1
|
Cardenas AJ, Thomas KS, Broden MW, Ferraro NJ, Pires MM, John CM, Jarvis GA, Criss AK. Neisseria gonorrhoeae scavenges host sialic acid for Siglec-mediated, complement-independent suppression of neutrophil activation. mBio 2024; 15:e0011924. [PMID: 38587424 PMCID: PMC11078009 DOI: 10.1128/mbio.00119-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophilic influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid, which is scavenged from the host using LOS sialyltransferase (Lst) since Gc cannot make its sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress the oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea. IMPORTANCE Neisseria gonorrhoeae, the bacterium that causes gonorrhea, is an urgent global health concern due to increasing infection rates, widespread antibiotic resistance, and its ability to thwart protective immune responses. The mechanisms by which Gc subverts protective immune responses remain poorly characterized. One way N. gonorrhoeae evades human immunity is by adding sialic acid that is scavenged from the host onto its lipooligosaccharide, using the sialyltransferase Lst. Here, we found that sialylation enhances N. gonorrhoeae survival from neutrophil assault and inhibits neutrophil activation, independently of the complement system. Our results implicate bacterial binding of sialic acid-binding lectins (Siglecs) on the neutrophil surface, which dampens neutrophil antimicrobial responses. This work identifies a new role for sialylation in protecting N. gonorrhoeae from cellular innate immunity, which can be targeted to enhance the human immune response in gonorrhea.
Collapse
Affiliation(s)
- Amaris J. Cardenas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Keena S. Thomas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Mary W. Broden
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Noel J. Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Constance M. John
- VA Medical Center and University of California, San Francisco, San Francisco, California, USA
| | - Gary A. Jarvis
- VA Medical Center and University of California, San Francisco, San Francisco, California, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Cardenas AJ, Thomas KS, Broden MW, Ferraro NJ, John CM, Pires MM, Jarvis GA, Criss AK. Neisseria gonorrhoeae scavenges host sialic acid for Siglec-mediated, complement-independent suppression of neutrophil activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576097. [PMID: 38293026 PMCID: PMC10827150 DOI: 10.1101/2024.01.17.576097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophil influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid (CMP-NANA) scavenged from the host using LOS sialyltransferase (Lst), since Gc cannot make its own sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea.
Collapse
Affiliation(s)
- Amaris J Cardenas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Keena S. Thomas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Mary W. Broden
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Noel J. Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Constance M. John
- VA Medical Center and University of California, San Francisco, San Francisco, CA, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Gary A. Jarvis
- VA Medical Center and University of California, San Francisco, San Francisco, CA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
de Oliveira Formiga R, Amaral FC, Souza CF, Mendes DAGB, Wanderley CWS, Lorenzini CB, Santos AA, Antônia J, Faria LF, Natale CC, Paula NM, Silva PCS, Fonseca FR, Aires L, Heck N, Starick MR, Queiroz‐Junior CM, Santos FRS, de Souza FRO, Costa VV, Barroso SPC, Morrot A, Van Weyenbergh J, Sordi R, Alisson‐Silva F, Cunha FQ, Rocha EL, Chollet‐Martin S, Hurtado‐Nedelec MM, Martin C, Burgel P, Mansur DS, Maurici R, Macauley MS, Báfica A, Witko‐Sarsat V, Spiller F. Neuraminidase is a host-directed approach to regulate neutrophil responses in sepsis and COVID-19. Br J Pharmacol 2023; 180:1460-1481. [PMID: 36526272 PMCID: PMC9877938 DOI: 10.1111/bph.16013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Because pathogen-derived neuraminidase (NEU) stimulates neutrophils, we investigated whether host NEU can be targeted to regulate the neutrophil dysregulation observed in severe infections. EXPERIMENTAL APPROACH The effects of NEU inhibitors on lipopolysaccharide (LPS)-stimulated neutrophils from healthy donors or COVID-19 patients were determined by evaluating the shedding of surface sialic acids, cell activation, and reactive oxygen species (ROS) production. Re-analysis of single-cell RNA sequencing of respiratory tract samples from COVID-19 patients also was carried out. The effects of oseltamivir on sepsis and betacoronavirus-induced acute lung injury were evaluated in murine models. KEY RESULTS Oseltamivir and zanamivir constrained host NEU activity, surface sialic acid release, cell activation, and ROS production by LPS-activated human neutrophils. Mechanistically, LPS increased the interaction of NEU1 with matrix metalloproteinase 9 (MMP-9). Inhibition of MMP-9 prevented LPS-induced NEU activity and neutrophil response. In vivo, treatment with oseltamivir fine-tuned neutrophil migration and improved infection control as well as host survival in peritonitis and pneumonia sepsis. NEU1 also is highly expressed in neutrophils from COVID-19 patients, and treatment of whole-blood samples from these patients with either oseltamivir or zanamivir reduced neutrophil overactivation. Oseltamivir treatment of intranasally infected mice with the mouse hepatitis coronavirus 3 (MHV-3) decreased lung neutrophil infiltration, viral load, and tissue damage. CONCLUSION AND IMPLICATIONS These findings suggest that interplay of NEU1-MMP-9 induces neutrophil overactivation. In vivo, NEU may serve as a host-directed target to dampen neutrophil dysfunction during severe infections.
Collapse
Affiliation(s)
- Rodrigo de Oliveira Formiga
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Université de Paris, Institut Cochin, INSERM U1016, CNRSParisFrance
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Flávia C. Amaral
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Camila F. Souza
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Daniel A. G. B. Mendes
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Carlos W. S. Wanderley
- Department of Pharmacology, School of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Cristina B. Lorenzini
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Adara A. Santos
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Juliana Antônia
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Lucas F. Faria
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Caio C. Natale
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Nicholas M. Paula
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Priscila C. S. Silva
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Fernanda R. Fonseca
- Department of Clinical MedicineFederal University of Santa CatarinaFlorianópolisBrazil
| | - Luan Aires
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Nicoli Heck
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Márick R. Starick
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Celso M. Queiroz‐Junior
- Department of Morphology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil
| | - Felipe R. S. Santos
- Department of Biochemistry and Immunology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil
| | - Filipe R. O. de Souza
- Department of Morphology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil
| | - Vivian V. Costa
- Department of Morphology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil
| | - Shana P. C. Barroso
- Molecular Biology Laboratory, Institute of Biomedical ResearchMarcilio Dias Naval Hospital, Navy of BrazilRio de JaneiroBrazil
| | - Alexandre Morrot
- Tuberculosis Research Laboratory, Faculty of MedicineFederal University of Rio de JaneiroRio de JaneiroBrazil
- Immunoparasitology LaboratoryOswaldo Cruz Foundation (FIOCRUZ)Rio de JaneiroBrazil
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological VirologyKU LeuvenLeuvenBelgium
| | - Regina Sordi
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Frederico Alisson‐Silva
- Department of Immunology, Paulo de Goes Institute of MicrobiologyFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Fernando Q. Cunha
- Department of Pharmacology, School of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Edroaldo L. Rocha
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Sylvie Chollet‐Martin
- INSERM UMR 996, ‘Infammation, Microbiome and Immunosurveillance’, Faculty of PharmacyUniversité Paris‐SaclayChâtenay‐MalabryFrance
| | | | - Clémence Martin
- Université de Paris, Institut Cochin, INSERM U1016, CNRSParisFrance
- Department of PneumologyAP‐HP, Hôpital CochinParisFrance
| | - Pierre‐Régis Burgel
- Université de Paris, Institut Cochin, INSERM U1016, CNRSParisFrance
- Department of PneumologyAP‐HP, Hôpital CochinParisFrance
| | - Daniel S. Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Rosemeri Maurici
- Department of Clinical MedicineFederal University of Santa CatarinaFlorianópolisBrazil
| | - Matthew S. Macauley
- Department of Chemistry, Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | - André Báfica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | | | - Fernando Spiller
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| |
Collapse
|
4
|
Feng C, Cross AS, Vasta GR. Galectin-1 mediates interactions between polymorphonuclear leukocytes and vascular endothelial cells, and promotes their extravasation during lipopolysaccharide-induced acute lung injury. Mol Immunol 2023; 156:127-135. [PMID: 36921487 PMCID: PMC10154945 DOI: 10.1016/j.molimm.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/29/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
The lung airway epithelial surface is heavily covered with sialic acids as the terminal carbohydrate on most cell surface glycoconjugates and can be removed by microbial neuraminidases or endogenous sialidases. By desialylating the lung epithelial surface, neuraminidase acts as an important virulence factor in many mucosal pathogens, such as influenza and S. pneumoniae. Desialylation exposes the subterminal galactosyl moieties - the binding glycotopes for galectins, a family of carbohydrate-recognition proteins playing important roles in various aspects of immune responses. Galectin-1 and galectin-3 have been extensively studied in their roles related to host immune responses, but some questions about their role(s) in leukocyte recruitment during lung bacterial infection remain unanswered. In this study, we found that both galectin-1 and galectin-3 bind to polymorphonuclear leukocytes (PMNs) and enhance the interaction of endothelial intercellular adhesion molecule-1 (ICAM-1) with PMNs, which is further increased by PMN desialylation. In addition, we observed that in vitro galectin-1 mediates the binding of PMNs, particularly desialylated PMNs, onto the endothelial cells. Finally, in a murine model for LPS-mediated acute lung injury, we observed that galectin-1 modulates PMN infiltration to the lung without altering the expression of chemoattractant cytokines. We conclude that galectins, particularly galectin-1, may function as adhesion molecules that mediate PMN-endothelial cell interactions, and modulate PMN infiltration during acute lung injury.
Collapse
Affiliation(s)
- Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Alan S Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
5
|
Azcutia V, Kelm M, Fink D, Cummings RD, Nusrat A, Parkos CA, Brazil JC. Sialylation regulates neutrophil transepithelial migration, CD11b/CD18 activation, and intestinal mucosal inflammatory function. JCI Insight 2023; 8:e167151. [PMID: 36719745 PMCID: PMC10077474 DOI: 10.1172/jci.insight.167151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Polymorphonuclear neutrophils (PMNs) play a critical role in clearing invading microbes and promoting tissue repair following infection/injury. However, dysregulated PMN trafficking and associated tissue damage is pathognomonic of numerous inflammatory mucosal diseases. The final step in PMN influx into mucosal lined organs (including the lungs, kidneys, skin, and gut) involves transepithelial migration (TEpM). The β2-integrin CD11b/CD18 plays an important role in mediating PMN intestinal trafficking, with recent studies highlighting that terminal fucose and GlcNAc glycans on CD11b/CD18 can be targeted to reduce TEpM. However, the role of the most abundant terminal glycan, sialic acid (Sia), in regulating PMN epithelial influx and mucosal inflammatory function is not well understood. Here we demonstrate that inhibiting sialidase-mediated removal of α2-3-linked Sia from CD11b/CD18 inhibits PMN migration across intestinal epithelium in vitro and in vivo. Sialylation was also found to regulate critical PMN inflammatory effector functions, including degranulation and superoxide release. Finally, we demonstrate that sialidase inhibition reduces bacterial peptide-mediated CD11b/CD18 activation in PMN and blocks downstream intracellular signaling mediated by spleen tyrosine kinase (Syk) and p38 MAPK. These findings suggest that sialylated glycans on CD11b/CD18 represent potentially novel targets for ameliorating PMN-mediated tissue destruction in inflammatory mucosal diseases.
Collapse
Affiliation(s)
- Veronica Azcutia
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kelm
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dylan Fink
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles A. Parkos
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer C. Brazil
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Kirolos SA, Pilling D, Gomer RH. The extracellular sialidase NEU3 primes neutrophils. J Leukoc Biol 2022; 112:1399-1411. [PMID: 35899930 PMCID: PMC9701152 DOI: 10.1002/jlb.3a0422-217rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/28/2022] [Indexed: 01/04/2023] Open
Abstract
Some extracellular glycoconjugates have sialic acid as the terminal sugar, and sialidases are enzymes that remove this sugar. Mammals have 4 sialidases and can be elevated in inflammation and fibrosis. In this report, we show that incubation of human neutrophils with the extracellular human sialidase NEU3, but not NEU1, NEU2 or NEU4, induces human male and female neutrophils to change from a round to a more amoeboid morphology, causes the primed human neutrophil markers CD11b, CD18, and CD66a to localize to the cell cortex, and decreases the localization of the unprimed human neutrophil markers CD43 and CD62-L at the cell cortex. NEU3, but not the other 3 sialidases, also causes human male and female neutrophils to increase their F-actin content. Human neutrophils treated with NEU3 show a decrease in cortical levels of Sambucus nigra lectin staining and an increase in cortical levels of peanut agglutinin staining, indicating a NEU3-induced desialylation. The inhibition of NEU3 by the NEU3 inhibitor 2-acetylpyridine attenuated the NEU3 effect on neutrophil morphology, indicating that the effect of NEU3 is dependent on its enzymatic activity. Together, these results indicate that NEU3 can prime human male and female neutrophils, and that NEU3 is a potential regulator of inflammation.
Collapse
Affiliation(s)
- Sara A Kirolos
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
de Oliveira Formiga R, Amaral FC, Souza CF, Mendes DAGB, Wanderley CWS, Lorenzini CB, Santos AA, Antônia J, Faria LF, Natale CC, Paula NM, Silva PCS, Fonseca FR, Aires L, Heck N, Starick MR, Queiroz-Junior CM, Santos FRS, de Souza FRO, Costa VV, Barroso SPC, Morrot A, Van Weyenbergh J, Sordi R, Alisson-Silva F, Cunha FQ, Rocha EL, Chollet-Martin S, Hurtado-Nedelec MM, Martin C, Burgel PR, Mansur DS, Maurici R, Macauley MS, Báfica A, Witko-Sarsat V, Spiller F. Neuraminidase inhibitors rewire neutrophil function in vivo in murine sepsis and ex vivo in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2020.11.12.379115. [PMID: 33200130 PMCID: PMC7668734 DOI: 10.1101/2020.11.12.379115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Neuraminidase (NEU)-mediated cleavage of surface sialic acid has been demonstrated to regulate leukocyte responses. Here, we report that antiviral NEU inhibitors constrain host NEU activity, surface sialic acid release, ROS production, and NETs released by microbial-activated human neutrophils. In vivo, treatment with Oseltamivir results in infection control and host survival in peritonitis and pneumonia models of sepsis. Single-cell RNA sequencing re-analysis of publicly data sets of respiratory tract samples from critical COVID-19 patients revealed an overexpression of NEU1 in infiltrated neutrophils. Moreover, Oseltamivir or Zanamivir treatment of whole blood cells from severe COVID-19 patients reduces host NEU-mediated shedding of cell surface sialic acid and neutrophil overactivation. These findings suggest that neuraminidase inhibitors can serve as host-directed interventions to dampen neutrophil dysfunction in severe infections.
Collapse
Affiliation(s)
- Rodrigo de Oliveira Formiga
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Université de Paris, Institut Cochin, INSERM U1016, CNRS, Paris, France
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Flávia C. Amaral
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Camila F. Souza
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Daniel A. G. B. Mendes
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Carlos W. S. Wanderley
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Cristina B. Lorenzini
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Adara A. Santos
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Juliana Antônia
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Lucas F. Faria
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Caio C. Natale
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Nicholas M. Paula
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Priscila C. S. Silva
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Fernanda R. Fonseca
- Department of Clinical Medicine, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Luan Aires
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Nicoli Heck
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Márick R. Starick
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Celso M. Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe R. S. Santos
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Filipe R. O. de Souza
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian V. Costa
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Shana P. C. Barroso
- Molecular Biology Laboratory, Institute of Biomedical Research, Marcilio Dias Naval Hospital, Navy of Brazil, RJ, Brazil
| | - Alexandre Morrot
- Tuberculosis Research Laboratory, Faculty of Medicine, Federal University of Rio de Janeiro
- Immunoparasitology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Regina Sordi
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Frederico Alisson-Silva
- Department of Immunology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Edroaldo L. Rocha
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Sylvie Chollet-Martin
- INSERM UMR 996, “Infammation, Microbiome and Immunosurveillance”, Faculty of Pharmacy, Université Paris-Saclay, Châtenay-Malabry, France
| | | | - Clémence Martin
- Université de Paris, Institut Cochin, INSERM U1016, CNRS, Paris, France
- Department of Pneumology, AP-HP, Hôpital Cochin, Paris, France
| | - Pierre-Régis Burgel
- Université de Paris, Institut Cochin, INSERM U1016, CNRS, Paris, France
- Department of Pneumology, AP-HP, Hôpital Cochin, Paris, France
| | - Daniel S. Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Rosemeri Maurici
- Department of Clinical Medicine, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Matthew S. Macauley
- Department of Chemistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - André Báfica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | | - Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
8
|
Hyun SW, Feng C, Liu A, Lillehoj EP, Trotta R, Kingsbury TJ, Passaniti A, Lugkey KN, Chauhan S, Cipollo JF, Luzina IG, Atamas SP, Cross AS, Goldblum SE. Altered sialidase expression in human myeloid cells undergoing apoptosis and differentiation. Sci Rep 2022; 12:14173. [PMID: 35986080 PMCID: PMC9390117 DOI: 10.1038/s41598-022-18448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
To gain insight into sialic acid biology and sialidase/neuraminidase (NEU) expression in mature human neutrophil (PMN)s, we studied NEU activity and expression in PMNs and the HL60 promyelocytic leukemic cell line, and changes that might occur in PMNs undergoing apoptosis and HL60 cells during their differentiation into PMN-like cells. Mature human PMNs contained NEU activity and expressed NEU2, but not NEU1, the NEU1 chaperone, protective protein/cathepsin A(PPCA), NEU3, and NEU4 proteins. In proapoptotic PMNs, NEU2 protein expression increased > 30.0-fold. Granulocyte colony-stimulating factor protected against NEU2 protein upregulation, PMN surface desialylation and apoptosis. In response to 3 distinct differentiating agents, dimethylformamide, dimethylsulfoxide, and retinoic acid, total NEU activity in differentiated HL60 (dHL60) cells was dramatically reduced compared to that of nondifferentiated cells. With differentiation, NEU1 protein levels decreased > 85%, PPCA and NEU2 proteins increased > 12.0-fold, and 3.0-fold, respectively, NEU3 remained unchanged, and NEU4 increased 1.7-fold by day 3, and then returned to baseline. In dHL60 cells, lectin blotting revealed decreased α2,3-linked and increased α2,6-linked sialylation. dHL60 cells displayed increased adhesion to and migration across human bone marrow-derived endothelium and increased bacterial phagocytosis. Therefore, myeloid apoptosis and differentiation provoke changes in NEU catalytic activity and protein expression, surface sialylation, and functional responsiveness.
Collapse
|
9
|
Lillehoj EP, Luzina IG, Atamas SP. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front Immunol 2022; 13:883079. [PMID: 35479093 PMCID: PMC9035539 DOI: 10.3389/fimmu.2022.883079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina G. Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Baltimore Veterans Affairs (VA) Medical Center, Baltimore, MD, United States
| | - Sergei P. Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Khan A, Das S, Sergi C. Therapeutic Potential of Neu1 in Alzheimer's Disease Via the Immune System. Am J Alzheimers Dis Other Demen 2021; 36:1533317521996147. [PMID: 33719595 PMCID: PMC10624071 DOI: 10.1177/1533317521996147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's Disease (AD) is pathologically characterized by the accumulation of soluble oligomers causing extracellular beta-amyloid deposits in form of neuritic plaques and tau-containing intraneuronal neurofibrillary tangles in brain. One proposed mechanism explaining the formation of these proteins is impaired phagocytosis by microglia/macrophages resulting in defective clearance of soluble oligomers of beta-amyloid stimulating aggregation of amyloid plaques subsequently causing AD. However, research indicates that activating macrophages in M2 state may reduce toxic oligomers. NEU1 mutation is associated with a rare disease, sialidosis. NEU1 deficiency may also cause AD-like amyloidogenic process. Amyloid plaques have successfully been reduced using NEU1.Thus, NEU1 is suggested to have therapeutic potential for AD, with lysosomal exocytosis being suggested as underlying mechanism. Studies however demonstrate that NEU1 may activate macrophages in M2 state, which as noted earlier, is crucial to reducing toxic oligomers. In this review, authors discuss the potential therapeutic role of NEU1 in AD via immune system.
Collapse
Affiliation(s)
- Aiza Khan
- Section of Pediatric Pathology, Department of Laboratory Medicine and Pathology, University of Alberta and Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Sumit Das
- Section of Neuropathology, Department of Laboratory Medicine and Pathology, University of Alberta and Stollery Children’s Hospital, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Consolato Sergi
- Section of Pediatric Pathology, Department of Laboratory Medicine and Pathology, University of Alberta and Stollery Children’s Hospital, Edmonton, Alberta, Canada
- Department of Pediatrics, Stollery Children’s Hospital, University of Alberta Hospital, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Ugonotti J, Chatterjee S, Thaysen-Andersen M. Structural and functional diversity of neutrophil glycosylation in innate immunity and related disorders. Mol Aspects Med 2020; 79:100882. [PMID: 32847678 DOI: 10.1016/j.mam.2020.100882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
The granulated neutrophils are abundant innate immune cells that utilize bioactive glycoproteins packed in cytosolic granules to fight pathogenic infections, but the neutrophil glycobiology remains poorly understood. Facilitated by technological advances in glycoimmunology, systems glycobiology and glycoanalytics, a considerable body of literature reporting on novel aspects of neutrophil glycosylation has accumulated. Herein, we summarize the building knowledge of the structural and functional diversity displayed by N- and O-linked glycoproteins spatiotemporally expressed and sequentially brought-into-action across the diverse neutrophil life stages during bone marrow maturation, movements to, from and within the blood circulation and microbicidal processes at the inflammatory sites in peripheral tissues. It transpires that neutrophils abundantly decorate their granule glycoproteins including neutrophil elastase, myeloperoxidase and cathepsin G with peculiar glyco-signatures not commonly reported in other areas of human glycobiology such as hyper-truncated chitobiose core- and paucimannosidic-type N-glycans and monoantennary complex-type N-glycans. Sialyl Lewisx, Lewisx, poly-N-acetyllactosamine extensions and core 1-/2-type O-glycans are also common neutrophil glyco-signatures. Granule-specific glycosylation is another fascinating yet not fully understood feature of neutrophils. Recent literature suggests that unconventional biosynthetic pathways and functions underpin these prominent neutrophil-associated glyco-phenotypes. The impact of glycosylation on key neutrophil effector functions including extravasation, degranulation, phagocytosis and formation of neutrophil extracellular traps during normal physiological conditions and in innate immune-related diseases is discussed. We also highlight new technologies that are expected to further advance neutrophil glycobiology and briefly discuss the untapped diagnostic and therapeutic potential of neutrophil glycosylation that could open avenues to combat the increasingly prevalent innate immune disorders.
Collapse
Affiliation(s)
- Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
12
|
Howlader MA, Li C, Zou C, Chakraberty R, Ebesoh N, Cairo CW. Neuraminidase-3 Is a Negative Regulator of LFA-1 Adhesion. Front Chem 2019; 7:791. [PMID: 31824923 PMCID: PMC6882948 DOI: 10.3389/fchem.2019.00791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 01/13/2023] Open
Abstract
Within the plasma membrane environment, glycoconjugate-receptor interactions play an important role in the regulation of cell-cell interactions. We have investigated the mechanism and activity of the human neuraminidase (NEU) isoenzyme, NEU3, on T cell adhesion receptors. The enzyme is known to prefer glycolipid substrates, and we confirmed that exogenous enzyme altered the glycolipid composition of cells. NEU3 was able to modify the sialic acid content of purified LFA-1 in vitro. Enzymatic activity of NEU3 resulted in re-organization of LFA-1 into large clusters on the membrane. This change was facilitated by an increase in the lateral mobility of LFA-1 upon NEU3 treatment. Changes to the lateral mobility of LFA-1 were specific for NEU3 activity, and we observed no significant change in diffusion when cells were treated with a bacterial NEU (NanI). Furthermore, we found that NEU3 treatment of cells increased surface expression levels of LFA-1. We observed that NEU3-treated cells had suppressed LFA-1 adhesion to an ICAM-1 coated surface using an in vitro static adhesion assay. These results establish that NEU3 can modulate glycoconjugate composition and contribute to the regulation of integrin activity. We propose that NEU3 should be investigated to determine its role on LFA-1 within the inflammatory cascade.
Collapse
Affiliation(s)
- Md Amran Howlader
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Caishun Li
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Chunxia Zou
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Njuacha Ebesoh
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
13
|
Karmakar J, Roy S, Mandal C. Modulation of TLR4 Sialylation Mediated by a Sialidase Neu1 and Impairment of Its Signaling in Leishmania donovani Infected Macrophages. Front Immunol 2019; 10:2360. [PMID: 31649671 PMCID: PMC6794462 DOI: 10.3389/fimmu.2019.02360] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Altered sialylation is generally maintained by a fine balance between sialidases and sialyltransferases, which plays an essential role during disease pathogenesis. TLR4 is a membrane-bound highly sialylated glycoprotein predominantly having α2,3-linked sialic acids. It is one of the most important client molecules in the anti-leishmanial innate immune arm. Here, we initiated a comprehensive study on the modulation of TLR4 sialylation in Leishmania donovani (L. d)-infected macrophages by a mammalian sialidase/neuraminidase-1 (Neu1) having substrate specificity toward α2,3-linked sialic acids. We observed reduced membrane-associated Neu1 with its decreased enzyme activity in infected macrophages. Moreover, we demonstrated reduced association of Neu1 with TLR4 leading to enhanced sialylation of TLR4 in these infected cells. Conversely, Neu1 over expression exhibited enhanced association of TLR4 with Neu1 leading to reduced sialylation which possibly linked to increased association of TLR4 with its downstream adaptor protein, MyD88. This, in turn, activated downstream MAP kinase signaling pathway, with enhanced nuclear translocation of NFκB that resulted in increased genetic and protein levels expression of Th1 cytokines and effector molecule nitric oxide secretion which ultimately leads to reduced parasite burden in macrophages. This was further validated by Neu1 silencing in infected macrophages which reversed such a situation. Such events strongly confirm the importance of Neu1 in modulation of TLR4 sialylation during parasite infection resulting in impairment of innate immune response. Furthermore, decreased membrane-bound Neu1 in infected macrophages could be attributed to its reduced tyrosine-phosphorylation as well as diminished association with cathepsin A. Both these phenomenon possibly play significant roles in inhibiting translocation of the sialidase from cytosol to membrane. Taken together, our study first time demonstrated impaired translocation of cytosolic Neu1 to the membrane of L. donovani-infected macrophages due to impaired phosphorylation of this enzyme. This novel finding establishes a link between enhanced α2,3-linked sialic acids on TLR4 and reduced membrane-bound Neu1 which plays a significant role for inhibiting downstream signaling to establish successful infection in the host cells.
Collapse
Affiliation(s)
- Joyshree Karmakar
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saptarshi Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
14
|
Antibody against Microbial Neuraminidases Recognizes Human Sialidase 3 (NEU3): the Neuraminidase/Sialidase Superfamily Revisited. mBio 2017; 8:mBio.00078-17. [PMID: 28655817 PMCID: PMC5487728 DOI: 10.1128/mbio.00078-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neuraminidases (NAs) are critical virulence factors for several microbial pathogens. With a highly conserved catalytic domain, a microbial NA "superfamily" has been proposed. We previously reported that murine polymorphonuclear leukocyte (PMN) sialidase activity was important in leukocyte trafficking to inflamed sites and that antibodies to Clostridium perfringens NA recognized a cell surface molecule(s), presumed to be a sialidase of eukaryotic origin on interleukin-8-stimulated human and murine PMNs. These antibodies also inhibited cell sialidase activity both in vitro and, in the latter instance, in vivo We therefore hypothesized that mammalian sialidases share structural homology and epitopes with microbial NAs. We now report that antibodies to one of the isoforms of C. perfringens NA, as well as anti-influenza virus NA serum, recognize human NEU3 but not NEU1 and that antibodies to C. perfringens NA inhibit NEU3 enzymatic activity. We conclude that the previously described microbial NA superfamily extends to human sialidases. Strategies designed to therapeutically inhibit microbial NA may need to consider potential compromising effects on human sialidases, particularly those expressed in cells of the immune system.IMPORTANCE We previously reported that sialidase activity of human neutrophils plays a critical role in the host inflammatory response. Since the catalytic domains of microbial neuraminidases are highly conserved, we hypothesized that antibodies against Clostridium perfringens neuraminidase might inhibit mammalian sialidase activity. Before the recognition of four mammalian sialidase (Neu) isoforms, we demonstrated that anti-C. perfringens neuraminidase antibodies inhibited human and murine sialidase activity in vivo and in vitro We now show that the antibodies to microbial neuraminidase (C. perfringens and influenza virus) recognize human NEU3, which is important for neural development and cell signaling. Since many microbes that infect mucosal surfaces express neuraminidase, it is possible that the use of sialidase inhibitors (e.g., zanamivir), might also compromise human sialidase activity critical to the human immune response. Alternatively, sialidase inhibitors may prove useful in the treatment of hyperinflammatory conditions.
Collapse
|
15
|
Wratil PR, Horstkorte R, Reutter W. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines. Angew Chem Int Ed Engl 2016; 55:9482-512. [PMID: 27435524 DOI: 10.1002/anie.201601123] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/14/2022]
Abstract
In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).
Collapse
Affiliation(s)
- Paul R Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany.
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystrasse 1, 06114, Halle, Germany.
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
16
|
Wratil PR, Horstkorte R, Reutter W. Metabolisches Glykoengineering mitN-Acyl-Seiten- ketten-modifizierten Mannosaminen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul R. Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie; Martin-Luther-Universität Halle-Wittenberg; Hollystraße 1 06114 Halle Deutschland
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
17
|
Targeting of Neutrophil Lewis X Blocks Transepithelial Migration and Increases Phagocytosis and Degranulation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:297-311. [PMID: 26687991 DOI: 10.1016/j.ajpath.2015.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/28/2015] [Accepted: 10/02/2015] [Indexed: 12/21/2022]
Abstract
Polymorphonuclear leukocytes (PMNs) are innate immune cells whose principal function is to migrate from the blood to sites of inflammation, where they exert crucial anti-infectious and immunomodulatory effects. However, dysregulated migration of PMNs into mucosal epithelial tissues is characteristic of chronic inflammatory disorders, including inflammatory bowel disease. Carbohydrate-mediated binding interactions between PMN Lewis glycans and endothelial glycan-binding proteins are critical for initial migration of PMN out of the vasculature. However, the role of Lewis glycans during transepithelial migration (TEM) has not been well characterized. Herein, we show that antibody blockade of Lewis X (Le(x)) displayed as terminal glycan residues on the PMN surface blocks chemotaxis and TEM while enhancing PMN-adhesive interactions with intestinal epithelia. Unexpectedly, targeting of subterminal Le(x) residues within glycan chains had no effect on PMN migration or adhesive interactions. There was increased surface expression of Le(x) on PMN after TEM, and blockade of terminal Le(x) regulated post-migratory PMN functions, increasing PMN phagocytosis and the surface mobilization of azurophilic (CD63, myeloperoxidase, and neutrophil elastase) and specific (CD66b and lactoferrin) granule markers. These findings suggest that terminal Le(x) represents a potential target for regulating PMN trafficking and function in inflamed mucosa. Furthermore, given its abundant expression on migrating PMN, Le(x) may be a rational target for modulating inflammation in diseases where dysregulated PMN influx is associated with host tissue damage.
Collapse
|
18
|
Ramachandran G, Gade P, Tsai P, Lu W, Kalvakolanu DV, Rosen GM, Cross AS. Potential role of autophagy in the bactericidal activity of human PMNs for Bacillus anthracis. Pathog Dis 2015; 73:ftv080. [PMID: 26424808 DOI: 10.1093/femspd/ftv080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 12/19/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, is acquired by mammalian hosts from the environment, as quiescent endospores. These endospores must germinate inside host cells, forming vegetative bacilli, before they can express the virulence factors that enable them to evade host defenses and disseminate throughout the body. While the role of macrophages and dendritic cells in this initial interaction has been established, the role of polymorphonuclear leukocytes (PMNs) has not been adequately defined. We discovered that while B. anthracis 34F2 Sterne endospores germinate poorly within non-activated human PMNs, these phagocytes exhibit rapid microbicidal activity toward the outgrown vegetative bacilli, independent of superoxide and nitric oxide. These findings suggest that a non-free radical pathway kills B. anthracis bacilli. We also find in PMNs an autophagic mechanism of bacterial killing based on the rapid induction of LC-3 conversion, beclin-1 expression, sequestosome 1 (SQSTM1) degradation and inhibition of bactericidal activity by the inhibitor, 3-methyladenine. These findings extend to PMNs an autophagic bactericidal mechanism previously described for other phagocytes.
Collapse
Affiliation(s)
- Girish Ramachandran
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Padmaja Gade
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Pei Tsai
- Department of Pharmaceutical Sciences, and the Center for EPR Imaging In Vivo Physiology, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dhananjaya V Kalvakolanu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Gerald M Rosen
- Department of Pharmaceutical Sciences, and the Center for EPR Imaging In Vivo Physiology, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Alan S Cross
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
19
|
Wright RD, Cooper D. Glycobiology of leukocyte trafficking in inflammation. Glycobiology 2014; 24:1242-51. [DOI: 10.1093/glycob/cwu101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
20
|
Fu J, Tobin MC, Thomas LL. Neutrophil-like low-density granulocytes are elevated in patients with moderate to severe persistent asthma. Ann Allergy Asthma Immunol 2014; 113:635-640.e2. [PMID: 25256681 DOI: 10.1016/j.anai.2014.08.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Elevations in neutrophil-like low-density granulocytes (LDGs) are observed in association with disease severity in some autoimmune and other disorders. This study evaluated whether a similar association with disease severity is observed in asthma. OBJECTIVE To determine LDG levels in peripheral blood mononuclear cells of subjects with intermittent or mild persistent asthma, subjects with moderate persistent or severe persistent (SP) asthma, and control subjects without a history or allergy or asthma. METHODS A brief medical history and physical examination, spirometry, and measurement of fraction of exhaled nitric oxide were performed. The LDGs were quantified by polychromatic flow cytometry. RESULTS The LDGs displaying the same phenotype as those described previously for LDGs in other diseases were significantly elevated in peripheral blood mononuclear cells of subjects with moderate persistent or SP asthma. The LDGs comprised up to 39% of peripheral blood mononuclear cells, with elevated LDG levels most prevalent in subjects with SP asthma. The highest LDG levels were observed in 4 subjects with SP asthma. Fraction of exhaled nitric oxide levels and body mass were significantly increased in subjects with low LDG levels compared with control subjects, whereas fraction of exhaled nitric oxide levels and body mass were not elevated in subjects with moderate persistent or SP asthma and high LDG levels compared with control subjects. CONCLUSION These findings identify a previously unrecognized association between LDG levels and asthma severity. Identification of the factor(s) responsible for the increased LDG levels in moderate persistent or SP asthma may provide a serum biomarker to aid in the identification of neutrophil-associated phenotypes of severe asthma.
Collapse
Affiliation(s)
- Jun Fu
- Department of Immunology/Microbiology, Section of Allergy and Clinical Immunology, Rush University Medical Center, Chicago, Illinois
| | - Mary C Tobin
- Department of Immunology/Microbiology, Section of Allergy and Clinical Immunology, Rush University Medical Center, Chicago, Illinois
| | - Larry L Thomas
- Department of Immunology/Microbiology, Section of Allergy and Clinical Immunology, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
21
|
Nzeusseu Toukap A, Delporte C, Noyon C, Franck T, Rousseau A, Serteyn D, Raes M, Vanhaeverbeek M, Moguilevsky N, Nève J, Vanhamme L, Durez P, Van Antwerpen P, Zouaoui Boudjeltia K. Myeloperoxidase and its products in synovial fluid of patients with treated or untreated rheumatoid arthritis. Free Radic Res 2014; 48:461-5. [PMID: 24460011 DOI: 10.3109/10715762.2014.886327] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Plasma and synovial myeloperoxidase (MPO) and its products were strongly associated with osteoarthritis (OA) and rheumatoid arthritis (RA). In addition, it is well known that there is a link between oxidative stress and cytokines. The present study aims at investigating the link between synovial MPO (and its products), interleukin (IL)-18, which is involved in the degradation of articular cartilage in RA, and IL-8, which is involved in recruitment and activation of neutrophils during inflammation. Effects of the treatment of RA on the biological parameters were also investigated. METHODS Patients (n = 105) were studied including 39 patients with OA, 33 with RA and 33 with RA receiving a specific treatment. Disease activity score (DAS-28) was calculated whereas MPO antigen/activity, neutrophils, chloro-tyrosine (Cl-Tyr), homocitrulline (Hcit), IL-8, and IL-18 were measured in synovial fluid (SF) and CRP was measured in serum. RESULTS DAS-28 and CRP levels were not significantly different between groups. MPO activity, and MPO, Cl-Tyr, and Hcit levels were significantly higher in SF of RA patients than OA patients. MPO specific activity (MPO activity/antigen ratio) was significantly lower in treated than in untreated RA patients as was IL-8. MPO activity and concentration were correlated with IL-8 and IL-18 in untreated but not in treated RA patients. CONCLUSIONS MPO level is related to IL-8 and IL-18 levels in untreated RA patients. A link has been shown between treatment and decrease of IL-8, MPO specific activity and Hcit in SF. The causal role of MPO in SF inflammation and how treatment can affect MPO specific activity need further investigations.
Collapse
Affiliation(s)
- A Nzeusseu Toukap
- Institut de Recherche Expérimentale et Clinique and Service de Rhumatologie, Cliniques Universitaires St-Luc, Université Catholique de Louvain , Brussels , Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang A, Gyulay G, Mitchell M, White E, Trigatti BL, Igdoura SA. Hypomorphic sialidase expression decreases serum cholesterol by downregulation of VLDL production in mice. J Lipid Res 2012; 53:2573-85. [PMID: 22984145 DOI: 10.1194/jlr.m027300] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lipoprotein metabolism is an important contributing factor in the development and progression of atherosclerosis. Plasma lipoproteins and their receptors are heavily glycosylated and sialylated, and levels of sialic acids modulate their biological functions. Sialylation is controlled by the activities of sialyltranferases and sialidases. To address the impact of sialidase (neu1) activity on lipoprotein metabolism, we have generated a mouse model with a hypomorphic neu1 allele (B6.SM) that displays reduced sialidase expression and sialidase activity. The objectives of this study are to determine the impact of sialidase on the rate of hepatic lipoprotein secretion and lipoprotein uptake. Our results indicate that hepatic levels of cholesterol and triglycerides are significantly higher in B6.SM mice compared with C57Bl/6 mice; however, VLDL-triglyceride production rate is lower. In addition, B6.SM mice show significantly lower levels of hepatic microsomal triglyceride transfer protein (MTP) and active sterol-regulatory element binding protein (SREBP)-2 but higher levels of diglyceride acyltransferase (DGAT)2; these are all indicative of increased hepatic lipid storage. Rescue of sialidase activity in hypomorphic sialidase mice using helper-dependent adenovirus resulted in increased VLDL production and an increase in MTP levels. Furthermore, hypomorphic sialidase expression results in stabilization of hepatic LDL receptor (LDLR) protein expression, which enhances LDL uptake. These findings provide novel evidence for a central role of sialidase in the cross talk between the uptake and production of lipoproteins.
Collapse
Affiliation(s)
- Abraham Yang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Auvynet C, Moreno S, Melchy E, Coronado-Martínez I, Montiel JL, Aguilar-Delfin I, Rosenstein Y. Galectin-1 promotes human neutrophil migration. Glycobiology 2012; 23:32-42. [PMID: 22942212 DOI: 10.1093/glycob/cws128] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
An important step of innate immune response is the recruitment of polymorphonuclear leukocytes (PMN) to injured tissues through chemotactic molecules. Galectins, a family of endogenous lectins, participate in numerous functions such as lymphoid cell migration, homing, cell-cell and cell-matrix interactions. Particularly, galectin-3 (Gal-3) and -9 have been implicated in the modulation of acute and chronic inflammation by inducing the directional migration of monocytes/macrophages and eosinophils, whereas Gal-1 is considered to function as an anti-inflammatory molecule, capable of inhibiting the influx of PMN to the site of injury. In this study, we assessed the effect of Gal-1 on neutrophil recruitment, in the absence of additional inflammatory insults. Contrasting with its capacity to inhibit cell trafficking and modulate the release of mediators described in models of acute inflammation and autoimmunity, we evidenced that Gal-1 has the capacity to induce neutrophil migration both in vitro and in vivo. This effect is not mediated through a G-protein-coupled receptor but potentially through the sialoglycoprotein CD43, via carbohydrate binding and through the p38 mitogen-activated protein kinase pathway. These results suggest a novel biological function for CD43 on neutrophils and highlight that depending on the environment, Gal-1 can act either as chemoattractant or, as a molecule that negatively regulates migration under acute inflammatory conditions, underscoring the potential of Gal-1 as a target for innovative drug development.
Collapse
Affiliation(s)
- Constance Auvynet
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | | | | | | | | | | | | |
Collapse
|
24
|
Feng C, Stamatos NM, Dragan AI, Medvedev A, Whitford M, Zhang L, Song C, Rallabhandi P, Cole L, Nhu QM, Vogel SN, Geddes CD, Cross AS. Sialyl residues modulate LPS-mediated signaling through the Toll-like receptor 4 complex. PLoS One 2012; 7:e32359. [PMID: 22496731 PMCID: PMC3322133 DOI: 10.1371/journal.pone.0032359] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 01/26/2012] [Indexed: 11/19/2022] Open
Abstract
We previously reported that neuraminidase (NA) pretreatment of human PBMCs markedly increased their cytokine response to lipopolysaccharide (LPS). To study the mechanisms by which this occurs, we transfected HEK293T cells with plasmids encoding TLR4, CD14, and MD2 (three components of the LPS receptor complex), as well as a NFκB luciferase reporting system. Both TLR4 and MD2 encoded by the plasmids are α-2,6 sialylated. HEK293T cells transfected with TLR4/MD2/CD14 responded robustly to the addition of LPS; however, omission of the MD2 plasmid abrogated this response. Addition of culture supernatants from MD2 (sMD2)-transfected HEK293T cells, but not recombinant, non-glycosylated MD2 reconstituted this response. NA treatment of sMD2 enhanced the LPS response as did NA treatment of the TLR4/CD14-transfected cell supplemented with untreated sMD2, but optimal LPS-initiated responses were observed with NA-treated TLR4/CD14-transfected cells supplemented with NA-treated sMD2. We hypothesized that removal of negatively charged sialyl residues from glycans on the TLR4 complex would hasten the dimerization of TLR4 monomers required for signaling. Co-transfection of HEK293T cells with separate plasmids encoding either YFP- or FLAG-tagged TLR4, followed by treatment with NA and stimulation with LPS, led to an earlier and more robust time-dependent dimerization of TLR4 monomers on co-immunoprecipitation, compared to untreated cells. These findings were confirmed by fluorescence resonance energy transfer (FRET) analysis. Overexpression of human Neu1 increased LPS-initiated TLR4-mediated NFκB activation and a NA inhibitor suppressed its activation. We conclude that (1) sialyl residues on TLR4 modulate LPS responsiveness, perhaps by facilitating clustering of the homodimers, and that (2) sialic acid, and perhaps other glycosyl species, regulate MD2 activity required for LPS-mediated signaling. We speculate that endogenous sialidase activity mobilized during cell activation may play a role in this regulation.
Collapse
Affiliation(s)
- Chiguang Feng
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nicholas M. Stamatos
- Institute of Human Virology and Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anatoliy I. Dragan
- Institute of Fluorescence, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Andrei Medvedev
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Melissa Whitford
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Lei Zhang
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Chang Song
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Prasad Rallabhandi
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Leah Cole
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Quan M. Nhu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Chris D. Geddes
- Institute of Fluorescence, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Alan S. Cross
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Cross AS, Hyun SW, Miranda-Ribera A, Feng C, Liu A, Nguyen C, Zhang L, Luzina IG, Atamas SP, Twaddell WS, Guang W, Lillehoj EP, Puché AC, Huang W, Wang LX, Passaniti A, Goldblum SE. NEU1 and NEU3 sialidase activity expressed in human lung microvascular endothelia: NEU1 restrains endothelial cell migration, whereas NEU3 does not. J Biol Chem 2012; 287:15966-80. [PMID: 22403397 DOI: 10.1074/jbc.m112.346817] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The microvascular endothelial surface expresses multiple molecules whose sialylation state regulates multiple aspects of endothelial function. To better regulate these sialoproteins, we asked whether endothelial cells (ECs) might express one or more catalytically active sialidases. Human lung microvascular EC lysates contained heat-labile sialidase activity for a fluorogenic substrate, 2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (4-MU-NANA), that was dose-dependently inhibited by the competitive sialidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid but not its negative control. The EC lysates also contained sialidase activity for a ganglioside mixture. Using real time RT-PCR to detect mRNAs for the four known mammalian sialidases, NEU1, -2, -3, and -4, NEU1 mRNA was expressed at levels 2700-fold higher that those found for NEU2, -3, or -4. Western analyses indicated NEU1 and -3 protein expression. Using confocal microscopy and flow cytometry, NEU1 was immunolocalized to both the plasma membrane and the perinuclear region. NEU3 was detected both in the cytosol and nucleus. Prior siRNA-mediated knockdown of NEU1 and NEU3 each decreased EC sialidase activity for 4-MU-NANA by >65 and >17%, respectively, and for the ganglioside mixture by 0 and 40%, respectively. NEU1 overexpression in ECs reduced their migration into a wound by >40%, whereas NEU3 overexpression did not. Immunohistochemical studies of normal human tissues immunolocalized NEU1 and NEU3 proteins to both pulmonary and extrapulmonary vascular endothelia. These combined data indicate that human lung microvascular ECs as well as other endothelia express catalytically active NEU1 and NEU3. NEU1 restrains EC migration, whereas NEU3 does not.
Collapse
Affiliation(s)
- Alan S Cross
- Center for Vaccine Development, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cooper D, Iqbal AJ, Gittens BR, Cervone C, Perretti M. The effect of galectins on leukocyte trafficking in inflammation: sweet or sour? Ann N Y Acad Sci 2012; 1253:181-92. [PMID: 22256855 DOI: 10.1111/j.1749-6632.2011.06291.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The trafficking of leukocytes from the blood stream to the surrounding tissue is a fundamental feature of an inflammatory response. Although many of the adhesion molecules and chemokines that direct leukocyte trafficking have been identified, there is still much to be discovered, particularly with regard to the persistence of leukocyte infiltrates in chronic inflammation. Elucidating the molecular mechanisms involved in this process is critical to understanding and treating inflammatory pathologies. Recent studies have identified members of the galectin family as immunoregulatory proteins. Included among the actions of galectins are modulatory effects, both positive and negative, on leukocyte recruitment. The focus of this review is to summarize current knowledge on the role of galectins in leukocyte trafficking during inflammation. A better understanding of the function of this family of endogenous lectins will open new avenues for innovative drug discovery.
Collapse
Affiliation(s)
- Dianne Cooper
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, United Kingdom.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Cell surface expression of sialic acid has been reported to decrease during immune cell activation, but the significance and regulation of this phenomenon are still being investigated. The major human bacterial pathogen Streptococcus pneumoniae causes pneumonia, sepsis and meningitis, often accompanied by strong inflammatory responses. S. pneumoniae expresses a sialidase (NanA) that contributes to mucosal colonization, platelet clearance, and blood-brain barrier penetration. Using wild-type and isogenic NanA-deficient mutant strains, we showed that S. pneumoniae NanA can desialylate the surface of human THP-1 monocytes, leading to increased ERK phosphorylation, NF-κB activation, and proinflammatory cytokine release. S. pneumoniae NanA expression also stimulates interleukin-8 release and extracellular trap formation from human neutrophils. A mechanistic contribution of unmasking of inhibitory Siglec-5 from cis sialic acid interactions to the proinflammatory effect of NanA is suggested by decreased SHP-2 recruitment to the Siglec-5 intracellular domain and RNA interference studies. Finally, NanA increased production of proinflammatory cytokines in a murine intranasal challenge model of S. pneumoniae pneumonia. Importance Sialic acids decorate the surface of all mammalian cells and play important roles in physiology, development, and evolution. Siglecs are sialic acid-binding receptors on the surface of immune cells, many of which engage in cis interactions with host sialoglycan ligands and dampen inflammatory responses through transduction of inhibitory signals. Recently, certain bacterial pathogens have been shown to suppress leukocyte innate immune responses by molecular mimicry of host sialic acid structures and engagement of inhibitory Siglecs. Our present work shows that the converse can be true, i.e., that a microbial sialic acid-cleaving enzyme can induce proinflammatory responses, which are in part mediated by unmasking of an inhibitory Siglec. We conclude that host leukocytes are poised to detect and respond to microbial sialidase activity with exaggerated inflammatory responses, which could be beneficial or detrimental to the host depending on the site, stage and magnitude of infection. Sialic acids decorate the surface of all mammalian cells and play important roles in physiology, development, and evolution. Siglecs are sialic acid-binding receptors on the surface of immune cells, many of which engage in cis interactions with host sialoglycan ligands and dampen inflammatory responses through transduction of inhibitory signals. Recently, certain bacterial pathogens have been shown to suppress leukocyte innate immune responses by molecular mimicry of host sialic acid structures and engagement of inhibitory Siglecs. Our present work shows that the converse can be true, i.e., that a microbial sialic acid-cleaving enzyme can induce proinflammatory responses, which are in part mediated by unmasking of an inhibitory Siglec. We conclude that host leukocytes are poised to detect and respond to microbial sialidase activity with exaggerated inflammatory responses, which could be beneficial or detrimental to the host depending on the site, stage and magnitude of infection.
Collapse
|
28
|
Where catabolism meets signalling: neuraminidase 1 as a modulator of cell receptors. Glycoconj J 2011; 28:441-52. [PMID: 21928149 DOI: 10.1007/s10719-011-9350-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/24/2011] [Accepted: 03/08/2011] [Indexed: 12/19/2022]
Abstract
Terminal sialic acid residues are found in abundance in glycan chains of glycoproteins and glycolipids on the surface of all live cells forming an outer layer of the cell originally known as glycocalyx. Their presence affects the molecular properties and structure of glycoconjugates, modifying their function and interactions with other molecules. Consequently, the sialylation state of glycoproteins and glycolipids has been recognized as a critical factor modulating molecular recognitions inside the cell, between the cells, between the cells and the extracellular matrix, and between the cells and certain exogenous pathogens. Sialyltransferases that attach sialic acid residues to the glycan chains in the process of their initial synthesis were thought to be mainly responsible for the creation and maintenance of a temporal and spatial diversity of sialylated moieties. However, the growing evidence also suggests that in mammalian cells, at least equally important roles belong to sialidases/neuraminidases, which are located on the cell surface and in intracellular compartments, and may either initiate the catabolism of sialoglycoconjugates or just cleave their sialic acid residues, and thereby contribute to temporal changes in their structure and functions. The current review summarizes emerging data demonstrating that neuraminidase 1 (NEU1), well known for its lysosomal catabolic function, can be also targeted to the cell surface and assume the previously unrecognized role as a structural and functional modulator of cellular receptors.
Collapse
|
29
|
Feng C, Zhang L, Almulki L, Faez S, Whitford M, Hafezi-Moghadam A, Cross AS. Endogenous PMN sialidase activity exposes activation epitope on CD11b/CD18 which enhances its binding interaction with ICAM-1. J Leukoc Biol 2011; 90:313-21. [PMID: 21551251 DOI: 10.1189/jlb.1210708] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Diapedesis is a dynamic, highly regulated process by which leukocytes are recruited to inflammatory sites. We reported previously that removal of sialyl residues from PMNs enables these cells to become more adherent to EC monolayers and that sialidase activity within intracellular compartments of resting PMNs translocates to the plasma membrane following activation. We did not identify which surface adhesion molecules were targeted by endogenous sialidase. Upon activation, β2 integrin (CD11b/CD18) on the PMN surface undergoes conformational change, which allows it to bind more tightly to the ICAM-1 and ICAM-2 on the EC surface. Removal of sialyl residues from CD18 and CD11b, by exogenous neuraminidase or mobilization of PMN sialidase, unmasked activation epitopes, as detected by flow cytometry and enhanced binding to ICAM-1. One sialidase isoform, Neu1, colocalized with CD18 on confocal microscopy. Using an autoperfused microflow chamber, desialylation of immobilized ICAM-1 enhanced leukocyte arrest in vivo. Further, treatment with a sialidase inhibitor in vivo reversed endotoxin-induced binding of leukocytes to ICAM-1, thereby suggesting a role for leukocyte sialidase in the cellular arrest. These data suggest that PMN sialidase could be a physiologic source of the enzymatic activity that removes sialyl residues on β2 integrin and ICAM-1, resulting in their enhanced interaction. Thus, PMN sialidase may be an important regulator of the recruitment of these cells to inflamed sites.
Collapse
Affiliation(s)
- Chiguang Feng
- Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Complement alternative pathway acts as a positive feedback amplification of neutrophil activation. Blood 2010; 117:1340-9. [PMID: 21063021 DOI: 10.1182/blood-2010-05-283564] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Complement alternative pathway plays an important, but not clearly understood, role in neutrophil-mediated diseases. We here show that neutrophils themselves activate complement when stimulated by cytokines or coagulation-derived factors. In whole blood, tumor necrosis factor/formyl-methionyl-leucyl-phenylalanine or phorbol myristate acetate resulted in C3 fragments binding on neutrophils and monocytes, but not on T cells. Neutrophils, stimulated by tumor necrosis factor, triggered the alternative pathway on their surface in normal and C2-depleted, but not in factor B-depleted serum and on incubation with purified C3, factors B and D. This occurred independently of neutrophil proteases, oxidants, or apoptosis. Neutrophil-secreted properdin was detected on the cell surface and could focus "in situ" the alternative pathway activation. Importantly, complement, in turn, led to further activation of neutrophils, with enhanced CD11b expression and oxidative burst. Complement-induced neutrophil activation involved mostly C5a and possibly C5b-9 complexes, detected on tumor necrosis factor- and serum-activated neutrophils. In conclusion, neutrophil stimulation by cytokines results in an unusual activation of autologous complement by healthy cells. This triggers a new amplification loop in physiologic innate immunity: Neutrophils activate the alternative complement pathway and release C5 fragments, which further amplify neutrophil proinflammatory responses. This mechanism, possibly required for effective host defense, may be relevant to complement involvement in neutrophil-mediated diseases.
Collapse
|
31
|
Sakarya S, Ertugrul M, Öztürk T, Gökbulut C. Effect of pharynx epithelial cells surface desialylation on receptor-mediated adherence ofStaphylococcus aureus. J Appl Microbiol 2010; 108:1313-22. [DOI: 10.1111/j.1365-2672.2009.04525.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Sakarya S, Göktürk C, Öztürk T, Ertugrul MB. Sialic acid is required for nonspecific adherence of Salmonella entericassp. entericaserovar Typhi on Caco-2 cells. FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY 2010; 58:330-335. [DOI: 10.1111/j.1574-695x.2010.00650.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
33
|
Monti E, Bonten; E, D'Azzo A, Bresciani R, Venerando B, Borsani G, Schauer R, Tettamanti G. Sialidases in Vertebrates. Adv Carbohydr Chem Biochem 2010; 64:403-79. [DOI: 10.1016/s0065-2318(10)64007-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Sarter K, Mierke C, Beer A, Frey B, Führnrohr BG, Schulze C, Franz S. Sweet clearance: Involvement of cell surface glycans in the recognition of apoptotic cells. Autoimmunity 2009; 40:345-8. [PMID: 17516226 DOI: 10.1080/08916930701356804] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glycans cover the surfaces of all mammalian cells. Their structural variety provides enormous potential for information storage and transfer. According to the concept of the sugar code, they act as biochemical signals decoded by a large number of lectins which are defined as sugar binding proteins. The importance of glycan-lectin interaction in diverse immune system functions becomes increasingly apparent. Here, we review apoptotic cell clearance and especially focus on modifications of glycans on apoptotic cells.
Collapse
Affiliation(s)
- Kerstin Sarter
- Department of Internal Medicine III, Institute of Clinical Immunology and Rheumatology, University Hospital Erlangen, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Champigny MJ, Mitchell M, Fox-Robichaud A, Trigatti BL, Igdoura SA. A point mutation in the neu1 promoter recruits an ectopic repressor, Nkx3.2 and results in a mouse model of sialidase deficiency. Mol Genet Metab 2009; 97:43-52. [PMID: 19217813 DOI: 10.1016/j.ymgme.2009.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 12/19/2022]
Abstract
SM/J is an inbred mouse strain with a complex phenotype including small body size, impaired immune response and a tissue-specific sialidase deficiency. We identified a regulatory mutation, (-519G-->A) within the neu1 promoter which in reporter assays resulted in significantly reduced transcription. This mutation generates a consensus binding site for Nkx3 family transcription repressors. Recombinant Nkx3.2 bound strongly to and preferentially repressed transcription of the mutant promoter. This tissue-specific deficiency results in a retarded immune response and modulates leukocyte recruitment. Examination of the hepatic microcirculation in mutant mice revealed increased rolling and decreased adhesion of leukocytes. Our findings support a significant role for lysosomal sialidase in inflammation and highlight the significance of repressor-recruitment in genetic disease.
Collapse
Affiliation(s)
- Marc J Champigny
- Department of Biology, McMaster University, Hamilton, Ont., Canada L8S 4K1
| | | | | | | | | |
Collapse
|
36
|
Aksenov DV, Medvedeva LA, Skalbe TA, Sobenin IA, Tertov VV, Gabbasov ZA, Popov EV, Orekhov AN. Deglycosylation of apo B-containing lipoproteins increase their ability to aggregate and to promote intracellular cholesterol accumulation in vitro. Arch Physiol Biochem 2008; 114:349-56. [PMID: 19085234 DOI: 10.1080/13813450802227915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Sub-fractions of all apo B-100 containing lipoproteins (low density lipoproteins, very low density lipoproteins and intermediate density lipoproteins) with reduced contents of sialic acid were found in vivo in human blood. These lipoproteins were inclined to spontaneously form aggregates and were able to stimulate accumulation of cholesterol in cells cultured from human aortic intima. In vitro treatment of apo B-containing lipoproteins with 2,6- and 2,3-specific sialidases, alpha-mannosidase, endoglycosidases F1 or F2 or peptide-N-glycanase F also stimulated aggregation and increased the ability of these particles to potentiate cholesterol accumulation in cells of the intact human aortic intima. So, deglycosylation of various apo B-containing lipoproteins possibly occurs in the blood, decreases their resistance to aggregation and increases the ability of these particles to stimulate accumulation of cholesterol in human aortic intima cells, thereby increasing their atherogenic potential.
Collapse
Affiliation(s)
- D V Aksenov
- Institute of Experimental Cardiology, Russian Cardiology Research Center, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hinek A, Bodnaruk TD, Bunda S, Wang Y, Liu K. Neuraminidase-1, a subunit of the cell surface elastin receptor, desialylates and functionally inactivates adjacent receptors interacting with the mitogenic growth factors PDGF-BB and IGF-2. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1042-56. [PMID: 18772331 DOI: 10.2353/ajpath.2008.071081] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We recently established that the elastin-binding protein, which is identical to the spliced variant of beta-galactosidase, forms a cell surface-targeted complex with two proteins considered "classic lysosomal enzymes": protective protein/cathepsin A and neuraminidase-1 (Neu1). We also found that cell surface-residing Neu1 can desialylate neighboring microfibrillar glycoproteins and facilitate the deposition of insoluble elastin, which contributes to the maintenance of cellular quiescence. Here we provide evidence that cell surface-residing Neu1 contributes to a novel mechanism that limits cellular proliferation by desialylating cell membrane-residing sialoglycoproteins that directly propagate mitogenic signals. We demonstrated that treatment of cultured human aortic smooth muscle cells (SMCs) with either a sialidase inhibitor or an antibody that blocks Neu1 activity induced significant up-regulation in SMC proliferation in response to fetal bovine serum. Conversely, treatment with Clostridium perfringens neuraminidase (which is highly homologous to Neu1) decreased SMC proliferation, even in cultures that did not deposit elastin. Further, we found that pretreatment of aortic SMCs with exogenous neuraminidase abolished their mitogenic responses to recombinant platelet-derived growth factor (PDGF)-BB and insulin-like growth factor (IGF)-2 and that sialidosis fibroblasts (which are exclusively deficient in Neu1) were more responsive to PDGF-BB and IGF-2 compared with normal fibroblasts. Furthermore, we provide direct evidence that neuraminidase caused the desialylation of both PDGF and IGF-1 receptors and diminished the intracellular signals induced by the mitogenic ligands PDGF-BB and IGF-2.
Collapse
Affiliation(s)
- Aleksander Hinek
- Department of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
38
|
Rifat S, Kang TJ, Mann D, Zhang L, Puche AC, Stamatos NM, Goldblum SE, Brossmer R, Cross AS. Expression of sialyltransferase activity on intact human neutrophils. J Leukoc Biol 2008; 84:1075-81. [PMID: 18664529 DOI: 10.1189/jlb.0706462] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endogenous polymorphonuclear leukocyte (PMN)-associated sialidase activity enhances PMN adhesion to and migration across the endothelium through the removal of sialylated cell-surface residues. We tested the hypothesis that PMNs also express sialyltransferase (ST) activity that restores sialyl residues to the PMN surface. We developed a highly sensitive fluorometric assay to demonstrate that intact human PMNs can mediate and accept sialyl residue transfer. This ST activity is inhibited by a ST inhibitor, CMP, which also inhibits the transendothelial migration of PMNs in response to IL-8 in vitro and in vivo. We conclude that intact PMNs express sialidase and ST activities that permit rapid modulation of their surface sialylation and their ability to adhere to and migrate across the endothelium.
Collapse
Affiliation(s)
- Salahaldin Rifat
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sacar M, Onem G, Baltalarli A, Sacar S, Turgut H, Goksin I, Ozcan V, Sakarya S. Neuraminidase produces a decrease of adherence of slime-forming Staphylococcus aureus to gelatin-impregnated polyester fiber graft fabric: an experimental study. J Artif Organs 2007; 10:177-80. [PMID: 17846717 DOI: 10.1007/s10047-007-0383-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 03/29/2007] [Indexed: 10/22/2022]
Abstract
Because slime-forming microorganisms are the major causative agents of graft infections, we aimed to investigate bacterial adherence in slime-forming and nonslime-forming Staphylococcus aureus and to determine the role of neuraminidase (NANase) on adherence to gelatin-impregnated polyester fiber graft fabric. An in vitro model was developed to quantitatively measure bacterial adherence to the surface of the graft. The grafts were divided into two groups - those colonized with slime-forming S. aureus and those colonized with nonslime-forming S. aureus. The grafts were put into sterile tubes and human plasma was instilled and incubated at 37 degrees C to perform fibrin deposition on the grafts. After 48 h of incubation, grafts were drained and inoculated with slime-forming or nonslime-forming S. aureus in triptic soy broth in the presence or absence of NANase. Following 36 h of incubation at 36 degrees C, grafts were vortexed and cultured to perform a colony count. Bacterial counts were expressed as total colony-forming units per square centimeter of graft. Slime-forming S. aureus had greater affinity with the graft compared with nonslime-forming S. aureus (P < 0.05). The adherence of slime-forming S. aureus was impaired by NANase treatment (P < 0.001) but NANase treatment of nonslime-forming S. aureus did not change the adherence to the graft (P > 0.05). These results show that slime plays an important role in the pathogenesis of vascular graft infection. Adherence of slime-forming S. aureus can be decreased by NANase treatment. This may have implications for the development of neuraminidase-embedded vascular grafts to diminish biomaterial-related infections.
Collapse
Affiliation(s)
- Mustafa Sacar
- Science and Technology Research and Development Center Laboratories, Adnan Menderes University, Aydin, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mehrishi JN, Szabó M, Bakács T. Some aspects of the recombinantly expressed humanised superagonist anti-CD28 mAb, TGN1412 trial catastrophe lessons to safeguard mAbs and vaccine trials. Vaccine 2007; 25:3517-23. [PMID: 17397974 DOI: 10.1016/j.vaccine.2007.02.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/23/2007] [Accepted: 02/23/2007] [Indexed: 10/23/2022]
Abstract
We consider essential, still ignored, basic research aspects of the failed clinical trial (13 March 2006) of a recombinantly expressed humanised superagonist anti-CD28 mAb, TGN14122. Without hindsight, if for approval of the first ever recombinantly expressed anti-CD28 mAb use in humans attention had been paid to the physico-chemical factors and receptor saturation, the possible catastrophe will have been predictable and preventable. To understand what went wrong and, crucially, to prevent any future disasters to safeguard human health, safety and welfare, the information provided is likely to be of wide interest. We present calculations to show CD28 receptors on T cells of the six healthy volunteers by the anti-CD28 mAb superagonist, TGN1412. This led to the over activation of T cells and the violent cytokine storm precipitating the cascade and the release of endogenous molecules affecting other cells. Monocytes and plasma cells are likely to have been affected. We discuss briefly the role of neutrophils and activation releasing the surface-located sialidase affecting cell coats, such as, of T lymphocytes exposing galactose receptors that could have been involved in antigen presenting cell interactions. The role of the cell surface thiols of lymphocytes in forming mixed disulphides with endogenous ligands and in the REDOX system are briefly mentioned. Consideration of these various factors and a critical evaluation of the receptor occupancy data before injecting 0.1 mg/kg TGN1412 will have rung alarm bells about possible serious side effects and the catastrophe will have been averted.
Collapse
|
41
|
Hafezi-Moghadam A, Noda K, Almulki L, Iliaki EF, Poulaki V, Thomas KL, Nakazawa T, Hisatomi T, Miller JW, Gragoudas ES. VLA-4 blockade suppresses endotoxin-induced uveitis: in vivo evidence for functional integrin up-regulation. FASEB J 2007; 21:464-74. [PMID: 17202250 DOI: 10.1096/fj.06-6390com] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Leukocyte adhesion to the vascular wall is a critical early step in the pathogenesis of inflammatory diseases and is mediated in part by the leukocyte integrin, VLA-4, which binds to endothelial vascular cell adhesion molecule (VCAM) -1. Here, we investigate VLA-4's role in endotoxin-induced uveitis (EIU). At various time points (6-48 h) after EIU induction, the severity of the inflammation was evaluated by quantifying cell and protein content in the aqueous fluid, firm leukocyte adhesion in the retinal vessels, and the number of extravasated leukocytes into the vitreous. Functional activation of VLA-4 in vivo was investigated in our previously introduced autoperfused micro flow chamber assay. Firm adhesion of EIU leukocytes to immobilized VCAM-1 under physiological blood flow conditions was significantly increased compared with normal controls (P<0.05), suggesting an important role for VLA-4 in EIU. VLA-4 blockade in vivo significantly suppressed all uveitis-related inflammatory parameters studied, decreasing the clinical score by 45% (P<0.01), protein content in the aqueous fluid by 21% (P<0.01), retinal leukostasis by 68% (P<0.01), and leukocyte accumulation in the vitreous by 75% (P<0.01). Our data provide novel evidence for functional up-regulation of VLA-4 during EIU and suggest VLA-4 blockade as a promising therapeutic strategy for treatment of acute inflammatory eye diseases.
Collapse
Affiliation(s)
- A Hafezi-Moghadam
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Franz S, Herrmann K, Fürnrohr BG, Führnrohr B, Sheriff A, Frey B, Gaipl US, Voll RE, Kalden JR, Jäck HM, Herrmann M. After shrinkage apoptotic cells expose internal membrane-derived epitopes on their plasma membranes. Cell Death Differ 2006; 14:733-42. [PMID: 17170754 DOI: 10.1038/sj.cdd.4402066] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Apoptosis and phagocytosis of apoptotic cells are crucial processes. At best the phagocytic machinery detects and swallows all apoptotic cells in a way that progression to secondary necrosis is avoided. Otherwise, inflammation and autoimmune diseases may occur. Most apoptotic cells are phagocytosed instantaneously in a silent fashion; however, some dying cells escape their clearance. If the cells are not cleared early, they lose membranes due to extensive shedding of membrane surrounded vesicles (blebbing) and shrink. It is unclear how apoptotic cells compensate their massive loss of plasma membrane. Here, we demonstrate that endoplasmic reticulum- (ER) resident proteins (calnexin, the KDEL receptor and a dysfunctional immunoglobulin heavy chain) were exposed at the surfaces of shrunken late apoptotic cells. Additionally, these cells showed an increased binding of lectins, which recognize sugar structures predominantly found as moieties of incompletely processed proteins in ER and Golgi. In addition the ER resident lipophilic ER-Tracker Blue-White DPX, and internal GM1 were observed to translocate to the cell surfaces during late apoptosis. We conclude that during blebbing of apoptotic cells the surface membrane loss is substituted by immature membranes from internal stores. This mechanism explains the simultaneous appearance of preformed recognition structures for several adaptor proteins known to be involved in clearance of dead cells.
Collapse
Affiliation(s)
- S Franz
- Institute of Clinical Immunology and Rheumatology, Department of Internal Medicine 3, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Orlando KA, Pittman RN. Rho kinase regulates phagocytosis, surface expression of GlcNAc, and Golgi fragmentation of apoptotic PC12 cells. Exp Cell Res 2006; 312:3298-311. [PMID: 16904666 DOI: 10.1016/j.yexcr.2006.06.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/27/2006] [Accepted: 06/29/2006] [Indexed: 11/26/2022]
Abstract
Apoptotic cells undergo a number of changes to prepare for phagocytosis; most occur during the execution phase of apoptosis, when dying cells undergo shrinkage and/or fragmentation into apoptotic bodies and express phagocytic markers on their surface. Although events during the execution phase are important to prepare corpses for phagocytosis, the mechanisms that control most execution phase events are unknown. To understand regulation of execution events we focused on Rho kinase (ROCK), because one isoform of ROCK, ROCK-I, is constitutively activated by caspases during execution. Using apoptotic PC12 cells as a model, we find that inhibition of ROCK activity during apoptosis decreases surface expression of GlcNAc, a carbohydrate known to function as a phagocytic marker. In addition, inhibition of ROCK blocks Golgi fragmentation in apoptotic cells, and constitutively active ROCK induces Golgi fragmentation in the absence of apoptosis. Importantly, PC12 cells dying in the presence of a ROCK inhibitor are less efficiently phagocytized than those dying without the inhibitor. These data highlight the role of ROCK in multiple processes in the execution phase of apoptosis, and suggest that ROCK plays an important role in controlling the outcome of apoptosis, that is, preparation of corpses for phagocytosis.
Collapse
Affiliation(s)
- Kelly A Orlando
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
44
|
Onem G, Sacar M, Sacar S, Sakarya S, Turgut H, Ozcan AV, Baltalarli A. Neuraminidase decreases in vitro adherence of slime-forming coagulase-negative staphylococci to biosynthetic ovine collagen vascular graft. Adv Ther 2006; 23:256-62. [PMID: 16751158 DOI: 10.1007/bf02850131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Vascular prosthetic graft infection is a major complication of vascular surgery that starts with adhesion of the microorganism to the graft. Because slime-forming microorganisms are the major causative agents in graft infection, the goals of investigators in this study were (1) to investigate the bacterial adherence of slime-forming and non-slime-forming coagulase-negative staphylococci (CNS), and (2) to determine the role of neuraminidase (NANase) in bacterial adherence to the biosynthetic ovine collagen graft. Human plasma was instilled and incubated at 37 degrees C in preparation for fibrin deposition of grafts. After 48 hours, incubation grafts were drained and inoculated with slime-forming and non-slime-forming CNS in tryptic soy broth in the presence and in the absence of neuraminidase. After 24 hours of incubation at 36 degrees C, grafts were vortexed and cultured for colony count. Bacterial counts were expressed as total colony-forming units per longitudinal centimeter of the graft. Slime-forming CNS had greater affinity to the collagen graft compared with non-slime-forming CNS (P<.05). Adherence of slime-forming CNS was impaired by NANase treatment (P<.001). NANase treatment of patients with non-slime-forming CNS did not change adherence to the graft (P>.05). Results show that slime plays an important role in the pathogenesis of vascular graft infection. Adherence of slime-forming CNS can be decreased through the administration of NANase. This may have implications for the development of neuraminidase-embedded vascular grafts designed to reduce the occurrence of biomaterial-related infection.
Collapse
Affiliation(s)
- Gokhan Onem
- Department of Cardiovascular Sugery, Pamukkale University, Denizli, Turkey
| | | | | | | | | | | | | |
Collapse
|
45
|
Hinek A, Pshezhetsky AV, von Itzstein M, Starcher B. Lysosomal Sialidase (Neuraminidase-1) Is Targeted to the Cell Surface in a Multiprotein Complex That Facilitates Elastic Fiber Assembly. J Biol Chem 2006; 281:3698-710. [PMID: 16314420 DOI: 10.1074/jbc.m508736200] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have established previously that the 67-kDa elastin-binding protein (EBP), identical to the spliced variant of beta-galactosidase, acts as a recyclable chaperone that facilitates secretion of tropoelastin. (Hinek, A., Keeley, F. W., and Callahan, J. W. (1995) Exp. Cell Res. 220, 312-324). We now demonstrate that EBP also forms a cell surface-targeted molecular complex with protective protein/cathepsin A and sialidase (neuraminidase-1), and provide evidence that this sialidase activity is a prerequisite for the subsequent release of tropoelastin. We found that treatment with sialidase inhibitors repressed assembly of elastic fibers in cultures of human skin fibroblasts, aortic smooth muscle cells, and ear cartilage chondrocytes and caused impaired elastogenesis in developing chick embryos. Fibroblasts derived from patients with congenital sialidosis (primary deficiency of neuraminidase-1) and galactosialidosis (secondary deficiency of neuraminidase-1) demonstrated impaired elastogenesis, which could be reversed after their transduction with neuraminidase-1 cDNA or after treatment with bacterial sialidase, which has a similar substrate specificity to human neuraminidase-1. We postulate that neuraminidase-1 catalyzes removal of the terminal sialic acids from carbohydrate chains of microfibrillar glycoproteins and other adjacent matrix glycoconjugates, unmasking their penultimate galactosugars. In turn, the exposed galactosugars interact with the galectin domain of EBP, thereby inducing the release of transported tropoelastin molecules and facilitating their subsequent assembly into elastic fibers.
Collapse
MESH Headings
- Aorta/metabolism
- Blotting, Western
- Carbohydrates/chemistry
- Cartilage/metabolism
- Catalysis
- Cell Membrane/enzymology
- Cells, Cultured
- Chondrocytes/metabolism
- Chromatography, Affinity
- Clostridium perfringens/metabolism
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Fibroblasts/metabolism
- Galectins/chemistry
- Humans
- Immunohistochemistry
- Lysosomes/metabolism
- Microscopy, Electron
- Microscopy, Fluorescence
- Models, Biological
- Muscle, Smooth/cytology
- Muscle, Smooth/metabolism
- Neuraminidase/biosynthesis
- Protein Binding
- Protein Structure, Tertiary
- Sialic Acids/chemistry
- Skin/metabolism
- Tropoelastin/chemistry
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Aleksander Hinek
- Cardiovascular Research Program, The Hospital for Sick Children, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
46
|
Stamatos NM, Liang F, Nan X, Landry K, Cross AS, Wang LX, Pshezhetsky AV. Differential expression of endogenous sialidases of human monocytes during cellular differentiation into macrophages. FEBS J 2005; 272:2545-56. [PMID: 15885103 DOI: 10.1111/j.1742-4658.2005.04679.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sialidases are enzymes that influence cellular activity by removing terminal sialic acid from glycolipids and glycoproteins. Four genetically distinct sialidases have been identified in mammalian cells. In this study, we demonstrate that three of these sialidases, lysosomal Neu1 and Neu4 and plasma membrane-associated Neu3, are expressed in human monocytes. When measured using the artificial substrate 2'-(4-methylumbelliferyl)-alpha-d-N-acetylneuraminic acid (4-MU-NANA), sialidase activity of monocytes increased up to 14-fold per milligram of total protein after cells had differentiated into macrophages. In these same cells, the specific activity of other cellular proteins (e.g. beta-galactosidase, cathepsin A and alkaline phosphatase) increased only two- to fourfold during differentiation of monocytes. Sialidase activity measured with 4-MU-NANA resulted from increased expression of Neu1, as removal of Neu1 from the cell lysate by immunoprecipitation eliminated more than 99% of detectable sialidase activity. When exogenous mixed bovine gangliosides were used as substrates, there was a twofold increase in sialidase activity per milligram of total protein in monocyte-derived macrophages in comparison to monocytes. The increased activity measured with mixed gangliosides was not affected by removal of Neu1, suggesting that the expression of a sialidase other than Neu1 was present in macrophages. The amount of Neu1 and Neu3 RNAs detected by real time RT-PCR increased as monocytes differentiated into macrophages, whereas the amount of Neu4 RNA decreased. No RNA encoding the cytosolic sialidase (Neu2) was detected in monocytes or macrophages. Western blot analysis using specific antibodies showed that the amount of Neu1 and Neu3 proteins increased during monocyte differentiation. Thus, the differentiation of monocytes into macrophages is associated with regulation of the expression of at least three distinct cellular sialidases, with specific up-regulation of the enzyme activity of only Neu1.
Collapse
Affiliation(s)
- Nicholas M Stamatos
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Edwards JL, Apicella MA. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev 2004; 17:965-81, table of contents. [PMID: 15489357 PMCID: PMC523569 DOI: 10.1128/cmr.17.4.965-981.2004] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The molecular mechanisms used by the gonococcus to initiate infection exhibit gender specificity. The clinical presentations of disease are also strikingly different upon comparison of gonococcal urethritis to gonococcal cervicitis. An intimate association occurs between the gonococcus and the urethral epithelium and is mediated by the asialoglycoprotein receptor. Gonococcal interaction with the urethral epithelia cell triggers cytokine release, which promotes neutrophil influx and an inflammatory response. Similarly, gonococcal infection of the upper female genital tract also results in inflammation. Gonococci invade the nonciliated epithelia, and the ciliated cells are subjected to the cytotoxic effects of tumor necrosis factor alpha induced by gonococcal peptidoglycan and lipooligosaccharide. In contrast, gonococcal infection of the lower female genital tract is typically asymptomatic. This is in part the result of the ability of the gonococcus to subvert the alternative pathway of complement present in the lower female genital tract. Gonococcal engagement of complement receptor 3 on the cervical epithelia results in membrane ruffling and does not promote inflammation. A model of gonococcal pathogenesis is presented in the context of the male and female human urogenital tracts.
Collapse
Affiliation(s)
- Jennifer L Edwards
- Department of Microbiology, The University of Iowa, 51 Newton Rd., BSB 3-403, Iowa City, IA 52242, USA
| | | |
Collapse
|
48
|
Sakarya S, Oncu S, Oncu S, Ozturk B, Tuncer G, Sari C. Neuraminidase produces dose-dependent decrease of slime production and adherence of slime-forming, coagulase-negative staphylococci. Arch Med Res 2004; 35:275-8. [PMID: 15325499 DOI: 10.1016/j.arcmed.2004.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 03/26/2004] [Indexed: 12/22/2022]
Abstract
BACKGROUND Slime is one of the important structures of certain bacterial strains involved in nonspecific adherence. This study was conducted to determine the role of neuraminidase on slime formation and adherence of slime-forming coagulase-negative staphylococci to inert surface. METHODS Quantitative biofilm and qualitative bacterial adherence assays were performed with increasing concentrations of neuraminidase extracted from Clostridium perfringens-treated bacteria in polystyrene plates and polypropylene tubes. RESULTS Slime production of slime-forming, coagulase-negative staphylococci was significantly decreased dose dependently at > or =100 mU/mL (p <0.001). Bacterial adherence to smooth surface was impeded at > or =100 mU/mL of neuraminidase treatment and adherence results were comparable with slime production assay results. CONCLUSIONS Sialic acid may be a constituent molecule of slime and involved in bacterial adherence to inert surface. These results represent new insight into the mechanism of slime production and adherence of slime-forming, coagulase-negative staphylococci to inert surface.
Collapse
Affiliation(s)
- Serhan Sakarya
- Department of Infectious Diseases and Clinical Microbiology, Adnan Menderes University, Aydin 09100, Turkey.
| | | | | | | | | | | |
Collapse
|
49
|
Seyrantepe V, Poupetova H, Froissart R, Zabot MT, Maire I, Pshezhetsky AV. Molecular pathology of NEU1 gene in sialidosis. Hum Mutat 2004; 22:343-52. [PMID: 14517945 DOI: 10.1002/humu.10268] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lysosomal sialidase (EC 3.2.1.18) has a dual physiological function; it participates in intralysosomal catabolism of sialylated glycoconjugates and is involved in cellular immune response. Mutations in the sialidase gene NEU1, located on chromosome 6p21.3, result in autosomal recessive disorder, sialidosis, which is characterized by the progressive lysosomal storage of sialylated glycopeptides and oligosaccharides. Sialidosis type I is a milder, late-onset, normosomatic form of the disorder. Type I patients develop visual defects, myoclonus syndrome, cherry-red macular spots, ataxia, hyperreflexia, and seizures. The severe early-onset form, sialidosis type II, is also associated with dysostosis multiplex, Hurler-like phenotype, mental retardation, and hepatosplenomegaly. We summarize information on the 34 unique mutations determined so far in the sialidase gene, including four novel missense and one novel nonsense mutations found in two Czech and two French sialidosis patients. The analysis of sialidase mutations in sialidosis revealed considerable molecular heterogeneity, reflecting the diversity of clinical phenotypes that make molecular diagnosis difficult. The majority of sialidosis patients have had missense mutations, many of which have been expressed; their effects on activity, stability, intracellular localization, and supramolecular organization of sialidase were studied. A structural model of sialidase allowed us to localize mutations in the sialidase molecule and to predict their impact on the tertiary structure and biochemical properties of the enzyme.
Collapse
Affiliation(s)
- Volkan Seyrantepe
- Service de Génétique Médicale, Hôpital Sainte-Justine, Département de Pédiatrie, Faculté de Médicine, Université de Montréal, Montréal, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Sakarya S, Ertem GT, Oncu S, Kocak I, Erol N, Oncu S. Escherichia coli bind to urinary bladder epithelium through nonspecific sialic acid mediated adherence. ACTA ACUST UNITED AC 2004; 39:45-50. [PMID: 14556995 DOI: 10.1016/s0928-8244(03)00185-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first step in the bacterial colonization and infection of uropathogenic Escherichia coli is adherence to uroepithelium. Over 80% of all urinary tract infections are caused by E. coli. Uropathogenic E. coli express several adherence factors including type 1 and P fimbriae, which mediate attachment to the uroepithelium through specific binding to different glycoconjugate receptors. We showed that P and type 1 fimbriae are not the sole adhesins on uropathogenic E. coli and sialic acid also mediates nonspecific bacterial adherence of uropathogenic E. coli and urinary bladder epithelium.
Collapse
Affiliation(s)
- Serhan Sakarya
- Division of Infectious Diseases and Clinical Microbiology, Department of Medicine, School of Medicine, Adnan Menderes University, 09100 Aydin, Turkey.
| | | | | | | | | | | |
Collapse
|