1
|
Xu C, Li H, Tang CK. Sterol carrier protein 2 in lipid metabolism and non-alcoholic fatty liver disease: Pathophysiology, molecular biology, and potential clinical implications. Metabolism 2022; 131:155180. [PMID: 35311663 DOI: 10.1016/j.metabol.2022.155180] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as the most common chronic liver disease and has become a rapidly global public health problem. Sterol carrier protein 2 (SCP-2), also called non-specific lipid-transfer protein, is predominantly expressed by the liver. SCP-2 plays a key role in intracellular lipid transport and metabolism. SCP-2 has been closely implicated in the development of NAFLD-related metabolic disorders, such as obesity, atherosclerosis, Type 2 diabetes mellitus (T2DM), and gallstones. Recent studies indicate that SCP-2 plays a beneficial role in NAFLD by regulating cholesterol-, endocannabinoid-, and fatty acid-related aspects of lipid metabolism. Hence, in this paper, we summarize the latest findings about the roles of SCP-2 in hepatic steatosis and further describe its molecular function in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Can Xu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The First Affiliated Hospital of University of South China, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The First Affiliated Hospital of University of South China, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The First Affiliated Hospital of University of South China, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
2
|
Xu C, Li H, Tang CK. Sterol Carrier Protein 2: A promising target in the pathogenesis of atherosclerosis. Genes Dis 2022; 10:457-467. [DOI: 10.1016/j.gendis.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022] Open
|
3
|
Nishioka Y, Yamaguchi M, Kawakami A, Munehiro M, Masuda S, Tomaru U, Ishizu A. Type II Natural Killer T Cells that Recognize Sterol Carrier Protein 2 Are Implicated in Vascular Inflammation in the Rat Model of Systemic Connective Tissue Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:176-186. [PMID: 27863214 DOI: 10.1016/j.ajpath.2016.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/12/2016] [Accepted: 09/13/2016] [Indexed: 11/15/2022]
Abstract
We previously generated a rat model that developed systemic connective tissue diseases, including synovitis, myositis, and small-vessel vasculitis (SVV), and established a vascular endothelial cell-reactive T-cell clone, VASC-1, from the model. VASC-1 was determined to be a type II natural killer T-cell clone. In this study, we attempted to identify the antigen recognized by VASC-1. The monkey-derived cell line COS-7 was used because VASC-1 does not bind naturally to COS-7, although the amino acid sequences are well conserved between monkey CD1d and rat CD1d. We generated 98 COS-7 clones transfected with miscellaneous rat cDNA and screened them for VASC-1 binding. Consequently, we found one clone, 4D2, which could bind to VASC-1. Sequencing identified the rat cDNA introduced into 4D2 as sterol carrier protein 2 (SCP2). When VASC-1 was co-cultured with SCP2 knockdown rat vascular endothelial cells, VASC-1 binding was reduced significantly. Moreover, we designed a series of rat SCP2 peptides and introduced them into COS-7 cells. On the basis of VASC-1 binding and proliferation, we revealed that the peptide rSCP2518-532 included the epitope recognized by VASC-1. Furthermore, immunization with rSCP2518-532 accelerated the development of SVV in the rat model. The collective findings suggest that type II natural killer T cells reactive with autologous SCP2 are implicated in vascular inflammation in the rat model.
Collapse
Affiliation(s)
- Yusuke Nishioka
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Madoka Yamaguchi
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ai Kawakami
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Maya Munehiro
- Undergraduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sakiko Masuda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akihiro Ishizu
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
4
|
Xue XH, Shi FF, Chen T, Wei W, Zhou XM, Chen LD. Inhibition of ERK1/2 improves lipid balance in rat macrophages via ABCA1/G1 and CD36. Mol Med Rep 2015; 13:1533-40. [PMID: 26707062 DOI: 10.3892/mmr.2015.4697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 12/07/2015] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1), and macrophage scavenger receptor, cluster of differentiation (CD)36, function as key mediators of cholesterol efflux and influx from macrophages. In addition, they are associated with foam cell formation and the development of atherosclerosis (AS). The aim of the present study was to investigate the effects of extracellular signal-regulated kinases 1/2 (ERK1/2) inhibition on lipid balance in oxidized-low-density lipoprotein (Ox-LDL)-stimulated rat macrophages, and to examine the role of ERK1/2 inhibitors in AS. Rat peritoneal macrophages were treated with Ox-LDL alone or in combination with an ERK1/2 inhibitor, U0126, and untreated cells served as controls. Ox-LDL-induced lipid accumulation was detected by DiI fluorescence and oil red O staining. In addition, the mRNA and protein expression levels of ABCA1, ABCG1 and CD36 were determined using polymerase chain reaction and western blotting, respectively. Treatment with Ox-LDL significantly increased lipid accumulation and upregulated the mRNA and protein expression levels of ABCA1, ABCG1 and CD36 in macrophages. The addition of U0126 resulted in a marked reduction of lipid deposition, upregulation of ABCA1/G1 expression and suppression of CD36 expression in Ox-LDL-stimulated macrophages. The results of the present study indicated a novel association between ERK1/2 signaling and lipid metabolism, thus suggesting that inhibition of ERK1/2 may be considered a promising therapeutic strategy against AS.
Collapse
Affiliation(s)
- Xie-Hua Xue
- Department of Neurology, Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Feng-Fei Shi
- Institute of Rehabilitation Medicine, Rehabilitation Technology Collaborative Innovation Center, College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Tong Chen
- Institute of Rehabilitation Medicine, Rehabilitation Technology Collaborative Innovation Center, College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Wei Wei
- Department of Neurology, Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Xiao-Mao Zhou
- Institute of Rehabilitation Medicine, Rehabilitation Technology Collaborative Innovation Center, College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Li-Dian Chen
- Institute of Rehabilitation Medicine, Rehabilitation Technology Collaborative Innovation Center, College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| |
Collapse
|
5
|
Martin GG, Atshaves BP, Landrock KK, Landrock D, Storey SM, Howles PN, Kier AB, Schroeder F. Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1130-43. [PMID: 25277800 PMCID: PMC4254959 DOI: 10.1152/ajpgi.00209.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/28/2014] [Indexed: 01/31/2023]
Abstract
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Danilo Landrock
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Philip N Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ann B Kier
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas;
| |
Collapse
|
6
|
Microarray analysis revealed different gene expression patterns in HepG2 cells treated with low and high concentrations of the extracts of Anacardium occidentale shoots. GENES AND NUTRITION 2011; 6:413-27. [PMID: 21484159 PMCID: PMC3197841 DOI: 10.1007/s12263-011-0216-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/11/2011] [Indexed: 01/30/2023]
Abstract
In this study, the effects of low and high concentrations of the Anacardium occidentale shoot extracts on gene expression in liver HepG2 cells were investigated. From MTT assays, the concentration of the shoot extracts that maintained 50% cell viability (IC50) was 1.7 mg/ml. Cell viability was kept above 90% at both 0.4 mg/ml and 0.6 mg/ml of the extracts. The three concentrations were subsequently used for the gene expression analysis using Affymetrix Human Genome 1.0 S.T arrays. The microarray data were validated using real-time qRT–PCR. A total of 246, 696 and 4503 genes were significantly regulated (P < 0.01) by at least 1.5-fold in response to 0.4, 0.6 and 1.7 mg/ml of the extracts, respectively. Mutually regulated genes in response to the three concentrations included CDKN3, LOC100289612, DHFR, VRK1, CDC6, AURKB and GABRE. Genes like CYP24A1, BRCA1, AURKA, CDC2, CDK2, CDK4 and INSR were significantly regulated at 0.6 mg/ml and 1.7 mg but not at 0.4 mg/ml. However, the expression of genes including LGR5, IGFBP3, RB1, IDE, LDLR, MTTP, APOB, MTIX, SOD2 and SOD3 were exclusively regulated at the IC50 concentration. In conclusion, low concentrations of the extracts were able to significantly regulate a sizable number of genes. The type of genes that were expressed was highly dependent on the concentration of the extracts used.
Collapse
|
7
|
McIntosh AL, Atshaves BP, Gallegos AM, Storey SM, Reibenspies JH, Kier AB, Meyer E, Schroeder F. Structure of dehydroergosterol monohydrate and interaction with sterol carrier protein-2. Lipids 2008; 43:1165-84. [PMID: 19020914 DOI: 10.1007/s11745-008-3267-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
Dehydroergosterol [ergosta-5,7,9(11),22-tetraen-3beta-ol] is a naturally-occurring, fluorescent sterol utilized extensively to probe membrane cholesterol distribution, cholesterol-protein interactions, and intracellular cholesterol transport both in vitro and in vivo. In aqueous solutions, the low solubility of dehydroergosterol results in the formation of monohydrate crystals similar to cholesterol. Low temperature X-ray diffraction analysis reveals that dehydroergosterol monohydrate crystallizes in the space group P2(1) with four molecules in the unit cell and monoclinic crystal parameters a = 9.975(1) A, b = 7.4731(9) A, c = 34.054(4) A, and beta = 92.970(2) degrees somewhat similar to ergosterol monohydrate. The molecular arrangement is in a slightly closer packed bilayer structure resembling cholesterol monohydrate. Since dehydroergosterol fluorescence emission undergoes a quantum yield enhancement and red-shift of its maximum wavelength when crystallized, formation or disruption of microcrystals was monitored with high sensitivity using cuvette-based spectroscopy and multi-photon laser scanning imaging microscopy. This manuscript reports on the dynamical effect of sterol carrier protein-2 (SCP-2) interacting between aqueous dispersions of dehydroergosterol monohydrate microcrystal donors and acceptors consisting not only of model membranes but also vesicles derived from plasma membranes isolated by biochemical fractionation and affinity purification from Madin-Darby canine kidney cells. Furthermore, this study provides real-time measurements of the effect of increased SCP-2 levels on the rate of disappearance of dehydroergosterol microcrystals in living cells.
Collapse
Affiliation(s)
- Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Huang T, Chen J. Cholesterol And Lipids In Depression: Stress, Hypothalamo‐Pituitary‐Adrenocortical Axis, And Inflammation/Immunity. Adv Clin Chem 2005. [DOI: 10.1016/s0065-2423(04)39003-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Atshaves BP, Gallegos AM, McIntosh AL, Kier AB, Schroeder F. Sterol Carrier Protein-2 Selectively Alters Lipid Composition and Cholesterol Dynamics of Caveolae/Lipid Raft vs Nonraft Domains in L-Cell Fibroblast Plasma Membranes†. Biochemistry 2003; 42:14583-98. [PMID: 14661971 DOI: 10.1021/bi034966+] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the functional significance of caveolae/lipid rafts in cellular signaling and cholesterol transfer is increasingly recognized, almost nothing is known regarding the lipids, cholesterol dynamics, and factors regulating these properties in caveolae/lipid rafts as opposed to nonlipid raft domains of the plasma membrane. The present findings demonstrate the utility of con-A affinity chromatography for simultaneous isolation of caveolae/lipid raft and nonlipid raft domains from plasma membranes of L-cell fibroblasts. These domains differed markedly in both protein and lipid constituents. Although caveolae/lipid rafts were enriched in total lipid, cholesterol, and phospholipid as well as other markers for these domains, the cholesterol/phospholipid ratio of caveolae/lipid rafts did not differ from that of nonlipid rafts. Nevertheless, spontaneous sterol transfer was 7-12-fold faster from caveolae/lipid raft than nonlipid raft domains of the plasma membrane. This was largely due to the near absence of exchangeable sterol in the nonlipid rafts. SCP-2 dramatically and selectively enhanced sterol transfer from caveolae/lipid rafts, but not from nonlipid rafts. Finally, overexpression of SCP-2 significantly altered the sterol dynamics of caveolae/lipid rafts to facilitate retention of cholesterol within the cell. These results established for the first time that (i) caveolae/lipid rafts, rather than the nonlipid raft domains, contain significant levels of rapidly transferable sterol, consistent with their role in spontaneous sterol transfer from and through the plasma membrane, and (ii) SCP-2 selectively regulates how caveolae/lipid rafts, but not nonlipid raft domains, mediate cholesterol trafficking through the plasma membrane.
Collapse
Affiliation(s)
- Barbara P Atshaves
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas 77843-4466, USA
| | | | | | | | | |
Collapse
|
10
|
McIntosh AL, Gallegos AM, Atshaves BP, Storey SM, Kannoju D, Schroeder F. Fluorescence and multiphoton imaging resolve unique structural forms of sterol in membranes of living cells. J Biol Chem 2003; 278:6384-403. [PMID: 12456684 DOI: 10.1074/jbc.m205472200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although cholesterol is an essential component of mammalian membranes, resolution of cholesterol organization in membranes and organelles (i.e. lysosomes) of living cells is hampered by the paucity of nondestructive, nonperturbing methods providing real time structural information. Advantage was taken of the fact that the emission maxima of a naturally occurring fluorescent sterol (dehydroergosterol) were resolvable into two structural forms, monomeric (356 and 375 nm) and crystalline (403 and 426 nm). Model membranes (sterol:phospholipid ratios in the physiological range, e.g. 0.5-1.0), subcellular membrane fractions (plasma membranes, lysosomal membranes, microsomes, and mitochondrial membranes), and lipid rafts/caveolae (plasma membrane cholesterol-rich microdomain purified by a nondetergent method) contained primarily monomeric sterol and only small quantities (i.e. 1-5%) of the crystalline form. In contrast, the majority of sterol in isolated lysosomes was crystalline. However, addition of sterol carrier protein-2 in vitro significantly reduced the proportion of crystalline dehydroergosterol in the isolated lysosomes. Multiphoton laser scanning microscopy (MPLSM) of living L-cell fibroblasts cultured with dehydroergosterol for the first time provided real time images showing the presence of monomeric sterol in plasma membranes, as well as other intracellular membrane structures of living cells. Furthermore, MPLSM confirmed that crystalline sterol colocalized in highest amounts with LysoTracker Green, a lysosomal marker dye. Although crystalline sterol was also detected in the cytoplasm, the extralysosomal crystalline sterol did not colocalize with BODIPY FL C(5)-ceramide, a Golgi marker, and crystals were not associated with the cell surface membrane. These noninvasive, nonperturbing methods demonstrated for the first time that multiple structural forms of sterol normally occurred within membranes, membrane microdomains (lipid rafts/caveolae), and intracellular organelles of living cells, both in vitro and visualized in real time by MPLSM.
Collapse
Affiliation(s)
- Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A & M University, Texas Veterinary Medical Center, College Station, Texas 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
11
|
Gallegos AM, Atshaves BP, Storey SM, Starodub O, Petrescu AD, Huang H, McIntosh AL, Martin GG, Chao H, Kier AB, Schroeder F. Gene structure, intracellular localization, and functional roles of sterol carrier protein-2. Prog Lipid Res 2001; 40:498-563. [PMID: 11591437 DOI: 10.1016/s0163-7827(01)00015-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Since its discovery three decades ago, sterol carrier protein-2 (SCP-2) has remained a fascinating protein whose physiological function in lipid metabolism remains an enigma. Its multiple proposed functions arise from its complex gene structure, post-translational processing, intracellular localization, and ligand specificity. The SCP-2 gene has two initiation sites coding for proteins that share a common 13 kDa SCP-2 C-terminus: (1) One site codes for 58 kDa SCP-x which is partially post-translationally cleaved to 13 kDa SCP-2 and a 45 kDa protein. (2) A second site codes for 15 kDa pro-SCP-2 which is completely post-translationally cleaved to 13 kDa SCP-2. Very little is yet known regarding how the relative proportions of the two transcripts are regulated. Although all three proteins contain a C-terminal SKL peroxisomal targeting sequence, it is unclear why all three proteins are not exclusively localized in peroxisomes. However, the recent demonstration that the SCP-2 N-terminal presequence in pro-SCP-2 dramatically modulated the intracellular targeting coded by the C-terminal peroxisomal targeting sequence may account for the observation that as much as half of total SCP-2 is localized outside the peroxisome. The tertiary and secondary structure of the 13 kDa SCP-2, but not that of 15 kDa pro-SCP-2 and 58 kDa SCP-x, are now resolved. Increasing evidence suggests that the 58 kDa SCP-x and 45 kDa proteins are peroxisomal 3-ketoacyl-CoA-thiolases involved in the oxidation of branched chain fatty acids. Since 15 kDa pro-SCP-2 is post-translationally completely cleaved to 13 kDa SCP-2, relatively little attention has been focused on this protein. Finally, although the 13 kDa SCP-2 is the most studied of these proteins, because it exhibits diversity of its ligand partners (fatty acids, fatty acyl CoAs, cholesterol, phospholipids), new potential physiological function(s) are still being proposed and questions regarding potential compensation by other proteins with overlapping specificity are only beginning to be resolved.
Collapse
Affiliation(s)
- A M Gallegos
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Starodub O, Jolly CA, Atshaves BP, Roths JB, Murphy EJ, Kier AB, Schroeder F. Sterol carrier protein-2 localization in endoplasmic reticulum and role in phospholipid formation. Am J Physiol Cell Physiol 2000; 279:C1259-69. [PMID: 11003606 DOI: 10.1152/ajpcell.2000.279.4.c1259] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although sterol carrier protein-2 (SCP-2; also called nonspecific lipid transfer protein) binds fatty acids and fatty acyl-CoAs, its role in fatty acid metabolism is not fully understood. L-cell fibroblasts stably expressing SCP-2 were used to resolve the relationship between SCP-2 intracellular location and fatty acid transacylation in the endoplasmic reticulum. Indirect immunofluorescence double labeling and laser scanning confocal microscopy detected SCP-2 in peroxisomes > endoplasmic reticulum > mitochondria > lysosomes. SCP-2 enhanced incorporation of exogenous [(3)H]oleic acid into phospholipids and triacylglycerols of overexpressing cells 1.6- and 2.5-fold, respectively, stimulated microsomal incorporation of [1-(14)C]oleoyl-CoA into phosphatidic acid in vitro 13-fold, and exhibited higher specificity for unsaturated versus saturated fatty acyl-CoA. SCP-2 enhanced the rate-limiting step in microsomal phosphatidic acid biosynthesis mediated by glycerol-3-phosphate acyltransferase. SCP-2 also enhanced microsomal acyl-chain remodeling of phosphatidylethanolamine up to fivefold and phosphatidylserine twofold, depending on the specific fatty acyl-CoA, but had no effect on other phospholipid classes. In summary, these results were consistent with a role for SCP-2 in phospholipid synthesis in the endoplasmic reticulum.
Collapse
Affiliation(s)
- O Starodub
- Department of Pathobiology, Texas A&M University, College Station, Texas 77843-4466, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Stolowich N, Frolov A, Petrescu AD, Scott AI, Billheimer JT, Schroeder F. Holo-sterol carrier protein-2. (13)C NMR investigation of cholesterol and fatty acid binding sites. J Biol Chem 1999; 274:35425-33. [PMID: 10585412 DOI: 10.1074/jbc.274.50.35425] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although sterol carrier protein-2 (SCP-2) stimulates sterol transfer in vitro, almost nothing is known regarding the identity of the putative cholesterol binding site. Furthermore, the interrelationship(s) between this SCP-2 ligand binding site and the recently reported SCP-2 long chain fatty acid (LCFA) and long chain fatty acyl-CoA (LCFA-CoA) binding site(s) remains to be established. In the present work, two SCP-2 ligand binding sites were identified. First, both [4-(13)C]cholesterol and 22-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3beta-ol (NBD-cholesterol) binding assays were consistent with a single cholesterol binding site in SCP-2. This ligand binding site had high affinity for NBD-cholesterol, K(d) = 4.15 +/- 0.71 nM. (13)C NMR-labeled ligand competition studies demonstrated that the SCP-2 high affinity cholesterol binding site also bound LCFA or LCFA-CoA. However, only the LCFA-CoA was able to effectively displace the SCP-2-bound [4-(13)C]cholesterol. Thus, the ligand affinities at this SCP-2 binding site were in the relative order cholesterol = LCFA-CoA > LCFA. Second, (13)C NMR studies demonstrated the presence of another ligand binding site on SCP-2 that bound either LCFA or LCFA-CoA but not cholesterol. Photon correlation spectroscopy was consistent with SCP-2 being monomeric in both liganded and unliganded states. In summary, both (13)C NMR and fluorescence techniques demonstrated for the first time that SCP-2 had a single high affinity binding site that bound cholesterol, LCFA, or LCFA-CoA. Furthermore, results with (13)C NMR supported the presence of a second SCP-2 ligand binding site that bound either LCFA or LCFA-CoA but not cholesterol. These data contribute to our understanding of a role for SCP-2 in both cellular cholesterol and LCFA metabolism.
Collapse
Affiliation(s)
- N Stolowich
- Department of Chemistry, Texas A & M University, College Station, Texas 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
14
|
Chao H, Billheimer JT, Kier AB, Schroeder F. Microsomal long chain fatty acyl-CoA transacylation: differential effect of sterol carrier protein-2. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:371-83. [PMID: 10498408 DOI: 10.1016/s1388-1981(99)00109-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The recent discovery that sterol carrier protein-2 (SCP-2) binds long chain++ (LCFA-CoA) with high affinity (A. Frolov et al., J. Biol. Chem. 271 (1997) 31878-31884) suggests new possible functions of this protein in LCFA-CoA metabolism. The purpose of the present investigation was to determine whether SCP-2 differentially modulated microsomal LCFA-CoA transacylation to cholesteryl esters, triacylglycerols, and phospholipids in vitro. Microsomal acyl-CoA:cholesterol acyltransferase (ACAT) activity measured with liposomal membrane cholesterol donors depended on substrate LCFA-CoA level, mol% cholesterol in the liposomal membrane, and total amount of liposomal cholesterol. As compared to basal activity without liposomes, microsomal ACAT was inhibited 30-50% in the presence of cholesterol poor (1.4 mol%) liposomes. In contrast, cholesterol rich (>25 mol%) liposomes stimulated ACAT up to 6.4-fold compared to basal activity without liposomes and nearly 10-fold as compared to cholesterol pool (1.4 mol%) liposomes. Increasing oleoyl-CoA reversed the inhibition of microsomal ACAT by cholesterol poor (1.4 mol%) liposomes, but did not further stimulate ACAT in the presence of cholesterol rich (35 mol%) liposomes. In contrast, high (100 microM) oleoyl-CoA inhibited ACAT nearly 3-fold. This inhibition was reversed by LCFA-CoA binding proteins, bovine serum albumin (BSA) and SCP-2. SCP-2 was 10-fold more effective (mole for mole) than BSA in reversing LCFA-CoA inhibited microsomal ACAT. Concomitantly, under conditions in which SCP-2 stimulated ACAT it equally enhanced transacylation of oleoyl-CoA into phospholipids, and 5.2-fold enhanced oleoyl-CoA transacylation to triacylglycerols. In summary, SCP-2 appeared to exert its greatest effects on microsomal transacylation in vitro by reversing LCFA-CoA inhibition of ACAT and by differentially targeting LCFA-CoA to triacylglycerols. These data suggest that the high affinity interaction of SCP-2s with LCFA-CoA may be physiologically important in microsomal transacylation reactions.
Collapse
Affiliation(s)
- H Chao
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467, USA
| | | | | | | |
Collapse
|
15
|
Cellular cholesterol regulates expression of the macrophage type B scavenger receptor, CD36. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32118-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Nishimura M, Tanaka T, Yasuda T, Kurakata S, Kitagawa M, Yamada K, Saito Y, Hirai A. Collagen secretion and growth of mesangial cells require geranylgeranylpyrophosphate. Kidney Int 1999; 55:520-8. [PMID: 9987076 DOI: 10.1046/j.1523-1755.1999.00292.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The mevalonate pathway is important for the biosynthesis of isoprenoids such as geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate, as well as cholesterol. It has been reported that treatment with 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor ameliorates glomerular injury in several experimental models of progressive glomerular disease. However, the effect of HMG-CoA reductase inhibitor on mesangial cell function has not been fully understood. This investigation was performed to elucidate the role of a mevalonate metabolite(s) in mesangial cell proliferation and extracellular matrix accumulation. METHODS Cycling or quiescent human mesangial cells were incubated in RPMI 1640 containing 10% heat-inactivated fetal calf serum (FCS) in the absence or presence of pravastatin, an inhibitor of HMG-CoA reductase, and mevalonate metabolites. Type IV collagen secretion, mRNA expression, and [3H]thymidine incorporation were measured. Cell cycle phases were monitored by flow cytometry. RESULTS Pravastatin inhibited FCS-stimulated type IV collagen secretion (IC50 = 210 microM) and mRNA expression. Pravastatin also inhibited FCS-stimulated [3H]thymidine incorporation (IC50 = 430 microM). Analysis with flow cytometry revealed that pravastatin inhibited the G1 to S phase transition of FCS-stimulated mesangial cells. Mevalonate reversed these inhibitory effects of pravastatin completely. Among two major metabolites of mevalonate, GGPP and farnesylpyrophosphate, only GGPP reversed pravastatin-induced inhibition of type IV collagen secretion, DNA synthesis, and the G1 to S phase progression. CONCLUSIONS These results suggest that GGPP plays critical roles for the type IV collagen secretion and G1 to S phase transition in FCS-stimulated human mesangial cells.
Collapse
Affiliation(s)
- M Nishimura
- Department of Internal Medicine, Sakura National Hospital, Chiba-city, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Fuchs M, Lammert F, Wang DQ, Paigen B, Carey MC, Cohen DE. Sterol carrier protein 2 participates in hypersecretion of biliary cholesterol during gallstone formation in genetically gallstone-susceptible mice. Biochem J 1998; 336 ( Pt 1):33-7. [PMID: 9806881 PMCID: PMC1219838 DOI: 10.1042/bj3360033] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In inbred mice, susceptibility to cholesterol gallstone disease is conferred by Lith genes, which in part promote hypersecretion of cholesterol into bile in response to a high-fat/cholesterol/cholic acid (lithogenic) diet. Because cytosolic sterol carrier protein 2 (SCP2) is believed to participate in cellular cholesterol trafficking and is elevated in the liver cytosol of cholesterol gallstone patients, we defined the hepatic expression of SCP2 during cholesterol gallstone formation in gallstone-susceptible C57L and gallstone-resistant AKR mice fed the lithogenic diet. Steady-state cytosolic SCP2 levels in C57L, but not AKR mice increased as a function of time and were correlated positively with biliary cholesterol hypersecretion, cholesterol saturation indices of gall-bladder biles and the appearance of liquid and solid cholesterol crystals leading to gallstone formation. Steady-state mRNA levels increased co-ordinately, consistent with regulation of SCP2 expression at the transcriptional level. Our results suggest that overexpression of SCP2 contributes to biliary cholesterol hypersecretion and the pathogenesis of gallstones in genetically susceptible mice. Because of the different chromosomal localizations of the Lith and Scp2 genes, we postulate that Lith genes control SCP2 expression indirectly.
Collapse
Affiliation(s)
- M Fuchs
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School and Harvard Digestive Diseases Center, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
18
|
Umeda Y, Hirano T, Kako Y, Kamagata K, Okuyama K, Suzuki K. A selective inhibitor of intestinal ACAT, EAB309 suppresses both intestinal and hepatic cholesterol output and stimulates chylomicron removal. Life Sci 1998; 63:PL187-95. [PMID: 9763214 DOI: 10.1016/s0024-3205(98)00380-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The effect of a novel inhibitor of acylcoenzyme A:cholesterol acyltransferase (EC 2.3.1.26, ACAT), EAB309 (EAB) on plasma lipid metabolism was studied in cholesterol-fed rats. Orally administered EAB was not detected in the portal vein or the liver but distributed exclusively in the intestine, suggesting that this agent selectively inhibits intestinal ACAT. The rats were fed with either a cholesterol-diet or a cholesterol-diet containing 0.005% EAB (w/w) ad. libium for three weeks. ACAT activity in intestinal microsomes was significantly inhibited in EAB-treated rats. Hepatic ACAT activity was also decreased in EAB-treated rats, however, this was attenuated by the addition of excess cholesterol to the liver microsome, indicating that substrate availability is tightly associated with this enzyme's activity and the inhibition of hepatic ACAT by EAB is not direct. Incorporation of [3H]-cholesterol to cholesteryl ester (CE) in mesenteric lymph were markedly suppressed by EAB treatment. Chylomicrons (CMs) were doubly labeled with [3H]-vitamin A and [14C]-triglyceride (TG) in EAB-treated or non-treated rats and injected into normal chow-fed rats. The CMs from EAB-treated rats were cleared faster from the plasma and taken up more by the liver compared with the CMs from non-treated rats. The content of CE in newly secreted VLDL was remarkably decreased by EAB treatment without affecting TG output. These results demonstrate that EAB, a novel inhibitor of intestinal ACAT, significantly suppresses both intestinal and hepatic CE output and stimulates CM removal. This suggests that the inhibition of intestinal ACAT can subsequently suppress hepatic ACAT by decreased CE delivery from the intestine to the liver.
Collapse
Affiliation(s)
- Y Umeda
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Han J, Nicholson AC. Lipoproteins modulate expression of the macrophage scavenger receptor. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 152:1647-54. [PMID: 9626069 PMCID: PMC1858437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophage scavenger receptors (MSR) bind and internalize oxidized low density lipoprotein (OxLDL), a modified lipoprotein that is thought to be the proximal source of lipids that accumulate within cells of atherosclerotic lesions. The role of lipoproteins in modulating MSR expression are undetermined. We studied the effect of lipoproteins, native and modified LDL (acetylated LDL (AcLDL) and OxLDL) on the expression of the MSR in RAW cells, a murine macrophage cell line. Exposure to lipoproteins resulted in a marked induction of MSR mRNA expression (12- to 17-fold) with OxLDL and AcLDL having the greatest effects. Maximum induction occurred 1 hour after treatment with OxLDL and LDL. AcLDL induced a fourfold increase at 1 hour followed by a return to baseline and peak expression (sixfold) at 14 hours. Scavenger receptor function, as measured by 125I-AcLDL binding, was only modestly increased in response to lipoproteins. Incubation of macrophages with a cholesterol acceptor particle resulted in a dose-dependent decrease in MSR mRNA expression, which paralleled cholesterol loss from the cells. OxLDL did not affect MSR mRNA stability, implying that MSR mRNA was transcriptionally regulated by lipoproteins. Finally, peritoneal macrophages were isolated from mice following intraperitoneal injection of lipoproteins. Macrophage expression of MSR mRNA was significantly (16-fold) increased by LDL, AcLDL, or OxLDL relative to mice infused with phosphate-buffered saline. This demonstration that exposure to lipoproteins increases expression of the macrophage scavenger receptor implies that lipoproteins can further contribute to foam cell development in atherosclerosis.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cell Adhesion Molecules/metabolism
- Cell Line
- Cholesterol/analysis
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Exudates and Transudates/cytology
- Half-Life
- Injections, Intraperitoneal
- Lipoproteins, LDL/administration & dosage
- Lipoproteins, LDL/metabolism
- Lipoproteins, LDL/pharmacology
- Macrophages/chemistry
- Macrophages/drug effects
- Macrophages/metabolism
- Mice
- Peritoneum/immunology
- RNA, Messenger/analysis
- RNA, Messenger/drug effects
- Receptors, Immunologic/metabolism
- Receptors, LDL/metabolism
- Receptors, Scavenger
- Serum Albumin, Bovine/pharmacology
Collapse
Affiliation(s)
- J Han
- Department of Pathology, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
20
|
Seedorf U, Raabe M, Ellinghaus P, Kannenberg F, Fobker M, Engel T, Denis S, Wouters F, Wirtz KW, Wanders RJ, Maeda N, Assmann G. Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Genes Dev 1998; 12:1189-201. [PMID: 9553048 PMCID: PMC316706 DOI: 10.1101/gad.12.8.1189] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene targeting in mice was used to investigate the unknown function of Scp2, encoding sterol carrier protein-2 (SCP2; a peroxisomal lipid carrier) and sterol carrier protein-x (SCPx; a fusion protein between SCP2 and a peroxisomal thiolase). Complete deficiency of SCP2 and SCPx was associated with marked alterations in gene expression, peroxisome proliferation, hypolipidemia, impaired body weight control, and neuropathy. Along with these abnormalities, catabolism of methyl-branched fatty acyl CoAs was impaired. The defect became evident from up to 10-fold accumulation of the tetramethyl-branched fatty acid phytanic acid in Scp2(-/-) mice. Further characterization supported that the gene disruption led to inefficient import of phytanoyl-CoA into peroxisomes and to defective thiolytic cleavage of 3-ketopristanoyl-CoA. These results corresponded to high-affinity binding of phytanoyl-CoA to the recombinant rat SCP2 protein, as well as high 3-ketopristanoyl-CoA thiolase activity of the recombinant rat SCPx protein.
Collapse
Affiliation(s)
- U Seedorf
- Institute for Arteriosclerosis Research, Westfalian Wilhelms-University, D-48129 M-unster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Noguchi Y, Nakamura S, Yasuda T, Kitagawa M, Kohn LD, Saito Y, Hirai A. Newly synthesized Rho A, not Ras, is isoprenylated and translocated to membranes coincident with progression of the G1 to S phase of growth-stimulated rat FRTL-5 cells. J Biol Chem 1998; 273:3649-53. [PMID: 9452494 DOI: 10.1074/jbc.273.6.3649] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ras and Rho are involved in the regulation of signal transduction events governing cell growth and cell proliferation. Protein prenylation is essential for the activation and/or the translocation of these small GTPases; however, protein geranylgeranylation rather than farnesylation is required for G1/S transition. We studied prenylation and translocation of Ras and Rho A during G1/S progression in growth-stimulated rat thyroid FRTL-5 cells. Immunoblot analysis revealed that both Ras and Rho A were detected in membrane fractions at G0. Rho A was eliminated from the membrane fraction during G1 and was not detected on the membrane at mid-G1. Translocation of Rho A from the cytoplasm back to the membranes was observed during late G1 phase. In contrast, Ras remains in the membrane fraction through the cell cycle progression from G1 to S phase. The immunoprecipitation of Rho A from the membrane fraction demonstrated that newly synthesized Rho A, labeled by pulsing cells with [35S]methionine and [35S]cysteine, was geranylgeranylated and associated with the membrane in late G1. These results indicate that Rho A, not Ras, was eliminated from membrane fraction during G1 progression and that newly synthesized Rho A is geranylgeranylated and translocated to membranes during G1/S progression in growth-stimulated FRTL-5 cells.
Collapse
Affiliation(s)
- Y Noguchi
- Second Department of Internal Medicine, Chiba University Medical School, Inohana-cho, Chuou-ku, Chiba 260, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Han J, Hajjar DP, Febbraio M, Nicholson AC. Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36. J Biol Chem 1997; 272:21654-9. [PMID: 9261189 DOI: 10.1074/jbc.272.34.21654] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The uptake of oxidized low density lipoprotein (OxLDL) by macrophages is a key event implicated in the initiation and development of atherosclerotic lesions. Two macrophage surface receptors, CD36 (a class B scavenger receptor) and the macrophage scavenger receptor (a class A scavenger receptor), have been identified as the major receptors that bind and internalize OxLDL. Expression of CD36 in monocyte/macrophages in tissue culture is dependent both on the differentiation state as well as exposure to soluble mediators (cytokines and growth factors). The regulatory mechanisms of this receptor in vivo are undetermined as is the role of lipoproteins themselves in modulating CD36 expression. We studied the effect of lipoproteins, native LDL and modified LDL (acetylated LDL (AcLDL) and OxLDL) on the expression of CD36 in J774 cells, a murine macrophage cell line. Exposure to lipoproteins resulted in a marked induction of CD36 mRNA expression (4-8-fold). Time course studies showed that maximum induction was observed 2 h after treatment with AcLDL and at 4 h with LDL and OxLDL. Increased expression of CD36 mRNA persisted for 24 h with each treatment group. Induction of CD36 mRNA expression was paralleled by an increase in CD36 protein as determined by Western blot with the greatest induction by OxLDL (4-fold). In the presence of actinomycin D, treatment of macrophages with LDL, AcLDL, or OxLDL did not affect CD36 mRNA stability, implying that CD36 mRNA was transcriptionally regulated by lipoproteins. To determine the mechanism(s) by which lipoproteins increased expression of CD36 we evaluated the effects of lipoprotein components on CD36 mRNA expression. ApoB 100 increased CD36 mRNA expression significantly, whereas phospholipid/cholesterol liposomes had less effect. Incubation of macrophages with bovine serum albumin or HDL reduced expression of CD36 mRNA in a dose-dependent manner. Finally, to evaluate the in vivo relevance of the induction of CD36 mRNA expression by lipoproteins, peritoneal macrophages were isolated from mice following intraperitoneal injection of lipoproteins. Macrophage expression of CD36 mRNA was significantly increased by LDL, AcLDL, or OxLDL in relation to mice infused with phosphate-buffered saline, with OxLDL causing the greatest induction (8-fold). This is the first demonstration that exposure to free and esterified lipids augments functional expression of the class B scavenger receptor, CD36. These data imply that lipoproteins can further contribute to foam cell development in atherosclerosis by up-regulating a major OxLDL receptor.
Collapse
MESH Headings
- Animals
- Arteriosclerosis
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Cell Line
- Gene Expression Regulation/drug effects
- Lipoproteins, HDL/pharmacology
- Lipoproteins, LDL/pharmacology
- Macrophages, Peritoneal/metabolism
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/metabolism
- Receptors, LDL/metabolism
- Receptors, Lipoprotein
- Receptors, Scavenger
- Scavenger Receptors, Class A
- Scavenger Receptors, Class B
- Serum Albumin, Bovine/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- J Han
- Department of Pathology, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
23
|
|
24
|
Baum CL, Reschly EJ, Gayen AK, Groh ME, Schadick K. Sterol carrier protein-2 overexpression enhances sterol cycling and inhibits cholesterol ester synthesis and high density lipoprotein cholesterol secretion. J Biol Chem 1997; 272:6490-8. [PMID: 9045674 DOI: 10.1074/jbc.272.10.6490] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recent data indicate that sterol carrier protein-2 (SCP-2) functions in the rapid movement of newly synthesized cholesterol to the plasma membrane (Puglielli, L., Rigotti, A., Greco, A. V., Santos, M. J., and Nervi, F. (1995) J. Biol. Chem. 270, 18723-18726). In order to further characterize the cellular function of SCP-2, we transfected McA-RH7777 rat hepatoma cells with a pre-SCP-2 cDNA expression construct. In stable transfectants, pre-SCP-2 processing resulted in an 8-fold increase in peroxisomal levels of SCP-2. SCP-2 overexpression increased the rates of newly synthesized cholesterol transfer to the plasma membrane and plasma membrane cholesterol internalization by 4-fold. There was no effect of SCP-2 overexpression on the microsomal levels of acyl-CoA:cholesterol acyltransferase and neutral cholesterol ester (CE) hydrolase; however, in the intact cell, CE synthesis and mass were reduced by 50%. SCP-2 overexpression also reduced high density lipoprotein-cholesterol secretion and apoA-I gene expression by 70% and doubled the rate of plasma membrane desmosterol conversion to cholesterol. We conclude that SCP-2 overexpression enhances the rate of cholesterol cycling, which reduces the availability of cholesterol for CE synthesis and alters the activity of a cellular cholesterol pool involved in regulating apoA-I-mediated high density lipoprotein cholesterol secretion. The net result of these changes in cholesterol metabolism is a 46% increase in plasma membrane cholesterol content, the implications of which are discussed.
Collapse
Affiliation(s)
- C L Baum
- Department of Medicine, Clinical Nutrition Research Unit and Section of Gastroenterology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
25
|
Hirai A, Nakamura S, Noguchi Y, Yasuda T, Kitagawa M, Tatsuno I, Oeda T, Tahara K, Terano T, Narumiya S, Kohn LD, Saito Y. Geranylgeranylated rho small GTPase(s) are essential for the degradation of p27Kip1 and facilitate the progression from G1 to S phase in growth-stimulated rat FRTL-5 cells. J Biol Chem 1997. [PMID: 8995216 DOI: 10.1074/jbc.272.1.13] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase (Cdk) enzymes are activated for entry into the S phase of the cell cycle. Elimination of Cdk inhibitor protein p27Kip1 during the G1 to S phase is required for the activation process. An inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase prevents its elimination and leads to G1 arrest. Mevalonate and its metabolite, geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate, restore the inhibitory effect of pravastatin on the degradation of p27 and allow Cdk2 activation. By the addition of geranylgeranyl pyrophosphate, Rho small GTPase(s) are geranylgeranylated and translocated to membranes during G1/S progression. The restoring effect of geranylgeranyl pyrophosphate is abolished with botulinum C3 exoenzyme, which specifically inactivates Rho. These results indicate (i) among mevalonate metabolites, geranylgeranyl pyrophosphate is absolutely required for the elimination of p27 followed by Cdk2 activation; (ii) geranylgeranylated Rho small GTPase(s) promote the degradation of p27 during G1/S transition in FRTL-5 cells.
Collapse
Affiliation(s)
- A Hirai
- Second Department of Internal Medicine, Chiba University Medical School, Inohana-cho, Chuou-ku, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lin JH, Zhu Y, Liao HL, Kobari Y, Groszek L, Stemerman MB. Induction of vascular cell adhesion molecule-1 by low-density lipoprotein. Atherosclerosis 1996; 127:185-94. [PMID: 9125308 DOI: 10.1016/s0021-9150(96)05951-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Low-density lipoprotein (LDL) is a well-established risk factor for atherosclerosis. When endothelial cells are incubated with this lipoprotein in pathophysiologic amounts, the cells are activated. Among the documented cellular responses to LDL is increased recruitment of monocytes, which are believed to play a major role in promoting intimal plaque formation. The findings presented here link an atheogenic lipoprotein, LDL, with the induction of an adhesion molecule important in atherogenesis Human LDL induces the vascular cell adhesion molecule-1 (VCAM-1) transcriptionally with an increase in mRNA levels through activation of the VCAM promoter. This effect is blocked by anti-VCAM antibodies. After a 2-day incubation in LDL, the binding of NF-kappa B, which is believed to be a key oxidative-stress sensor for VCAM regulation, remains at basal level. In contrast, the binding activities of AP-1 and GATA, on the other hand, are increased by LDL. Thus, a component of LDL-enhanced endothelial recruitment of monocytes is attributed to VCAM-1 expression, which appears to be mediated through AP-1 and GATA. These data identify LDL as a VCAM-inducer possibly distinct from cytokines and endotoxin.
Collapse
Affiliation(s)
- J H Lin
- Department of Pathology, New York Medical College, Valhalla 10595, USA
| | | | | | | | | | | |
Collapse
|
27
|
Welch CL, Xia YR, Billheimer JT, Strauss 3rd JF, Lusis AJ. Assignment of the mouse sterol carrier protein gene (Scp2) to chromosome 4. Mamm Genome 1996; 7:624-5. [PMID: 8678992 DOI: 10.1007/s003359900188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- C L Welch
- Department of Medicine, 47-123 Center for the Health Sciences, University of California, Los Angeles, California 90095-1679, USA
| | | | | | | | | |
Collapse
|
28
|
Puglielli L, Rigotti A, Amigo L, Nuñez L, Greco AV, Santos MJ, Nervi F. Modulation of intrahepatic cholesterol trafficking: evidence by in vivo antisense treatment for the involvement of sterol carrier protein-2 in newly synthesized cholesterol transport into rat bile. Biochem J 1996; 317 ( Pt 3):681-7. [PMID: 8760350 PMCID: PMC1217540 DOI: 10.1042/bj3170681] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Biliary cholesterol represents one of the two major excretory pathways for sterol elimination from the body and plays a central role in cholesterol gallstone formation. Biliary cholesterol originates from a precursor pool of preformed and newly synthesized free cholesterol. Although it has been suggested that newly synthesized and preformed biliary cholesterol are secreted by independent pathways, the specific cellular and molecular mechanisms are unknown. We used male Wistar rats to study the time-course of the appearance of newly synthesized cholesterol, phosphatidylcholine and protein into bile. The specific role of sterol carrier protein-2 (SCP-2) in the transport of newly synthesized biliary cholesterol was evaluated by an in vivo antisense oligonucleotide approach. In contrast to [14C]phosphatidylcholine and [35S]proteins, the time-course of [14C]cholesterol appearance into bile was rapid, and microtubule- and Golgi-independent. In vivo SCP-2 antisense treatment reduced and delayed the appearance of biliary [14C]cholesterol. Furthermore, hepatic SCP-2 expression increased more than 3-fold over control values in rats that had been treated with diosgenin to increase biliary secretion of newly synthesized cholesterol. These results suggest that SCP-2 is necessary for the rapid transport of newly synthesized cholesterol into bile and that hepatocytes can induce SCP-2 expression according to the rate of biliary secretion of newly synthesized cholesterol.
Collapse
Affiliation(s)
- L Puglielli
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
29
|
Moncecchi D, Murphy EJ, Prows DR, Schroeder F. Sterol carrier protein-2 expression in mouse L-cell fibroblasts alters cholesterol uptake. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1302:110-6. [PMID: 8695660 DOI: 10.1016/0005-2760(96)00044-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite the progress made on the possible functions of sterol carrier protein (SCP-2) using assays in vitro, very little is known regarding the role of SCP-2 in intact cells. To further elucidate this role, mouse L-cell fibroblasts were transfected with cDNA encoding for mouse 15 kDa or 13.2 kDa SCP-2. The data show for the first time, that SCP-2 expression increases cholesterol uptake into transfected L-cell fibroblasts. Untransfected L-cells expressed SCP-2 at levels near or below the lower limit of detectability. SCP-2 immunoreactive protein levels were 0.030 +/- 0.004% and 0.036 +/- 0.002% of total cytosolic proteins in the 15 and 13.2 kDa stable transfectants, respectively. Both the 15 and 13.2 kDa SCP-2 expressions products were found as 13.2 kDa proteins, consistent with rapid post-translational cleavage of the putative amino terminal mitochondrial targeting sequence from the 15 kDa SCP-2. The effect of expressing either form of SCP-2 on [3H]cholesterol uptake was determined. Expression of the 15 kDa form, but not the 13.2 kDa form of SCP-2, enhanced the rate and extent of [3H]cholesterol uptake compared to control or mock-transfected L-cells. The [3H]cholesterol uptake rate in 15 kDa SCP-2 expressing cells was increased 1.3-fold, while the extent of [3H]cholesterol uptake was increased 1.4-fold after 12 h of uptake compared to control L-cells. The differences in cholesterol uptake between the cells expressing the 13.2 versus the 15 kDa protein, suggest that the 15 kDa form of SCP-2 is functionally localized within the cell, while the 13.2 kDa product is not.
Collapse
Affiliation(s)
- D Moncecchi
- Division of Pharmacology and Medicinal Chemistry, University of Cincinnati, College of Pharmacy, OH 45267-0004, USA
| | | | | | | |
Collapse
|
30
|
Kraemer R, Pomerantz K, Kesav S, Scallen T, Hajjar D. Cholesterol enrichment enhances expression of sterol-carrier protein-2: implications for its function in intracellular cholesterol trafficking. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41099-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|