1
|
Rare Inherited Cholestatic Disorders and Molecular Links to Hepatocarcinogenesis. Cells 2022; 11:cells11162570. [PMID: 36010647 PMCID: PMC9406938 DOI: 10.3390/cells11162570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer affecting adults and the second most common primary liver cancer affecting children. Recent years have seen a significant increase in our understanding of the molecular changes associated with HCC. However, HCC is a complex disease, and its molecular pathogenesis, which likely varies by aetiology, remains to be fully elucidated. Interestingly, some inherited cholestatic disorders that manifest in childhood are associated with early HCC development. This review will thus explore how three genes that are associated with liver disease in childhood (ABCB11, TJP2 and VPS33B) might play a role in the initiation and progression of HCC. Specifically, chronic bile-induced damage (caused by ABCB11 changes), disruption of intercellular junction formation (caused by TJP2 changes) and loss of normal apical–basal cell polarity (caused by VPS33B changes) will be discussed as possible mechanisms for HCC development.
Collapse
|
2
|
Ooshio T, Yamamoto M, Fujii K, Xin B, Watanabe K, Goto M, Okada Y, Suzuki A, Penninger JM, Nishina H, Nishikawa Y. Hepatocyte Mitogen-Activated Protein Kinase Kinase 7 Contributes to Restoration of the Liver Parenchyma Following Injury in Mice. Hepatology 2021; 73:2510-2526. [PMID: 32969030 PMCID: PMC8252741 DOI: 10.1002/hep.31565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIMS Mitogen-activated protein kinase kinase (MKK) 7 and MKK4 are upstream activators of c-Jun NH2 -terminal kinases (JNKs) and have been shown to be required for the early development of the liver. Although it has been suggested that MKK7 might be involved in the regulation of hepatocyte proliferation, the functional role of MKK7 in the liver has remained unclear. APPROACH AND RESULTS Here, we examined phenotypic alterations in liver-specific or hepatocyte/hematopoietic cell-specific MKK7 knockout (KO) mice, which were generated by crossing MKK7LoxP/LoxP with albumin-cyclization recombination (Alb-Cre) or myxovirus resistance protein 1-Cre mice, respectively. The livers of Alb-Cre-/+ MKK7LoxP/LoxP mice developed without discernible tissue disorganization. MKK7 KO mice responded normally to liver injuries incurred by partial hepatectomy or injection of CCl4 . However, tissue repair following CCl4 -induced injury was delayed in MKK7 KO mice compared with that of control mice. Furthermore, after repeated injections of CCl4 for 8 weeks, the liver in MKK7 KO mice showed intense fibrosis with increased protractive hepatocyte proliferation, suggesting that MKK7 deficiency might affect regenerative responses of hepatocytes in the altered tissue microenvironment. MKK7 KO hepatocytes demonstrated normal proliferative activity when cultured in monolayers. However, MKK7 KO significantly suppressed branching morphogenesis of hepatocyte aggregates within a collagen gel matrix. Microarray analyses revealed that suppression of branching morphogenesis in MKK7 KO hepatocytes was associated with a reduction in mRNA expression of transgelin, glioma pathogenesis related 2, and plasminogen activator urokinase-type (Plau); and forced expression of these genes in MKK7 KO hepatocytes partially recovered the attenuated morphogenesis. Furthermore, hepatocyte-specific overexpression of Plau rescued the impaired tissue repair of MKK7 KO mice following CCl4 -induced injury. CONCLUSIONS MKK7 is dispensable for the regenerative proliferation of hepatocytes but plays important roles in repair processes following parenchymal destruction, possibly through modulation of hepatocyte-extracellular matrix interactions.
Collapse
Affiliation(s)
- Takako Ooshio
- Division of Tumor PathologyDepartment of PathologyAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| | - Masahiro Yamamoto
- Division of Tumor PathologyDepartment of PathologyAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| | - Kiyonaga Fujii
- Division of Tumor PathologyDepartment of PathologyAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| | - Bing Xin
- Division of Tumor PathologyDepartment of PathologyAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| | - Kenji Watanabe
- Division of Tumor PathologyDepartment of PathologyAsahikawa Medical UniversityAsahikawaHokkaidoJapan,Division of Gastroenterological and General SurgeryDepartment of SurgeryAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| | - Masanori Goto
- Division of Tumor PathologyDepartment of PathologyAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| | - Yoko Okada
- Division of Tumor PathologyDepartment of PathologyAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| | - Akira Suzuki
- Division of Molecular and Cellular BiologyKobe University Graduate School of MedicineKobeHyogoJapan
| | - Josef M. Penninger
- Department of Medical GeneticsLife Sciences InstituteUniversity of British ColumbiaVancouverBCCanada,Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Hiroshi Nishina
- Department of Developmental and Regenerative BiologyMedical Research InstituteTokyo Medical and Dental UniversityBunkyo‐ku, TokyoJapan
| | - Yuji Nishikawa
- Division of Tumor PathologyDepartment of PathologyAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| |
Collapse
|
3
|
Chembazhi UV, Bangru S, Hernaez M, Kalsotra A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Res 2021; 31:576-591. [PMID: 33649154 DOI: 10.1101/2020.05.29.124263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/02/2021] [Indexed: 05/24/2023]
Abstract
The adult liver has an exceptional ability to regenerate, but how it maintains its specialized functions during regeneration is unclear. Here, we used partial hepatectomy (PHx) in tandem with single-cell transcriptomics to track cellular transitions and heterogeneities of ∼22,000 liver cells through the initiation, progression, and termination phases of mouse liver regeneration. Our results uncovered that, following PHx, a subset of hepatocytes transiently reactivates an early-postnatal-like gene expression program to proliferate, while a distinct population of metabolically hyperactive cells appears to compensate for any temporary deficits in liver function. Cumulative EdU labeling and immunostaining of metabolic, portal, and central vein-specific markers revealed that hepatocyte proliferation after PHx initiates in the midlobular region before proceeding toward the periportal and pericentral areas. We further demonstrate that portal and central vein proximal hepatocytes retain their metabolically active state to preserve essential liver functions while midlobular cells proliferate nearby. Through combined analysis of gene regulatory networks and cell-cell interaction maps, we found that regenerating hepatocytes redeploy key developmental regulons, which are guided by extensive ligand-receptor-mediated signaling events between hepatocytes and nonparenchymal cells. Altogether, our study offers a detailed blueprint of the intercellular crosstalk and cellular reprogramming that balances the metabolic and proliferative requirements of a regenerating liver.
Collapse
Affiliation(s)
- Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
- Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA
| | - Mikel Hernaez
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008 Navarra, Spain
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
- Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
4
|
Chembazhi UV, Bangru S, Hernaez M, Kalsotra A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Res 2021; 31:576-591. [PMID: 33649154 PMCID: PMC8015853 DOI: 10.1101/gr.267013.120] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
The adult liver has an exceptional ability to regenerate, but how it maintains its specialized functions during regeneration is unclear. Here, we used partial hepatectomy (PHx) in tandem with single-cell transcriptomics to track cellular transitions and heterogeneities of ∼22,000 liver cells through the initiation, progression, and termination phases of mouse liver regeneration. Our results uncovered that, following PHx, a subset of hepatocytes transiently reactivates an early-postnatal-like gene expression program to proliferate, while a distinct population of metabolically hyperactive cells appears to compensate for any temporary deficits in liver function. Cumulative EdU labeling and immunostaining of metabolic, portal, and central vein-specific markers revealed that hepatocyte proliferation after PHx initiates in the midlobular region before proceeding toward the periportal and pericentral areas. We further demonstrate that portal and central vein proximal hepatocytes retain their metabolically active state to preserve essential liver functions while midlobular cells proliferate nearby. Through combined analysis of gene regulatory networks and cell-cell interaction maps, we found that regenerating hepatocytes redeploy key developmental regulons, which are guided by extensive ligand-receptor-mediated signaling events between hepatocytes and nonparenchymal cells. Altogether, our study offers a detailed blueprint of the intercellular crosstalk and cellular reprogramming that balances the metabolic and proliferative requirements of a regenerating liver.
Collapse
Affiliation(s)
- Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA.,Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA
| | - Mikel Hernaez
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA.,Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008 Navarra, Spain
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA.,Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
5
|
Bhat M, Pasini E, Baciu C, Angeli M, Humar A, Macparland S, Feld J, McGilvray I. The basis of liver regeneration: A systems biology approach. Ann Hepatol 2020; 18:422-428. [PMID: 31047847 DOI: 10.1016/j.aohep.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/18/2018] [Accepted: 07/01/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Liver regeneration is a normal response to liver injury. The aim of this study was to determine the molecular basis of liver regeneration, through an integrative analysis of high-throughput gene expression datasets. METHODS We identified and curated datasets pertaining to liver regeneration from the Gene Expression Omnibus, where regenerating liver tissue was compared to healthy liver samples. The key dysregulated genes and pathways were identified using Ingenuity Pathway Analysis software. There were three eligible datasets in total. RESULTS In the early phase after hepatectomy, inflammatory pathways such as Nrf2 oxidative stress-mediated response and cytokine signaling were significantly upregulated. At peak regeneration, we discovered that cell cycle genes were predominantly expressed to promote cell proliferation. Using the Betweenness centrality algorithm, we discovered that Jun is the key central gene in liver regeneration. Calcineurin inhibitors may inhibit liver regeneration, based on predictive modeling. CONCLUSION There is a paucity of human literature in defining the molecular mechanisms of liver regeneration along a time continuum. Nonetheless, using an integrative computational analysis approach to the available high-throughput data, we determine that the oxidative stress response and cytokine signaling are key early after hepatectomy, whereas cell cycle control is important at peak regeneration. The transcription factor Jun is central to liver regeneration and a potential therapeutic target. Future studies of regeneration in humans along a time continuum are needed to better define the underlying mechanisms, and ultimately enhance care of patients with acute and chronic liver failure while awaiting transplant.
Collapse
Affiliation(s)
- Mamatha Bhat
- Multi Organ Transplant Program, University Health Network, Toronto, Canada; Division of Gastroenterology and Hepatology, University Health Network and University of Toronto, Toronto, Canada.
| | - Elisa Pasini
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Cristina Baciu
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Marc Angeli
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Atul Humar
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Sonya Macparland
- Multi Organ Transplant Program, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Jordan Feld
- Division of Gastroenterology and Hepatology, University Health Network and University of Toronto, Toronto, Canada; Toronto Centre for Liver Disease, University of Toronto, Ontario, Canada
| | - Ian McGilvray
- Multi Organ Transplant Program, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| |
Collapse
|
6
|
Yiqi Huoxue Recipe Improves Liver Regeneration in Rats after Partial Hepatectomy via JNK Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9085801. [PMID: 32419833 PMCID: PMC7201470 DOI: 10.1155/2020/9085801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022]
Abstract
The liver is the only visceral organ that exhibits a remarkable capability of regenerating in response to partial hepatectomy (PH) or chemical injury. Improving liver regeneration (LR) ability is the basis for the favourable treatment outcome of patients after PH, which can serve as a potential indicator for postoperative survival. The present study aimed to investigate the protective effects of Yiqi Huoxue recipe (YQHX) on LR after PH in rats and further elucidate its underlying mechanism. A two-thirds PH rat model was used in this study. Wistar rats were randomly divided into four groups: sham-operated, PH, YQHX + PH, and Fuzheng Huayu decoction (FZHY) + PH groups. All rats were sacrificed under anesthesia at 24 and 72 h after surgery. The rates of LR were calculated, and the expression levels of cyclin D1 and c-jun were determined by immunohistochemical staining. The protein levels of p-JNK1/2, JNK1/2, p-c-jun, c-jun, Bax, and Bcl-2 were detected by Western blotting, while the mRNA levels of JNK1, JNK2, c-jun, Bax, and Bcl-2 were examined by real-time polymerase chain reaction (RT-PCR). At the corresponding time points, YQHX and FZHY administration dramatically induced the protein levels of p-JNK1/2 compared to the PH group (p < 0.05), while FZHY + PH group showed prominently increase in p-JNK1/2 protein levels compared to the YQHX + PH group (p < 0.05). A similar trend was observed for the expression levels of p-c-jun. Compared to the PH group, YQHX and FZHY markedly reduced the mRNA and protein expression levels of Bax at 24 h after PH, while those in the FZHY + PH group decreased more obviously (p < 0.05). Besides, in comparison with the PH group, YQHX and FZHY administration predominantly upregulated the mRNA and protein expression levels of Bcl-2 at 24 and 72 h after PH (p < 0.05). In conclusion, YQHX improves LR in rats after PH by inhibiting hepatocyte apoptosis via the JNK signaling pathway.
Collapse
|
7
|
Crosstalk between NLRP12 and JNK during Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21020496. [PMID: 31941025 PMCID: PMC7013925 DOI: 10.3390/ijms21020496] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a leading cause of cancer-related death, is initiated and promoted by chronic inflammation. Inflammatory mediators are transcriptionally regulated by several inflammatory signaling pathways, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). cJun N-terminal kinase (JNK), a member of the MAPK family, plays a central role in HCC pathogenesis. Pathogen-associated molecular patterns (PAMPs) activate JNK and other MAPK upon recognition by toll-like receptors (TLRs). Apart from TLRs, PAMPs are sensed by several other pattern recognition receptors, including cytosolic NOD-like receptors (NLRs). In a recent study, we demonstrated that the NLR member NLRP12 plays a critical role in suppressing HCC via negative regulation of the JNK pathway. This article briefly reviews the crosstalk between NLRP12 and JNK that occurs during HCC.
Collapse
|
8
|
Jiménez-Castro MB, Cornide-Petronio ME, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Mitogen Activated Protein Kinases in Steatotic and Non-Steatotic Livers Submitted to Ischemia-Reperfusion. Int J Mol Sci 2019; 20:1785. [PMID: 30974915 PMCID: PMC6479363 DOI: 10.3390/ijms20071785] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
: We analyzed the participation of mitogen-activated protein kinases (MAPKs), namely p38, JNK and ERK 1/2 in steatotic and non-steatotic livers undergoing ischemia-reperfusion (I-R), an unresolved problem in clinical practice. Hepatic steatosis is a major risk factor in liver surgery because these types of liver tolerate poorly to I-R injury. Also, a further increase in the prevalence of steatosis in liver surgery is to be expected. The possible therapies based on MAPK regulation aimed at reducing hepatic I-R injury will be discussed. Moreover, we reviewed the relevance of MAPK in ischemic preconditioning (PC) and evaluated whether MAPK regulators could mimic its benefits. Clinical studies indicated that this surgical strategy could be appropriate for liver surgery in both steatotic and non-steatotic livers undergoing I-R. The data presented herein suggest that further investigations are required to elucidate more extensively the mechanisms by which these kinases work in hepatic I-R. Also, further researchers based in the development of drugs that regulate MAPKs selectively are required before such approaches can be translated into clinical liver surgery.
Collapse
Affiliation(s)
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 08036 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain.
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Vitoria, Ciudad Victoria 87087, Mexico.
- Facultad de Medicina e ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, México.
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona 08036, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain.
| |
Collapse
|
9
|
Langiewicz M, Graf R, Humar B, Clavien PA. JNK1 induces hedgehog signaling from stellate cells to accelerate liver regeneration in mice. J Hepatol 2018; 69:666-675. [PMID: 29709677 DOI: 10.1016/j.jhep.2018.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS To improve outcomes of two-staged hepatectomies for large/multiple liver tumors, portal vein ligation (PVL) has been combined with parenchymal transection (associating liver partition and portal vein ligation for staged hepatectomy [coined ALPPS]) to greatly accelerate liver regeneration. In a novel ALPPS mouse model, we have reported paracrine Indian hedgehog (IHH) signaling from stellate cells as an early contributor to augmented regeneration. Here, we sought to identify upstream regulators of IHH. METHODS ALPPS in mice was compared against PVL and additional control surgeries. Potential IHH regulators were identified through in silico mining of transcriptomic data. c-Jun N-terminal kinase (JNK1 [Mapk8]) activity was reduced through SP600125 to evaluate its effects on IHH signaling. Recombinant IHH was injected after JNK1 diminution to substantiate their relationship during accelerated liver regeneration. RESULTS Transcriptomic analysis linked Ihh to Mapk8. JNK1 upregulation after ALPPS was validated and preceded the IHH peak. On immunofluorescence, JNK1 and IHH co-localized in alpha-smooth muscle actin-positive non-parenchymal cells. Inhibition of JNK1 prior to ALPPS surgery reduced liver weight gain to PVL levels and was accompanied by downregulation of hepatocellular proliferation and the IHH-GLI1-CCND1 axis. In JNK1-inhibited mice, recombinant IHH restored ALPPS-like acceleration of regeneration and re-elevated JNK1 activity, suggesting the presence of a positive IHH-JNK1 feedback loop. CONCLUSIONS JNK1-mediated induction of IHH paracrine signaling from hepatic stellate cells is essential for accelerated regeneration of parenchymal mass. The JNK1-IHH axis is a mechanism unique to ALPPS surgery and may point to therapeutic alternatives for patients with insufficient regenerative capacity. LAY SUMMARY Associating liver partition and portal vein ligation for staged hepatectomy (so called ALPPS), is a new two-staged approach to hepatectomy, which induces an unprecedented acceleration of liver regeneration, enabling treatment of patients with liver tumors that would otherwise be considered unresectable. Herein, we demonstrate that JNK1-IHH signaling from stellate cells is a key mechanism underlying the regenerative acceleration that is induced by ALPPS.
Collapse
Affiliation(s)
- Magda Langiewicz
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zurich, Raemistrasse 100, Zurich CH-8091, Switzerland
| | - Rolf Graf
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zurich, Raemistrasse 100, Zurich CH-8091, Switzerland
| | - Bostjan Humar
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zurich, Raemistrasse 100, Zurich CH-8091, Switzerland.
| | - Pierre A Clavien
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zurich, Raemistrasse 100, Zurich CH-8091, Switzerland.
| |
Collapse
|
10
|
Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab 2016; 6:174-184. [PMID: 28180059 PMCID: PMC5279903 DOI: 10.1016/j.molmet.2016.12.001] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The cJun-N-terminal-kinase (JNK) plays a central role in the cell stress response, with outcomes ranging from cell death to cell proliferation and survival, depending on the specific context. JNK is also one of the most investigated signal transducers in obesity and insulin resistance, and studies have identified new molecular mechanisms linking obesity and insulin resistance. Emerging evidence indicates that whereas JNK1 and JNK2 isoforms promote the development of obesity and insulin resistance, JNK3 activity protects from excessive adiposity. Furthermore, current evidence indicates that JNK activity within specific cell types may, in specific stages of disease progression, promote cell tolerance to the stress associated with obesity and type-2 diabetes. SCOPE OF REVIEW This review provides an overview of the current literature on the role of JNK in the progression from obesity to insulin resistance, NAFLD, type-2 diabetes, and diabetes complications. MAJOR CONCLUSION Whereas current evidence indicates that JNK1/2 inhibition may improve insulin sensitivity in obesity, the role of JNK in the progression from insulin resistance to diabetes, and its complications is largely unresolved. A better understanding of the role of JNK in the stress response to obesity and type-2 diabetes, and the development of isoform-specific inhibitors with specific tissue distribution will be necessary to exploit JNK as possible drug target for the treatment of type-2 diabetes.
Collapse
Affiliation(s)
- Giovanni Solinas
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden.
| | - Barbara Becattini
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
11
|
Ramakrishna G, Sen B, Trehanpati N, Sarin SK. Repurposing of metformin in liver injury: The JNK conundrum. J Hepatol 2016; 64:749-50. [PMID: 26264935 DOI: 10.1016/j.jhep.2015.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 12/04/2022]
Affiliation(s)
- Gayatri Ramakrishna
- Department of Research, Institute of Liver and Biliary Sciences, D1 Block, Vasant Kunj, New Delhi 110070, India.
| | - Bijoya Sen
- Department of Research, Institute of Liver and Biliary Sciences, D1 Block, Vasant Kunj, New Delhi 110070, India
| | - Nirupma Trehanpati
- Department of Research, Institute of Liver and Biliary Sciences, D1 Block, Vasant Kunj, New Delhi 110070, India
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, D1 Block, Vasant Kunj, New Delhi 110070, India
| |
Collapse
|
12
|
Kim YH, Hwang JH, Noh JR, Lee CH. Reply to "Repurposing of metformin in liver injury: The JNK conundrum". J Hepatol 2016; 64:750-2. [PMID: 26551514 DOI: 10.1016/j.jhep.2015.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 12/04/2022]
Affiliation(s)
- Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Yuseong-gu, Daejeon 305-806, South Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Yuseong-gu, Daejeon 305-806, South Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Yuseong-gu, Daejeon 305-806, South Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Yuseong-gu, Daejeon 305-806, South Korea.
| |
Collapse
|
13
|
Schaefer FM, Peng J, Hu W, Drvarov O, Nevzorova YA, Zhao G, Masaoudi MA, Davis RJ, Trautwein C, Cubero FJ. Bone marrow-derived c-jun N-terminal kinase-1 (JNK1) mediates liver regeneration. Biochim Biophys Acta Mol Basis Dis 2015; 1852:137-45. [DOI: 10.1016/j.bbadis.2014.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/24/2023]
|
14
|
Zhang J, Ma C, Liu Y, Yang G, Jiang Y, Xu C. Interleukin 18 accelerates the hepatic cell proliferation in rat liver regeneration after partial hepatectomy. Gene 2014; 537:230-7. [DOI: 10.1016/j.gene.2013.12.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022]
|
15
|
Abstract
Regeneration is a process by which organisms replace damaged or amputated organs to restore normal body parts. Regeneration of many tissues or organs requires proliferation of stem cells or stem cell-like blastema cells. This regenerative growth is often initiated by cell death pathways induced by damage. The executors of regenerative growth are a group of growth-promoting signaling pathways, including JAK/STAT, EGFR, Hippo/YAP, and Wnt/β-catenin. These pathways are also essential to developmental growth, but in regeneration, they are activated in distinct ways and often at higher strengths, under the regulation by certain stress-responsive signaling pathways, including JNK signaling. Growth suppressors are important in termination of regeneration to prevent unlimited growth and also contribute to the loss of regenerative capacity in nonregenerative organs. Here, we review cellular and molecular growth regulation mechanisms induced by organ damage in several models with different regenerative capacities.
Collapse
Affiliation(s)
- Gongping Sun
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
16
|
Guo Y, Wang W, Wang J, Feng J, Wang Q, Jin J, Lv M, Li X, Li Y, Ma Y, Shen B, Zhang J. Receptor for activated C kinase 1 promotes hepatocellular carcinoma growth by enhancing mitogen-activated protein kinase kinase 7 activity. Hepatology 2013; 57:140-51. [PMID: 22903704 DOI: 10.1002/hep.25978] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 07/13/2012] [Indexed: 01/09/2023]
Abstract
UNLABELLED c-Jun N-terminal protein kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) superfamily. The activation of JNK is mediated by sequential protein phosphorylation through a MAPK module, namely, MAPK kinase kinase (MAP3K or MEKK) → MAPK kinase (MAP2K or MKK) → MAPK. Elevated levels of JNK activity have been frequently observed in hepatocellular carcinoma (HCC) and have been demonstrated to contribute to HCC growth by promoting HCC cell proliferation and resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)- or Fas-mediated apoptosis. Chronic inflammation contributes to the up-regulation of JNK activity in HCC. However, it remains unknown whether aberrant JNK activity also results from some cell intrinsic defect(s). Here, we show that receptor for activated C kinase 1 (RACK1), an adaptor protein implicated in the regulation of multiple signaling pathways, could engage in a direct interaction with MKK7, the JNK-specific MAP2K, in human HCC cells. Levels of RACK1 protein show correlation with the activity of the JNK pathway in human HCC tissues and cell lines. RACK1 loss-of-function or gain-of-function analyses indicate that RACK1 enhances MKK7/JNK activity in human HCC cells. Further exploration reveals that the interaction of RACK1 with MKK7 is required for the enhancement of MKK7/JNK activity by RACK1. RACK1/MKK7 interaction facilitates the association of MKK7 with MAP3Ks, thereby enhancing MKK7 activity and promoting in vitro HCC cell proliferation and resistance to TRAIL- or Fas-mediated apoptosis as well as in vivo tumor growth. CONCLUSION Overexpressed RACK1 augments JNK activity and thereby promotes HCC growth through directly binding to MKK7 and enhancing MKK7 activity.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Seki E, Brenner DA, Karin M. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology 2012; 143:307-20. [PMID: 22705006 PMCID: PMC3523093 DOI: 10.1053/j.gastro.2012.06.004] [Citation(s) in RCA: 389] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/05/2012] [Accepted: 06/11/2012] [Indexed: 02/08/2023]
Abstract
c-Jun-N-terminal kinase (JNK) is a mitogen-activated protein kinase family member that is activated by diverse stimuli, including cytokines (such as tumor necrosis factor and interleukin-1), reactive oxygen species (ROS), pathogens, toxins, drugs, endoplasmic reticulum stress, free fatty acids, and metabolic changes. Upon activation, JNK induces multiple biologic events through the transcription factor activator protein-1 and transcription-independent control of effector molecules. JNK isozymes regulate cell death and survival, differentiation, proliferation, ROS accumulation, metabolism, insulin signaling, and carcinogenesis in the liver. The biologic functions of JNK are isoform, cell type, and context dependent. Recent studies using genetically engineered mice showed that loss or hyperactivation of the JNK pathway contributes to the development of inflammation, fibrosis, cancer growth, and metabolic diseases that include obesity, hepatic steatosis, and insulin resistance. We review the functions and pathways of JNK in liver physiology and pathology and discuss findings from preclinical studies with JNK inhibitors.
Collapse
Affiliation(s)
- Ekihiro Seki
- Department of Medicine, University of California, La Jolla, CA, USA.
| | - David A. Brenner
- Department of Medicine, Division of Gastroenterology, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| |
Collapse
|
18
|
Seki T, Yokoyama Y, Nagasaki H, Kokuryo T, Nagino M. Adipose tissue-derived mesenchymal stem cell transplantation promotes hepatic regeneration after hepatic ischemia-reperfusion and subsequent hepatectomy in rats. J Surg Res 2012; 178:63-70. [PMID: 22482751 DOI: 10.1016/j.jss.2012.02.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 01/13/2012] [Accepted: 02/07/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Adipose tissue-derived mesenchymal stem cells (ADSCs) are an attractive source for regenerative medicine because they are easily accessible through minimally invasive methods. We investigated the efficacy of ADSC transplantation on outcome after hepatic ischemia-reperfusion and subsequent hepatectomy in rats. METHODS ADSCs were isolated from subcutaneous adipose tissue of rats. After clamping the hepatoduodenal ligament for 15 min, the rats were subjected to a 70% partial hepatectomy. After releasing the clamp, 2 × 10(6) ADSCs per rat were injected through the penile vein. Phosphate buffered saline was injected as a control. The parameters of hepatic regeneration, such as hepatic regeneration rate, mitotic index, and anti-proliferating cell nuclear antigen levels, were examined. Furthermore, the expression of hepatic regeneration-associated proteins and genes in the regenerating liver was determined. RESULTS The hepatic regeneration rate 2 d after hepatectomy was significantly greater in the ADSC transplanted group compared with the sham group. Mitotic index, anti-proliferating cell nuclear antigen levels, and other regeneration-associated proteins in the liver were significantly higher in the ADSC transplanted group than the sham group on 1 d after hepatectomy. A number of hepatic regeneration-associated genes also were significantly upregulated in the ADSC transplanted group. CONCLUSIONS These results indicate that ADSC transplantation may provide beneficial effects in the process of liver regeneration after hepatic ischemia-reperfusion and subsequent hepatectomy.
Collapse
Affiliation(s)
- Takashi Seki
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | |
Collapse
|
19
|
Reinehr R, Häussinger D. CD95 death receptor and epidermal growth factor receptor (EGFR) in liver cell apoptosis and regeneration. Arch Biochem Biophys 2011; 518:2-7. [PMID: 22182753 DOI: 10.1016/j.abb.2011.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 11/29/2011] [Accepted: 12/04/2011] [Indexed: 02/08/2023]
Abstract
Recent evidence suggests that signaling pathways towards cell proliferation and cell death are much more interconnected than previously thought. Whereas not only death receptors such as CD95 (Fas, APO-1) can couple to both, cell death and proliferation, also growth factor receptors such as the epidermal growth factor receptor (EGFR) are involved in these opposing kinds of cell fate. EGFR is briefly discussed as a growth factor receptor involved in liver cell proliferation during liver regeneration. Then the role of EGFR in activating CD95 death receptor in liver parenchymal cells (PC) and hepatic stellate cells (HSC), which represent a liver stem/progenitor cell compartment, is described summarizing different ways of CD95- and EGFR-dependent signaling in the liver. Here, depending on the hepatic cell type (PC vs. HSC) and the respective signaling context (sustained vs. transient JNK activation) CD95-/EGFR-mediated signaling ends up in either liver cell apoptosis or cell proliferation.
Collapse
Affiliation(s)
- Roland Reinehr
- Heinrich-Heine-University Düsseldorf, Clinic for Gastroenterology, Hepatology and Infectious Diseases, Germany.
| | | |
Collapse
|
20
|
Iannelli A, de Sousa G, Zucchini N, Saint-Paul MC, Gugenheim J, Rahmani R. Anti-Apoptotic Pro-Survival Effect of Clotrimazole in a Normothermic Ischemia Reperfusion Injury Animal Model. J Surg Res 2011; 171:101-7. [DOI: 10.1016/j.jss.2010.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 02/19/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
21
|
Plant polyphenols attenuate hepatic injury after hemorrhage/resuscitation by inhibition of apoptosis, oxidative stress, and inflammation via NF-kappaB in rats. Eur J Nutr 2011; 51:311-21. [PMID: 21698494 DOI: 10.1007/s00394-011-0216-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/01/2011] [Indexed: 01/04/2023]
Abstract
PURPOSE Oxidative stress and inflammation contribute to hepatic injury after hemorrhage/resuscitation (H/R). Natural plant polyphenols, i.e., green tea extract (GTE) possess high anti-oxidant and anti-inflammatory activities in various models of acute inflammation. However, possible protective effects and feasible mechanisms by which plant polyphenols modulate pro-inflammatory, apoptotic, and oxidant signaling after H/R in the liver remain unknown. Therefore, we investigated the effects of GTE and its impact on the activation of NF-kappaB in the pathogenesis of hepatic injury induced by H/R. METHODS Twenty-four female LEWIS rats (180-250 g) were fed a standard chow (ctrl) or a diet containing 0.1% polyphenolic extracts (GTE) from Camellia sinensis starting 5 days before H/R. Rats were hemorrhaged to a mean arterial pressure of 30 ± 2 mmHg for 60 min and resuscitated (H/R and GTE H/R groups). Control groups (sham, ctrl, and GTE) underwent surgical procedures without H/R. Two hours after resuscitation, tissues were harvested. RESULTS Plasma alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) increased 3.5-fold and fourfold, respectively, in vehicle-treated rats as compared to GTE-fed rats. Histopathological analysis revealed significantly decreased hepatic necrosis and apoptosis in GTE-fed rats after H/R. Real-time PCR showed that GTE diminished gene expression of pro-apoptotic caspase-8 and Bax, while anti-apoptotic Bcl-2 was increased after H/R. Hepatic oxidative (4-hydroxynonenal) and nitrosative (3-nitrotyrosine) stress as well as systemic IL-6 level and hepatic IL-6 mRNA were markedly reduced in GTE-fed rats compared with controls after H/R. Plant polyphenols also decreased the activation of both JNK and NFκB. CONCLUSIONS Taken together, GTE application blunts hepatic damage, apoptotic, oxidative, and pro-inflammatory changes after H/R. These results underline the important roles of JNK and NF-kappaB in inflammatory processes after H/R and the beneficial impact of plant polyphenols in preventing their activation.
Collapse
|
22
|
Das M, Garlick DS, Greiner DL, Davis RJ. The role of JNK in the development of hepatocellular carcinoma. Genes Dev 2011; 25:634-45. [PMID: 21406557 DOI: 10.1101/gad.1989311] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cJun NH(2)-terminal kinase (JNK) signal transduction pathway has been implicated in the growth of carcinogen-induced hepatocellular carcinoma. However, the mechanism that accounts for JNK-regulated tumor growth is unclear. Here we demonstrate that compound deficiency of the two ubiquitously expressed JNK isoforms (JNK1 and JNK2) in hepatocytes does not prevent hepatocellular carcinoma development. Indeed, JNK deficiency in hepatocytes increased the tumor burden. In contrast, compound JNK deficiency in hepatocytes and nonparenchymal cells reduced both hepatic inflammation and tumorigenesis. These data indicate that JNK plays a dual role in the development of hepatocellular carcinoma. JNK promotes an inflammatory hepatic environment that supports tumor development, but also functions in hepatocytes to reduce tumor development.
Collapse
Affiliation(s)
- Madhumita Das
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
23
|
Morris MK, Saez-Rodriguez J, Clarke DC, Sorger PK, Lauffenburger DA. Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput Biol 2011; 7:e1001099. [PMID: 21408212 PMCID: PMC3048376 DOI: 10.1371/journal.pcbi.1001099] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 01/28/2011] [Indexed: 12/31/2022] Open
Abstract
Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone.
Collapse
Affiliation(s)
- Melody K. Morris
- Center for Cell Decision Processes, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Julio Saez-Rodriguez
- Center for Cell Decision Processes, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David C. Clarke
- Center for Cell Decision Processes, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Peter K. Sorger
- Center for Cell Decision Processes, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Douglas A. Lauffenburger
- Center for Cell Decision Processes, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
24
|
Dong LY, Sun G, Jiang L, Shao L, Hu Y, Jiang Y, Wang Y, An W. Epidermal growth factor down-regulates the expression of human hepatic stimulator substance via CCAAT/enhancer-binding protein β in HepG2 cells. Biochem J 2010; 431:277-287. [PMID: 20690902 DOI: 10.1042/bj20100671] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
hHSS (human hepatic stimulator substance), acting as a hepatotrophic growth factor, promotes liver regeneration. However, the regulatory mechanisms for hHSS transcription are still poorly understood. In the present study, we investigated transcription of hHSS triggered by EGF (epidermal growth factor) and the role of C/EBPβ (CCAAT/enhancer-binding protein β) as a potential core factor responsible for hHSS transcription in HepG2 cells. The results show that EGF suppresses hHSS mRNA expression at early time points. Using a promoter deletion assay, we identified a proximal region (-358/-212) that is required for EGF suppression. Overexpression of C/EBPβ enhances EGF suppression of hHSS, and mutation of the C/EBPβ-binding site at -292/-279 or siRNA (short interfering RNA) interference abolishes EGF suppression. Furthermore, using an electrophoretic mobility-shift assay and chromatin immunoprecipitation analysis, we found that C/EBPβ specifically binds to the -292/-279 site that is responsible for EGF inhibition. Moreover, using a knockin (overexpression) and knockdown strategy (siRNA), we confirmed that C/EBPβ is a key factor responsible for inhibition of hHSS mRNA expression. Pre-treatment with an inhibitor of JNK (c-Jun N-terminal kinase) or down-regulation of JNK1 with specific siRNA reverses EGF-inhibited hHSS expression. Our results provide a crucial regulatory mechanism for EGF in hHSS transcription within the promoter proximal region.
Collapse
Affiliation(s)
- Ling-Yue Dong
- Department of Cell Biology, Municipal Laboratory of Liver Protection, Regulation and Regeneration, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
While hepatocytes rarely undergo proliferation in normal livers, they quickly induce proliferation in response to loss of liver mass by toxin or inflammation-induced hepatocyte injury, trauma, or surgical resection, leading to a restoration of liver mass to its original size. Recent studies suggest that Toll-like receptor (TLR) signaling participates in this regenerative response. Myeloid differentiation factor (MyD88), a common adaptor molecule in the TLR, IL-1 and IL-18 receptor signaling, plays a key role, at least, in the early phase of liver regeneration. Currently, definite ligands which bind to TLRs and initiate this process are still unclear. TLRs stimulated by their corresponding ligands, as well as tumor necrosis factor (TNF) receptors (TNFRs), can activate downstream signal molecules, including transcription factor nuclear factor (NF)-κB and c-Jun N-terminal kinase (JNK). Previous studies have revealed the important role of TNF receptor signaling, NF-κB, and JNK in liver regeneration by using hepatocyte-specific gene-modified animals. This review will summarize the current knowledge of TLR signaling and their related molecules in liver regeneration. We will also discuss whether modulating these factors may become new therapeutic strategies to promote liver regeneration in various clinical situations.
Collapse
|
26
|
Inhibition of c-Jun N-terminal kinase after hemorrhage but before resuscitation mitigates hepatic damage and inflammatory response in male rats. Shock 2010; 32:509-16. [PMID: 19295484 DOI: 10.1097/shk.0b013e3181a2530d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inhibition of c-Jun N-terminal kinase (JNK) by a cell-penetrating, protease-resistant JNK peptide (D-JNKI-1) before hemorrhage and resuscitation (H/R) ameliorated the H/R-induced hepatic injury and blunted the proinflammatory changes. Here we tested the hypothesis if JNK inhibition at a later time point-after hemorrhagic shock but before the onset of resuscitation-in a rat model of H/R also confers protection. Twenty-four male Sprague-Dawley rats (250 - 350 g) were randomly divided into 4 groups: 2 groups of shock animals were hemorrhaged to a MAP of 32 to 37 mmHg for 60 min and randomly received either D-JNKI-1 (11 mg/kg i.p.) or sterile saline as vehicle immediately before the onset of resuscitation. Two groups of sham-operated animals underwent surgical procedures without H/R and were either D-JNKI-1 or vehicle treated. Rats were killed 2 h later. Serum activity of alanine aminotransferase and serum lactate dehydrogenase after H/R increased 3.5-fold in vehicle-treated rats as compared with D-JNKI-1-treated rats. Histopathological analysis revealed that hepatic necrosis and apoptosis (hematoxylin-eosin, TUNEL, and M30, respectively) were significantly inhibited in D-JNKI-1-treated rats after H/R. Hepatic oxidative (4-hydroxynonenal) and nitrosative (3-nitrotyrosine) stress as well as markers of inflammation (hepatic and serum IL-6 levels and hepatic infiltration with polymorphonuclear leukocytes) were also reduced in D-JNKI-1-treated rats. LPS-stimulated TNF-alpha release from whole blood from hemorrhaged and resuscitated animals was higher in vehicle-treated rats as compared with D-JNKI-1-treated rats. c-Jun N-terminal kinase inhibition after hemorrhage before resuscitation resulted in a reduced activation of c-Jun. Taken together, these results indicate that D-JNKI-1 application after hemorrhagic shock before resuscitation blunts hepatic damage and proinflammatory changes during resuscitation. Hence, JNK inhibition is even protective when initiated after blood loss before resuscitation. These experimental results indicate that the JNK pathway may be a possible treatment option for the harmful consequences of H/R.
Collapse
|
27
|
Nakano T, Goto S, Lai CY, Hsu LW, Takaoka Y, Kawamoto S, Chiang KC, Shimada Y, Ohmori N, Goto T, Sato S, Ono K, Cheng YF, Chen CL. Immunological aspects and therapeutic significance of an autoantibody against histone H1 in a rat model of concanavalin A-induced hepatitis. Immunology 2009; 129:547-55. [PMID: 20102416 DOI: 10.1111/j.1365-2567.2009.03149.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We previously demonstrated the immunosuppressive activity of anti-histone H1 autoantibody induced in experimental and clinical liver allograft tolerance. This study aimed to explore the immunological aspects of anti-histone H1 autoantibody in liver injury induced by concanavalin A (Con A). To establish a Con A-hepatitis model, 20 mg/kg Con A was intravenously injected into rats, after which liver function and histopathological analyses were performed. In this model, anti-histone H1 autoantibody was transiently induced in the sera during the natural recovery stage, 3-7 days after Con A injection. To evaluate the therapeutic significance of anti-histone H1 autoantibody, a polyclonal antibody against histone H1 was intraperitoneally injected immediately after Con A injection. We found that injection of anti-histone H1 antibody could reduce Con A-induced liver damage. Further mechanical analyses revealed that anti-histone H1 antibody altered the intracellular activation of mitogen-activated protein kinase, nuclear factor-kappaB and calcineurin via T-cell receptor signalling, suggesting that anti-histone H1 antibody may protect the liver from Con A-induced injury by inhibiting activation of effector T cells. These findings suggest that anti-histone H1 autoantibody may be a natural immune regulatory factor that protects inflamed livers suffering from autoimmune hepatitis and may lead to T-cell unresponsiveness through the selective regulation of mitogen-activated protein kinase/nuclear factor-kappaB and calcineurin signalling.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Liver Transplantation Program and Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Chang Gung University College of Medicine, Niao-Sung, Kaohsiung, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sudo K, Yamada Y, Saito K, Shimizu S, Ohashi H, Kato T, Moriwaki H, Ito H, Seishima M. TNF-alpha and IL-6 signals from the bone marrow derived cells are necessary for normal murine liver regeneration. Biochim Biophys Acta Mol Basis Dis 2008; 1782:671-9. [PMID: 18948191 DOI: 10.1016/j.bbadis.2008.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
In the present study, we used bone marrow transplanted mice and revealed the role of bone marrow derived cells in liver regeneration after partial hepatectomy (PH). Irradiated wild type (WT) mice received a bone marrow transplant from either WT, TNF (tumor necrosis factor)-alpha knockout (KO), or interleukin (IL)-6 KO donors. Both TNF-alpha KO- and IL-6 KO-transplanted mice compared with WT-transplanted mice showed decreased hepatocyte DNA synthesis after PH. TNF-alpha KO-transplanted mice showed no nuclear factor kappa B (NF-kappaB) and signal transducer and activator of transcription (STAT) 3 binding after PH, while IL-6 KO-transplanted mice showed NF-kappaB, but not STAT3, binding. Lack of AP-1 or C/EBP binding or expression of c-jun or c-myc mRNA after PH was unrelated to the timing and amount of DNA replication. In conclusion, The TNF-alpha and IL-6 signals from the blood are necessary for liver regeneration and NF-kappaB and STAT3 binding are activated via TNF-alpha and IL-6 signal pathways.
Collapse
Affiliation(s)
- Kaori Sudo
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Crumm S, Cofan M, Juskeviciute E, Hoek JB. Adenine nucleotide changes in the remnant liver: An early signal for regeneration after partial hepatectomy. Hepatology 2008; 48:898-908. [PMID: 18697206 PMCID: PMC3348855 DOI: 10.1002/hep.22421] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
UNLABELLED Liver regeneration after partial hepatectomy (PHx) is orchestrated by multiple signals from cytokines and growth factors. We investigated whether increased energy demand on the remnant liver after PHx contributes to regenerative signals. Changes in the tissue's energy state were determined from adenine nucleotide levels. Adenosine triphosphate (ATP) levels in remnant livers decreased markedly and rapidly (to 48% of control by 30 seconds post-PHx) and remained significantly lower than those in sham-operated controls for 24 to 48 hours. The ATP decrease was not reflected in corresponding increases in adenosine diphosphate (ADP) and adenosine monophosphate (AMP), resulting in a marked decline in total adenine nucleotides (TAN). We found no evidence of mitochondrial damage or uncoupling of oxidative phosphorylation. Multiple lines of evidence indicated that the decline in TAN was not caused by increased energy demand, but by ATP release from the liver. The extent of ATP loss was identical after 30% or 70% PHx, whereas fasting or hyperglycemia, conditions that greatly alter energy demand for gluconeogenesis, affected the ATP/ADP decline but not the loss of TAN. Presurgical treatment with the alpha-adrenergic antagonist phentolamine completely prevented loss of TAN, although changes in ATP/ADP were still apparent. Importantly, phentolamine treatment inhibited early signaling events associated with the priming stages of liver regeneration and suppressed the expression of c-fos. Pretreatment with the purinergic receptor antagonist suramin also partly suppressed early regenerative signals and c-fos expression, but without preventing TAN loss. CONCLUSION The rapid loss of adenine nucleotides after PHx generates early stress signals that contribute to the onset of liver regeneration.
Collapse
Affiliation(s)
- Sara Crumm
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
30
|
Bourdi M, Korrapati MC, Chakraborty M, Yee SB, Pohl LR. Protective role of c-Jun N-terminal kinase 2 in acetaminophen-induced liver injury. Biochem Biophys Res Commun 2008; 374:6-10. [PMID: 18586006 DOI: 10.1016/j.bbrc.2008.06.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/15/2008] [Indexed: 01/20/2023]
Abstract
Recent studies in mice suggest that stress-activated c-Jun N-terminal protein kinase 2 (JNK2) plays a pathologic role in acetaminophen (APAP)-induced liver injury (AILI), a major cause of acute liver failure (ALF). In contrast, we present evidence that JNK2 can have a protective role against AILI. When male C57BL/6J wild type (WT) and JNK2(-/-) mice were treated with 300mg APAP/kg, 90% of JNK2(-/-) mice died of ALF compared to 20% of WT mice within 48h. The high susceptibility of JNK2(-/-) mice to AILI appears to be due in part to deficiencies in hepatocyte proliferation and repair. Therefore, our findings are consistent with JNK2 signaling playing a protective role in AILI and further suggest that the use of JNK inhibitors as a potential treatment for AILI, as has been recommended by other investigators, should be reconsidered.
Collapse
Affiliation(s)
- Mohammed Bourdi
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1760, USA.
| | | | | | | | | |
Collapse
|
31
|
Kasugai K, Watson SJ, A Flavell R, J Davis R, Todisco A. Crucial role of c-Jun NH2-terminal kinase 1 (JNK1) in cold-restraint stress-induced gastric lesions in mice. Dig Dis Sci 2007; 52:1698-705. [PMID: 17061159 DOI: 10.1007/s10620-006-9155-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 11/14/2005] [Indexed: 12/18/2022]
Abstract
c-Jun NH2-terminal kinase 1 /JNK1, is activated in response to a broad array of cellular stresses. We investigated the role of JNK1 in the pathophysiology of cold-restraint stress-induced gastric lesions in mice. B6/129, wild type (WT) mice, or mutant mice deficient in Jnk1 (Jnk1-/- mice) were exposed to cold-restraint stress for different time periods. Gastric lesions were identified and quantitated by morphometric analysis. JNK1 activity in mucosal homogenates was quantitated by immunoprecipitation and in-vitro kinase assays. JNK1 expression and Akt activation were assessed by Western blots with anti-JNK1 and anti-phospho Akt antibodies, respectively. Gastric mucosal homogenates from Jnk1-/- mice exhibited no significant expression of JNK1 and no detectable level of JNK1 activation. Exposure of WT mice to cold-restraint stress led to the development of significant gastric lesions and to a greater than three-fold induction in JNK1 activity, while no lesions were detected in the gastric mucosa of Jnk1-/- mice. Since cold-restraint stress-induced gastric lesions involve the activation of cholinergic pathways, we tested the effect of atropine on both the development of gastric lesions and JNK1 activation. Pretreatment of WT mice with atropine completely inhibited both cold-restraint stress-induced lesions and JNK1 activation. Cold-restraint stress induced protein kinase B/Akt to a similar level in the gastric mucosa of both WT and Jnk1-/- mice indicating the integrity of other signaling pathways. JNK1 plays a key role in the development of cold-restraint stress-induced gastric lesions in mice through the activation of cholinergic, atropine sensitive pathways.
Collapse
Affiliation(s)
- K Kasugai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0682, USA
| | | | | | | | | |
Collapse
|
32
|
Yokoyama Y, Nagino M, Nimura Y. Mechanism of impaired hepatic regeneration in cholestatic liver. JOURNAL OF HEPATO-BILIARY-PANCREATIC SURGERY 2007; 14:159-66. [PMID: 17384907 DOI: 10.1007/s00534-006-1125-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 03/08/2006] [Indexed: 05/14/2023]
Abstract
The regenerative capacity of the liver is an important factor following liver surgery. The dramatic change in portal venous flow, due to either portal vein embolization or partial hepatectomy, induces a rapid change in liver volume. In response to these stresses, hepatocytes are primed, through the release of inflammatory cytokines, to increase the expression of immediate early genes and increase the activation of transcriptional factors. The primed hepatocytes then respond to growth factors, including hepatocyte growth factor, epidermal growth factor, and transforming growth factor-alpha. Several pathologic conditions have been shown to inhibit hepatic regeneration. These include diabetes mellitus, malnutrition, aging, infection, chronic ethanol consumption, and biliary obstruction. Impaired hepatic regeneration in the setting of biliary obstruction is an especially serious problem because it can be a major determinant in not considering surgical treatment. The mechanism responsible for impaired hepatic regeneration in patients with biliary obstruction includes decreased portal venous flow, attenuated production of liver proliferation-associated factors, an increased rate of apoptosis, and lack of enterohepatic circulation. Restoring these factors may lead to an improvement in regeneration in a cholestatic liver following portal vein embolization or partial hepatectomy. This review article summarizes the current understanding of the mechanism of hepatic regeneration, with particular emphasis on that in the cholestatic liver.
Collapse
Affiliation(s)
- Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
33
|
Zhong Z, Schwabe RF, Kai Y, He L, Yang L, Bunzendahl H, Brenner DA, Lemasters JJ. Liver regeneration is suppressed in small-for-size liver grafts after transplantation: involvement of c-Jun N-terminal kinase, cyclin D1, and defective energy supply. Transplantation 2006; 82:241-50. [PMID: 16858288 DOI: 10.1097/01.tp.0000228867.98158.d2] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Small-for-size liver grafts have decreased survival compared to full-size grafts. This study investigated mechanisms of suppression of liver regeneration in small-for-size grafts. METHODS Rat liver explants were reduced in size to 50% and implanted into recipients of different body weights, resulting in graft weight/standard liver weights of approximately 50% (half-size) and approximately 25% (quarter-size). RESULTS Hepatic cellular 5-bromo-2'-deoxyuridine (BrdU) incorporation increased from 0.2% after sham operation to 2%, 18%, and 1.2% in full-size, half-size, and quarter-size grafts, respectively. Graft weight did not increase in full- and quarter-size grafts but increased 40% in half-size grafts. By contrast, apoptosis remained low (< or =0.7%) and stem cells did not increase in all conditions. Phospho-c-Jun increased 27-fold in half-size grafts but only sevenfold in quarter-size grafts. Activating protein-1 activation increased 14-fold in half-size grafts but only fivefold in quarter-size grafts. Cyclin D1 (CyD1), which was barely detectable in full- and quarter-size grafts, increased 8.3-fold in half-size grafts. Adenosine 5'-triphosphate (ATP) per gram tissue decreased 70% in quarter-size grafts. Treatment of quarter-size grafts with radical scavenging C. sinenesis polyphenols (20 microg/ml) increased BrdU labeling and weight gain to 35% and 56%, respectively, reversed inhibition of CyD1 expression, c-Jun phosphorylation, and AP-1 activation in quarter-size grafts compared to half-size grafts, and restored ATP levels to 75%. CONCLUSIONS Liver regeneration is stimulated in half-size grafts but suppressed in quarter-size grafts. Defective liver regeneration in small grafts is associated with an inhibition of the c-Jun N-terminal kinase/c-Jun and CyD1 pathways and compromised energy production.
Collapse
Affiliation(s)
- Zhi Zhong
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yokoyama S, Yokoyama Y, Kawai T, Kobayashi S, Nagino M, Oda K, Nimura Y, Sokabe M. Biphasic activation of liver regeneration-associated signals in an early stage after portal vein branch ligation. Biochem Biophys Res Commun 2006; 349:732-9. [PMID: 16950204 DOI: 10.1016/j.bbrc.2006.08.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
At an early stage in liver regeneration, a variety of factors including transcriptional factors, proinflammatory cytokines, and proto-oncogenes are activated or expressed. However, these responses are affected by surgical stress in the conventional portal vein branch ligation model (PVL). We sought to determine the net activation of early regeneration-associated signals after PVL using a newly developed non-surgical stress PVL model. Male Wistar rats were assigned into two groups, a stress-PVL (sPVL) model with laparotomy and portal vein branch ligation, and a non-stress-PVL (nsPVL) one subjected to portal vein branch ligation 1 week after laparotomy in which the effects of surgical stress were subsided. The activation of transcriptional factors and expression of immediate early genes were analyzed at an early time point (within 24 h) by Western blotting and RT-PCR, respectively. A monophasic upregulation of nuclear factor-kappaB (NF-kappaB) and phosphorylated-signal transducer and activator of transcription 3 (p-STAT3) peaked at 3h after sPVL was observed. In contrast, the expression pattern of these factors was biphasic (first peak at 0.5-1 h, second peak at 3-6 h) in nsPVL group. The expression pattern of immediate early genes showed a similar trend between sPVL and nsPVL. cDNA array analysis for the non-ligated lobe at 2 h after PVL revealed a much higher gene activation in sPVL than in nsPVL. These results indicate that previously observed activation pattern of regeneration-associated signals after PVL is significantly affected by the effect of laparotomy and our results using nsPVL model may more accurately represent liver regeneration-associated signal pattern.
Collapse
Affiliation(s)
- Shinya Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Biondo-Simões MDLP, Matias JEF, Montibeller GR, Siqueira LCD, Nunes EDS, Grassi CA. Effect of aging on liver regeneration in rats. Acta Cir Bras 2006; 21:197-202. [PMID: 16862337 DOI: 10.1590/s0102-86502006000400002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Accepted: 03/16/2006] [Indexed: 11/22/2022] Open
Abstract
PURPOSE: Regeneration and/or healing of tissues is believed to be more difficult in elderly people. The liver is one of the most complex organs in the human body, and is involved in a variety of functions. Liver regeneration is the body's protection mechanism against loss of functional liver tissue. The aim of this study is to identify the regenerative capacity of the liver in older animals and to compare it with that of young adult animals. METHODS: Thirty-four Wistar rats were used, of which 17 were 90 days old (young animals) and 17 were 460 days old (old animals). Approximately 70% of the liver was surgically removed. Examinations were carried out after 24 hours and on day 7, using 3 methods: KWON et al.'s formula to identify increase in volume; mitotic figure count in 5 fields; and the percentage of PCNA-positive nuclei in 5 fields. RESULTS: The increase in volume of the remaining liver was greater in the young animals after both 24 hours (p=0.0006) and on day 7 (p=0.0000). Histological cuts showed a greater mitotic figure count in young animals evaluated after 24 hours (p=0.0000). Upon evaluation on day 7, recovery was observed in the old animals. This recovery was similar to that of the young ones (p=0.2851). The PCNA-positive nucleus count was greater in the young animals' liver cuts after 24 hours (p=0.0310), and, while it had decreased in young animals by day 7, recovery was observed in the older animals (p=0.0298). CONCLUSION: The data confirm that age is related to delay in liver regeneration in rats.
Collapse
|
36
|
Carmona-Cuenca I, Herrera B, Ventura JJ, Roncero C, Fernández M, Fabregat I. EGF blocks NADPH oxidase activation by TGF-beta in fetal rat hepatocytes, impairing oxidative stress, and cell death. J Cell Physiol 2006; 207:322-30. [PMID: 16331683 DOI: 10.1002/jcp.20568] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor (EGF) is a survival signal for transforming growth factor-beta (TGF-beta)-induced apoptosis in hepatocytes, phosphatidylinositol 3-kinase (PI 3-K) being involved in this effect. Here, we analyze the possible cross talks between EGF and TGF-beta signals to understand how EGF impairs the early pro-apoptotic events induced by TGF-beta. Data have indicated that neither SMAD nor c-Jun NH2 Terminal Kinase (JNK) activations are altered by EGF, which clearly interferes with events directly related to the radical oxygen species (ROS) production, impairing oxidative stress, p38 MAP kinase activation, and cell death. Activation of a NADPH-oxidase-like system, which is responsible for the early ROS production by TGF-beta, is completely inhibited by EGF, through a PI 3-K-dependent mechanism. Activity of RAC1 increases by TGF-beta, but also by EGF, and both act synergistically to get maximum effects. Fetal rat hepatocytes express nox4, in addition to nox1 and nox2, and TGF-beta clearly upregulates nox4. EGF blocks up-regulation of nox4 by TGF-beta. Interestingly, in the presence of PI 3-K inhibitors, EGF is not able to counteract the nox4 upregulation by TGF-beta. Taking together these results indicate that impairment of TGF-beta-induced NADPH oxidase activation by EGF is a RAC1-independent process and correlates with an inhibition of the mechanisms that address the increase of nox4 mRNA levels by TGF-beta.
Collapse
Affiliation(s)
- Irene Carmona-Cuenca
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Suzuki T, Tsukamoto I. Manganese-induced apoptosis in hepatocytes after partial hepatectomy. Eur J Pharmacol 2005; 525:48-53. [PMID: 16293243 DOI: 10.1016/j.ejphar.2005.09.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 09/19/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
To investigate the apoptosis induced by manganese (Mn) in hepatocytes in vivo, rats received a single injection of manganese chloride immediately after partial hepatectomy. Characteristic DNA fragmentation was observed at 4 h after partial hepatectomy with Mn-injection. The activation of caspase-3 by Mn-injection was detected as early as 30 min and peaked at 1 h after partial hepatectomy. The activity of Jun N-terminal kinase (JNK) increased to a maximal level, which was about 10-fold the maximal level of the control, at 15 min after partial hepatectomy and this increase was maintained for 4 h in Mn-injected rats, while a transient increase was observed at 1 h in the control. No effect of the Mn-injection on the activation of p38 mitogen-activated protein kinase (MAPK) was observed. Western blot analysis revealed that the injection of Mn markedly increased c-Jun and phosphorylated c-Jun protein levels at 1 h after partial hepatectomy. An increase in p53 was also observed at 30 min after the Mn-injection and followed by the upregulation of p21(WAF1/CIP1) protein expression at 2 h after partial hepatectomy. These results suggested that the activation of JNK and the upregulation of c-Jun, p53 and p21(WAF1/CIP1) were involved in the apoptosis of hepatocytes induced by partial hepatectomy with manganese.
Collapse
Affiliation(s)
- Tomoko Suzuki
- Department of Food Science and Nutrition, Nara Women's University, Nara 630 Japan
| | | |
Collapse
|
38
|
Guo L, Guo Y, Xiao S, Shi X. Protein kinase p-JNK is correlated with the activation of AP-1 and its associated Jun family proteins in hepatocellular carcinoma. Life Sci 2005; 77:1869-78. [PMID: 15927205 DOI: 10.1016/j.lfs.2005.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 03/21/2005] [Indexed: 01/09/2023]
Abstract
To study the role of c-Jun N-terminal kinase (JNK) and its relation to transcription factor AP-1 and Jun family proteins in hepatocellular carcinoma (HCC) with or without hepatitis B virus (HBV) infection. Immunohistochemical and in situ hybridization techniques were performed for studying phosphorylated JNK (p-JNK), c-Jun, JunB, JunD and AP-1 in 40 cases of human HCC and corresponding nontumoral tissues. Positive staining of nucleus for p-JNK, c-Jun, JunD and AP-1 was presented in 28 (70%), 29 (72.5%), 32 (80%) and 25 (62.5%) in cancer cells respectively, while 0%, 28%, 17.5% and 10% in adjacent non-tumor tissues. The expression levels of p-JNK, c-Jun, JunD and AP-1 were significantly and positively correlated with each other and with HBsAg positive rate (P<0.05). JunB was negative staining in both cancer cells and non-tumor tissues of all cases. JNK phosphorylation may correlate with AP-1 activation and the expression of c-Jun and JunD in HCC. JNK/c-Jun/JunD/AP-1 signaling pathway may play an important role in the pathogenesis of HBV-associated HCC. JunB may not be involved in the process.
Collapse
Affiliation(s)
- Linlang Guo
- Department of Pathology, Zhujiang Hospital, Guangzhou, China.
| | | | | | | |
Collapse
|
39
|
Dixon CJ, White PJ, Hall JF, Kingston S, Boarder MR. Regulation of human hepatocytes by P2Y receptors: control of glycogen phosphorylase, Ca2+, and mitogen-activated protein kinases. J Pharmacol Exp Ther 2005; 313:1305-13. [PMID: 15764738 DOI: 10.1124/jpet.104.082743] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the rat both short-term liver function, such as glycogen metabolism, and long-term events such as proliferation after partial hepatectomy, are in part controlled by release of nucleotides such as ATP acting on hepatocyte P2Y(1) and P2Y(2) receptors (members of a family of P2Y receptors for extracellular nucleotides such as ATP and UTP). Here, we have studied P2Y receptor regulation of signaling pathways involved in glycogen phosphorylase activation and proliferation of primary human hepatocytes. Stimulation of cultured hepatocytes with either ATP and UTP, but not UDP or 2-methylthio ADP, led to concentration-dependent increases in cytosolic free Ca(2+) concentration ([Ca(2+)](c); EC(50) for ATP = 3.3 microM, for UTP = 2.3 microM) and [(3)H]inositol (poly)phosphates (EC(50) for ATP = 9.4 microM, for UTP = 15.4 microM). ATP and UTP also stimulated glycogen phosphorylase in human hepatocytes, each with a threshold for activation of less than 1 microM. Application of 2-methylthio ADP up to 100 microM was ineffective. Phosphorylation of both extracellular signal-related kinase and c-Jun N-terminal kinase was stimulated by ATP and UTP, but not by 2-methylthio ADP or UDP, either alone or when costimulated with epidermal growth factor. In conclusion, in human hepatocytes P2Y receptors control both glycogen metabolism and proliferation-associated responses such as increased [Ca(2+)](c) and mitogen-activated protein kinase cascades. Regulation seems to be primarily through P2Y(2) receptors. In contrast with previous studies on rat hepatocytes, there is an absence of responses mediated by P2Y(1) receptors.
Collapse
Affiliation(s)
- C Jane Dixon
- The Cell Signaling Laboratory, Leicester School of Pharmacy, De Montfort University, UK
| | | | | | | | | |
Collapse
|
40
|
Uehara T, Bennett B, Sakata ST, Satoh Y, Bilter GK, Westwick JK, Brenner DA. JNK mediates hepatic ischemia reperfusion injury. J Hepatol 2005; 42:850-9. [PMID: 15885356 DOI: 10.1016/j.jhep.2005.01.030] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 01/04/2005] [Accepted: 01/24/2005] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Hepatic ischemia followed by reperfusion (I/R) is a major clinical problem during transplantation, liver resection for tumor, and circulatory shock, producing apoptosis and necrosis. Although several intracellular signal molecules are induced following I/R including NF-kappaB and c-Jun N terminal kinase (JNK), their roles in I/R injury are largely unknown. The aim of this study is to assess the role of JNK during warm I/R injury using novel selective JNK inhibitors. METHODS Male Wistar rats (200+/-25 g) are pretreated with vehicle or with one of three compounds (CC0209766, CC0223105, and CC-401), which are reversible, highly selective, ATP-competitive inhibitors of JNK. In the first study, rats are assessed for survival using a model of ischemia to 70% of the liver for 90 min followed by 30% hepatectomy of the non-ischemic lobes and then reperfusion. In the second study, rats are assessed for liver injury resulting from 60 or 90 min of ischemia followed by reperfusion with analysis over time of hepatic histology, serum ALT, hepatic caspase-3 activation, cytochrome c release, and lipid peroxidation. RESULTS In the I/R survival model, vehicle-treated rats have a 7-day survival of 20-40%, while rats treated with the three different JNK inhibitors have survival rates of 60-100% (P<0.05). The decrease in mortality correlates with improved hepatic histology and serum ALT levels. Vehicle treated rats have pericentral necrosis, neutrophil infiltration, and some apoptosis in both hepatocytes and sinusoidal endothelial cells, while JNK inhibitors significantly decrease both types of cell death. JNK inhibitors decrease caspase-3 activation, cytochrome c release from mitochondria, and lipid peroxidation. JNK inhibition transiently blocks phosphorylation of c-Jun at an early time point after reperfusion, and AP-1 activation is also substantially blocked. JNK inhibition blocks the upregulation of the pro-apoptotic Bak protein and the degradation of Bid. CONCLUSIONS Thus, JNK inhibitors decrease both necrosis and apoptosis, suggesting that JNK activity induces cell death by both pathways.
Collapse
Affiliation(s)
- Tetsuya Uehara
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Suzuki T, Tsukamoto I. Apoptosis induced by 5-(N,N-hexamethylene)-amiloride in regenerating liver after partial hepatectomy. Eur J Pharmacol 2005; 503:1-7. [PMID: 15496288 DOI: 10.1016/j.ejphar.2004.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 09/07/2004] [Indexed: 01/12/2023]
Abstract
The effects of a specific inhibitor of the Na+/H+ exchanger, 5-(N,N-hexamethylene)-amiloride (HMA), on liver regeneration after partial hepatectomy were investigated. A single injection of HMA inhibited DNA synthesis and caused apoptosis in regenerating liver. Characteristic DNA fragmentation was observed at 4 h after partial hepatectomy with HMA-injection. The activity of Jun N-terminal kinase (JNK) increased to a maximal level at 15 min after partial hepatectomy in HMA-injected rats, while it was not detected until 30 min in the control. Western blot analysis revealed that the injection of HMA markedly increased c-Jun and phosphorylated c-Jun protein levels at 30 min after partial hepatectomy. An increase in p53 was also observed at 30 min after the HMA-injection and was followed by the upregulation of p21WAF1/CIP1 protein expression at 1 h after partial hepatectomy. These results suggested that HMA induced apoptosis accompanied by the activation of JNK and the upregulation of c-Jun, p53 and p21WAF1/CIP1 expression at an early stage of liver regeneration.
Collapse
Affiliation(s)
- Tomoko Suzuki
- Department of Food Science and Nutrition, Nara Women's University, Nara 630 Japan
| | | |
Collapse
|
42
|
Weitzel C, Stark D, Kullmann F, Schölmerich J, Holstege A, Falk W. Ursodeoxycholic acid induced activation of the glucocorticoid receptor in primary rat hepatocytes. Eur J Gastroenterol Hepatol 2005; 17:169-77. [PMID: 15674094 DOI: 10.1097/00042737-200502000-00007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND AND AIMS Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, improves biochemical, immunopathological and histological parameters in chronic cholestatic liver diseases. The immunomodulatory properties of UDCA show interesting similarities with the effects of glucocorticoids. We investigated the activation of the glucocorticoid receptor by UDCA and the glucocorticoid receptor dependent gene expression in primary rat hepatocytes as well as binding of radiolabelled UDCA to the glucocorticoid receptor ligand binding site expressed in a glucocorticoid receptor fusion protein. METHODS Primary rat hepatocytes in culture were co-transfected with a luciferase reporter gene construct (GRE-luc) containing a glucocorticoid receptor responsive element (GRE) and a glucocorticoid receptor expression vector (6RGR) followed by stimulation with dexamethasone or UDCA. Luciferase activity was determined and specific binding of glucocorticoid receptor to the GRE was confirmed by an electrophoretic mobility shift assay (EMSA). The glucocorticoid receptor binding site was expressed in a GR-myc fusion protein and binding of radiolabelled UDCA to the fusion protein was determined. RESULTS Incubation of co-transfected hepatocytes with 0.1-1.000 microM dexamethasone or 0.1-1.000 microM UDCA led to an 11.9- to 20.85-fold (dexamethasone) and 2.6- to 4.3-fold (UDC) increase of luciferase activity. Mobility shift assays using nuclear extracts from transfected and stimulated hepatocytes also showed a dose dependent increase of DNA binding after stimulation with UDCA. However, incubation of the GR-myc fusion protein with radiolabelled UDCA yielded no specific binding of UDCA to the glucocorticoid receptor binding site, whereas dexamethasone showed specific binding of the fusion protein. CONCLUSIONS UDCA activates the intracellular glucocorticoid receptor in a dose-dependent manner. Direct binding of the glucocorticoid receptor by radiolabelled UDCA at the glucocorticoid receptor binding site could be excluded as the mechanism of activation. The mechanisms involved in UDCA-mediated glucocorticoid receptor activation and possible targeted glucocorticoid receptor activation due to partial UDCA tissue specificity warrant further elucidation.
Collapse
Affiliation(s)
- Christof Weitzel
- Department of Internal Medicine, Klinik Lindenberg-Ried, Lindenberg, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Sun R, Gao B. Negative regulation of liver regeneration by innate immunity (natural killer cells/interferon-gamma). Gastroenterology 2004; 127:1525-39. [PMID: 15521020 DOI: 10.1053/j.gastro.2004.08.055] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Hepatic lymphocytes are composed mainly of natural killer (NK) cells and NKT cells, which play key roles in innate immune responses against pathogens and tumors in the liver. This report analyzes the effects of activation of innate immunity by viral infection or the toll-like receptor 3 (TLR3) ligand on liver regeneration. METHODS The partial hepatectomy (PHx) method was used as a model of liver regeneration. Murine cytomegalovirus (MCMV) infection and the TLR3 ligand polyinosinic-polycytidylic acid [poly(I:C)] were used to activate innate immunity. RESULTS NK cells are activated after PHx, as evidenced by producing interferon (IFN)-gamma. Infection with MCMV or injection of poly(I:C) further activates NK cells to produce IFN-gamma and attenuates liver regeneration in the PHx model. Depletion of NK cells or disruption of either the IFN-gamma gene or the IFN-gamma receptor gene enhances liver regeneration and partially abolishes the negative effects of MCMV and polyI:C on liver regeneration, whereas NKT cells may only play a minor role in suppression of liver regeneration. Adoptive transfer of IFN-gamma +/+ NK cells, but not IFN-gamma -/- NK cells, restores the ability of polyI:C to attenuate liver regeneration in NK-depleted mice. Finally, administration of polyI:C or IFN-gamma enhances expression of several antiproliferative proteins, including STAT1, IRF-1, and p21cip1/waf1 in the livers of partially hepatectomized mice. CONCLUSIONS Our findings suggest that viral infection and the TLR3 ligand negatively regulate liver regeneration via activation of innate immunity (NK/IFN-gamma), which may play an important role in the pathogenesis of viral hepatitis.
Collapse
Affiliation(s)
- Rui Sun
- NIAAA, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
44
|
McCloskey CA, Kameneva MV, Uryash A, Gallo DJ, Billiar TR. TISSUE HYPOXIA ACTIVATES JNK IN THE LIVER DURING HEMORRHAGIC SHOCK. Shock 2004; 22:380-6. [PMID: 15377896 DOI: 10.1097/01.shk.0000140660.78744.bf] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The earliest signaling pathways responsible for initiating the systemic response to hemorrhagic shock (HS) remain poorly characterized. We have investigated the involvement of the mitogen-activated protein (MAP) kinase C-JUN N-terminal kinase (JNK) and its activation in the liver as an early response to tissue hypoxia soon after the initiation of hemorrhage. In the present studies, hemorrhage of mice to 25 mmHg for 30 min resulted in a significant (2.1-fold) increase in JNK phosphorylation within the liver. Results were similar in rats hemorrhaged to 40 mmHg for 1 h. Hypoxia alone, replicated by warm isolated hepatic ischemia in vivo or hepatocytes cultured under 1% oxygen, also resulted in JNK phosphorylation. Finally, preservation of tissue perfusion and oxygenation by pretreatment with a blood-soluble drag-reducing polymer (DRP) in the rat HS model prevented phosphorylation of JNK in the liver. These results identify tissue hypoxia as a key factor in activating early signaling events in the liver following hemorrhage, as measured by JNK phosphorylation.
Collapse
Affiliation(s)
- Carol A McCloskey
- Department of General Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | |
Collapse
|
45
|
Chan WY, Chau FT, Lee KKH, Kwong WH, Yew DT. Substitution for natural musk in Pien Tze Huang does not affect its hepatoprotective activities. Hum Exp Toxicol 2004; 23:35-47. [PMID: 15027814 DOI: 10.1191/0960327104ht414oa] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous studies showed that Pien Tze Huang, a Chinese folk medicine well known for its therapeutic activity in treating liver diseases, protected the liver against carbon tetrachloride (CCl4)-induced damage in mice. In the present study, natural musk, one of the important ingredients of Pien Tze Huang, was replaced by a formulated substitute, and the new formulation of Pien Tze Huang was shown to have similar chromatographic patterns to the original Pien Tze Huang in gas chromatography-mass spectrometry and high performance liquid chromatography. When used in treating mice with CCl4- or galactosamine-induced liver damage, both the original and new formulations of Pien Tze Huang were found to be able to suppress to a similar extent both the histopathological changes in the liver and the elevation of serum alanine aminotransferase and aspartate aminotransferase. Necrosis, cellular ballooning, microvesicular steatosis and lymphocytes infiltration were all significantly reduced in the damaged liver. In hepatoma cells, both formulations activated the activator protein 1 (AP1) enhancer sequence, indicating that both of them were able to act through the JNK signal transduction pathway. The results of the present study showed that the substitution for natural musk does not affect the hepatoprotective activities of Pien Tze Huang. It is also postulated that both formulations protect the liver through regulating signal transduction in the cell.
Collapse
Affiliation(s)
- W Y Chan
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | | | |
Collapse
|
46
|
Rudnick DA, Liao Y, An JK, Muglia LJ, Perlmutter DH, Teckman JH. Analyses of hepatocellular proliferation in a mouse model of alpha-1-antitrypsin deficiency. Hepatology 2004; 39:1048-55. [PMID: 15057909 DOI: 10.1002/hep.20118] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
alpha-1-Antitrypsin (alpha1-AT) deficiency is the most common cause of metabolic pediatric liver disease. Hepatocellular injury is caused by toxicity of the mutant alpha-1-antitrypsin Z (alpha1-ATZ) molecule retained within hepatocytes. In these studies, we used the PiZ transgenic mouse model of alpha1-AT deficiency to examine hepatocellular proliferation in response to chronic liver injury resulting from this metabolic disease. The results showed increased hepatocellular proliferation and caspase 9 activation in male PiZ mice compared with female PiZ and wild-type mice. Hepatic alpha1-AT mRNA and protein expression also were increased in male PiZ mice, suggesting that greater hepatocellular proliferation and caspase activation in males results from increased hepatotoxicity associated with greater intracellular alpha1-ATZ accumulation. Testosterone treatment of female PiZ mice increased alpha1-ATZ expression and hepatocellular proliferation to a level comparable with that in males. In PiZ mice, hepatocytes devoid of intracellular alpha1-AT globules had a proliferative advantage compared with globule-containing hepatocytes. However, this advantage is relative because both globule-containing and globule-devoid hepatocytes exhibited comparable proliferation after partial hepatectomy. In conclusion, these data indicate that intracellular retention of mutant alpha1-ATZ is associated with a regenerative stimulus leading to increased hepatocellular proliferation, that gender-specific signals influence the degree of alpha1-AT expression and associated hepatic injury, and that hepatocytes devoid of alpha1-ATZ have a proliferative advantage over cells that accumulate the mutant protein. This selective proliferation suggests that hepatocellular transplantation may be applicable for treatment of this and other slowly progressive metabolic liver diseases.
Collapse
Affiliation(s)
- David A Rudnick
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Thevananther S, Sun H, Li D, Arjunan V, Awad SS, Wyllie S, Zimmerman TL, Goss JA, Karpen SJ. Extracellular ATP activates c-jun N-terminal kinase signaling and cell cycle progression in hepatocytes. Hepatology 2004; 39:393-402. [PMID: 14767992 DOI: 10.1002/hep.20075] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Partial hepatectomy leads to an orchestrated regenerative response, activating a cascade of cell signaling events necessary for cell cycle progression and proliferation of hepatocytes. However, the identity of the humoral factors that trigger the activation of these pathways in the concerted regenerative response in hepatocytes remains elusive. In recent years, extracellular ATP has emerged as a rapidly acting signaling molecule that influences a variety of liver functions, but its role in hepatocyte growth and regeneration is unknown. In this study, we sought to determine if purinergic signaling can lead to the activation of c-jun N-terminal kinase (JNK), a known central player in hepatocyte proliferation and liver regeneration. Hepatocyte treatment with ATPgammaS, a nonhydrolyzable ATP analog, recapitulated early signaling events associated with liver regeneration-that is, rapid and transient activation of JNK signaling, induction of immediate early genes c-fos and c-jun, and activator protein-1 (AP-1) DNA-binding activity. The rank order of agonist preference, UTP>ATP>ATPgammaS, suggests that the effects of extracellular ATP is mediated through the activation of P2Y2 receptors in hepatocytes. ATPgammaS treatment alone and in combination with epidermal growth factor (EGF) substantially increased cyclin D1 and proliferating cell nuclear antigen (PCNA) protein expression and hepatocyte proliferation in vitro. Extracellular ATP as low as 10 nM was sufficient to potentiate EGF-induced cyclin D1 expression. Infusion of ATP by way of the portal vein directly activated hepatic JNK signaling, while infusion of a P2 purinergic receptor antagonist prior to partial hepatectomy inhibited JNK activation. In conclusion, extracellular ATP is a hepatic mitogen that can activate JNK signaling and hepatocyte proliferation in vitro and initiate JNK signaling in regenerating liver in vivo. These findings have implications for enhancing our understanding of novel factors involved in the initiation of regeneration, liver growth, and development.
Collapse
Affiliation(s)
- Sundararajah Thevananther
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chen X, Li Y, Wei K, Li L, Liu W, Zhu Y, Qiu Z, He F. The potentiation role of hepatopoietin on activator protein-1 is dependent on its sulfhydryl oxidase activity. J Biol Chem 2003; 278:49022-30. [PMID: 14500725 DOI: 10.1074/jbc.m304057200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatopoietin (HPO) is a novel hepatotrophic growth factor that stimulates hepatocyte proliferation by two pathways. In the first, intracellular HPO specifically modulates the activator protein-1 (AP-1) pathway through JAB1 (Jun activation domain-binding protein 1), whereas in the second, extracellular HPO triggers the mitogen-activated protein kinase pathway by binding its specific receptor on the cell surface. In this report we demonstrate that HPO is a flavin-linked sulfhydryl oxidase, and the invariant CXXC (Cys-Xaa-Xaa-Cys) motif in HPO is essential for the enzyme activity of HPO but not for its dimerization nor for its binding ability with JAB1. Two intramolecular disulfides were identified in HPO by mass spectrometry, one of which is formed by the redox CXXC cysteine residues. HPO site-directed mutants (Cys/Ser) at active sites, which lost sulfhydryl oxidase activity, could not increase c-Jun phosphorylation and failed to potentiate JAB1-mediated AP-1 activation. However, the mutants still have mitogenic stimulation and mitogen-activated protein kinase activation effects on HepG2 cells. Thus, it can be concluded that the potentiation role of HPO on AP-1 is dependent on its sulfhydryl oxidase activity.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- Department of Systems Biology, Beijing Institute of Radiation Medicine, Chinese National Human Genome Center at Beijing, Beijing 100850, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nango R, Terada C, Tsukamoto I. Jun N-terminal kinase activation and upregulation of p53 and p21(WAF1/CIP1) in selenite-induced apoptosis of regenerating liver. Eur J Pharmacol 2003; 471:1-8. [PMID: 12809946 DOI: 10.1016/s0014-2999(03)01764-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate apoptosis induced by selenite in hepatocytes in vivo, rats received a single injection of sodium selenite immediately after partial hepatectomy. Characteristic DNA fragmentation in gel electrophoresis and in situ end-labeling and the increase in caspase-3 activity were observed at 4 h after partial hepatectomy with selenite injection. The activation of Jun N-terminal kinase (JNK) was observed as early as 15 min and increased to about 10-fold the maximal level of the control at 1 and 2 h after partial hepatectomy in selenite-injected rats, while a transient increase was observed at 1 h in the control. Western blot analysis revealed that the c-Jun and the phosphorylated c-Jun protein markedly increased after 30 min and reached a maximal level at 1 and 2 h after partial hepatectomy with selenite injection, although c-Jun and a faint band of the phosphorylated c-Jun were observed after 1 h in the control. The levels of c-jun mRNA and c-Fos protein and mRNA in selenite-injected rats also increased more than in the control. The rise in the p53 protein level after partial hepatectomy with selenite injection was followed by the upregulation of p21(WAF1/CIP1) mRNA and protein expression. These results suggested that selenite induced apoptosis accompanied by the activation of caspase-3 and JNK and the upregulation of c-jun, c-fos, p53 and p21(WAF1/CIP1) at the early stage of liver regeneration.
Collapse
Affiliation(s)
- Rieko Nango
- Department of Food Science and Nutrition, Nara Women's University, Nara 630, Japan
| | | | | |
Collapse
|
50
|
Schwabe RF, Bradham CA, Uehara T, Hatano E, Bennett BL, Schoonhoven R, Brenner DA. c-Jun-N-terminal kinase drives cyclin D1 expression and proliferation during liver regeneration. Hepatology 2003; 37:824-32. [PMID: 12668975 DOI: 10.1053/jhep.2003.50135] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The c-Jun-N-terminal kinase (JNK) pathway is strongly activated after partial hepatectomy (PH), but its role in hepatocyte proliferation is not known. In this study, JNK activity was blocked with the small molecule inhibitor JNK SP600125 in vivo and in vitro as shown by a reduction of c-Jun phosphorylation, AP-1 DNA binding activity, and c-jun messenger RNA (mRNA) expression. SP600125 inhibited proliferating cell nuclear antigen (PCNA) expression, cyclin D1 mRNA and protein expression and reduced mitotic figures after PH. Survival was reduced significantly 3 days after PH in SP600125-treated versus vehicle-treated rats (3 of 11 vs. 8 of 9, P <.01). In epidermal growth factor (EGF)-treated primary cultures of rat hepatocytes, SP600125 decreased (3)H-thymidine uptake, cyclin D1 mRNA and protein expression, and inhibited the EGF-induced transcription of a cyclin D1 promoter-driven reporter gene. The defective regeneration and the decreased survival in SP600125-treated rats did not result from a major increase in apoptosis as shown by normal levels of caspase 3 activity and only slight increases in apoptotic figures. In conclusion, our data show that JNK drives G0 to G1 transition in hepatocytes and that cyclin D1 is a downstream target of the JNK pathway during liver regeneration.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|