1
|
Liu G, Liao W, Lv X, Huang L, He M, Li L. A potential coagulation-related diagnostic model associated with immune infiltration for acute myocardial infarction. Genes Immun 2024:10.1038/s41435-024-00298-z. [PMID: 39379556 DOI: 10.1038/s41435-024-00298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
The production of pro-coagulation factors can affect the development and prognosis of acute myocardial infarction (AMI). The clinical value of coagulation-related genes (CRGs) was investigated to discover new targets for diagnosing and treating AMI. We screened 335 differentially expressed genes (DEGs) between AMI and healthy individuals based on the GSE66360 dataset. We took the intersection of the obtained DEGs with 139 CRGs. Finally, 10 differentially expressed CEGs were screened out. The random forest algorithm was constructed to identify 6 signature CRGs (THBS1, SERPINA1, THBD, MMP9, MAFF, and PLAU). Subsequently, the established predictive model was found to have good diagnostic accuracy (AUC = 0.9694 in the training cohort [GSE66360 dataset] and 0.9076 in the external validation cohort [GSE48060 dataset]). Consensus clustering identified the CRG clusters, and the accuracy of the grouping was verified. We found that AMI patients can be divided into two distinct subgroups based on the differentially expressed CRGs. Immune cell infiltration level was consistent with the expression levels of CRGs based on single sample gene set enrichment analysis. These findings reveal the potential role of CRGs in AMI. Characterizing the coagulation features of AMI patients can help in the risk stratification of patients and provide personalized treatment strategies.
Collapse
Affiliation(s)
- Guoqing Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wang Liao
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiangwen Lv
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lifeng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Min He
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Ebrahimi R, Nasri F, Kalantari T. Coagulation and Inflammation in COVID-19: Reciprocal Relationship between Inflammatory and Coagulation Markers. Ann Hematol 2024; 103:1819-1831. [PMID: 38349409 DOI: 10.1007/s00277-024-05630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/16/2024] [Indexed: 05/14/2024]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), formerly known as 2019-nCoV. Numerous cellular and biochemical issues arise after COVID-19 infection. The severe inflammation that is caused by a number of cytokines appears to be one of the key hallmarks of COVID-19. Additionally, people with severe COVID-19 have coagulopathy and fulminant thrombotic events. We briefly reviewed the COVID-19 disease at the beginning of this paper. The inflammation and coagulation markers and their alterations in COVID-19 illness are briefly discussed in the parts that follow. Next, we talked about NETosis, which is a crucial relationship between coagulation and inflammation. In the end, we mentioned the two-way relationship between inflammation and coagulation, as well as the factors involved in it. We suggest that inflammation and coagulation are integrated systems in COVID-19 that act on each other in such a way that not only inflammation can activate coagulation but also coagulation can activate inflammation.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Nasri
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Kalantari
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Kral-Pointner JB, Haider P, Szabo PL, Salzmann M, Brekalo M, Schneider KH, Schrottmaier WC, Kaun C, Bleichert S, Kiss A, Sickha R, Hengstenberg C, Huber K, Brostjan C, Bergmeister H, Assinger A, Podesser BK, Wojta J, Hohensinner P. Reduced Monocyte and Neutrophil Infiltration and Activation by P-Selectin/CD62P Inhibition Enhances Thrombus Resolution in Mice. Arterioscler Thromb Vasc Biol 2024; 44:954-968. [PMID: 38385292 PMCID: PMC11020038 DOI: 10.1161/atvbaha.123.320016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Venous thromboembolism is a major health problem. After thrombus formation, its resolution is essential to re-establish blood flow, which is crucially mediated by infiltrating neutrophils and monocytes in concert with activated platelets and endothelial cells. Thus, we aimed to modulate leukocyte function during thrombus resolution post-thrombus formation by blocking P-selectin/CD62P-mediated cell interactions. METHODS Thrombosis was induced by inferior vena cava stenosis through ligation in mice. After 1 day, a P-selectin-blocking antibody or isotype control was administered and thrombus composition and resolution were analyzed. RESULTS Localizing neutrophils and macrophages in thrombotic lesions of wild-type mice revealed that these cells enter the thrombus and vessel wall from the caudal end. Neutrophils were predominantly present 1 day and monocytes/macrophages 3 days after vessel ligation. Blocking P-selectin reduced circulating platelet-neutrophil and platelet-Ly6Chigh monocyte aggregates near the thrombus, and diminished neutrophils and Ly6Chigh macrophages in the cranial thrombus part compared with isotype-treated controls. Depletion of neutrophils 1 day after thrombus initiation did not phenocopy P-selectin inhibition but led to larger thrombi compared with untreated controls. In vitro, P-selectin enhanced human leukocyte function as P-selectin-coated beads increased reactive oxygen species production by neutrophils and tissue factor expression of classical monocytes. Accordingly, P-selectin inhibition reduced oxidative burst in the thrombus and tissue factor expression in the adjacent vessel wall. Moreover, blocking P-selectin reduced thrombus density determined by scanning electron microscopy and increased urokinase-type plasminogen activator levels in the thrombus, which accelerated caudal fibrin degradation from day 3 to day 14. This accelerated thrombus resolution as thrombus volume declined more rapidly after blocking P-selectin. CONCLUSIONS Inhibition of P-selectin-dependent activation of monocytes and neutrophils accelerates venous thrombosis resolution due to reduced infiltration and activation of innate immune cells at the site of thrombus formation, which prevents early thrombus stabilization and facilitates fibrinolysis.
Collapse
Affiliation(s)
- Julia B. Kral-Pointner
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Division of Cardiology, Department of Internal Medicine II (J.B.K.-P., P. Haider, M.S., M.B., C.K., C.H., J.W.), Medical University of Vienna, Austria
| | - Patrick Haider
- Division of Cardiology, Department of Internal Medicine II (J.B.K.-P., P. Haider, M.S., M.B., C.K., C.H., J.W.), Medical University of Vienna, Austria
| | - Petra L. Szabo
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Centre for Biomedical Research and Translational Surgery (P.L.S., K.H.S., A.K., H.B., B.K.P., P. Hohensinner), Medical University of Vienna, Austria
| | - Manuel Salzmann
- Division of Cardiology, Department of Internal Medicine II (J.B.K.-P., P. Haider, M.S., M.B., C.K., C.H., J.W.), Medical University of Vienna, Austria
| | - Mira Brekalo
- Centre for Biomedical Research and Translational Surgery (P.L.S., K.H.S., A.K., H.B., B.K.P., P. Hohensinner), Medical University of Vienna, Austria
| | - Karl H. Schneider
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Centre for Biomedical Research and Translational Surgery (P.L.S., K.H.S., A.K., H.B., B.K.P., P. Hohensinner), Medical University of Vienna, Austria
| | - Waltraud C. Schrottmaier
- Institute for Vascular Biology and Thrombosis Research (W.C.S., A.A.), Medical University of Vienna, Austria
| | - Christoph Kaun
- Division of Cardiology, Department of Internal Medicine II (J.B.K.-P., P. Haider, M.S., M.B., C.K., C.H., J.W.), Medical University of Vienna, Austria
| | - Sonja Bleichert
- Division of Vascular Surgery, Department of General Surgery (S.B., C.B.), Medical University of Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Centre for Biomedical Research and Translational Surgery (P.L.S., K.H.S., A.K., H.B., B.K.P., P. Hohensinner), Medical University of Vienna, Austria
| | - Romana Sickha
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II (J.B.K.-P., P. Haider, M.S., M.B., C.K., C.H., J.W.), Medical University of Vienna, Austria
| | - Kurt Huber
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital, Vienna, Austria (K.H.)
- Medical Faculty, Sigmund Freud University, Vienna, Austria (K.H.)
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery (S.B., C.B.), Medical University of Vienna, Austria
| | - Helga Bergmeister
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Centre for Biomedical Research and Translational Surgery (P.L.S., K.H.S., A.K., H.B., B.K.P., P. Hohensinner), Medical University of Vienna, Austria
| | - Alice Assinger
- Institute for Vascular Biology and Thrombosis Research (W.C.S., A.A.), Medical University of Vienna, Austria
| | - Bruno K. Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Centre for Biomedical Research and Translational Surgery (P.L.S., K.H.S., A.K., H.B., B.K.P., P. Hohensinner), Medical University of Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Division of Cardiology, Department of Internal Medicine II (J.B.K.-P., P. Haider, M.S., M.B., C.K., C.H., J.W.), Medical University of Vienna, Austria
| | - Philipp Hohensinner
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Centre for Biomedical Research and Translational Surgery (P.L.S., K.H.S., A.K., H.B., B.K.P., P. Hohensinner), Medical University of Vienna, Austria
| |
Collapse
|
4
|
Bettiol A, Urban ML, Emmi G, Galora S, Argento FR, Fini E, Borghi S, Bagni G, Mattioli I, Prisco D, Fiorillo C, Becatti M. SIRT1 and thrombosis. Front Mol Biosci 2024; 10:1325002. [PMID: 38304233 PMCID: PMC10833004 DOI: 10.3389/fmolb.2023.1325002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
Thrombosis is a major cause of morbidity and mortality worldwide, with a complex and multifactorial pathogenesis. Recent studies have shown that SIRT1, a member of the sirtuin family of NAD + -dependent deacetylases, plays a crucial role in regulating thrombosis, modulating key pathways including endothelial activation, platelet aggregation, and coagulation. Furthermore, SIRT1 displays anti-inflammatory activity both in vitro, in vivo and in clinical studies, particularly via the reduction of oxidative stress. On these bases, several studies have investigated the therapeutic potential of targeting SIRT1 for the prevention of thrombosis. This review provides a comprehensive and critical overview of the main preclinical and clinical studies and of the current understanding of the role of SIRT1 in thrombosis.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Maria Letizia Urban
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Silvia Galora
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Irene Mattioli
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| |
Collapse
|
5
|
Rosenfeld MA, Yurina LV, Gavrilina ES, Vasilyeva AD. Post-Translational Oxidative Modifications of Hemostasis Proteins: Structure, Function, and Regulation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S14-S33. [PMID: 38621742 DOI: 10.1134/s0006297924140025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 04/17/2024]
Abstract
Reactive oxygen species (ROS) are constantly generated in a living organism. An imbalance between the amount of generated reactive species in the body and their destruction leads to the development of oxidative stress. Proteins are extremely vulnerable targets for ROS molecules, which can cause oxidative modifications of amino acid residues, thus altering structure and function of intra- and extracellular proteins. The current review considers the effect of oxidation on the structural rearrangements and functional activity of hemostasis proteins: coagulation system proteins such as fibrinogen, prothrombin/thrombin, factor VII/VIIa; anticoagulant proteins - thrombomodulin and protein C; proteins of the fibrinolytic system such as plasminogen, tissue plasminogen activator and plasminogen activator inhibitor-1. Structure and function of the proteins, oxidative modifications, and their detrimental consequences resulting from the induced oxidation or oxidative stress in vivo are described. Possible effects of oxidative modifications of proteins in vitro and in vivo leading to disruption of the coagulation and fibrinolysis processes are summarized and systematized, and the possibility of a compensatory mechanism in maintaining hemostasis under oxidative stress is analyzed.
Collapse
Affiliation(s)
- Mark A Rosenfeld
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Lyubov V Yurina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elizaveta S Gavrilina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexandra D Vasilyeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
6
|
Sutton SS, Magagnoli J, Cummings T, Hardin JW. Serum Bilirubin Levels and Risk of Venous Thromboembolism among Influenza Patients: A Cohort Study. Clin Appl Thromb Hemost 2024; 30:10760296241275138. [PMID: 39215507 PMCID: PMC11367695 DOI: 10.1177/10760296241275138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the associations between total serum bilirubin levels and the incidence of venous thromboembolism (VTE) among patients with influenza infection. METHODS A retrospective cohort study was conducted among outpatients with laboratory-confirmed influenza using data from the Veterans Affairs Informatics and Computing Infrastructure (VINCI). Propensity score weighting was applied to balance study groups across baseline covariates. Cox proportional hazards models assessed VTE risk by total bilirubin levels, adjusting for important covariates including age, sex, race, comorbidity index, BMI, and smoking status. RESULTS A total of 487 patients with total bilirubin levels <0.3 mg/dL, 8608 patients with levels between 0.3-1 mg/dL, and 1148 patients with levels >1 mg/dL were included. Patients with bilirubin <0.3 mg/dL exhibited a 6-fold higher risk of VTE compared to those with levels 0.3-1 mg/dL within 30 days of infection (HR = 6.2, 95% CI = 1.46-26.42). Elevated risks were noted through 90 days post infection (HR = 4.71, 95% CI = (1.42-15.67)). CONCLUSIONS Serum bilirubin levels, particularly below 0.3 mg/dL, were significantly associated with an increased risk of VTE among individuals with influenza. These findings suggest that lower bilirubin levels may contribute to heightened inflammatory responses and subsequent thromboembolic events in patients with influenza. The underlying mechanisms and potential therapeutic implications for VTE prevention among patients with acute respiratory infection warrants further consideration.
Collapse
Affiliation(s)
- S. Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina; Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina; Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Tammy Cummings
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina; Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - James W. Hardin
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina; Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
7
|
Zhang B, McCracken BM, Mahmood CC, Leander D, Greer N, Cranford JA, Hsu CH, Tiba MH, Neumar RW, Greineder CF. Coagulofibrinolytic effects of recombinant soluble thrombomodulin in prolonged porcine cardiac arrest. Resusc Plus 2023; 16:100477. [PMID: 37811363 PMCID: PMC10550843 DOI: 10.1016/j.resplu.2023.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Aim To evaluate coagulofibrinolytic abnormalities and the effects of ART-123 (recombinant human thrombomodulin alpha) in a porcine model of cardiac arrest and prolonged cardiopulmonary resuscitation (CA/CPR). Methods Fifteen pigs (n = 5 per group) underwent 8 minutes of no-flow CA followed by 50 minutes of mechanical CPR, while 2 pigs underwent sham arrest. CA/CPR animals were randomized to receive saline or 1 mg/kg ART-123 pre-arrest (5 minutes prior to ventricular fibrillation) or post-arrest (2 minutes after initiation of CPR). Arterial and venous blood samples were drawn at multiple time points for blood gas analysis and measurement of plasma and whole blood markers of coagulation and fibrinolysis. Results In saline-treated CA/CPR, but not sham animals, robust and persistent activation of coagulation and fibrinolysis was observed throughout resuscitation. After 50 minutes of CPR, plasma tests and thromboelastography indicated a mix of hypercoagulability and consumptive coagulopathy. ART-123 had a robust anticoagulant effect, reducing both thrombin-antithrombin (TAT) complexes and d-dimer (p < 0.05 for each). The duration of anticoagulant effect varied depending on the timing of ART-123 administration. Similarly, ART-123 when given prior to cardiac arrest was found to have pro-fibrinolytic effects, increasing free tissue plasminogen activator (tPA, p = 0.02) and decreasing free plasminogen activator inhibitor-1 (PAI-1, p = 0.04). Conclusion A porcine model of prolonged CA/CPR reproduces many of the coagulofibrinolytic abnormalities observed in human cardiac arrest patients. ART-123 demonstrates a combination of anticoagulant and profibrinolytic effects, depending on the timing of its administration relative to cardiac arrest.
Collapse
Affiliation(s)
- Boya Zhang
- Departments of Emergency Medicine, University of Michigan, United States
- Pharmacology, University of Michigan, United States
| | - Brendan M. McCracken
- Departments of Emergency Medicine, University of Michigan, United States
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, United States
| | - Carmen Colmenero Mahmood
- Departments of Emergency Medicine, University of Michigan, United States
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, United States
| | - Danielle Leander
- Departments of Emergency Medicine, University of Michigan, United States
| | - Nicholas Greer
- Departments of Emergency Medicine, University of Michigan, United States
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, United States
| | - James A. Cranford
- Departments of Emergency Medicine, University of Michigan, United States
| | - Cindy H. Hsu
- Departments of Emergency Medicine, University of Michigan, United States
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, United States
| | - Mohamad Hakam Tiba
- Departments of Emergency Medicine, University of Michigan, United States
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, United States
| | - Robert W. Neumar
- Departments of Emergency Medicine, University of Michigan, United States
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, United States
| | - Colin F. Greineder
- Departments of Emergency Medicine, University of Michigan, United States
- Pharmacology, University of Michigan, United States
| |
Collapse
|
8
|
Falco L, Tessitore V, Ciccarelli G, Malvezzi M, D'Andrea A, Imbalzano E, Golino P, Russo V. Antioxidant Properties of Oral Antithrombotic Therapies in Atherosclerotic Disease and Atrial Fibrillation. Antioxidants (Basel) 2023; 12:1185. [PMID: 37371915 DOI: 10.3390/antiox12061185] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The thrombosis-related diseases are one of the leading causes of illness and death in the general population, and despite significant improvements in long-term survival due to remarkable advances in pharmacologic therapy, they continue to pose a tremendous burden on healthcare systems. The oxidative stress plays a role of pivotal importance in thrombosis pathophysiology. The anticoagulant and antiplatelet drugs commonly used in the management of thrombosis-related diseases show several pleiotropic effects, beyond the antithrombotic effects. The present review aims to describe the current evidence about the antioxidant effects of the oral antithrombotic therapies in patients with atherosclerotic disease and atrial fibrillation.
Collapse
Affiliation(s)
- Luigi Falco
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | - Viviana Tessitore
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | - Giovanni Ciccarelli
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | - Marco Malvezzi
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | | | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Paolo Golino
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| |
Collapse
|
9
|
Zhu C, Liang Y, Luo Y, Ma X. Role of pyroptosis in hemostasis activation in sepsis. Front Immunol 2023; 14:1114917. [PMID: 36756123 PMCID: PMC9899792 DOI: 10.3389/fimmu.2023.1114917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Sepsis is frequently associated with hemostasis activation and thrombus formation, and systematic hemostatic changes are associated with a higher risk of mortality. The key events underlying hemostasis activation during sepsis are the strong activation of innate immune pathways and the excessive inflammatory response triggered by invading pathogens. Pyroptosis is a proinflammatory form of programmed cell death, that defends against pathogens during sepsis. However, excessive pyroptosis can lead to a dysregulation of host immune responses and organ dysfunction. Recently, pyroptosis has been demonstrated to play a prominent role in hemostasis activation in sepsis. Several studies have demonstrated that pyroptosis participates in the release and coagulation activity of tissue factors. In addition, pyroptosis activates leukocytes, endothelial cells, platelets, which cooperate with the coagulation cascade, leading to hemostasis activation in sepsis. This review article attempts to interpret the molecular and cellular mechanisms of the hemostatic imbalance induced by pyroptosis during sepsis and discusses potential therapeutic strategies.
Collapse
Affiliation(s)
- Chengrui Zhu
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yingjian Liang
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yangtuo Luo
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Yangtuo Luo, ; Xiaochun Ma,
| | - Xiaochun Ma
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Yangtuo Luo, ; Xiaochun Ma,
| |
Collapse
|
10
|
Al-Dabet MM, Shahzad K, Elwakiel A, Sulaj A, Kopf S, Bock F, Gadi I, Zimmermann S, Rana R, Krishnan S, Gupta D, Manoharan J, Fatima S, Nazir S, Schwab C, Baber R, Scholz M, Geffers R, Mertens PR, Nawroth PP, Griffin JH, Keller M, Dockendorff C, Kohli S, Isermann B. Reversal of the renal hyperglycemic memory in diabetic kidney disease by targeting sustained tubular p21 expression. Nat Commun 2022; 13:5062. [PMID: 36030260 PMCID: PMC9420151 DOI: 10.1038/s41467-022-32477-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
A major obstacle in diabetes is the metabolic or hyperglycemic memory, which lacks specific therapies. Here we show that glucose-mediated changes in gene expression largely persist in diabetic kidney disease (DKD) despite reversing hyperglycemia. The senescence-associated cyclin-dependent kinase inhibitor p21 (Cdkn1a) was the top hit among genes persistently induced by hyperglycemia and was associated with induction of the p53-p21 pathway. Persistent p21 induction was confirmed in various animal models, human samples and in vitro models. Tubular and urinary p21-levels were associated with DKD severity and remained elevated despite improved blood glucose levels in humans. Mechanistically, sustained tubular p21 expression in DKD is linked to demethylation of its promoter and reduced DNMT1 expression. Two disease resolving agents, protease activated protein C (3K3A-aPC) and parmodulin-2, reversed sustained tubular p21 expression, tubular senescence, and DKD. Thus, p21-dependent tubular senescence is a pathway contributing to the hyperglycemic memory, which can be therapeutically targeted. Persistent diabetic complications despite controlled blood glucose levels, known as hyperglycemic memory, remain a poorly understood phenomenon in diabetic kidney disease. Here the authors identify senescence-associated gene p21 as a regulator of hyperglycemic memory, the suppression of which improves hyperglycemic memory and renal function.
Collapse
Affiliation(s)
- Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba (AUM), Amman, Jordan
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Alba Sulaj
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Fabian Bock
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Shruthi Krishnan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Sumra Nazir
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Constantin Schwab
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Rene Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter P Nawroth
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Maria Keller
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.,Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.
| |
Collapse
|
11
|
Abstract
Thrombosis is a common disorder with a relevant burden of morbidity and mortality worldwide, particularly among elderly patients. Growing evidence demonstrated a direct role of oxidative stress in thrombosis, with various cell types contributing to this process. Among them, erythrocytes produce high quantities of intracellular reactive oxygen species (ROS) by NADPH oxidase activation and haemoglobin autoxidation. Concomitantly, extracellular ROS released by other cells in the blood flow can be uptaken and accumulate within erythrocytes. This oxidative milieu can alter erythrocyte membrane structure, leading to an impaired erythrocyte function, and promoting erythrocytes lysis, binding to endothelial cells, activation of platelet and of coagulation factors, phosphatidylserine exposure and release of microvesicles. Moreover, these abnormal erythrocytes are able to adhere to the vessel wall, contributing to thrombin generation within the thrombus. This process results in accelerated haemolysis and in a hypercoagulable state, in which structurally impaired erythrocytes contribute to increase thrombus size, to reduce its permeability and susceptibility to lysis. However, the wide plethora of mechanisms by which oxidised erythrocytes contribute to thrombosis is not completely elucidated. This review discusses the main biochemical aspects linking erythrocytes, oxidative stress and thrombosis, addressing their potential implication for clinical and therapeutic management.
Collapse
|
12
|
Pryzdial ELG, Leatherdale A, Conway EM. Coagulation and complement: Key innate defense participants in a seamless web. Front Immunol 2022; 13:918775. [PMID: 36016942 PMCID: PMC9398469 DOI: 10.3389/fimmu.2022.918775] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022] Open
Abstract
In 1969, Dr. Oscar Ratnoff, a pioneer in delineating the mechanisms by which coagulation is activated and complement is regulated, wrote, “In the study of biological processes, the accumulation of information is often accelerated by a narrow point of view. The fastest way to investigate the body’s defenses against injury is to look individually at such isolated questions as how the blood clots or how complement works. We must constantly remind ourselves that such distinctions are man-made. In life, as in the legal cliché, the devices through which the body protects itself form a seamless web, unwrinkled by our artificialities.” Our aim in this review, is to highlight the critical molecular and cellular interactions between coagulation and complement, and how these two major component proteolytic pathways contribute to the seamless web of innate mechanisms that the body uses to protect itself from injury, invading pathogens and foreign surfaces.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| | - Alexander Leatherdale
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edward M. Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| |
Collapse
|
13
|
Gorudko IV, Grigorieva DV, Shamova EV, Gorbunov NP, Kokhan AU, Kostevich VA, Vasilyev VB, Panasenko OM, Khinevich NV, Bandarenka HV, Burko AA, Sokolov AV. Structure-biological activity relationships of myeloperoxidase to effect on platelet activation. Arch Biochem Biophys 2022; 728:109353. [PMID: 35853481 DOI: 10.1016/j.abb.2022.109353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Myeloperoxidase (MPO), an oxidant-producing enzyme of neutrophils, has been shown to prime platelet activity promoting immunothrombosis. Native MPO is a homodimer, consisting of two identical protomers (monomer) connected by a single disulfide bond. But in inflammatory foci, MPO can be found both in the form of a monomer and in the form of a dimer. Beside MPO can also be in complexes with other molecules and be modified by oxidants, which ultimately affect its physicochemical properties and functions. Here we compared the effects of various forms of MPO as well as MPO in complex with ceruloplasmin (CP), a physiological inhibitor of MPO, on the platelet activity. Monomeric MPO (hemi-MPO) was obtained by treating the dimeric MPO by reductive alkylation. MPO was modified with HOCl in a molar ratio of 1:100 (MPO-HOCl). Using surface-enhanced Raman scattering (SERS) spectroscopy we showed that peaks at about 510 and 526 cm-1 corresponded to disulfide bond was recognizable in the SERS-spectra of dimeric MPO, absent in the spectrum of hemi-MPO and less intense in the spectra of MPO-HOCl, which indicates the partial decomposition of dimeric MPO with a disulfide bond cleavage under the HOCl modification. It was shown hemi-MPO to a lesser extent than dimeric MPO bound to platelets and enhanced their agonist-induced aggregation and platelet-neutrophil aggregate formation. MPO modified by HOCl and MPO in complex with CP did not bind to platelets and have no effect on platelet activity. Thus, the modification of MPO by HOCl, its presence in monomeric form as well as in complex with CP reduces MPO effect on platelet function and consequently decreases the risk of thrombosis in inflammatory foci.
Collapse
Affiliation(s)
- I V Gorudko
- Department of Biophysics, Faculty of Physics, Belarusian State University, 4 Nezavisimosti Avenue, Minsk, 220030, Belarus.
| | - D V Grigorieva
- Department of Biophysics, Faculty of Physics, Belarusian State University, 4 Nezavisimosti Avenue, Minsk, 220030, Belarus
| | - E V Shamova
- Institute of Biophysics and Сell Engineering of National Academy of Sciences of Belarus, 27 Academicheskaya Str., Minsk, 220072, Belarus
| | - N P Gorbunov
- FSBRI "Institute of Experimental Medicine", 12 Acad. Pavlov Str., St. Petersburg, 197376, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Str., Moscow, 119435, Russia
| | - A U Kokhan
- Institute of Biophysics and Сell Engineering of National Academy of Sciences of Belarus, 27 Academicheskaya Str., Minsk, 220072, Belarus
| | - V A Kostevich
- FSBRI "Institute of Experimental Medicine", 12 Acad. Pavlov Str., St. Petersburg, 197376, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Str., Moscow, 119435, Russia
| | - V B Vasilyev
- FSBRI "Institute of Experimental Medicine", 12 Acad. Pavlov Str., St. Petersburg, 197376, Russia
| | - O M Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Str., Moscow, 119435, Russia; Pirogov Russian National Research Medical University, 1 Ostrovityanova Str., Moscow, 117997, Russia
| | - N V Khinevich
- Belarusian State University of Informatics and Radioelectronics, 6 P. Brovka Str., Minsk, 220013, Belarus; Institute of Materials Science, Kaunas University of Technology, K. Donelaičio g. 73, Kaunas, 44249, Lithuania
| | - H V Bandarenka
- Belarusian State University of Informatics and Radioelectronics, 6 P. Brovka Str., Minsk, 220013, Belarus; Polytechnic School, Arizona State University, Arizona State University Polytechnicm, 7001 East Williams Field Road, Mesa, AZ, 85212, USA
| | - A A Burko
- Belarusian State University of Informatics and Radioelectronics, 6 P. Brovka Str., Minsk, 220013, Belarus; Polytechnic School, Arizona State University, Arizona State University Polytechnicm, 7001 East Williams Field Road, Mesa, AZ, 85212, USA
| | - A V Sokolov
- FSBRI "Institute of Experimental Medicine", 12 Acad. Pavlov Str., St. Petersburg, 197376, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Str., Moscow, 119435, Russia
| |
Collapse
|
14
|
Boron M, Hauzer-Martin T, Keil J, Sun XL. Circulating Thrombomodulin: Release Mechanisms, Measurements, and Levels in Diseases and Medical Procedures. TH OPEN 2022; 6:e194-e212. [PMID: 36046203 PMCID: PMC9273331 DOI: 10.1055/a-1801-2055] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Thrombomodulin (TM) is a type-I transmembrane protein that is mainly expressed on endothelial cells and plays important roles in many biological processes. Circulating TM of different forms are also present in biofluids, such as blood and urine. Soluble TM (sTM), comprised of several domains of TM, is the major circulating TM which is generated by either enzymatic or chemical cleavage of the intact protein under different conditions. Under normal conditions, sTM is present in low concentrations (<10 ng/mL) in the blood but is elevated in several pathological conditions associated with endothelial dysfunction such as cardiovascular, inflammatory, infection, and metabolic diseases. Therefore, sTM level has been examined for monitoring disease development, such as disseminated intravascular coagulation (DIC), sepsis and multiple organ dysfunction syndrome in patients with novel coronavirus disease 2019 (COVID-19) recently. In addition, microvesicles (MVs) that contain membrane TM (MV-TM) have been found to be released from activated cells which also contribute to levels of circulating TM in certain diseases. Several release mechanisms of sTM and MV-TM have been reported, including enzymatic, chemical, and TM mutation mechanisms. Measurements of sTM and MV-TM have been developed and explored as biomarkers in many diseases. In this review, we summarize all these advances in three categories as follows: (1) release mechanisms of circulating TM, (2) methods for measuring circulating TM in biological samples, and (3) correlation of circulating TM with diseases. Altogether, it provides a whole picture of recent advances on circulating TM in health and disease.
Collapse
Affiliation(s)
- Mallorie Boron
- Department of Chemistry and Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, United States
| | - Tiffany Hauzer-Martin
- Department of Chemistry and Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, United States
| | - Joseph Keil
- Department of Chemistry and Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, United States
| | - Xue-Long Sun
- Department of Chemistry and Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, United States
| |
Collapse
|
15
|
Oda H, Nagamatsu T, Osuga Y. Thrombomodulin and pregnancy in the limelight: Insights into the therapeutic aspect of thrombomodulin in pregnancy complications. J Thromb Haemost 2022; 20:1040-1055. [PMID: 35191182 DOI: 10.1111/jth.15680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thrombomodulin (TM) is a transmembrane glycoprotein expressed on the endothelial cell functioning as a cofactor in the anticoagulation system. However, aside from anticoagulation, recent studies have revealed its multiple organ protective roles such as anti-inflammation, angiogenesis, and cell proliferation, which may redefine the function of TM. Although TM is predominantly expressed on placental trophoblasts, the physiological role of TM during pregnancy remains unclear. Because the understanding of TM function has drastically progressed, these new discoveries shed light on the unknown activities of placental TM. Moreover, the clinical application of recombinant TM (rTM) has opened the possibility of TM as a therapeutic target for pregnancy complications. OBJECTIVES Here, we comprehensively review the studies elucidating the role of TM during pregnancy from both classic and newly discovered perspectives, and seek for its potential as a therapeutic target for pregnancy complications. METHODS Basic research using trophoblast cells and transgenic mice, as well as cohort studies of inherited TM deficiency and clinical trials of rTM were summarized, which led us to further discuss the clinical application of rTM as a novel therapeutic for pregnancy complications. RESULTS AND CONCLUSION Accumulating evidence suggest the relevance of placental TM deficiency in pregnancy complications such as miscarriage, fetal growth restriction, and preeclampsia. Most importantly, promising results in animal studies and clinical trials further assure the possibility of rTM as an optimal therapeutic for such conditions. The therapeutic potential of TM raised throughout this review could drastically change the clinical approach to pregnancy complication and improve maternal outcomes.
Collapse
Affiliation(s)
- Hiroko Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
16
|
Reno TA, Tarnus L, Tracy R, Landay AL, Sereti I, Apetrei C, Pandrea I. The Youngbloods. Get Together. Hypercoagulation, Complement, and NET Formation in HIV/SIV Pathogenesis. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2021.795373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic, systemic T-cell immune activation and inflammation (IA/INFL) have been reported to be associated with disease progression in persons with HIV (PWH) since the inception of the AIDS pandemic. IA/INFL persist in PWH on antiretroviral therapy (ART), despite complete viral suppression and increases their susceptibility to serious non-AIDS events (SNAEs). Increased IA/INFL also occur during pathogenic SIV infections of macaques, while natural hosts of SIVs that control chronic IA/INFL do not progress to AIDS, despite having persistent high viral replication and severe acute CD4+ T-cell loss. Moreover, natural hosts of SIVs do not present with SNAEs. Multiple mechanisms drive HIV-associated IA/INFL, including the virus itself, persistent gut dysfunction, coinfections (CMV, HCV, HBV), proinflammatory lipids, ART toxicity, comorbidities, and behavioral factors (diet, smoking, and alcohol). Other mechanisms could also significantly contribute to IA/INFL during HIV/SIV infection, notably, a hypercoagulable state, characterized by elevated coagulation biomarkers, including D-dimer and tissue factor, which can accurately identify patients at risk for thromboembolic events and death. Coagulation biomarkers strongly correlate with INFL and predict the risk of SNAE-induced end-organ damage. Meanwhile, the complement system is also involved in the pathogenesis of HIV comorbidities. Despite prolonged viral suppression, PWH on ART have high plasma levels of C3a. HIV/SIV infections also trigger neutrophil extracellular traps (NETs) formation that contribute to the elimination of viral particles and infected CD4+ T-cells. However, as SIV infection progresses, generation of NETs can become excessive, fueling IA/INFL, destruction of multiple immune cells subsets, and microthrombotic events, contributing to further tissue damages and SNAEs. Tackling residual IA/INFL has the potential to improve the clinical course of HIV infection. Therefore, therapeutics targeting new pathways that can fuel IA/INFL such as hypercoagulation, complement activation and excessive formation of NETs might be beneficial for PWH and should be considered and evaluated.
Collapse
|
17
|
Presnyakova MV, Zagrekov VI, Kostina OV, Pushkin AS, Kuznetsova VL, Arefyev IY. The effect of hyperoxia on the hemostasiological status of severely burned patients. Klin Lab Diagn 2021; 66:666-672. [PMID: 34882351 DOI: 10.51620/0869-2084-2021-66-11-666-672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The state of the hemostasis system was studied in 9 patients of the middle age group (44 ± 9.94 years) who received thermal trauma on an area of more than 32% (49.4 ± 18.3) of the body surface, accompanied by the development of burn shock. The standard therapy for burn injury was supplemented with HBO sessions. Treatment with hyperbaric oxygen was carried out in pressure chambers BLKS-307, BLKS-307/1. The state of the coagulation, anticoagulant and fibrinolytic links of the hemostasis system, as well as the viscoelastic properties of the blood, were assessed immediately before the HBO session and immediately after it. The total number of comparison pairs was 45. Under the influence of HBO therapy, there was an increase in the activity of antithrombin III (ATIII), protein C (PrS) and a decrease in the viscoelastic properties of blood (p <0.05). Positive deviations in the values of ATIII, Pr C, von Willebrand factor, APTT, prothrombin and thrombin time, fibrinogen, factor XIII, XIIa-dependent fibrinolysis, D-dimers and thromboelastography parameters were revealed. The maximum frequency of their occurrence was recorded for ATIII (95%), the minimum - for the D-dimer (62%). After HBO procedures, undesirable deviations of the hemostatic system parameters were also noted. They were chaotic, were compensated by an increase in the activity of physiological anticoagulants and were not accompanied by complications of a thrombogenic nature. Thus, conducting HBO therapy sessions in the acute period of burn disease increases the activity of physiological anticoagulants and stabilizes the viscoelastic properties of blood. There is a high frequency of occurrence of positive effects of hyperoxia on the components of the hemostasis system. The identification of its undesirable effects indicates the need to monitor the state of the hemostasis system during HBO procedures.
Collapse
Affiliation(s)
- M V Presnyakova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation
| | - V I Zagrekov
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation
| | - O V Kostina
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation
| | - Artem Sergeevich Pushkin
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation
| | - V L Kuznetsova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation
| | - I Yu Arefyev
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation
| |
Collapse
|
18
|
Sadia K, Ashraf MZ, Mishra A. Therapeutic Role of Sirtuins Targeting Unfolded Protein Response, Coagulation, and Inflammation in Hypoxia-Induced Thrombosis. Front Physiol 2021; 12:733453. [PMID: 34803727 PMCID: PMC8602789 DOI: 10.3389/fphys.2021.733453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Thrombosis remains one of the leading causes of morbidity and mortality across the world. Many pathological milieus in the body resulting from multiple risk factors escort thrombosis. Hypoxic condition is one such risk factor that disturbs the integrity of endothelial cells to cause an imbalance between anticoagulant and procoagulant proteins. Hypoxia generates reactive oxygen species (ROS) and triggers inflammatory pathways to augment the coagulation cascade. Hypoxia in cells also activates unfolded protein response (UPR) signaling pathways in the endoplasmic reticulum (ER), which tries to restore ER homeostasis and function. But the sustained UPR linked with inflammation, generation of ROS and apoptosis stimulates the severity of thrombosis in the body. Sirtuins, a group of seven proteins, play a vast role in bringing down inflammation, oxidative and ER stress and apoptosis. As a result, sirtuins might provide a therapeutic approach towards the treatment or prevention of hypoxia-induced thrombosis. Sirtuins modulate hypoxia-inducible factors (HIFs) and counteract ER stress-induced apoptosis by attenuating protein kinase RNA-like endoplasmic reticulum kinase (PERK)/Eukaryotic translation initiation factor 2α (eIF2α) pathway activation. It prevents ER-stress mediated inflammation by targeting X-Box Binding Protein 1 (XBP1) and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κβ) signaling through deacetylation. Sirtuins also obstruct nucleotide-binding domain, leucine-rich-containing family, pyrin domain containing 3 (NLRP3) inflammasome activation to reduce the expression of several pro-inflammatory molecules. It protects cells against oxidative stress by targeting nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione (GSH), forkhead box O3 (FOXO3), superoxide dismutase (SOD), catalase (CAT), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), glucose-6-phosphate dehydrogenase (G6PD), phosphoglucomutase-2 (PGAM2), and NF-κB, to name few. This review, thus, discusses the potential role of sirtuins as a new treatment for hypoxia-induced thrombosis that involves an intersection of UPR and inflammatory pathways in its pathological manifestation.
Collapse
Affiliation(s)
- Khan Sadia
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Aastha Mishra
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
19
|
Wang Q, Zennadi R. The Role of RBC Oxidative Stress in Sickle Cell Disease: From the Molecular Basis to Pathologic Implications. Antioxidants (Basel) 2021; 10:antiox10101608. [PMID: 34679742 PMCID: PMC8533084 DOI: 10.3390/antiox10101608] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited monogenic disorder and the most common severe hemoglobinopathy in the world. SCD is characterized by a point mutation in the β-globin gene, which results in hemoglobin (Hb) S production, leading to a variety of mechanistic and phenotypic changes within the sickle red blood cell (RBC). In SCD, the sickle RBCs are the root cause of the disease and they are a primary source of oxidative stress since sickle RBC redox state is compromised due to an imbalance between prooxidants and antioxidants. This imbalance in redox state is a result of a continuous production of reactive oxygen species (ROS) within the sickle RBC caused by the constant endogenous Hb autoxidation and NADPH oxidase activation, as well as by a deficiency in the antioxidant defense system. Accumulation of non-neutralized ROS within the sickle RBCs affects RBC membrane structure and function, leading to membrane integrity deficiency, low deformability, phosphatidylserine exposure, and release of micro-vesicles. These oxidative stress-associated RBC phenotypic modifications consequently evoke a myriad of physiological changes involved in multi-system manifestations. Thus, RBC oxidative stress in SCD can ultimately instigate major processes involved in organ damage. The critical role of the sickle RBC ROS production and its regulation in SCD pathophysiology are discussed here.
Collapse
|
20
|
Tsai R, Interlandi G. Oxidation shuts down an auto-inhibitory mechanism of von Willebrand factor. Proteins 2021; 89:731-741. [PMID: 33550613 DOI: 10.1002/prot.26055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/24/2020] [Accepted: 01/31/2021] [Indexed: 01/13/2023]
Abstract
The blood protein von Willebrand factor (VWF) is a key link between inflammation and pathological thrombus formation. In particular, oxidation of methionine residues in specific domains of VWF due to the release of oxidants in inflammatory conditions has been linked to an increased platelet-binding activity. However, the atomistic details of how methionine oxidation activates VWF have not been elucidated to date. Yet understanding the activation mechanism of VWF under oxidizing conditions can lead to the development of novel therapeutics that target VWF selectively under inflammatory conditions in order to reduce its thrombotic activity while maintaining its haemostatic function. In this manuscript, we used a combination of a dynamic flow assay and molecular dynamics (MD) simulations to investigate how methionine oxidation removes an auto-inhibitory mechanism of VWF. Results from the dynamic flow assay revealed that oxidation does not directly activate the A1 domain, which is the domain in VWF that contains the binding site to the platelet surface receptor glycoprotein Ibα (GpIbα), but rather removes the inhibitory function of the neighboring A2 and A3 domains. Furthermore, the MD simulations combined with free energy perturbation calculations suggested that methionine oxidation may destabilize the binding interface between the A1 and A2 domains leading to unmasking of the GpIbα-binding site in the A1 domain.
Collapse
Affiliation(s)
- Rachel Tsai
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Gianluca Interlandi
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Huang HC, Hsiao TS, Liao MH, Tsao CM, Shih CC, Wu CC. Low-dose hydralazine improves endotoxin-induced coagulopathy and multiple organ dysfunction via its anti-inflammatory and anti-oxidative/nitrosative properties. Eur J Pharmacol 2020; 882:173279. [PMID: 32561290 DOI: 10.1016/j.ejphar.2020.173279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022]
Abstract
Coagulopathy is the major cause of organ injury as well as a strong predictor of mortality in septic patients. Systemic inflammatory response and redox imbalance are regarded as the major causes of sepsis-induced coagulopathy. There is growing evidence that a vasodilator hydralazine has beneficial effects on heart failure, hypertension, and ischemia/reperfusion injury via its antioxidant and anti-inflammatory properties. However, the effects of hydralazine on sepsis have not been examined. Therefore, we evaluated the effects of low-dose hydralazine on coagulopathy and multiple organ dysfunction in septic rats induced by endotoxin. Sepsis-induced coagulopathy was established by intravenous injection of rats with lipopolysaccharide (LPS). The changes of blood pressure, heart rate, blood glucose, hemostatic variables, prothrombin time, organ function indices, interleukin-6 (IL-6) concentration, and nitric oxide (NO) level were assessed during the experimental period. In addition, the aortas, lungs, livers, and kidneys were dissected to analyze superoxide levels and protein expressions. LPS induced (i) coagulopathy, multiple organ dysfunction, and circulatory failure successfully, and (ii) excessive superoxide, NO, and IL-6 production, accompanied by the overexpression of iNOS and Wnt5a in animals. Treatment of LPS-induced septic rats with low-dose hydralazine not only improved coagulopathy but also ameliorated multiple organ dysfunction. These could be due to attenuation of the overproduction of superoxide, NO, and IL-6, which were attributed to reduction of the overexpression of iNOS and Wnt5a. Thus, these findings indicate that low-dose hydralazine could be a potential therapy for sepsis-induced coagulopathy and multiple organ dysfunction via its anti-inflammatory and anti-oxidative/nitrosative properties.
Collapse
Affiliation(s)
- Hsieh-Chou Huang
- Department of Anesthesiology and Pain Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Tsan-Seng Hsiao
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Mei-Hui Liao
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Ming Tsao
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Chih-Chin Shih
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan.
| | - Chin-Chen Wu
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan.
| |
Collapse
|
22
|
Increase of Neutrophil Activation Markers in Venous Thrombosis-Contribution of Circulating Activated Protein C. Int J Mol Sci 2020; 21:ijms21165651. [PMID: 32781781 PMCID: PMC7460596 DOI: 10.3390/ijms21165651] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Upon activation, neutrophils release their content through different mechanisms like degranulation and NETosis, thus prompting thrombosis. The natural anticoagulant activated protein C (APC) inhibits neutrophil NETosis and, consequently, this may lower the levels of neutrophil activation markers in plasma, further diminishing the thrombotic risk exerted by this anticoagulant. We aimed to describe the status of markers of neutrophil activation in plasma of patients with venous thrombosis, their association with the thrombotic risk and the potential contribution of APC. We quantified three markers of neutrophil activation (cell-free DNA, calprotectin, and myeloperoxidase) in 253 patients with venous thromboembolism (VTE) in a stable phase (192 lower extremity VTE and 61 splanchnic vein thrombosis) and in 249 healthy controls. In them, we also quantified plasma APC, soluble endothelial protein C receptor (EPCR), and soluble thrombomodulin (TM), and we genotyped two genetic regulators of APC: the EPCR gene (PROCR) haplotypes (H) and the TM gene (THBD) c.1418C>T polymorphism. We found a significant increase in plasma cell-free DNA (p < 0.0001), calprotectin (p = 0.0001) and myeloperoxidase (p = 0.005) in VTE patients compared to controls. Furthermore, all three neutrophil activation markers were associated with an increase in the thrombotic risk. Cell-free DNA and calprotectin plasma levels were significantly correlated (Spearman r = 0.28; p < 0.0001). As expected, the natural anticoagulant APC was significantly decreased in VTE patients (p < 0.0001) compared to controls, what was mediated by its genetic regulators PROCR-H1, PROCR-H3, and THBD-c.1418T, and inversely correlated with cell-free DNA levels. This is the largest case-control study that demonstrates the increase in markers of neutrophil activation in vivo in VTE patients and their association with an increased thrombotic risk. This increase could be mediated by low APC levels and its genetic regulators, which could also increase NETosis, further enhancing thrombosis and inflammation.
Collapse
|
23
|
Eustache JH, Tohme S, Milette S, Rayes RF, Tsung A, Spicer JD. Casting A Wide Net On Surgery: The Central Role of Neutrophil Extracellular Traps. Ann Surg 2020; 272:277-283. [PMID: 32675540 PMCID: PMC7373444 DOI: 10.1097/sla.0000000000003586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
: Since their discovery, neutrophil extracellular traps (NETs) have been implicated in a broad array of functions, both beneficial and detrimental to the host. Indeed, NETs have roles in infection, sepsis, wound healing, thrombotic disease, and cancer propagation, all of which are directly implicated in the care of surgical patients. Here we provide an updated review on the role of NETs in the perioperative period with specific emphasis on perioperative infections, wound healing, vascular complications, cancer propagation, as well as discussing ongoing, and future therapeutic targets. Surgeons will benefit from understanding the latest discoveries in neutrophil biology and how these novel functions affect the care of surgical patients. Furthermore, novel anti-NET therapies are being developed which may have profound effects on the care of surgical patients.
Collapse
Affiliation(s)
- Jules H Eustache
- Division of Upper GI and Thoracic Surgery, McGill University Health Centre, Montral, QC, Canada
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Hermitage, PA
| | - Simon Milette
- Division of Upper GI and Thoracic Surgery, McGill University Health Centre, Montral, QC, Canada
| | - Roni F Rayes
- Division of Upper GI and Thoracic Surgery, McGill University Health Centre, Montral, QC, Canada
| | - Allan Tsung
- Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jonathan D Spicer
- Division of Upper GI and Thoracic Surgery, McGill University Health Centre, Montral, QC, Canada
| |
Collapse
|
24
|
Neutrophil Extracellular Traps: Signaling Properties and Disease Relevance. Mediators Inflamm 2020; 2020:9254087. [PMID: 32774152 PMCID: PMC7407020 DOI: 10.1155/2020/9254087] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are characterized as extracellular DNA fibers comprised of histone and cytoplasmic granule proteins. NETs were first described as a form of innate response against pathogen invasion, which can capture pathogens, degrade bacterial toxic factors, and kill bacteria. Additionally, NETs also provide a scaffold for protein and cell binding. Protein binding to NETs further activate the coagulation system which participates in thrombosis. In addition, NETs also can damage the tissues due to the proteins they carry. Many studies have suggested that the excessive formation of NETs may contribute to a range of diseases, including thrombosis, atherosclerosis, autoimmune diseases, and sepsis. In this review, we describe the structure and components of NETs, models of NET formation, and detection methods. We also discuss the molecular mechanism of NET formation and their disease relevance. Modulation of NET formation may provide a new route for the prevention and treatment of releated human diseases.
Collapse
|
25
|
Oxidative Stress and Thrombosis during Aging: The Roles of Oxidative Stress in RBCs in Venous Thrombosis. Int J Mol Sci 2020; 21:ijms21124259. [PMID: 32549393 PMCID: PMC7352981 DOI: 10.3390/ijms21124259] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/17/2023] Open
Abstract
Mid-life stage adults are at higher risk of developing venous thrombosis (VT)/thromboembolism (VT/E). Aging is characterized by an overproduction of reactive oxygen species (ROS), which could evoke a series of physiological changes involved in thrombosis. Here, we focus on the critical role of ROS within the red blood cell (RBC) in initiating venous thrombosis during aging. Growing evidence has shifted our interest in the role of unjustifiably unvalued RBCs in blood coagulation. RBCs can be a major source of oxidative stress during aging, since RBC redox homeostasis is generally compromised due to the discrepancy between prooxidants and antioxidants. As a result, ROS accumulate within the RBC due to the constant endogenous hemoglobin (Hb) autoxidation and NADPH oxidase activation, and the uptake of extracellular ROS released by other cells in the circulation. The elevated RBC ROS level affects the RBC membrane structure and function, causing loss of membrane integrity, and decreased deformability. These changes impair RBC function in hemostasis and thrombosis, favoring a hypercoagulable state through enhanced RBC aggregation, RBC binding to endothelial cells affecting nitric oxide availability, RBC-induced platelet activation consequently modulating their activity, RBC interaction with and activation of coagulation factors, increased RBC phosphatidylserine exposure and release of microvesicles, accelerated aging and hemolysis. Thus, RBC oxidative stress during aging typifies an ultimate mechanism in system failure, which can affect major processes involved in the development of venous thrombosis in a variety of ways. The reevaluated concept of the critical role of RBC ROS in the activation of thrombotic events during aging will help identify potential targets for novel strategies to prevent/reduce the risk for VT/E or VT/E recurrences in mid-life stage adults.
Collapse
|
26
|
Gutmann C, Siow R, Gwozdz AM, Saha P, Smith A. Reactive Oxygen Species in Venous Thrombosis. Int J Mol Sci 2020; 21:E1918. [PMID: 32168908 PMCID: PMC7139897 DOI: 10.3390/ijms21061918] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/03/2023] Open
Abstract
Reactive oxygen species (ROS) have physiological roles as second messengers, but can also exert detrimental modifications on DNA, proteins and lipids if resulting from enhanced generation or reduced antioxidant defense (oxidative stress). Venous thrombus (DVT) formation and resolution are influenced by ROS through modulation of the coagulation, fibrinolysis, proteolysis and the complement system, as well as the regulation of effector cells such as platelets, endothelial cells, erythrocytes, neutrophils, mast cells, monocytes and fibroblasts. Many conditions that carry an elevated risk of venous thrombosis, such as the Antiphospholipid Syndrome, have alterations in their redox homeostasis. Dietary and pharmacological antioxidants can modulate several important processes involved in DVT formation, but their overall effect is unknown and there are no recommendations regarding their use. The development of novel antioxidant treatments that aim to abrogate the formation of DVT or promote its resolution will depend on the identification of targets that enable ROS modulation confined to their site of interest in order to prevent off-target effects on physiological redox mechanisms. Subgroups of patients with increased systemic oxidative stress might benefit from unspecific antioxidant treatment, but more clinical studies are needed to bring clarity to this issue.
Collapse
Affiliation(s)
- Clemens Gutmann
- King’s British Heart Foundation Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK;
| | - Richard Siow
- Vascular Biology & Inflammation Section, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, SE1 9NH, UK;
| | - Adam M. Gwozdz
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| | - Prakash Saha
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| | - Alberto Smith
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| |
Collapse
|
27
|
Arora K, Maheshwari N, Sahni G. Design of a thrombin inhibitory staphylokinase based plasminogen activator with anti-reocclusion potential. Int J Biol Macromol 2020; 144:791-800. [DOI: 10.1016/j.ijbiomac.2019.11.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
|
28
|
Networks that stop the flow: A fresh look at fibrin and neutrophil extracellular traps. Thromb Res 2019; 182:1-11. [DOI: 10.1016/j.thromres.2019.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
|
29
|
Guy A, James C. [Pathogenesis of thrombosis in JAK2V617F myeloproliferative neoplasms]. Med Sci (Paris) 2019; 35:651-658. [PMID: 31532377 DOI: 10.1051/medsci/2019133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BCR-ABL negative myeloproliferative neoplasms are acquired hematologic diseases characterized by blood cell proliferation and that include polycythemia vera (PV), essential thrombocytemia (ET) and primary myelofibrosis (PMF). Occurring of venous and arterial thrombosis is the main complication of these diseases. Risk factors for thrombosis are individuals older than 60 and history of thrombosis. The mechanisms leading to thrombosis are complex and involve several blood compartments, plasmatic factors and endothelial cells. Over the last years, new actors of thrombosis have been discovered.
Collapse
Affiliation(s)
- Alexandre Guy
- CHU de Bordeaux, Laboratoire d'hématologie, 1, avenue de Magellan, F-33600, Pessac, France. - Univ. Bordeaux, Inserm, UMR 1034, Biologie des maladies cardio-vasculaires, 1, avenue de Magellan, F-33600, Pessac, France
| | - Chloé James
- CHU de Bordeaux, Laboratoire d'hématologie, 1, avenue de Magellan, F-33600, Pessac, France. - Univ. Bordeaux, Inserm, UMR 1034, Biologie des maladies cardio-vasculaires, 1, avenue de Magellan, F-33600, Pessac, France
| |
Collapse
|
30
|
Lee SH, Lee S, Du J, Jain K, Ding M, Kadado AJ, Atteya G, Jaji Z, Tyagi T, Kim W, Herzog RI, Patel A, Ionescu CN, Martin KA, Hwa J. Mitochondrial MsrB2 serves as a switch and transducer for mitophagy. EMBO Mol Med 2019; 11:e10409. [PMID: 31282614 PMCID: PMC6685081 DOI: 10.15252/emmm.201910409] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 01/01/2023] Open
Abstract
Mitophagy can selectively remove damaged toxic mitochondria, protecting a cell from apoptosis. The molecular spatial-temporal mechanisms governing autophagosomal selection of reactive oxygen species (ROS)-damaged mitochondria, particularly in a platelet (no genomic DNA for transcriptional regulation), remain unclear. We now report that the mitochondrial matrix protein MsrB2 plays an important role in switching on mitophagy by reducing Parkin methionine oxidation (MetO), and transducing mitophagy through ubiquitination by Parkin and interacting with LC3. This biochemical signaling only occurs at damaged mitochondria where MsrB2 is released from the mitochondrial matrix. MsrB2 platelet-specific knockout and in vivo peptide inhibition of the MsrB2/LC3 interaction lead to reduced mitophagy and increased platelet apoptosis. Pathophysiological importance is highlighted in human subjects, where increased MsrB2 expression in diabetes mellitus leads to increased platelet mitophagy, and in platelets from Parkinson's disease patients, where reduced MsrB2 expression is associated with reduced mitophagy. Moreover, Parkin mutations at Met192 are associated with Parkinson's disease, highlighting the structural sensitivity at the Met192 position. Release of the enzyme MsrB2 from damaged mitochondria, initiating autophagosome formation, represents a novel regulatory mechanism for oxidative stress-induced mitophagy.
Collapse
Affiliation(s)
- Seung Hee Lee
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
- Division of Cardiovascular DiseasesCenter for Biomedical SciencesNational Institute of HealthCheongjuChungbukKorea
| | - Suho Lee
- Departments of Neurology and NeurobiologyCellular Neuroscience, Neurodegeneration and Repair ProgramYale University School of MedicineNew HavenCTUSA
| | - Jing Du
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Kanika Jain
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Min Ding
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Anis J Kadado
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Gourg Atteya
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Zainab Jaji
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Tarun Tyagi
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Won‐ho Kim
- Division of Cardiovascular DiseasesCenter for Biomedical SciencesNational Institute of HealthCheongjuChungbukKorea
| | - Raimund I Herzog
- Section of EndocrinologyDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Amar Patel
- Division of Movement DisordersDepartments of Neurology and NeurobiologyYale University School of MedicineNew HavenCTUSA
| | - Costin N Ionescu
- Yale Cardiovascular MedicineDepartment of Internal MedicineYale‐New Haven HospitalNew HavenCTUSA
| | - Kathleen A Martin
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - John Hwa
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
31
|
Khan KA, McMurray JL, Mohammed F, Bicknell R. C-type lectin domain group 14 proteins in vascular biology, cancer and inflammation. FEBS J 2019; 286:3299-3332. [PMID: 31287944 PMCID: PMC6852297 DOI: 10.1111/febs.14985] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
The C‐type lectin domain (CTLD) group 14 family of transmembrane glycoproteins consist of thrombomodulin, CD93, CLEC14A and CD248 (endosialin or tumour endothelial marker‐1). These cell surface proteins exhibit similar ectodomain architecture and yet mediate a diverse range of cellular functions, including but not restricted to angiogenesis, inflammation and cell adhesion. Thrombomodulin, CD93 and CLEC14A can be expressed by endothelial cells, whereas CD248 is expressed by vasculature associated pericytes, activated fibroblasts and tumour cells among other cell types. In this article, we review the current literature of these family members including their expression profiles, interacting partners, as well as established and speculated functions. We focus primarily on their roles in the vasculature and inflammation as well as their contributions to tumour immunology. The CTLD group 14 family shares several characteristic features including their ability to be proteolytically cleaved and engagement of some shared extracellular matrix ligands. Each family member has strong links to tumour development and in particular CD93, CLEC14A and CD248 have been proposed as attractive candidate targets for cancer therapy.
Collapse
Affiliation(s)
- Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Canada
| | - Jack L McMurray
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Roy Bicknell
- Institutes of Cardiovascular Sciences and Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK
| |
Collapse
|
32
|
Vandana, Kantipudi S, Maheshwari N, Sharma S, Sahni G. Cloning and purification of an anti-thrombotic, chimeric Staphylokinase in Pichia pastoris. Protein Expr Purif 2019; 162:1-8. [PMID: 31108209 DOI: 10.1016/j.pep.2019.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
There has been an increasing prevalence of cardiovascular diseases such as myocardial infarction and stroke in modern societies because of multiple lifestyle related issues like sedentariness and obesity, alcohol consumption and many more "life-style"factors. The FDA-approved thrombolytics such as Tissue Plasminogen Activator, Streptokinase etc. are used to lyse the clots in thrombotic disorders such as myocardial infarction, stroke etc. but re-occlusion and bleeding that are co-incident to their clinical usage are not addressed. Hence, there is need to develop thrombolytics having properties like increased fibrin clot specificity and thrombin inhibition capability to prevent re-occlusion. In the present work, a fusion protein construct containing two components i.e. Staphylokinase (SAK) and Epidermal Growth Factor (EGF) 4, 5, 6-like domains of human thrombomodulin (THBD) was expressed in Pichia pastoris after genetic optimization. SAK isolated from Staphylococcus aureus is a fibrin-specific plasminogen activator while EGF 4, 5, 6-like domains are reported to be responsible for imparting thrombin inhibition to human thrombomodulin, and therefore, expected could help prevent re-occlusion in the novel construct - SAK_EGF, which is a 43 kDa protein. After expression, it was purified (approx. 13-fold) using two-step purification protocol involving ion-exchange followed by Gel Filtration Chromatography (GFC). The functional characterization including plasminogen activation and thrombin inhibition showed that both the fusion partners viz. SAK and 4,5,6 EGF-like domains retained their respective activities after fusion, confirming it to be a bio-active construct. Thus, this engineered protein could be clinically promising due to the combinatorial effect of fibrin-specific thrombus lysis and prevention of re-occulusion.
Collapse
Affiliation(s)
- Vandana
- Division of Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector39-A, Chandigarh, India
| | - Satish Kantipudi
- Division of Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector39-A, Chandigarh, India
| | - Neeraj Maheshwari
- Division of Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector39-A, Chandigarh, India
| | - Sheetal Sharma
- Division of Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector39-A, Chandigarh, India
| | - Girish Sahni
- Division of Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector39-A, Chandigarh, India.
| |
Collapse
|
33
|
Li Y, Hu C, Wang P, Liu Y, Wang L, Pi Q, Gong Z, Yang X, Mak M, Wu Y. Indoor nanoscale particulate matter-induced coagulation abnormality based on a human 3D microvascular model on a microfluidic chip. J Nanobiotechnology 2019; 17:20. [PMID: 30709410 PMCID: PMC6357445 DOI: 10.1186/s12951-019-0458-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 01/21/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A growing body of evidence shows that indoor concentrations of airborne particles are often higher than is typically encountered outdoors. Since exposure to indoor PM2.5 is thought to be associated with cardiovascular disease, the health impacts of indoor air pollution need to be explored. Based on animal models, ambient particulate matter has been proved to promote coagulation which is very likely involved in the pathogenic development of cardiovascular disease. However, animal models are insufficient to predict what will happen with any certainty in humans. For this reason, the precise pathogenic mechanisms behind the development of cardiovascular disease in humans have not yet been determined. RESULTS We generated a 3D functional human microvascular network in a microfluidic device. This model enables human vascular endothelial cells to form tissue-like microvessels that behave very similarly to human blood vessels. The perfusable microvasculature allows the delivery of particles introduced into these generated human-like microvessels to follow the fluid flow. This exposure path effectively simulates the dynamic movement of airborne nanoscale particles (ANPs) within human vessels. In this study, we first identified the existence of ANPs in indoor air pollution. We then showed that ANPs could activate endothelial cells via ROS induced inflammation, and further resulted in abnormal expression of the coagulation factors (TF, TM and t-PA) involved in coagulation cascades. In addition, we found that a protein could cover ANPs, and this biointeraction could interfere with heparan sulfate (HS). Human organotypic 3D microvessel models provide a bridge for how research outcomes can translate to humans. CONCLUSIONS The 3D human microvessel model was used to determine the physiological responses of human vessels to ANP stimulation. Based on the obtained data, we concluded that ANPs not only disrupts normal coagulation functions, but also act directly on anticoagulant factors in human vessels. These experimental observations provide a potential biological explanation for the epidemiologically established link between ANPs and coagulation abnormality. This organ-on-chip model may provide a bridge from in vitro results to human responses.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
- Department of Biomedical Engineering, School of Engineering & Applied Science, Yale University, New Haven, 06520 USA
| | - Chuanlin Hu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Pengcheng Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Yan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Luyang Wang
- Department of Building Science, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Qingmeng Pi
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200129 People’s Republic of China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079 People’s Republic of China
| | - Michael Mak
- Department of Biomedical Engineering, School of Engineering & Applied Science, Yale University, New Haven, 06520 USA
| | - Yang Wu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| |
Collapse
|
34
|
Abu-Fanne R, Stepanova V, Litvinov RI, Abdeen S, Bdeir K, Higazi M, Maraga E, Nagaswami C, Mukhitov AR, Weisel JW, Cines DB, Higazi AAR. Neutrophil α-defensins promote thrombosis in vivo by altering fibrin formation, structure, and stability. Blood 2019; 133:481-493. [PMID: 30442678 PMCID: PMC6356988 DOI: 10.1182/blood-2018-07-861237] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammation and thrombosis are integrated, mutually reinforcing processes, but the interregulatory mechanisms are incompletely defined. Here, we examined the contribution of α-defensins (α-defs), antimicrobial proteins released from activated human neutrophils, on clot formation in vitro and in vivo. Activation of the intrinsic pathway of coagulation stimulates release of α-defs from neutrophils. α-Defs accelerate fibrin polymerization, increase fiber density and branching, incorporate into nascent fibrin clots, and impede fibrinolysis in vitro. Transgenic mice (Def++) expressing human α-Def-1 developed larger, occlusive, neutrophil-rich clots after partial inferior vena cava (IVC) ligation than those that formed in wild-type (WT) mice. IVC thrombi extracted from Def++ mice were composed of a fibrin meshwork that was denser and contained a higher proportion of tightly packed compressed polyhedral erythrocytes than those that developed in WT mice. Def++ mice were resistant to thromboprophylaxis with heparin. Inhibiting activation of the intrinsic pathway of coagulation, bone marrow transplantation from WT mice or provision of colchicine to Def++ mice to inhibit neutrophil degranulation decreased plasma levels of α-defs, caused a phenotypic reversion characterized by smaller thrombi comparable to those formed in WT mice, and restored responsiveness to heparin. These data identify α-defs as a potentially important and tractable link between innate immunity and thrombosis.
Collapse
Affiliation(s)
- Rami Abu-Fanne
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | | | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Suhair Abdeen
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine and
| | - Mohamed Higazi
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Emad Maraga
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | - Alexander R Mukhitov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | | | - Abd Al-Roof Higazi
- Department of Clinical Biochemistry, Hadassah-Hebrew University, Jerusalem, Israel
- Department of Pathology and Laboratory Medicine and
| |
Collapse
|
35
|
|
36
|
Exploring traditional and nontraditional roles for thrombomodulin. Blood 2018; 132:148-158. [DOI: 10.1182/blood-2017-12-768994] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
AbstractThrombomodulin (TM) is an integral component of a multimolecular system, localized primarily to the vascular endothelium, that integrates crucial biological processes and biochemical pathways, including those related to coagulation, innate immunity, inflammation, and cell proliferation. These are designed to protect the host from injury and promote healing. The “traditional” role of TM in hemostasis was determined with its discovery in the 1980s as a ligand for thrombin and a critical cofactor for the major natural anticoagulant protein C system and subsequently for thrombin-mediated activation of the thrombin activatable fibrinolysis inhibitor (also known as procarboxypeptidase B2). Studies in the past 2 decades are redefining TM as a molecule with many properties, exhibited via its multiple domains, through its interacting partners, complex regulated expression, and synthesis by cells other than the endothelium. In this report, we review some of the recently reported diverse properties of TM and how these may impact on our understanding of the pathogenesis of several diseases.
Collapse
|
37
|
Ferroni P, Barbanti P, Della-Morte D, Palmirotta R, Jirillo E, Guadagni F. Redox Mechanisms in Migraine: Novel Therapeutics and Dietary Interventions. Antioxid Redox Signal 2018; 28:1144-1183. [PMID: 28990418 DOI: 10.1089/ars.2017.7260] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Migraine represents the third most prevalent and the seventh most disabling human disorder. Approximately 30% of migraine patients experience transient, fully reversible, focal neurological symptoms (aura) preceding the attack. Recent Advances: Awareness of the hypothesis that migraine actually embodies a spectrum of illnesses-ranging from episodic to chronic forms-is progressively increasing and poses novel challenges for clarifying the underlying pathophysiological mechanisms of migraine as well as for the development of novel therapeutic interventions. Several theories have evolved to the current concept that a combination of genetic, epigenetic, and environmental factors may play a role in migraine pathogenesis, although their relative importance is still being debated. CRITICAL ISSUES One critical issue that deserves a particular attention is the role of oxidative stress in migraine. Indeed, potentially harmful oxidative events occur during the migraine attack and long-lasting or frequent migraine episodes may increase brain exposure to oxidative events that can lead to chronic transformation. Moreover, a wide variety of dietary, environmental, physiological, behavioral, and pharmacological migraine triggers may act through oxidative stress, with clear implications for migraine treatment and prophylaxis. Interestingly, almost all current prophylactic migraine agents exert antioxidant effects. FUTURE DIRECTIONS Increasing awareness of the role of oxidative stress and/or decreased antioxidant defenses in migraine pathogenesis and progression to a chronic condition lays the foundations for the design of novel prophylactic approaches, which, by reducing brain oxidative phenomena, could favorably modify the clinical course of migraine. Antioxid. Redox Signal. 28, 1144-1183.
Collapse
Affiliation(s)
- Patrizia Ferroni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy
| | - Piero Barbanti
- 3 Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana , Rome, Italy
| | - David Della-Morte
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy .,4 Department of Systems Medicine, University of Rome "Tor Vergata ," Rome, Italy
| | - Raffaele Palmirotta
- 5 Department of Biomedical Sciences and Human Oncology, "A. Moro" University , Bari, Italy
| | - Emilio Jirillo
- 6 Department of Basic Medical Sciences, Neuroscience and Sensory Organs, "A. Moro" University , Bari, Italy
| | - Fiorella Guadagni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy
| |
Collapse
|
38
|
D’arrigo G, Pizzini P, Cutrupi S, Tripepi R, Tripepi G, Mallamaci F, Zoccali C. Vitamin D receptor activation raises soluble thrombomodulin levels in chronic kidney disease patients: a double blind, randomized trial. Nephrol Dial Transplant 2018; 34:819-824. [DOI: 10.1093/ndt/gfy085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- Graziella D’arrigo
- CNR-IFC, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Patrizia Pizzini
- CNR-IFC, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Sebastiano Cutrupi
- CNR-IFC, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Rocco Tripepi
- CNR-IFC, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Giovanni Tripepi
- CNR-IFC, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Francesca Mallamaci
- CNR-IFC, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio Calabria, Italy
- Nephrology and Renal Transplantation Unit, Reggio Calabria, Italy
| | - Carmine Zoccali
- CNR-IFC, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| |
Collapse
|
39
|
Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res 2017; 371:567-576. [PMID: 29178039 PMCID: PMC5820397 DOI: 10.1007/s00441-017-2727-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023]
Abstract
Neutrophils are well known for their role in infection and inflammatory disease and are first responders at sites of infection or injury. Platelets have an established role in hemostasis and thrombosis and are first responders at sites of vascular damage. However, neutrophils are increasingly recognized for their role in thrombosis, while the immunemodulatory properties of platelets are being increasingly studied. Platelets and neutrophils interact during infection, inflammation and thrombosis and modulate each other’s functions. This review will discuss the consequences of platelet–neutrophil interactions in infection, thrombosis, atherosclerosis and tissue injury and repair.
Collapse
|
40
|
Tripodi A. Detection of procoagulant imbalance. Thromb Haemost 2017; 117:830-836. [DOI: 10.1160/th16-10-0806] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 01/14/2023]
Abstract
SummaryEach individual possesses his/her own endogenous-thrombin-potential (ETP) (i. e. the ability to generate thrombin) which depends on the relative strength of the pro- and anticoagulant drivers operating in plasma. This ability depends in turn on the clinical conditions in which the balance between the two drivers is variably affected. One of the major determinants of this balance is the factor (F)VIII-protein C(PC) axis and its effect can be conveniently explored by the thrombin generation procedures with results expressed as ETP ratio with/without thrombomodulin (TM) (ETP-TM ratio). Furthermore, owing to the many feedback mechanisms mediated by thrombin (e. g. activation of PC, FXI, FV, FVIII, platelets etc.) it is also possible that any perturbation of the balance between pro- and anticoagulants that may occur in plasma even outside the FVIII-PC axis could result in an increased ETPTM ratio and therefore may suggest a procoagulant imbalance. Indeed, other non-coagulation moieties (e. g. microparticles, neutrophil extracellular traps, pro-inflammatory cytokines and others) circulating in blood of patients with various clinical conditions may also contribute to the procoagulant imbalance even when FVIII and/or PC are apparently normal. It can be postulated that dual ETP measurements performed in the presence and absence of TM with results expressed as their ratio may be the candidate procedure to detect subtle procoagulant imbalance in many clinical conditions characterised by an increased risk of thromboembolism. This article aimed at reviewing the clinical conditions in which evidence for the value of the ETP-TM ratio has been provided.
Collapse
|
41
|
Boncler M, Kehrel B, Szewczyk R, Stec-Martyna E, Bednarek R, Brodde M, Watala C. Oxidation of C-reactive protein by hypochlorous acid leads to the formation of potent platelet activator. Int J Biol Macromol 2017; 107:2701-2714. [PMID: 29111269 DOI: 10.1016/j.ijbiomac.2017.10.159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 01/27/2023]
Abstract
We examined the structural and functional consequences of oxidative modification of C-reactive protein (CRP) by hypochlorous acid (HOCl), which can be generated in vivo via the myeloperoxidase/H2O2/Cl- system. HOCl exposure resulted in the oxidation and chlorination of CRP amino acid residues, leading to protein unfolding, greater surface hydrophobicity and the formation of aggregates. After treatment of isolated platelets with 50μg/ml HOCl-CRP, the modified CRP significantly stimulated platelet activation (over 10-fold increase in the fraction of CD62-positive platelets compared to controls, P<0.008), enhanced deposition of platelets onto immobilized fibrinogen (two-fold rise in platelet adhesion compared to controls, P<0.0001), and induced platelet aggregation by up to 79.5%. The ability of HOCl-CRP to interact with several platelet receptors (TLR-4, GPIIbIIIa) and plasma proteins (C1q, IgG) strongly indicates that HOCl-modification leads to structural changes of CRP resulting in the formation of new ligand binding sites, which is characteristic of the monomeric form of CRP exerting pro-inflammatory effects on a variety of cells. Overall, the oxidation of native CRP by HOCl seems to represent an alternative mechanism of CRP modification, by which CRP reveals its pro-inflammatory and pro-thrombotic properties, and as such, it might be of causal relevance in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Magdalena Boncler
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland.
| | - Beate Kehrel
- Department of Anesthesiology, Intensive Care and Pain Medicine, Experimental and Clinical Haemostasis, University Hospital, Muenster, Germany
| | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Lodz, Poland
| | | | - Radosław Bednarek
- Department of Cytobiology and Proteomics, Medical University of Lodz, Lodz, Poland
| | - Martin Brodde
- Department of Anesthesiology, Intensive Care and Pain Medicine, Experimental and Clinical Haemostasis, University Hospital, Muenster, Germany
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
42
|
Zapadka KL, Becher FJ, Gomes Dos Santos AL, Jackson SE. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 2017; 7:20170030. [PMID: 29147559 DOI: 10.1098/rsfs.2017.0030] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The number of biological therapeutic agents in the clinic and development pipeline has increased dramatically over the last decade and the number will undoubtedly continue to increase in the coming years. Despite this fact, there are considerable challenges in the development, production and formulation of such biologics particularly with respect to their physical stabilities. There are many cases where self-association to form either amorphous aggregates or highly structured fibrillar species limits their use. Here, we review the numerous factors that influence the physical stability of peptides including both intrinsic and external factors, wherever possible illustrating these with examples that are of therapeutic interest. The effects of sequence, concentration, pH, net charge, excipients, chemical degradation and modification, surfaces and interfaces, and impurities are all discussed. In addition, the effects of physical parameters such as pressure, temperature, agitation and lyophilization are described. We provide an overview of the structures of aggregates formed, as well as our current knowledge of the mechanisms for their formation.
Collapse
Affiliation(s)
| | - Frederik J Becher
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | - Sophie E Jackson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
43
|
Tripodi A, Ammollo CT, Semeraro F, Colucci M, Malchiodi E, Verrua E, Ferrante E, Arnaldi G, Trementino L, Padovan L, Chantarangkul V, Peyvandi F, Mantovani G. Hypercoagulability in patients with Cushing disease detected by thrombin generation assay is associated with increased levels of neutrophil extracellular trap-related factors. Endocrine 2017; 56:298-307. [PMID: 27448294 DOI: 10.1007/s12020-016-1027-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Patients with Cushing disease (CD) are at increased risk of venous thromboembolism (VTE). It was surmised, but not conclusively shown that the risk is related to plasma hypercoagulability secondary to the glucocorticoids effect. This study is aimed at detecting hypercoagulability in patients with CD. Case-control study of 48 CD patients and controls enrolled at two Italian clinics for whom we assessed the thrombin-forming-potential in the presence of optimal activation of protein C obtained by adding into the assay system its main endothelial activator, thrombomodulin. These experimental conditions mimic more closely than any other test the in vivo situation. We observed enhanced thrombin-generation in CD patients, as shown by the modification of thrombin-generation parameters [i.e., shortened lag-time and time-to-peak, increased thrombin peak and endogenous thrombin potential (ETP)]. Moreover, the ETP ratio (with/without thrombomodulin), recognized as an index of hypercoagulability, was increased in patients as compared to controls. We attempted to explain such hypercoagulability by measuring both procoagulant and anticoagulant factors, and some other non-coagulation parameters (i.e., neutrophil extracellular traps (NET), recently associated with the VTE risk and/or increased hypercoagulability. We showed that the hypercoagulability in patients with CD is associated with increased levels of factor VIII and NET-related variables. We detected plasma hypercoagulability in patients with CD and found experimental explanation for its occurrence. Whether this hypercoagulability can entirely explain the occurrence of VTE in patients with CD should be investigated by ad-hoc clinical trials. However, until these studies will be available the evidence supports the concept that patients with CD are candidates for antithrombotic prophylaxis.
Collapse
Affiliation(s)
- Armando Tripodi
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy.
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy.
- IRCCS Cà Granda Maggiore Hospital Foundation, Milano, Italy.
| | - Concetta T Ammollo
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University, Bari, Italy
| | - Fabrizio Semeraro
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University, Bari, Italy
| | - Mario Colucci
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University, Bari, Italy
| | - Elena Malchiodi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy
- Unit of Endocrinology and Diabetology, Milano, Italy
- IRCCS Cà Granda Maggiore Hospital Foundation, Milano, Italy
| | - Elisa Verrua
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy
- Unit of Endocrinology and Diabetology, Milano, Italy
- IRCCS Cà Granda Maggiore Hospital Foundation, Milano, Italy
| | - Emanuele Ferrante
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy
- Unit of Endocrinology and Diabetology, Milano, Italy
- IRCCS Cà Granda Maggiore Hospital Foundation, Milano, Italy
| | - Giorgio Arnaldi
- Clinica di Endocrinologia e Malattie del Metabolismo, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Laura Trementino
- Clinica di Endocrinologia e Malattie del Metabolismo, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Lidia Padovan
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy
- IRCCS Cà Granda Maggiore Hospital Foundation, Milano, Italy
| | - Veena Chantarangkul
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy
- IRCCS Cà Granda Maggiore Hospital Foundation, Milano, Italy
| | - Flora Peyvandi
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
- IRCCS Cà Granda Maggiore Hospital Foundation, Milano, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy
- Unit of Endocrinology and Diabetology, Milano, Italy
- IRCCS Cà Granda Maggiore Hospital Foundation, Milano, Italy
| |
Collapse
|
44
|
Foley JH, Conway EM. Cross Talk Pathways Between Coagulation and Inflammation. Circ Res 2017; 118:1392-408. [PMID: 27126649 DOI: 10.1161/circresaha.116.306853] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
Abstract
Anatomic pathology studies performed over 150 years ago revealed that excessive activation of coagulation occurs in the setting of inflammation. However, it has taken over a century since these seminal observations were made to delineate the molecular mechanisms by which these systems interact and the extent to which they participate in the pathogenesis of multiple diseases. There is, in fact, extensive cross talk between coagulation and inflammation, whereby activation of one system may amplify activation of the other, a situation that, if unopposed, may result in tissue damage or even multiorgan failure. Characterizing the common triggers and pathways are key for the strategic design of effective therapeutic interventions. In this review, we highlight some of the key molecular interactions, some of which are already showing promise as therapeutic targets for inflammatory and thrombotic disorders.
Collapse
Affiliation(s)
- Jonathan H Foley
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.)
| | - Edward M Conway
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.).
| |
Collapse
|
45
|
Zilberman-Rudenko J, Sylman JL, Garland KS, Puy C, Wong AD, Searson PC, McCarty OJT. Utility of microfluidic devices to study the platelet-endothelium interface. Platelets 2017; 28:449-456. [PMID: 28358586 DOI: 10.1080/09537104.2017.1280600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The integration of biomaterials and understanding of vascular biology has led to the development of perfusable endothelialized flow models, which have been used as valuable tools to study the platelet-endothelium interface under shear. In these models, the parameters of geometry, compliance, biorheology, and cellular complexity are varied to recapitulate the physical biology of platelet recruitment and activation under physiologically relevant conditions of blood flow. In this review, we summarize the mechanistic insights learned from perfusable microvessel models and discuss the potential utility as well as challenges of endothelialized microfluidic devices to study platelet function in the bloodstream in vitro.
Collapse
Affiliation(s)
- Jevgenia Zilberman-Rudenko
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Joanna L Sylman
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Kathleen S Garland
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA.,c Division of Pediatric Hematology/Oncology , Oregon Health and Science University , Portland , OR , USA
| | - Cristina Puy
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Andrew D Wong
- b Institute for Nanobiotechnology (INBT) , Johns Hopkins University , Baltimore , MD , USA.,d Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , MD , USA
| | - Peter C Searson
- b Institute for Nanobiotechnology (INBT) , Johns Hopkins University , Baltimore , MD , USA.,d Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , MD , USA
| | - Owen J T McCarty
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA.,c Division of Pediatric Hematology/Oncology , Oregon Health and Science University , Portland , OR , USA
| |
Collapse
|
46
|
Parcq J, Petersen KU, Borel-Derlon A, Gautier P, Ebel M, Vivien D, Repessé Y. F376A/M388A-solulin, a new promising antifibrinolytic for severe haemophilia A. Haemophilia 2016; 23:319-325. [PMID: 27928886 DOI: 10.1111/hae.13126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2016] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Haemophilia is a major bleeding disorder due to a deficiency of procoagulant factor VIII (type A) or IX (type B). The treatment is substitutive and based on infusion of factor concentrates. Main limitations of this therapy are cost, short factor half-life and the development of inhibitors (up to 30% of severe HA patients). An important aggravating factor of haemophilia is due to a premature fibrinolysis, directing attention to the therapeutic potential of suitable antifibrinolytics. Thrombomodulin (TM) is a key player of the coagulation cascade by activating protein C (an inhibitor of thrombin generation, thus antagonizing coagulation) and of the fibrinolytic cascade by activating thrombin activatable fibrinolysis inhibitor TAFI (thus reducing fibrinolysis). Solulin is a soluble form of TM that shows both capabilities. AIM Here, we developed a new generation of solulin variants (F376A-, M388A- and F376A/M388A-solulin) with a decreased ability to activate protein C and a conserved capacity to activate TAFI. METHODS We produced and characterized solulin variants in vitro. In addition, F376A/M388A-solulin was tested ex vivo, using blood samples of haemophilic A patients, with thromboelastography. RESULTS The solulin variants (F376A, M388A and the double-mutant F376A/M388A) lost their abilities to activate protein C but are still capable to activate TAFI. Thrombelastography showed increased clot firmness and stability, that, as opposed to wild-type solulin, was maintained even at high concentrations of F376A/M388A-solulin (100 nm). CONCLUSION In sum, these results open new opportunities for the development of specific medication for haemophilic patients.
Collapse
Affiliation(s)
- J Parcq
- Serine Proteases and Pathophysiology of the Neurovascular Unit, Normandie Univ, UNICAEN, INSERM, Caen, France
| | | | - A Borel-Derlon
- Serine Proteases and Pathophysiology of the Neurovascular Unit, Normandie Univ, UNICAEN, INSERM, Caen, France.,Laboratoire d'hématologie, CHU de Caen, Caen, France.,Centre de Traitement de l'Hémophilie (CRTH), CHU de Caen, Caen, France
| | - P Gautier
- Laboratoire d'hématologie, CHU de Caen, Caen, France.,Centre de Traitement de l'Hémophilie (CRTH), CHU de Caen, Caen, France
| | - M Ebel
- PAION Deutchland GmbH, Aachen, Germany
| | - D Vivien
- Serine Proteases and Pathophysiology of the Neurovascular Unit, Normandie Univ, UNICAEN, INSERM, Caen, France
| | - Y Repessé
- Serine Proteases and Pathophysiology of the Neurovascular Unit, Normandie Univ, UNICAEN, INSERM, Caen, France.,Laboratoire d'hématologie, CHU de Caen, Caen, France.,Centre de Traitement de l'Hémophilie (CRTH), CHU de Caen, Caen, France
| |
Collapse
|
47
|
Gaertner F, Massberg S. Blood coagulation in immunothrombosis-At the frontline of intravascular immunity. Semin Immunol 2016; 28:561-569. [PMID: 27866916 DOI: 10.1016/j.smim.2016.10.010] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 02/04/2023]
Abstract
While hemostasis is the physiological process that prevents blood loss after vessel injury, thrombosis is often portrayed as a pathologic event involving blood coagulation and platelet aggregation eventually leading to vascular occlusion and tissue damage. However, recent work suggests that thrombosis can also be a physiological process, termed immunothrombosis, initiated by the innate immune system providing a first line of defense to locally control infection. Fibrin forms the structural basis of immunothrombotic clots and its assembly involves the concerted action of coagulation factors, platelets and leukocytes. Here, we summarize the cellular and molecular events that initiate fibrin formation during the innate immune response and discuss how aberrant activation of these pathways fosters pathologies associated with thrombosis, including disseminated intravascular coagulation and atherothrombosis.
Collapse
Affiliation(s)
- Florian Gaertner
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, 81377, Germany.
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, 81377, Germany.
| |
Collapse
|
48
|
Abstract
The protein C anticoagulant pathway is critical for controlling microvascular thrombosis and is initiated when thrombin binds to thrombomodulin (TM) on the surface of the endothelium. Protein C activation is augmented by an endothelial cell protein C receptor (EPCR). EPCR is shed from the vasculature by inflammatory mediators and thrombin. EPCR binds to activated neutrophils in a process that involves proteinase 3 and Mac-1 and appears to inhibit leukocyte extravasation. EPCR can undergo translocation from the plasma membrane to the nucleus where it re-directs gene expression. During translocation, EPCR can carry activated protein C (APC) to the nucleus, possibly accounting for the ability of APC to modulate inflammatory mediator responses in the endothelium. TNF-α and other inflammatory mediators can down-regulate EPCR and TM. Inhibition of protein C pathway function increases cytokine elaboration, endothelial cell injury and leukocyte extravasation in response to endotoxin and infusion of APC reverses these processes. In vitro, APC has been reported to inhibit TNF-α elaboration from monocytes and to block leukocyte adhesion to selectins. Since thrombin can elicit many inflammatory responses in microvascular endothelium, loss of control of microvascular thrombin generation due to impaired protein C pathway function probably contributes to microvascular dysfunction in sepsis.
Collapse
Affiliation(s)
- Charles T. Esmon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation; Departments of Pathology, and Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, , Howard Hughes Medical Institute, Oklahoma City, Oklahoma, USA
| |
Collapse
|
49
|
Pathak R, Wang J, Garg S, Aykin-Burns N, Petersen KU, Hauer-Jensen M. Recombinant Thrombomodulin (Solulin) Ameliorates Early Intestinal Radiation Toxicity in a Preclinical Rat Model. Radiat Res 2016; 186:112-20. [PMID: 27459702 DOI: 10.1667/rr14408.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intestinal radiation toxicity occurs during and after abdominopelvic radiotherapy. Endothelial cells play a significant role in modulating radiation-induced intestinal damage. We demonstrated that the endothelial cell surface receptor thrombomodulin (TM), a protein with anticoagulant, anti-inflammatory and antioxidant properties, mitigates radiation-induced lethality in mice. The goal of this study was to determine whether recombinant TM (Solulin) can protect the intestine from toxicity in a clinically relevant rat model. A 4 cm loop of rat small bowel was exposed to fractionated 5 Gy X radiation for 9 consecutive days. The animals were randomly assigned to receive daily subcutaneous injections of vehicle or Solulin (3 mg/kg/day or 10 mg/kg/day) for 27 days starting 4 days before irradiation. Early intestinal injury was assessed two weeks after irradiation by quantitative histology, morphometry, immunohistochemistry and luminol bioluminescence imaging. Solulin treatment significantly ameliorated intestinal radiation injury, made evident by a decrease in myeloperoxidase (MPO) activity, transforming growth factor beta (TGF-β) immunoreactivity, collagen-I deposition, radiation injury score (RIS) and intestinal serosal thickening. These findings indicate the need for further development of Solulin as a prophylactic and/or therapeutic agent to mitigate radiation-induced intestinal damage.
Collapse
Affiliation(s)
- Rupak Pathak
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Junru Wang
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nukhet Aykin-Burns
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Martin Hauer-Jensen
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas;,c Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
50
|
White NJ, Wang Y, Fu X, Cardenas JC, Martin EJ, Brophy DF, Wade CE, Wang X, St John AE, Lim EB, Stern SA, Ward KR, López JA, Chung D. Post-translational oxidative modification of fibrinogen is associated with coagulopathy after traumatic injury. Free Radic Biol Med 2016; 96:181-9. [PMID: 27105953 PMCID: PMC4912420 DOI: 10.1016/j.freeradbiomed.2016.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/13/2016] [Accepted: 04/17/2016] [Indexed: 12/16/2022]
Abstract
Victims of trauma often develop impaired blood clot formation (coagulopathy) that contributes to bleeding and mortality. Fibrin polymerization is one critical component of clot formation that can be impacted by post-translational oxidative modifications of fibrinogen after exposure to oxidants. In vitro evidence suggests that Aα-C domain methionine sulfoxide formation, in particular, can induce conformational changes that prevent lateral aggregation of fibrin protofibrils during polymerization. We used mass spectrometry of plasma from trauma patients to find that fibrinogen Aα-C domain methionine sulfoxide content was selectively-increased in patients with coagulopathy vs. those without coagulopathy. This evidence supports a novel linkage between oxidative stress, coagulopathy, and bleeding after injury.
Collapse
Affiliation(s)
- Nathan J White
- University of Washington Division of Emergency Medicine, Harborview Medical Center, Box 359702, 325 9th Avenue, Seattle, WA 98104, USA; Bloodworks Northwest Research Institute, 1551 Eastlake Avenue E, Seattle, WA 98102, USA.
| | - Yi Wang
- Bloodworks Northwest Research Institute, 1551 Eastlake Avenue E, Seattle, WA 98102, USA
| | - Xiaoyun Fu
- Bloodworks Northwest Research Institute, 1551 Eastlake Avenue E, Seattle, WA 98102, USA
| | - Jessica C Cardenas
- Center for Translational Injury Research and Division of Acute Care Surgery, University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 5.240, Houston, TX 77030, USA
| | - Erika J Martin
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, 410 N 12th Street, P.O. Box 980533, Richmond, VA 23298, USA
| | - Donald F Brophy
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, 410 N 12th Street, P.O. Box 980533, Richmond, VA 23298, USA
| | - Charles E Wade
- Center for Translational Injury Research and Division of Acute Care Surgery, University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 5.240, Houston, TX 77030, USA
| | - Xu Wang
- University of Washington Division of Emergency Medicine, Harborview Medical Center, Box 359702, 325 9th Avenue, Seattle, WA 98104, USA
| | - Alexander E St John
- University of Washington Division of Emergency Medicine, Harborview Medical Center, Box 359702, 325 9th Avenue, Seattle, WA 98104, USA
| | - Esther B Lim
- University of Washington Division of Emergency Medicine, Harborview Medical Center, Box 359702, 325 9th Avenue, Seattle, WA 98104, USA
| | - Susan A Stern
- University of Washington Division of Emergency Medicine, Harborview Medical Center, Box 359702, 325 9th Avenue, Seattle, WA 98104, USA
| | - Kevin R Ward
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Building 10-103A North Campus Research Complex 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - José A López
- Bloodworks Northwest Research Institute, 1551 Eastlake Avenue E, Seattle, WA 98102, USA
| | - Dominic Chung
- Bloodworks Northwest Research Institute, 1551 Eastlake Avenue E, Seattle, WA 98102, USA
| |
Collapse
|