSG) of Pneumocystis carinii f. sp. carinii consists of a heterogeneous family of proteins that are encoded by approximately 100 unique genes. A genomic expression library was screened with a panel of MSG-specific monoclonal antibodies (MAbs) to identify conserved and rare epitopes. All of the antibodies reacted with epitopes that are encoded within the 5' end of MSG. The results from the expression screening identified antibodies that recognize highly conserved, moderately conserved, and rare epitopes. Four MAbs (MAbs RA-F1, RA-E7, RA-G10, and RB-E3) reacted with a maltose binding protein-MSG-B fusion protein ([MBP]MSG-B41-1065) by immunoblotting and enzyme-linked immunosorbent assay. Three of the MAbs (MAbs RA-F1, RA-G10, and RA-E7) reacted with the same continuous epitope that was localized to amino acids 278 to 290 of MSG-B. Comparison of the sequence of the RA-F1-, RA-G10-, and RA-E7-reactive epitope to the deduced amino acid sequences of multiple MSGs demonstrated that it is highly conserved. The reactivity of RB-E3 with MSG-B was shown to be dependent on amino acids 184 to 192, which may comprise a portion of a discontinuous epitope.
Collapse
Affiliation(s)
- M J Linke
- Cincinnati Veterans Affairs Medical Center, Department of Internal Medicine, University of Cincinnati College of Medicine, Ohio 45220, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Information about a number of Pneumocystis carinii lipids obtained by the analyses of organisms isolated and purified from infected lungs of corticosteroid-immunosuppressed rats has been reported in recent years. Of the common opportunistic protists associated with AIDS (Cryptosporidium, Toxoplasma, and the microsporidia), more is currently known about the lipids of P. carinii than the others. Lipids that are synthesized by the organism but not by humans are attractive targets for drug development. Thus, the elucidation of delta 7C-24-alykylated sterol and cis-9,10-epoxystearic acid biosyntheses in P. carinii is currently being examined in detail, since these have been identified as P. carinii-specific lipids. The development of low-toxicity drugs that prevent sterol C-24 alkylation and the specific inhibition of the lipoxygenase that forms cis-9,10-epoxystearic acid might prove fruitful. Although humans can synthesize coenzyme Q10, the anti-P. carinii activity and low toxicity of ubiquinone analogs such as atovaquone suggest that the electron transport chain in the pathogen may differ importantly from that in the host. Although resistance to atovaquone has been observed, development of other naphthoquinone drugs would provide a broader armamentarium of drugs to treat patients with P. carinii pneumonia. Studies of bronchoalveolar lavage fluid and of infected lungs have demonstrated that the infection causes a number of chemical abnormalities. Bronchoalveolar lavage fluid obtained after the removal of lung cellular material and the organisms has been shown to contain larger amounts of surfactant proteins and smaller amounts of phospholipids than do comparable samples from P. carinii-free lungs. Increased phospholipase activity, inhibition of surfactant secretion by type II cells, and uptake and catabolism of lipids by the pathogen may explain this phenomenon related to P. carinii pneumonia. Although not yet thoroughly examined, initial studies on the uptake and metabolism of lipids by P. carinii suggest that the organism relies heavily on exogenous lipid nutrients.
Collapse
Affiliation(s)
- E S Kaneshiro
- Department of Biological Sciences, University of Cincinnati, Ohio 45221, USA.
| |
Collapse
|