1
|
Grego A, Fernandes C, Fonseca I, Dias-Neto M, Costa R, Leite-Moreira A, Oliveira SM, Trindade F, Nogueira-Ferreira R. Endothelial dysfunction in cardiovascular diseases: mechanisms and in vitro models. Mol Cell Biochem 2025:10.1007/s11010-025-05289-w. [PMID: 40259179 DOI: 10.1007/s11010-025-05289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
Endothelial cells (ECs) are arranged side-by-side to create a semi-permeable monolayer, forming the inner lining of every blood vessel (micro and macrocirculation). Serving as the first barrier for circulating molecules and cells, ECs represent the main regulators of vascular homeostasis being able to respond to environmental changes, either physical or chemical signals, by producing several factors that regulate vascular tone and cellular adhesion. Healthy endothelium has anticoagulant properties that prevent the adhesion of leukocytes and platelets to the vessel walls, contributing to resistance to thrombus formation, and regulating inflammation, and vascular smooth muscle cell proliferation. Many risk factors of cardiovascular diseases (CVDs) promote the endothelial expression of chemokines, cytokines, and adhesion molecules. The resultant endothelial activation can lead to endothelial cell dysfunction (ECD). In vitro models of ECD allow the study of cellular and molecular mechanisms of disease and provide a research platform for screening potential therapeutic agents. Even though alternative models are available, such as animal models or ex vivo models, in vitro models offer higher experimental flexibility and reproducibility, making them a valuable tool for the understanding of pathophysiological mechanisms of several diseases, such as CVDs. Therefore, this review aims to synthesize the currently available in vitro models regarding ECD, emphasizing CVDs. This work will focus on 2D cell culture models (endothelial cell lines and primary ECs), 3D cell culture systems (scaffold-free and scaffold-based), and 3D cell culture models (such as organ-on-a-chip). We will dissect the role of external stimuli-chemical and mechanical-in triggering ECD.
Collapse
Affiliation(s)
- Ana Grego
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Cristiana Fernandes
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ivo Fonseca
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Marina Dias-Neto
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Angiology and Vascular Surgery, Unidade Local de Saúde de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Raquel Costa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Adelino Leite-Moreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Cardiothoracic Surgery, Unidade Local de Saúde de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sandra Marisa Oliveira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Fábio Trindade
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Rita Nogueira-Ferreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
2
|
Ma Y, Wang X, Lin S, King L, Liu L. The Potential Role of Advanced Glycation End Products in the Development of Kidney Disease. Nutrients 2025; 17:758. [PMID: 40077627 PMCID: PMC11902189 DOI: 10.3390/nu17050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Advanced glycation end products (AGEs) represent a class of toxic and irreversible compounds formed through non-enzymatic reactions between proteins or lipids and carbonyl compounds. AGEs can arise endogenously under normal metabolic conditions and in pathological states such as diabetes, kidney disease, and inflammatory disorders. Additionally, they can be obtained exogenously through dietary intake, particularly from foods high in fat or sugar, as well as grilled and processed items. AGEs accumulate in various organs and have been increasingly recognized as significant contributors to the progression of numerous diseases, particularly kidney disease. As the kidney plays a crucial role in AGE metabolism and excretion, it is highly susceptible to AGE-induced damage. In this review, we provide a comprehensive discussion on the role of AGEs in the onset and progression of various kidney diseases, including diabetic nephropathy, chronic kidney disease, and acute kidney injury. We explore the potential biological mechanisms involved, such as AGE accumulation, the AGEs-RAGE axis, oxidative stress, inflammation, gut microbiota dysbiosis, and AGE-induced DNA damage. Furthermore, we discuss recent findings on the metabolic characteristics of AGEs in vivo and their pathogenic impact on renal function. Additionally, we examine the clinical significance of AGEs in the early diagnosis, treatment, and prognosis of kidney diseases, highlighting their potential as biomarkers and therapeutic targets. By integrating recent advancements in AGE research, this review aims to provide new insights and strategies for mitigating AGE-related renal damage and improving kidney disease management.
Collapse
Affiliation(s)
- Yibin Ma
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.M.); (X.W.); (S.L.); (L.K.)
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinyu Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.M.); (X.W.); (S.L.); (L.K.)
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.M.); (X.W.); (S.L.); (L.K.)
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.M.); (X.W.); (S.L.); (L.K.)
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.M.); (X.W.); (S.L.); (L.K.)
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Csiha S, Hernyák M, Molnár Á, Lőrincz H, Katkó M, Paragh G, Bodor M, Harangi M, Sztanek F, Berta E. Alpha-Lipoic Acid Treatment Reduces the Levels of Advanced End Glycation Products in Type 2 Diabetes Patients with Neuropathy. Biomedicines 2025; 13:438. [PMID: 40002851 PMCID: PMC11852413 DOI: 10.3390/biomedicines13020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Type 2 diabetes mellitus (T2DM) and its macro- and microvascular complications are major health concerns with multiple factors, like advanced end glycation products (AGEs), in the background. AGEs induce long-lasting functional modification of the proteins and collagen in the vascular wall and nerve tissue. We investigated the effect of alpha-lipoic acid (ALA) treatment on AGEs, soluble AGE receptor (sRAGE), the AGE/sRAGE ratio, and the parameters of endothelial dysfunction and their correlations. Methods: In our 6-month intervention study, 54 T2DM patients with neuropathy treated according to the actual therapeutic guidelines with unchanged oral antidiabetic drugs were included and treated by daily oral administration of 600 mg ALA. A total of 24 gender and age-matched T2DM patients without neuropathy served as controls. Results: In our work, we first demonstrated the attenuating effect of alpha lipoic acid therapy on AGEs in humans (11.89 (9.44-12.88) to 10.95 (9.81-12.82) AU/μg (p = 0.017)). sRAGE levels or the AGEs/sRAGE ratio were not affected by ALA treatment or by the presence of neuropathy. We found a correlation between the changes of AGEs and the improvement of current perception threshold and progranulin levels, and an inverse correlation with the change of asymmetric dimethylarginine. Conclusions: According to our results, ALA decreases AGEs, which may contribute to the clinically well-known beneficial effect in diabetic neuropathy and improvement of endothelial function.
Collapse
Affiliation(s)
- Sára Csiha
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Marcell Hernyák
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ágnes Molnár
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Hajnalka Lőrincz
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Mónika Katkó
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - György Paragh
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Miklós Bodor
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Mariann Harangi
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ferenc Sztanek
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Eszter Berta
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Kristiansen MH, Larsen MK, Massarenti L, Skov V, Kjær L, Enevold C, Ostrowski SR, Nielsen CH, Hasselbalch HC, Wienecke T. Thromboinflammation in ischemic cerebrovascular patients with the JAK2V617F mutation. Thromb Res 2025; 245:109236. [PMID: 39652998 DOI: 10.1016/j.thromres.2024.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND The JAK2V617F mutation is a driver of Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) and is also implicated in cardiovascular diseases. Thrombosis in MPN involves JAK2V617F-associated platelet activation and endothelial dysfunction, all potentially influenced by chronic inflammation. Whether the mutation affects thromboinflammatory markers similarly in non-MPN patients remains unclear. METHOD We conducted a study involving 63 ischemic cerebrovascular patients with the JAK2V617F mutation, matched with 63 patients without the mutation. Serum samples were analyzed for 12 thromboinflammatory markers during the acute phase and at three months follow-up. RESULTS Overall, there was no significant difference in thromboinflammatory markers between cases and controls. However, subgroup analysis of patients with a JAK2V617F allele burden ≥1 % (n = 15) showed higher levels of Vascular Cell Adhesion Molecule-1 (VCAM-1) at baseline (p = 0.018), and elevated Interleukin-10 (IL-10) (p = 0.004) and Tumor Necrosis Factor α (TNF-α) (p = 0.018) at follow-up compared to controls. Regression analysis revealed an association between higher JAK2V617F allele burden and increased VCAM-1 at baseline (p < 0.001), and higher VCAM-1 (p = 0.012), IL-10 (p = 0.003), and TNF-α (p = 0.034) at follow-up. CONCLUSION In ischemic cerebrovascular patients, the JAK2V617F mutation is associated with elevated markers of endothelial dysfunction and chronic inflammation. This underscores the role of inflammation in thrombosis driven by the JAK2V617F mutation.
Collapse
Affiliation(s)
- Marie Hvelplund Kristiansen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Neurology, Zealand University Hospital, Roskilde, Denmark.
| | - Morten Kranker Larsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Laura Massarenti
- Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hans Carl Hasselbalch
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Troels Wienecke
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
5
|
Zhao K, Zhu GZ, Li HZ, Gao JW, Tu C, Wu DZ, Huang YS, Han D, Chen XY, Wu LY, Zhong ZM. Accumulation of Advanced Oxidation Protein Products Promotes Age-Related Decline of Type H Vessels in Bone. J Gerontol A Biol Sci Med Sci 2024; 80:glae271. [PMID: 39506899 DOI: 10.1093/gerona/glae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Indexed: 11/08/2024] Open
Abstract
Type H vessels have been proven to couple angiogenesis and osteogenesis. The decline of type H vessels contributes to bone loss in the aging process. Aging is accompanied by the accumulation of advanced oxidation protein products (AOPPs). However, whether AOPP accumulation is involved in age-related decline of type H vessels is unclear. Here, we show that the increase of AOPP levels in plasma and bone was correlated with the decline of type H vessels and loss of bone mass in old mice. Exposure of microvascular endothelial cells to AOPPs significantly inhibited cell proliferation, migration, and tube formation; increased NADPH oxidase activity and excessive reactive oxygen species generation; upregulated the expression of vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1; and eventually impaired angiogenesis, which was alleviated by redox modulator N-acetylcysteine and NADPH oxidase inhibitor apocynin. Furthermore, reduced AOPP accumulation by NAC treatment was able to alleviate significantly the decline of type H vessels, bone mass loss, and deterioration of bone microstructure in old mice. Collectively, these findings suggest that AOPPs accumulation contributes to the decline of type H vessels in the aging process, and illuminate a novel potential mechanism underlying age-related bone loss.
Collapse
Affiliation(s)
- Kai Zhao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Guo-Zheng Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hong-Zhou Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jia-Wen Gao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Chen Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Di-Zheng Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yu-Sheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Dong Han
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xing-Yu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Long-Yan Wu
- Department of Ultrasound Medicine, Ganzhou People's Hospital, Ganzhou, People's Republic of China
| | - Zhao-Ming Zhong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Wei Y, Xu S, Wu Z, Zhang M, Bao M, He B. Exploring the causal relationships between type 2 diabetes and neurological disorders using a Mendelian randomization strategy. Medicine (Baltimore) 2024; 103:e40412. [PMID: 39560586 PMCID: PMC11576012 DOI: 10.1097/md.0000000000040412] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
While there is ample evidence indicating an increased occurrence of general neurological conditions among individuals with diabetes, there has been limited exploration into the cause-and-effect connection between type 2 diabetes (T2D) and specific neurological disorders, including conditions like carpal tunnel syndrome and Bell's palsy. We used Mendelian randomization (MR) approach to investigate the causal effects of T2D on 67 neurological diseases. We primarily utilized the inverse-variance weighted method for the analysis, and also employed the weighted median and MR-Egger methods in our study. To detect and correct potential outliers, MR-PRESSO analysis was used. Heterogeneity was assessed using Cochrane Q-values. The MR analyses found a possible relationship between T2D and a risk increase of 8 diseases at suggestive level of evidence (P < .05). Notably, among the positive findings that met the false discovery rate threshold, nerve, nerve root, and plexus disorders (odds ratio [OR] = 1.11; 95% confidence interval [CI] = 1.08-1.15); neurological diseases (OR = 1.05; 95% CI = 1.03-1.07) and carpal tunnel syndrome (OR = 1.10; 95% CI = 1.05-1.16) were identified. Our findings affirm a cause-and-effect association between T2D and certain neurological disorders.
Collapse
Affiliation(s)
- Yongfang Wei
- School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoquan Wu
- School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Mengling Zhang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| |
Collapse
|
7
|
Erim B, Binici Hİ. Advanced glycation end products: understanding their health risks and effective prevention strategies. NUTRIRE 2024; 49:54. [DOI: 10.1186/s41110-024-00298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 01/03/2025]
|
8
|
Sun H, Chen S, Yang C, Kuang H, Huang Y, He X, Luo W. Advances in the use of chlorhexidine for periodontitis treatment in diabetic patients: A review. Medicine (Baltimore) 2024; 103:e39627. [PMID: 39252223 PMCID: PMC11383263 DOI: 10.1097/md.0000000000039627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Periodontitis and diabetes mellitus exhibit a bidirectional relationship. This narrative review descriptively outlines the role of chlorhexidine in the periodontal treatment of diabetic patients, focusing on its antimicrobial mechanisms against microbial communities and its antiplaque effects. Although chlorhexidine is proven to be effective in combating microbial presence and improving gingivitis with substantial supporting evidence, its impact on glycemic control and insulin resistance in diabetic patients remains contentious. Additionally, the effectiveness of chlorhexidine as an adjunctive chemotherapeutic in the periodontal treatment of gestational diabetes has not yet been studied, highlighting a gap in research that necessitates further prospective studies and randomized controlled trials. Considering the interconnection between periodontal inflammation and glycemic levels, this article finally advocates for collaborative care between dental and medical professionals to manage periodontitis in diabetic patients effectively.
Collapse
Affiliation(s)
- Honglan Sun
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Shizhao Chen
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Chao Yang
- Research and Development Department, Shenzhen Uni-medica Technology Co., Ltd, Shenzhen, Guangdong Province, China
| | - Huifang Kuang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Yuqi Huang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Xiaoning He
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Wen Luo
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| |
Collapse
|
9
|
Higashida H, Oshima Y, Yamamoto Y. Oxytocin transported from the blood across the blood-brain barrier by receptor for advanced glycation end-products (RAGE) affects brain function related to social behavior. Peptides 2024; 178:171230. [PMID: 38677620 DOI: 10.1016/j.peptides.2024.171230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Oxytocin (OT) is a neuropeptide that primarily functions as a hormone controlling female reproductive processes. Since numerous recent studies have shown that single and repetitive administrations of OT increase trust, social interaction, and maternal behaviors in humans and animals, OT is considered a key molecule that regulates social memory and behavior. Furthermore, OT binds to receptors for advanced glycation end-products (RAGE), and it has been demonstrated that loss of RAGE in the brain vascular endothelial cells of mice fails to increase brain OT concentrations following peripheral OT administration. This leads to the hypothesis that RAGE is involved in the direct transport of OT, allowing it access to the brain by transporting it across the blood-brain barrier; however, this hypothesis is only based on limited evidence. Herein, we review the recent results related to this hypothesis, such as the mode of transport of OT in the blood circulation to the brain via different forms of RAGE, including membrane-bound full-length RAGE and soluble RAGE. We further review the modulation of brain function and social behavior, which seem to be mediated by RAGE-dependent OT. Overall, this review mostly confirms that RAGE enables the recruitment of circulating OT to the brain, thereby influencing social behavior. The requirement for further studies considering the physiological aspects of RAGE is also discussed.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Yu Oshima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| |
Collapse
|
10
|
Nawaz M, Afridi MN, Ullah I, Khan IA, Ishaq MS, Su Y, Rizwan HM, Cheng KW, Zhou Q, Wang M. The inhibitory effects of endophytic metabolites on glycated proteins under non-communicable disease conditions: A review. Int J Biol Macromol 2024; 269:131869. [PMID: 38670195 DOI: 10.1016/j.ijbiomac.2024.131869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Protein glycation in human body is closely linked to the onset/progression of diabetes associated complications. These glycated proteins are commonly known as advanced glycation end products (AGEs). Recent literature has also highlighted the involvement of AGEs in other non-communicable diseases (NCDs) such as cardiovascular, cancer, and Alzheimer's diseases and explored the impact of plant metabolites on AGEs formation. However, the significance of endophytic metabolites against AGEs has recently garnered attention but has not been thoroughly summarized thus far. Therefore, the objective of this review is to provide a comprehensive overview of the importance of endophytic metabolites in combating AGEs under NCDs conditions. Additionally, this review aims to elucidate the processes of AGEs formation, absorption, metabolism, and their harmful effects. Collectively, endophytic metabolites play a crucial role in modulating signaling pathways and enhancing the digestibility properties of gut microbiota (GM) by targeting on AGEs/RAGE (receptor for AGEs) axis. Furthermore, these metabolites exhibit anti-AGEs activities similar to those derived from host plants, but at a lower cost and higher production rate. The use of endophytes as a source of such metabolites offers a risk-free and sustainable approach that holds substantial potential for the treatment and management of NCDs.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Naveed Afridi
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Irfan Ullah
- CPSP/REU/SGR-2016-021-8421, College of Physicians and Surgeons, Pakistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Saqib Ishaq
- Department of Health and Biological Sciences, Abasyn University Peshawar, KP, Pakistan
| | - Yuting Su
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Hafiz Muhammad Rizwan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
11
|
Nair L, Asuzu P, Dagogo-Jack S. Ethnic Disparities in the Risk Factors, Morbidity, and Mortality of Cardiovascular Disease in People With Diabetes. J Endocr Soc 2024; 8:bvae116. [PMID: 38911352 PMCID: PMC11192623 DOI: 10.1210/jendso/bvae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Indexed: 06/25/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in people with diabetes. Compared with European Americans, African Americans have more favorable lipid profiles, as indicated by higher high-density lipoprotein cholesterol, lower triglycerides, and less dense low-density lipoprotein particles. The less atherogenic lipid profile translates to lower incidence and prevalence of CVD in African Americans with diabetes, despite higher rates of hypertension and obesity. However, African Americans with CVD experience worse clinical outcomes, including higher mortality, compared with European Americans. This mini-review summarizes the epidemiology, pathophysiology, mechanisms, and management of CVD in people with diabetes, focusing on possible factors underlying the "African American CVD paradox" (lower CVD incidence/prevalence but worse outcomes). Although the reasons for the disparities in CVD outcomes remain to be fully elucidated, we present a critical appraisal of the roles of suboptimal control of risk factors, inequities in care delivery, several biological factors, and psychosocial stress. We identify gaps in current knowledge and propose areas for future investigation.
Collapse
Affiliation(s)
- Lekshmi Nair
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
12
|
Zhang W, Yu M, Cheng G. Sotagliflozin versus dapagliflozin to improve outcome of patients with diabetes and worsening heart failure: a cost per outcome analysis. Front Pharmacol 2024; 15:1373314. [PMID: 38694909 PMCID: PMC11061456 DOI: 10.3389/fphar.2024.1373314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Background and aim Dapagliflozin inhibits the sodium-glucose cotransporter protein 2 (SGLT-2), while sotagliflozin, belonging to a new class of dual-acting SGLT-1/SGLT-2 inhibitors, has garnered considerable attention due to its efficacy and safety. Both Dapagliflozin and sotagliflozin play a significant role in treating worsening heart failure in diabetes/nondiabetes patients with heart failure. Therefore, this article was to analyze and compare the cost per outcome of both drugs in preventing one event in patients diagnosed with diabetes-related heart failure. Method The Cost Needed to Treat (CNT) was employed to calculate the cost of preventing one event, and the Number Needed to Treat (NNT) represents the anticipated number of patients requiring the intervention treatment to prevent a single adverse event, or the anticipated number of patients needing multiple treatments to achieve a beneficial outcome. The efficacy and safety data were obtained from the results of two published clinical trials, DAPA-HF and SOLOIST-WHF. Due to the temporal difference in the drugs' releases, we temporarily analyzed the price of dapagliflozin to calculate the price of sotagliflozin within the same timeframe. The secondary analyses aimed to assess the stability of the CNT study and minimize differences between the results of the RCT control and trial groups, employing one-way sensitivity analyses. Result The final results revealed an annualized Number Needed to Treat (aNNT) of 4 (95% CI 3-7) for preventing one event with sotagliflozin, as opposed to 23 (95% CI 16-55) for dapagliflozin. We calculated dapagliflozin's cost per prevented event (CNT) to be $109,043 (95% CI $75,856-$260,755). The price of sotagliflozin was set below $27,260, providing a favorable advantage. Sensitivity analysis suggests that sotagliflozin may hold a cost advantage. Conclusion In this study, sotagliflozin was observed to exhibit a price advantage over dapagliflozin in preventing one events, cardiovascular mortality, or all-cause mortality in patients with diabetes.
Collapse
Affiliation(s)
| | | | - Guohua Cheng
- Department of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Akther F, Sajin D, Moonshi SS, Wu Y, Vazquez-Prada KX, Ta HT. Modeling Foam Cell Formation in A Hydrogel-Based 3D-Intimal Model: A Study of The Role of Multi-Diseases During Early Atherosclerosis. Adv Biol (Weinh) 2024; 8:e2300463. [PMID: 38200677 DOI: 10.1002/adbi.202300463] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Monocyte recruitment and transmigration are crucial in atherosclerotic plaque development. The multi-disease complexities aggravate the situation and continue to be a constant concern for understanding atherosclerosis plaque development. Herein, a 3D hydrogel-based model that integrates disease-induced microenvironments is sought to be designed, allowing us to explore the early stages of atherosclerosis, specifically examining monocyte fate in multi-disease complexities. As a proof-of-concept study, murine cells are employed to develop the model. The model is constructed with collagen embedded with murine aortic smooth muscle cells and a murine endothelial monolayer lining. The model achieves in vitro disease complexities using external stimuli such as glucose and lipopolysaccharide (LPS). Hyperglycemia exhibits a significant increase in monocyte adhesion but no enhancement in monocyte transmigration and foam cell conversion compared to euglycemia. Chronic infection achieved by LPS stimulation results in a remarkable augment in initial monocyte attachment and a significant increment in monocyte transmigration and foam cells in all concentrations. Moreover, the model exhibits synergistic sensitivity under multi-disease conditions such as hyperglycemia and infection, enhancing initial monocyte attachment, cell transmigration, and foam cell formation. Additionally, western blot data prove the enhanced levels of inflammatory biomarkers, indicating the model's capability to mimic disease-induced complexities during early atherosclerosis progression.
Collapse
Affiliation(s)
- Fahima Akther
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Dimple Sajin
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
| | - Shehzahdi S Moonshi
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
| | - Karla X Vazquez-Prada
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
14
|
Chen M, Liu J, Xie Z, Chen W, Hu Y, Wen J, Chen J, Chen X, Lin L, Wang R, Lu L. Effect of hemoglobin A1c management levels on coronary physiology evaluated by quantitative flow ratio in patients who underwent percutaneous coronary intervention. J Diabetes Investig 2024; 15:336-345. [PMID: 38009857 PMCID: PMC10906016 DOI: 10.1111/jdi.14114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
AIMS/INTRODUCTION The coronary physiology and prognosis of patients with different hemoglobin A1c (HbA1c) levels after percutaneous coronary intervention (PCI) are currently unknown. The aim of this study was to assess the effect of different levels of HbA1c control on coronary physiology in patients who underwent PCI for coronary heart disease combined with type 2 diabetes mellitus by quantitative flow ratio (QFR). MATERIALS AND METHODS Patients who successfully underwent PCI and completed 1-year coronary angiographic follow up were enrolled, clinical data were collected, and QFR at immediate and 1-year follow up after PCI was retrospectively analyzed. A total of 257 patients (361 vessels) were finally enrolled and divided into the hemoglobin A1c (HbA1c)-compliance group (103 patients, 138 vessels) and non-HbA1c-compliance group (154 patients, 223 vessels) according to the HbA1c cut-off value of 7%. We compared the results of QFR analysis and clinical outcomes between the two groups. RESULTS At 1-year follow up after PCI, the QFR was significantly higher (0.94 ± 0.07 vs 0.92 ± 0.10, P = 0.019) and declined less (0.014 ± 0.066 vs 0.033 ± 0.095, P = 0.029) in the HbA1c-compliance group. Meanwhile, the incidence of physiological restenosis was lower in the HbA1c-compliance group (2.9% vs 8.5%, P = 0.034). Additionally, the target vessel revascularization rate was lower in the HbA1c-compliance group (6.8% vs 16.9%, P = 0.018). Furthermore, HbA1c ≥7% (OR 2.113, 95% confidence interval 1.081-4.128, P = 0.029) and QFR decline (OR 2.215, 95% confidence interval 1.147-4.277, P = 0.018) were independent risk factors for target vessel revascularization. CONCLUSION Patients with well-controlled HbA1c levels have better coronary physiological benefits and the incidence of adverse clinical outcome events might be reduced.
Collapse
Affiliation(s)
- Mingfeng Chen
- Department of CardiologyFujian Provincial HospitalFuzhouChina
| | - Jichen Liu
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Zhangxin Xie
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
- Department of EmergencyFujian Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Emergency Medical CenterFujian Provincial Institute of Emergency MedicineFuzhouChina
| | - Wei Chen
- Department of CardiologyFujian Provincial HospitalFuzhouChina
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Yanqin Hu
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Junping Wen
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
- Department of EndocrinologyFujian Provincial HospitalFuzhouChina
| | - Jinyan Chen
- Institute for Immunology, Fujian Academy of Medical SciencesFuzhouChina
| | - Xuemei Chen
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
- Department of Critical Care MedicineFujian Provincial Hospital, Fujian Provincial Center for Critical Care MedicineFuzhouChina
| | - Lirong Lin
- Department of CardiologyFujian Provincial HospitalFuzhouChina
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Rehua Wang
- Department of CardiologyFujian Provincial HospitalFuzhouChina
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Lihong Lu
- Department of CardiologyFujian Provincial HospitalFuzhouChina
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
15
|
Guo N, Zhou H, Zhang Q, Fu Y, Jia Q, Gan X, Wang Y, He S, Li C, Tao Z, Liu J, Jia E. Exploration and bioinformatic prediction for profile of mRNA bound to circular RNA BTBD7_hsa_circ_0000563 in coronary artery disease. BMC Cardiovasc Disord 2024; 24:71. [PMID: 38267845 PMCID: PMC10809658 DOI: 10.1186/s12872-024-03711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND As a novel circRNA, BTBD7_hsa_circ_0000563 has not been fully investigated in coronary artery disease (CAD). Our aim is to reveal the possible functional role and regulatory pathway of BTBD7_hsa_circ_0000563 in CAD via exploring genes combined with BTBD7_hsa_circ_0000563. METHODS A total of 45 peripheral blood mononuclear cell (PBMC) samples of CAD patients were enrolled. The ChIRP-RNAseq assay was performed to directly explore genes bound to BTBD7_hsa_circ_0000563. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to reveal possible functions of these genes. The interaction network was constructed by the STRING database and the Cytoscape software. The Cytoscape software were used again to identify clusters and hub genes of genes bound to BTBD7_hsa_circ_0000563. The target miRNAs of hub genes were predicted via online databases. RESULTS In this study, a total of 221 mRNAs directly bound to BTBD7_hsa_circ_0000563 were identified in PBMCs of CAD patients via ChIRP-RNAseq. The functional enrichment analysis revealed that these mRNAs may participate in translation and necroptosis. Moreover, the interaction network showed that there may be a close relationship between these mRNAs. Eight clusters can be further subdivided from the interaction network. RPS3 and RPSA were identified as hub genes and hsa-miR-493-5p was predicted to be the target miRNA of RPS3. CONCLUSIONS BTBD7_hsa_circ_0000563 and mRNAs directly bound to it may influence the initiation and progression of CAD, among which RPS3 and RPSA may be hub genes. These findings may provide innovative ideas for further research on CAD.
Collapse
Affiliation(s)
- Ning Guo
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, 215101, Jiangsu Province, China
| | - Hanxiao Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Qian Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Yanjun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Shu He
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Zhengxian Tao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Jun Liu
- Department of Cardiology, Jurong City People's Hospital, Ersheng Road 66, Jurong, 212400, Jiangsu Province, China.
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
16
|
Ma X, Ma J, Leng T, Yuan Z, Hu T, Liu Q, Shen T. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention. Ren Fail 2023; 45:2146512. [PMID: 36762989 PMCID: PMC9930779 DOI: 10.1080/0886022x.2022.2146512] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes and has become the leading cause of end-stage kidney disease. The pathogenesis of DKD is complicated, and oxidative stress is considered as a core of DKD onset. High glucose can lead to increased production of reactive oxygen species (ROS) via the polyol, PKC, AGE/RAGE and hexosamine pathways, resulting in enhanced oxidative stress response. In this way, pathways such as PI3K/Akt, TGF-β1/p38-MAPK and NF-κB are activated, inducing endothelial cell apoptosis, inflammation, autophagy and fibrosis that cause histologic and functional abnormalities of the kidney and finally result in kidney injury. Presently, the treatment for DKD remains an unresolved issue. Traditional Chinese medicine (TCM) has unique advantages for DKD prevention and treatment attributed to its multi-target, multi-component, and multi-pathway characteristics. Numerous studies have proved that Chinese herbs (e.g., Golden Thread, Kudzuvine Root, Tripterygium glycosides, and Ginseng) and patent medicines (e.g., Shenshuaining Tablet, Compound Rhizoma Coptidis Capsule, and Zishen Tongluo Granule) are effective for DKD treatment. The present review described the role of oxidative stress in DKD pathogenesis and the effect of TCM intervention for DKD prevention and treatment, in an attempt to provide evidence for clinical practice.
Collapse
Affiliation(s)
- Xiaoju Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingru Ma
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Leng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongzhu Yuan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,CONTACT Tao Shen School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
17
|
Liao WL, Lin H, Li YH, Yang TY, Chen MC. RAGE potentiates EGFR signaling and interferes with the anticancer effect of gefitinib on NSCLC cells. Am J Physiol Cell Physiol 2023; 325:C1313-C1325. [PMID: 37746694 DOI: 10.1152/ajpcell.00494.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
The receptor for advanced glycation end-products (RAGE) has been implicated in tumorigenesis, whereas epidermal growth factor receptor (EGFR) signaling plays a vital role in lung cancer progression. Both RAGE and EGFR are transmembrane receptors that transmit intracellular signals through ligand binding, and their downstream signaling cascades show substantial overlap. However, the interplay between these two molecules remains poorly understood. In the present study, we evaluated the correlation between RAGE and EGFR in the tumorigenesis of non-small cell lung cancer (NSCLC) and evaluated the impact of RAGE on the response of NSCLC cells to gefitinib, an EGFR-tyrosine kinase inhibitor (TKI). The expression and activation of EGFR and the phosphorylation of its downstream molecules, signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (Erk), were increased in RAGE-overexpressed A549 (A549-RAGE) cells. Notably, ligand-triggered activation of EGFR signaling was significantly greater in A549-RAGE compared with A549-parental cells. In addition, gefitinib had less effect on the inhibition of EGFR signaling in A549-RAGE cells. These findings were validated in other NSCLC cell lines, H1299 and H1975. Furthermore, upon gefitinib administration, the antiapoptotic marker B-cell lymphoma 2 (Bcl-2) expression was upregulated in A549-RAGE cells, whereas the apoptotic markers Bcl-2 associated X protein (Bax) and Bcl-2 interacting mediator (Bim) remained at lower levels compared with A549-parental cells. Importantly, our findings provide evidence that RAGE interferes with the anticancer effect of gefitinib by modulating the activation of EGFR-STAT3 and EGFR-Erk pathways. Overall, these significant findings deepen our understanding of the intricate relationship between RAGE and EGFR signaling in NSCLC tumorigenesis and provide new considerations for the clinical treatment of NSCLC.NEW & NOTEWORTHY This study represents a pioneering endeavor in comprehending the intricate interplay between RAGE and EGFR signaling within NSCLC. The findings reveal that RAGE serves to enhance EGFR phosphorylation and activation, consequently modulating apoptosis regulators through the EGFR-STAT3 and EGFR-Erk1/2 signaling pathways. Through this mechanism, RAGE potentially imparts resistance to the toxicity induced by EGFR-TKIs in NSCLC cells.
Collapse
Affiliation(s)
- Wan-Ling Liao
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hsuan Li
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Ying Yang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Mei-Chih Chen
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
18
|
Dai Y, Zhou S, Qiao L, Peng Z, Zhao J, Xu D, Wu C, Li M, Zeng X, Wang Q. Non-apoptotic programmed cell deaths in diabetic pulmonary dysfunction: the new side of advanced glycation end products. Front Endocrinol (Lausanne) 2023; 14:1126661. [PMID: 37964954 PMCID: PMC10641270 DOI: 10.3389/fendo.2023.1126661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that affects multiple organs and systems, including the pulmonary system. Pulmonary dysfunction in DM patients has been observed and studied for years, but the underlying mechanisms have not been fully understood. In addition to traditional mechanisms such as the production and accumulation of advanced glycation end products (AGEs), angiopathy, tissue glycation, oxidative stress, and systemic inflammation, recent studies have focused on programmed cell deaths (PCDs), especially the non-apoptotic ones, in diabetic pulmonary dysfunction. Non-apoptotic PCDs (NAPCDs) including autophagic cell death, necroptosis, pyroptosis, ferroptosis, and copper-induced cell death have been found to have certain correlations with diabetes and relevant complications. The AGE-AGE receptor (RAGE) axis not only plays an important role in the traditional pathogenesis of diabetes lung disease but also plays an important role in non-apoptotic cell death. In this review, we summarize novel studies about the roles of non-apoptotic PCDs in diabetic pulmonary dysfunction and focus on their interactions with the AGE-RAGE axis.
Collapse
Affiliation(s)
- Yimin Dai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lin Qiao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhao Peng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
19
|
Miranda ER, Mey JT, Blackburn BK, Chaves AB, Fuller KNZ, Perkins RK, Ludlow AT, Haus JM. Soluble RAGE and skeletal muscle tissue RAGE expression profiles in lean and obese young adults across differential aerobic exercise intensities. J Appl Physiol (1985) 2023; 135:849-862. [PMID: 37675469 PMCID: PMC10642519 DOI: 10.1152/japplphysiol.00748.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Nearly 40% of Americans have obesity and are at increased risk for developing type 2 diabetes. Skeletal muscle is responsible for >80% of insulin-stimulated glucose uptake that is attenuated by the inflammatory milieu of obesity and augmented by aerobic exercise. The receptor for advanced glycation endproducts (RAGE) is an inflammatory receptor directly linking metabolic dysfunction with inflammation. Circulating soluble isoforms of RAGE (sRAGE) formed either by proteolytic cleavage (cRAGE) or alternative splicing (esRAGE) act as decoys for RAGE ligands, thereby counteracting RAGE-mediated inflammation. We aimed to determine if RAGE expression or alternative splicing of RAGE is altered by obesity in muscle, and whether acute aerobic exercise (AE) modifies RAGE and sRAGE. Young (20-34 yr) participants without [n = 17; body mass index (BMI): 22.6 ± 2.6 kg/m2] and with obesity (n = 7; BMI: 32.8 ± 2.9 kg/m2) performed acute aerobic exercise (AE) at 40%, 65%, or 80% of maximal aerobic capacity (V̇o2max; mL/kg/min) on separate visits. Blood was taken before and 30 min after each AE bout. Muscle biopsy samples were taken before, 30 min, and 3 h after the 80% V̇o2max AE bout. Individuals with obesity had higher total RAGE and esRAGE mRNA and RAGE protein (P < 0.0001). In addition, RAGE and esRAGE transcripts correlated to transcripts of the NF-κB subunit P65 (P < 0.05). There was no effect of AE on total RAGE or esRAGE transcripts, or RAGE protein (P > 0.05), and AE tended to decrease circulating sRAGE in particular at lower intensities of exercise. RAGE expression is exacerbated in skeletal muscle with obesity, which may contribute to muscle inflammation via NF-κB. Future work should investigate the consequences of increased skeletal muscle RAGE on the development of obesity-related metabolic dysfunction and potential mitigating strategies.NEW & NOTEWORTHY This study is the first to investigate the effects of aerobic exercise intensity on circulating sRAGE isoforms, muscle RAGE protein, and muscle RAGE splicing. sRAGE isoforms tended to diminish with exercise, although this effect was attenuated with increasing exercise intensity. Muscle RAGE protein and gene expression were unaffected by exercise. However, individuals with obesity displayed nearly twofold higher muscle RAGE protein and gene expression, which positively correlated with expression of the P65 subunit of NF-κB.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jacob T Mey
- Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Brian K Blackburn
- Applied Health Sciences and Kinesiology, Humboldt State University, Arcata, California, United States
| | - Alec B Chaves
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States
| | - Kelly N Z Fuller
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ryan K Perkins
- Department of Kinesiology, California State University Chico, Chico, California, United States
| | - Andrew T Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
20
|
Kang HJ, Kumar S, Dash BC, Hsia HC, Yarmush ML, Berthiaume F. Multifunctional Elastin-Like Polypeptide Fusion Protein Coacervates Inhibit Receptor-Mediated Proinflammatory Signals and Promote Angiogenesis in Mouse Diabetic Wounds. Adv Wound Care (New Rochelle) 2023; 12:241-255. [PMID: 34779253 PMCID: PMC9986022 DOI: 10.1089/wound.2021.0102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022] Open
Abstract
Objective: Chronic skin wounds are one of the most devastating complications in diabetic patients due to the formation of advanced glycation end-products (AGEs) resulting from nonenzymatic glycation of proteins and lipids in hyperglycemia. AGEs, upon binding their receptors (RAGEs), trigger proinflammatory signals that impair wound healing in diabetes and contribute to the pathology of chronic skin wounds. Approach: We previously developed a recombinant fusion protein containing the binding domain of RAGE (vRAGE) linked to elastin-like polypeptides (ELPs) that acts as a competitive inhibitor of AGEs, and another ELP fusion protein containing stromal cell-derived factor 1 (SDF1) that promotes revascularization. In this study, we report the effects of protein coacervates incorporating both vRAGE-ELP and SDF1-ELP on wound healing in an in vitro diabetes-mimicking cell culture system, and in in vivo in full-thickness wounds on diabetic mice. Results: The combination of vRAGE-ELP and SDF1-ELP increased cell metabolic activity in AGE-stimulated endothelial cells, promoted in vitro tube formation and accelerated healing in an in vitro cell migration assay. When used in a single topical application on full-thickness excisional skin wounds in diabetic mice, wound closure in the combination groups reached almost 100% on postwounding day 35, compared to 62% and 85% on the same days in animals treated with fibrin gel control and vehicle control consisting of ELP alone. Innovation: To our knowledge, this is the first study that attempts to reverse the AGE-RAGE-mediated signaling as well as to promote cell proliferation and vascularization in one single treatment. Conclusion: The codelivery of vRAGE-ELP and SDF1-ELP has potential for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Hwan June Kang
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Biraja C. Dash
- Department of Surgery (Plastic), Yale School of Medicine, New Haven, Connecticut, USA
| | - Henry C. Hsia
- Department of Surgery (Plastic), Yale School of Medicine, New Haven, Connecticut, USA
| | - Martin L. Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
21
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
22
|
Starr CR, Gorbatyuk MS. Posttranslational modifications of proteins in diseased retina. Front Cell Neurosci 2023; 17:1150220. [PMID: 37066080 PMCID: PMC10097899 DOI: 10.3389/fncel.2023.1150220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Posttranslational modifications (PTMs) are known to constitute a key step in protein biosynthesis and in the regulation of protein functions. Recent breakthroughs in protein purification strategies and current proteome technologies make it possible to identify the proteomics of healthy and diseased retinas. Despite these advantages, the research field identifying sets of posttranslationally modified proteins (PTMomes) related to diseased retinas is significantly lagging, despite knowledge of the major retina PTMome being critical to drug development. In this review, we highlight current updates regarding the PTMomes in three retinal degenerative diseases-namely, diabetic retinopathy (DR), glaucoma, and retinitis pigmentosa (RP). A literature search reveals the necessity to expedite investigations into essential PTMomes in the diseased retina and validate their physiological roles. This knowledge would accelerate the development of treatments for retinal degenerative disorders and the prevention of blindness in affected populations.
Collapse
Affiliation(s)
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
Bhatt HD, Golub LM, Lee HM, Kim J, Zimmerman T, Deng J, Hong H, Johnson F, Gu Y. Efficacy of a Novel Pleiotropic MMP-Inhibitor, CMC2.24, in a Long-Term Diabetes Rat Model with Severe Hyperglycemia-Induced Oral Bone Loss. J Inflamm Res 2023; 16:779-792. [PMID: 36860795 PMCID: PMC9969803 DOI: 10.2147/jir.s399043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Purpose CMC2.24, a novel 4-(phenylaminocarbonyl)-chemically-modified-curcumin, is a pleiotropic MMP-Inhibitor of various inflammatory/collagenolytic diseases including periodontitis. This compound has demonstrated efficacy in host modulation therapy along with improved resolution of inflammation in various study models. The objective of current study is to determine the efficacy of CMC2.24 in reducing the severity of diabetes, and its long-term role as an MMP-inhibitor, in a rat model. Methods Twenty-one adult male Sprague-Dawley rats were randomly distributed into three groups: Normal (N), Diabetic (D) and Diabetic+CMC2.24 (D+2.24). All three groups were orally administered vehicle: carboxymethylcellulose alone (N, D), or CMC2.24 (D+2.24; 30mg/kg/day). Blood was collected at 2-months and 4-months' time-point. At completion, gingival tissue and peritoneal washes were collected/analyzed, and jaws examined for alveolar bone loss by micro-CT. Additionally, sodium hypochlorite(NaClO)-activation of human-recombinant (rh) MMP-9 and its inhibition by treatment with 10μM CMC2.24, Doxycycline, and Curcumin were evaluated. Results CMC2.24 significantly reduced the levels of lower-molecular-weight active-MMP-9 in plasma. Similar trend of reduced active-MMP-9 was also observed in cell-free peritoneal and pooled gingival extracts. Thus, treatment substantially decreased conversion of pro- to actively destructive proteinase. Normalization of the pro-inflammatory cytokine (IL-1ß, resolvin-RvD1), and diabetes-induced osteoporosis was observed in presence of CMCM2.24. CMC2.24 also exhibited significant anti-oxidant activity by inhibiting the activation of MMP-9 to a lower-molecular-weight (82kDa) pathologically active form. All these systemic and local effects were observed in the absence of reduction in severity of hyperglycemia. Conclusion CMC2.24 reduced activation of pathologic active-MMP-9, normalized diabetic osteoporosis, and promoted resolution of inflammation but had no effect on the hyperglycemia in diabetic rats. This study also highlights the role of MMP-9 as an early/sensitive biomarker in the absence of change in any other biochemical parameter. CMC2.24 also inhibited significant activation of pro-MMP-9 by NaOCl (oxidant) adding to known mechanisms by which this compound treats collagenolytic/inflammatory diseases including periodontitis.
Collapse
Affiliation(s)
- Heta Dinesh Bhatt
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Lorne M Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jihwan Kim
- Department of Pediatric Dentistry, University of Buffalo School of Dental Medicine, Buffalo, NY, USA
| | - Thomas Zimmerman
- Division of Laboratory Animal Resources (DLAR) at Stony Brook, Stony Brook University, Stony Brook, NY, USA
| | - Jie Deng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, People’s Republic of China
| | - Houlin Hong
- Department of Community Health & Social Sciences, Graduate School of Public Health & Health Policy, City University of New York, New York City, NY, USA
| | - Francis Johnson
- Department of Chemistry and Pharmacological Sciences, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ying Gu
- Department of General Dentistry, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
24
|
Diagnosis of Fibrotic Hypersensitivity Pneumonitis: Is There a Role for Biomarkers? Life (Basel) 2023; 13:life13020565. [PMID: 36836922 PMCID: PMC9966605 DOI: 10.3390/life13020565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Hypersensitivity pneumonitis is a complex interstitial lung syndrome and is associated with significant morbimortality, particularly for fibrotic disease. This condition is characterized by sensitization to a specific antigen, whose early identification is associated with improved outcomes. Biomarkers measure objectively biologic processes and may support clinical decisions. These tools evolved to play a crucial role in the diagnosis and management of a wide range of human diseases. This is not the case, however, with hypersensitivity pneumonitis, where there is still great room for research in the path to find consensual diagnostic biomarkers. Gaps in the current evidence include lack of validation, validation against healthy controls alone, small sampling and heterogeneity in diagnostic and classification criteria. Furthermore, discriminatory accuracy is currently limited by overlapping mechanisms of inflammation, damage and fibrogenesis between ILDs. Still, biomarkers such as BAL lymphocyte counts and specific serum IgGs made their way into clinical guidelines, while others including KL-6, SP-D, YKL-40 and apolipoproteins have shown promising results in leading centers and have potential to translate into daily practice. As research proceeds, it is expected that the emergence of novel categories of biomarkers will offer new and thriving tools that could complement those currently available.
Collapse
|
25
|
Andreadi A, Muscoli S, Tajmir R, Meloni M, Muscoli C, Ilari S, Mollace V, Della Morte D, Bellia A, Di Daniele N, Tesauro M, Lauro D. Recent Pharmacological Options in Type 2 Diabetes and Synergic Mechanism in Cardiovascular Disease. Int J Mol Sci 2023; 24:1646. [PMID: 36675160 PMCID: PMC9862607 DOI: 10.3390/ijms24021646] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Diabetes Mellitus is a multifactorial disease with a critical impact worldwide. During prediabetes, the presence of various inflammatory cytokines and oxidative stress will lead to the pathogenesis of type 2 diabetes. Furthermore, insulin resistance and chronic hyperglycemia will lead to micro- and macrovascular complications (cardiovascular disease, heart failure, hypertension, chronic kidney disease, and atherosclerosis). The development through the years of pharmacological options allowed us to reduce the persistence of chronic hyperglycemia and reduce diabetic complications. This review aims to highlight the specific mechanisms with which the new treatments for type 2 diabetes reduce oxidative stress and insulin resistance and improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Saverio Muscoli
- Division of Cardiology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Rojin Tajmir
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marco Meloni
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Carolina Muscoli
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Sara Ilari
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - David Della Morte
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alfonso Bellia
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
26
|
|
27
|
Martemucci G, Portincasa P, Centonze V, Mariano M, Khalil M, D'Alessandro AG. Prevention of Oxidative Stress and Diseases by Antioxidant Supplementation. Med Chem 2023; 19:509-537. [PMID: 36453505 DOI: 10.2174/1573406419666221130162512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022]
Abstract
Excessive and uncontrolled oxidative stress can damage biomacromolecules, such as lipids, proteins, carbohydrates, and DNA, by free radical and oxidant overproduction. In this review, we critically discuss the main properties of free radicals, their implications in oxidative stress, and specific pathological conditions. In clinical medicine, oxidative stress can play a role in several chronic noncommunicable diseases, such as diabetes mellitus, cardiovascular, inflammatory, neurodegenerative diseases, and tumours. Antioxidant supplements can theoretically prevent or stop the progression of diseases, but a careful literature analysis finds that more evidence is needed to dissect the ultimate beneficial effect of antioxidants versus reactive oxygen species in several diseases.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A - 70126 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Centonze
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Michele Mariano
- Unità Operativa Complessa di Radiodiagnostica Universitaria, Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Angela Gabriella D'Alessandro
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A - 70126 Bari, Italy
| |
Collapse
|
28
|
Abstract
Post-surgical adhesions are a major complication leading to organ dysfunctions, pain, intestinal obstruction, and infertility. The incidence of post-surgical adhesion is really high. The factors involved in the pathogenesis of post-surgical fibrosis, are largely unknown, for example why two patients with similar abdominal operation have a different risks of adhesion severity? High secretion of pro-inflammatory cytokines and growth factors, includes tumour necrosis factor α (TNF-α), interleukin 6 (IL6), and transforming growth factor β (TGF-β) by persistent recruitment of immune cells and the inappropriate proliferated fibroblast/mesothelial cells can stimulate signalling pathways particularly TGF-β leads to the up-regulation of some pro-fibrotic genes that impair fibrinolytic activity and promote extracellular matrix (ECM) accumulation. In this review, we focus on the role of diabetes and hyperglycaemia on post-surgical fibrosis, including the molecular mechanisms affected by hyperglycaemia that cause inflammation, oxidative stress, and increase the expression of pro-fibrotic molecules.
Collapse
Affiliation(s)
- Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Hassan Arjmand
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
29
|
Juranek J, Mukherjee K, Kordas B, Załęcki M, Korytko A, Zglejc-Waszak K, Szuszkiewicz J, Banach M. Role of RAGE in the Pathogenesis of Neurological Disorders. Neurosci Bull 2022; 38:1248-1262. [PMID: 35729453 PMCID: PMC9554177 DOI: 10.1007/s12264-022-00878-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
This review reflects upon our own as well as other investigators' studies on the role of receptor for advanced glycation end-products (RAGE), bringing up the latest information on RAGE in physiology and pathology of the nervous system. Over the last ten years, major progress has been made in uncovering many of RAGE-ligand interactions and signaling pathways in nervous tissue; however, the translation of these discoveries into clinical practice has not come to fruition yet. This is likely, in part to be the result of our incomplete understanding of this crucial signaling pathway. Clinical trials examining the therapeutic efficacy of blocking RAGE-external ligand interactions by genetically engineered soluble RAGE or an endogenous RAGE antagonist, has not stood up to its promise; however, other trials with different blocking agents are being considered with hope for therapeutic success in diseases of the nervous system.
Collapse
Affiliation(s)
- Judyta Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland.
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Blacksburg, VA, 24016, USA
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Michał Załęcki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Agnieszka Korytko
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Jarosław Szuszkiewicz
- Department of Materials and Machines Technology, Faculty of Technical Sciences, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Marta Banach
- Department of Neurology, Collegium Medicum, Jagiellonian University, 31-008, Kraków, Poland.
| |
Collapse
|
30
|
Accumulation of Advanced Glycation End-Products in the Body and Dietary Habits. Nutrients 2022; 14:nu14193982. [PMID: 36235635 PMCID: PMC9572209 DOI: 10.3390/nu14193982] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The formation of advanced glycation end-products (AGE) in tissues is a physiological process; however, excessive production and storage are pathological and lead to inflammation. A sedentary lifestyle, hypercaloric and high-fructose diet and increased intake of processed food elements contribute to excessive production of compounds, which are created in the non-enzymatic multi-stage glycation process. The AGE’s sources can be endogenous and exogenous, mainly due to processing food at high temperatures and low moisture, including grilling, roasting, and frying. Accumulation of AGE increases oxidative stress and initiates various disorders, leading to the progression of atherosclerosis, cardiovascular disease, diabetes and their complications. Inborn defensive mechanisms, recovery systems, and exogenous antioxidants (including polyphenols) protect from excessive AGE accumulation. Additionally, numerous products have anti-glycation properties, occurring mainly in fruits, vegetables, herbs, and spices. It confirms the role of diet in the prevention of civilization diseases.
Collapse
|
31
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales M. The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep 2022; 42:BSR20220395. [PMID: 35727208 PMCID: PMC9251583 DOI: 10.1042/bsr20220395] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein which actively participates in several chronic inflammation-related diseases. RAGE, in addition to AGEs, has a wide repertoire of ligands, including several damage-associated molecular pattern molecules or alarmins such as HMGB1 and members of the S100 family proteins. Over the last years, a large and compelling body of evidence has revealed the active participation of the RAGE axis in tumor biology based on its active involvement in several crucial mechanisms involved in tumor growth, immune evasion, dissemination, as well as by sculpturing of the tumor microenvironment as a tumor-supportive niche. In the present review, we will detail the consequences of the RAGE axis activation to fuel essential mechanisms to guarantee tumor growth and spreading.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ivan Schneider
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Cristian Lindner
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ileana Gonzalez
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Miguel A. Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago 8320000, Chile, Santiago, Chile
| |
Collapse
|
32
|
Lee HW, Gu MJ, Yoo G, Choi IW, Lee SH, Kim Y, Ha SK. Glycolaldehyde induces synergistic effects on vascular inflammation in TNF-α-stimulated vascular smooth muscle cells. PLoS One 2022; 17:e0270249. [PMID: 35788200 PMCID: PMC9255721 DOI: 10.1371/journal.pone.0270249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that contributes to disease progression is associated with the expression of adhesion molecules in vascular smooth muscle cells (VSMCs). Glycolaldehyde (GA) has been shown to impair cellular function in various disorders, including diabetes, and renal diseases. This study investigated the effect of GA on the expression of adhesion molecules in the mouse VSMC line, MOVAS-1. Co-incubation of VSMCs with GA (25–50 μM) dose-dependently increased the protein and mRNA level of Vcam-1 and ICAM-1. Additionally, GA upregulated intracellular ROS production and phosphorylation of MAPK and NK-κB. GA also elevated TNF-α-induced PI3K-AKT activation. Furthermore, GA enhanced TNF-α-activated IκBα kinase activation, subsequent IκBα degradation, and nuclear translocation of NF-κB. These findings suggest that GA stumulated VSMC adhesive capacity and the induction of VCAM-1 and ICAM-1 in VSMCs through inhibition of MAPK and NF-κB signaling pathways, providing insights into the effect of GA to induce inflammation within atherosclerotic lesions.
Collapse
Affiliation(s)
- Hee-Weon Lee
- Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Min Ji Gu
- Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Guijae Yoo
- Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - In-Wook Choi
- Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Sang-Hoon Lee
- Korea Food Research Institute, Wanju-gun, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Yoonsook Kim
- Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Sang Keun Ha
- Korea Food Research Institute, Wanju-gun, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
- * E-mail:
| |
Collapse
|
33
|
Advanced Glycation End Products (AGEs) and Chronic Kidney Disease: Does the Modern Diet AGE the Kidney? Nutrients 2022; 14:nu14132675. [PMID: 35807857 PMCID: PMC9268915 DOI: 10.3390/nu14132675] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Since the 1980s, chronic kidney disease (CKD) affecting all ages has increased by almost 25%. This increase may be partially attributable to lifestyle changes and increased global consumption of a “western” diet, which is typically energy dense, low in fruits and vegetables, and high in animal protein and ultra-processed foods. These modern food trends have led to an increase in the consumption of advanced glycation end products (AGEs) in conjunction with increased metabolic dysfunction, obesity and diabetes, which facilitates production of endogenous AGEs within the body. When in excess, AGEs can be pathological via both receptor-mediated and non-receptor-mediated pathways. The kidney, as a major site for AGE clearance, is particularly vulnerable to AGE-mediated damage and increases in circulating AGEs align with risk of CKD and all-cause mortality. Furthermore, individuals with significant loss of renal function show increased AGE burden, particularly with uraemia, and there is some evidence that AGE lowering via diet or pharmacological inhibition may be beneficial for CKD. This review discusses the pathways that drive AGE formation and regulation within the body. This includes AGE receptor interactions and pathways of AGE-mediated pathology with a focus on the contribution of diet on endogenous AGE production and dietary AGE consumption to these processes. We then analyse the contribution of AGEs to kidney disease, the evidence for dietary AGEs and endogenously produced AGEs in driving pathogenesis in diabetic and non-diabetic kidney disease and the potential for AGE targeted therapies in kidney disease.
Collapse
|
34
|
Abulnaja KO, Kannan K, Al-Manzlawi AMK, Kumosani TA, Qari M, Moselhy SS. Sensitivity, specificity of biochemical markers for early prediction of endothelial dysfunction in atherosclerotic obese subjects. Afr Health Sci 2022; 22:286-294. [PMID: 36407366 PMCID: PMC9652627 DOI: 10.4314/ahs.v22i2.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND The obesity increased incidence of diabetes, hypertension and atherosclerosis and rate of morbidity and mortality. The main cause of atherosclerosis is endothelial dysfunction and formation of foam cells and macrophage that lead to unfavorable complications. This study evaluated specific biomarkers for endothelial dysfunction as sensitive indices for early predication of atherosclerosis in obese subjects. STUDY DESIGN One hundred fifty male age and sex matching were included in the current study divided into three groups according to body mass index (BMI): Control (BMI ≤ 22), obese (BMI> 28) and obese with atherosclerosis (BMI> 28). Fasting serum was subjected for determination of adhesion molecules, sICAM-1, sVCAM-1, E-selectin, oxo-LDL and 8-iso-PGF2α by ELISA technique. RESULTS Data obtained showed that, a significant elevation of serum inflammatory markers CRP, IL-6 and TNF-α and adhesion molecules sICAM-1 (p<0.001) with sensitivity 96%, sVCAM-1 (p <0.01) with sensitivity 92%, E-selectin (p<0.001) with sensitivity 94%, oxo-LDL (p <0.05) and 8-iso-PGF2α (p < 0.001) with sensitivity 97% in obese with atherosclerosis compared with obese and control. CONCLUSION The levels of serum adhesion molecules contributed in the pathogenesis of endothelial dysfunction can be used as sensitive biomarkers for early prediction of atherosclerosis in obese subjects.
Collapse
Affiliation(s)
- Khalid O Abulnaja
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, KAU
| | - Kurunthachalam Kannan
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pediatric, New York, University School of medicine, New York, NY 10016, USA
| | | | - Taha A Kumosani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, KAU
- Production of Bio-products for Industrial Applications Research Group, KAU
| | - Mohamed Qari
- Department of Hematology, Faculty of Medical Science, King Abdulaziz University, Jeddah
| | - Said S Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
35
|
Shou X, Wang Y, Zhang X, Zhang Y, Yang Y, Duan C, Yang Y, Jia Q, Yuan G, Shi J, Shi S, Cui H, Hu Y. Network Pharmacology and Molecular Docking Analysis on Molecular Mechanism of Qingzi Zhitong Decoction in the Treatment of Ulcerative Colitis. Front Pharmacol 2022; 13:727608. [PMID: 35237152 PMCID: PMC8883437 DOI: 10.3389/fphar.2022.727608] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a disease with complex pathological mechanisms. We explored the potential molecular mechanisms behind the therapeutic functions of Qingzi Zhitong decoction (QZZTD) in the treatment of UC by network pharmacology and molecular docking. QZZTD is a formula of Chinese traditional medicine consisting of 10 herbs. The potential active ingredients of QZZTD and their target genes were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database, and UC-related target genes were obtained from GeneCards and OMIM databases. A total of 138 co-identified target genes were obtained by plotting the intersection target Venn diagram, and then the STRING database and Cytoscape software were used to establish protein-protein interaction networks and herb-ingredient-target networks. Four key active compounds and nine key proteins were identified. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the biological functions of potential target genes were associated with DNA transcription, signaling receptor and ligand activity, cytokine activity, cellular autophagy, and antioxidant pathways, with related pathways involving the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, advanced glycosylation end product (AGE)-RAGE signaling pathway, tumor necrosis factor (TNF) signaling pathway, and IL-17 signaling pathway. Moreover, the binding activities of key target genes and essential active compounds of Chinese herbal medicines in QZZTD were further validated by molecular docking. This demonstrated that quercetin, luteolin, hyndarin, and beta-sitosterol had good binding to eight key proteins, and Akt1 was the target protein with the best binding activity, suggesting that Akt1 could be the essential mediator responsible for signaling transduction after QZZTD administration. The rat experiment verified that QZZTD inhibited PI3K-Akt pathway activation and reduced inflammation in UC. In conclusion, our study suggested four potential key active components, including quercetin, were identified in QZZTD, which could interact with Akt1 and modulate the activation of the PI3K-Akt pathway. The other three pathways may also be involved in the signaling transduction induced by QZZTD in the treatment of UC.
Collapse
Affiliation(s)
- Xintian Shou
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yumeng Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xuesong Zhang
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yanju Zhang
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yan Yang
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chenglin Duan
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Qiulei Jia
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Jingjing Shi
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Shuqing Shi
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Hanming Cui
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yuanhui Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| |
Collapse
|
36
|
Andreadi A, Bellia A, Di Daniele N, Meloni M, Lauro R, Della-Morte D, Lauro D. The molecular link between oxidative stress, insulin resistance, and type 2 diabetes: A target for new therapies against cardiovascular diseases. Curr Opin Pharmacol 2022; 62:85-96. [PMID: 34959126 DOI: 10.1016/j.coph.2021.11.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
Type 2 Diabetes Mellitus (T2D) is a chronic disease with a pandemic incidence whose pathogenesis has not yet been clarified. Raising evidence highlighted the role of oxidative stress in inducing insulin resistance, pancreatic beta-cell dysfunction, and leading to cardiovascular disease (CVD). Therefore, understanding the link between oxidative stress, T2D and CVD may help to further understand the pathological processes beyond this association, to personalize the algorithm of the cure, and to find new therapeutic targets. Here, we discussed the role of oxidative stress and the decrease of antioxidant defenses in the pathogenesis of T2D. Furthermore, some aspects of hypoglycemic therapies and their potential role as antioxidant agents were examined, which might be pivotal in preventing CVD in T2D patients.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Marco Meloni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Renato Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy; San Raffaele Rome Open University, Rome, Italy; Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School, Miami, USA
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
37
|
Plemmenos G, Piperi C. Pathogenic Molecular Mechanisms in Periodontitis and Peri-Implantitis: Role of Advanced Glycation End Products. Life (Basel) 2022; 12:life12020218. [PMID: 35207505 PMCID: PMC8874682 DOI: 10.3390/life12020218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
Advanced Glycation End Products (AGEs), the products of the non-enzymatic oxidation of proteins, nucleic acids, and lipids, are accumulated in periodontal tissues under hyperglycemic conditions such as Diabetes Mellitus (DM) and are responsible for sustained periodontal destruction. AGEs mediate their intracellular effects either directly or indirectly through receptor binding (via RAGE) in all types of periodontal ligament cells (osteocytes, gingival fibroblasts, stem cells, epithelial cells), indicating an important target for intervention. In combination with lipopolysaccharides (LPS) from Porphyromonas gingivalis (Pg), the negative impact of AGEs on periodontal tissue is further enhanced and accentuated. In addition, AGE accumulation is evident in peri-implantitis, yet through different underlying molecular mechanisms. Novel therapeutic approaches targeting the effects of AGEs in periodontal ligament cells show beneficial effects in pre-clinical studies. Herein, we provide evidence on the detrimental role of AGE accumulation in oral cavity tissues and their associated signaling pathways in periodontitis and peri-implantitis to further highlight the significance of oral or topical use of AGE blockers or inhibitors along with dental biofilms’ removal and DM regulation in patients’ management.
Collapse
Affiliation(s)
- Grigorios Plemmenos
- School of Dentistry, National and Kapodistrian University of Athens, Goudi, 11527 Athens, Greece; or
| | - Christina Piperi
- School of Dentistry, National and Kapodistrian University of Athens, Goudi, 11527 Athens, Greece; or
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Goudi, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-2107462610
| |
Collapse
|
38
|
Pujia R, Maurotti S, Coppola A, Romeo S, Pujia A, Montalcini T. The Potential Role of C-peptide in Sexual and Reproductive Functions in Type 1 Diabetes Mellitus: An Update. Curr Diabetes Rev 2022; 18:e051021196983. [PMID: 34636302 DOI: 10.2174/1573399817666211005093434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/09/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although hyperglycaemia is known to be the leading cause of diabetic complications, the beneficial effect of optimal glucose control in preventing diabetic complications is still far from being proven. In fact, such complications may not be related to glycaemic control alone. OBJECTIVE This review summarizes several studies that suggest that a C-peptide deficiency could be new and common pathophysiology for complications in type 1 diabetes, including sexual and reproductive dysfunction. METHODS We reviewed in vitro, in vivo, and human studies on the association between C-peptide deficiency or C-peptide replacement therapy and complications in type 1 diabetes. It seems that Cpeptide replacement therapy may interrupt the connection between diabetes and sexual/reproductive dysfunction. RESULTS The Diabetes Control and Complications Trial suggested that maintaining C-peptide secretion is associated with a reduced incidence of retinopathy, nephropathy, and hypoglycaemia. Risk of vascular, hormonal, and neurologic damage in the structures supplying blood to the penis increases with increasing levels of HbA1. However, several human studies have suggested an association between C-peptide production and hypothalamic/pituitary functions. When exposed to C-peptide, cavernosal smooth muscle cells increase the production of nitric oxide. C-peptide in diabetic rats improves sperm count, sperm motility, testosterone levels, and nerve conduction compared to non-treated diabetic rats. CONCLUSION C-peptide deficiency may be involved, at least partially, in the development of several pathological features associated with type 1 diabetes, including sexual/reproductive dysfunction. Preliminary studies have reported that C-peptide administration protects against diabetic microand macrovascular damages as well as sexual/reproductive dysfunction. Therefore, further studies are needed to confirm these promising findings.
Collapse
Affiliation(s)
- Roberta Pujia
- Department of Health Science, University Magna Grecia, Catanzaro,Italy
| | - Samantha Maurotti
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro,Italy
| | | | - Stefano Romeo
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro,Italy
| | - Arturo Pujia
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro,Italy
| | - Tiziana Montalcini
- Department of Experimental and Clinical Medicine, Clinical Nutrition Unit, University Magna Græcia of Catanzaro, Catanzaro,Italy
| |
Collapse
|
39
|
Jafarnejad S, Hooshiar S, Esmaili H, Taherian A. Exercise, Advanced Glycation End Products, and Their Effects on Cardiovascular Disorders: A Narrative Review. HEART AND MIND 2022. [DOI: 10.4103/hm.hm_31_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
40
|
Zhan J, Chen C, Wang DW, Li H. Hyperglycemic memory in diabetic cardiomyopathy. Front Med 2021; 16:25-38. [PMID: 34921674 DOI: 10.1007/s11684-021-0881-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases account for approximately 80% of deaths among individuals with diabetes mellitus, with diabetic cardiomyopathy as the major diabetic cardiovascular complication. Hyperglycemia is a symptom that abnormally activates multiple downstream pathways and contributes to cardiac hypertrophy, fibrosis, apoptosis, and other pathophysiological changes. Although glycemic control has long been at the center of diabetes therapy, multicenter randomized clinical studies have revealed that intensive glycemic control fails to reduce heart failure-associated hospitalization and mortality in patients with diabetes. This finding indicates that hyperglycemic stress persists in the cardiovascular system of patients with diabetes even if blood glucose level is tightly controlled to the normal level. This process is now referred to as hyperglycemic memory (HGM) phenomenon. We briefly reviewed herein the current advances that have been achieved in research on the underlying mechanisms of HGM in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
41
|
Ghareghomi S, Rahban M, Moosavi-Movahedi Z, Habibi-Rezaei M, Saso L, Moosavi-Movahedi AA. The Potential Role of Curcumin in Modulating the Master Antioxidant Pathway in Diabetic Hypoxia-Induced Complications. Molecules 2021; 26:molecules26247658. [PMID: 34946740 PMCID: PMC8706440 DOI: 10.3390/molecules26247658] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is the leading player in the onset and development of various diseases. The Keap1-Nrf2 pathway is a pivotal antioxidant system that preserves the cells' redox balance. It decreases inflammation in which the nuclear trans-localization of Nrf2 as a transcription factor promotes various antioxidant responses in cells. Through some other directions and regulatory proteins, this pathway plays a fundamental role in preventing several diseases and reducing their complications. Regulation of the Nrf2 pathway occurs on transcriptional and post-transcriptional levels, and these regulations play a significant role in its activity. There is a subtle correlation between the Nrf2 pathway and the pivotal signaling pathways, including PI3 kinase/AKT/mTOR, NF-κB and HIF-1 factors. This demonstrates its role in the development of various diseases. Curcumin is a yellow polyphenolic compound from Curcuma longa with multiple bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Since hyperglycemia and increased reactive oxygen species (ROS) are the leading causes of common diabetic complications, reducing the generation of ROS can be a fundamental approach to dealing with these complications. Curcumin can be considered a potential treatment option by creating an efficient therapeutic to counteract ROS and reduce its detrimental effects. This review discusses Nrf2 pathway regulation at different levels and its correlation with other important pathways and proteins in the cell involved in the progression of diabetic complications and targeting these pathways by curcumin.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
| | | | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417466191, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (M.H.-R.); (A.A.M.-M.); Tel.: +98-21-6111-3214 (M.H.-R.); +98-21-6111-3381 (A.A.M.-M.); Fax: +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680 (A.A.M.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, 00185 Rome, Italy;
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (M.H.-R.); (A.A.M.-M.); Tel.: +98-21-6111-3214 (M.H.-R.); +98-21-6111-3381 (A.A.M.-M.); Fax: +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680 (A.A.M.-M.)
| |
Collapse
|
42
|
Banerjee S. Biophysical and mass spectrometry based characterization of methylglyoxal-modified myoglobin: Role of advanced glycation end products in inducing protein structural alterations. Int J Biol Macromol 2021; 193:2165-2172. [PMID: 34774865 DOI: 10.1016/j.ijbiomac.2021.11.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/08/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
Methylglyoxal (MG) is a highly reactive α-dicarbonyl compound which reacts with proteins to form advanced glycation end products (AGEs). MG-induced AGE (MAGE) formation is particularly significant in diabetic condition. In the current study, we have undertaken a time-dependant characterization of MG-modified myoglobin following incubation of the heme protein with the α-dicarbonyl compound for different time periods. Interestingly, mass spectrometric studies indicated modifications at two specific lysine residues, Lys-87 and Lys-133. The AGE adducts identified at Lys-87 were carboxymethyllysine and carboxyethyllysine, while those detected at Lys-133 included pyrraline-carboxymethyllysine and carboxyethyllysine, respectively. Far-UV CD studies revealed a decrease in the native α-helical content of the heme protein gradually with increasing time of MG incubation. In addition, MG modification was found to induce changes in tertiary structure as well as surface hydrophobicity of the heme protein. MG-derived AGE adducts thus appear to alter the structure of Mb considerably. Considering the increased level of MG in diabetic condition, the current study appears physiologically relevant in terms of understanding AGE-mediated protein modification and subsequent structural changes.
Collapse
Affiliation(s)
- Sauradipta Banerjee
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92, Acharyya Prafulla Chandra Road, Kolkata 700009, India.
| |
Collapse
|
43
|
Hansen L, Joseph G, Valdivia A, Taylor WR. Satellite Cell Expression of RAGE (Receptor for Advanced Glycation end Products) Is Important for Collateral Vessel Formation. J Am Heart Assoc 2021; 10:e022127. [PMID: 34689598 PMCID: PMC8751830 DOI: 10.1161/jaha.120.022127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The growth and remodeling of vascular networks is an important component of the prognosis for patients with peripheral artery disease. One protein that has been previously implicated to play a role in this process is RAGE (receptor for advanced glycation end products). This study sought to determine the cellular source of RAGE in the ischemic hind limb and the role of RAGE signaling in this cell type. Methods and Results Using a hind limb ischemia model of vascular growth, this study found skeletal muscle satellite cells to be a novel major cellular source of RAGE in ischemic tissue by both staining and cellular sorting. Although wild-type satellite cells increased tumor necrosis factor-α and monocyte chemoattractant protein-1 production in response to ischemia in vivo and a RAGE ligand in vitro, satellite cells from RAGE knockout mice lacked the increase in cytokine production both in vivo in response to ischemia and in vitro after stimuli with the RAGE ligand high-mobility group box 1. Furthermore, encapsulated wild-type satellite cells improved perfusion after hind limb ischemia surgery by both perfusion staining and vessel quantification, but RAGE knockout satellite cells provided no improvement over empty capsules. Conclusions Thus, RAGE expression and signaling in satellite cells is crucial for their response to stimuli and angiogenic and arteriogenic functions.
Collapse
Affiliation(s)
- Laura Hansen
- Division of Cardiology Department of Medicine Emory University Atlanta GA.,Division of Cardiology Atlanta Veterans Affairs Medical Center Decatur GA
| | - Giji Joseph
- Division of Cardiology Department of Medicine Emory University Atlanta GA
| | - Alejandra Valdivia
- Division of Cardiology Department of Medicine Emory University Atlanta GA
| | - W Robert Taylor
- Division of Cardiology Department of Medicine Emory University Atlanta GA.,Division of Cardiology Atlanta Veterans Affairs Medical Center Decatur GA.,The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA
| |
Collapse
|
44
|
Parodi-Rullán RM, Javadov S, Fossati S. Dissecting the Crosstalk between Endothelial Mitochondrial Damage, Vascular Inflammation, and Neurodegeneration in Cerebral Amyloid Angiopathy and Alzheimer's Disease. Cells 2021; 10:cells10112903. [PMID: 34831125 PMCID: PMC8616424 DOI: 10.3390/cells10112903] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent cause of dementia and is pathologically characterized by the presence of parenchymal senile plaques composed of amyloid β (Aβ) and intraneuronal neurofibrillary tangles of hyperphosphorylated tau protein. The accumulation of Aβ also occurs within the cerebral vasculature in over 80% of AD patients and in non-demented individuals, a condition called cerebral amyloid angiopathy (CAA). The development of CAA is associated with neurovascular dysfunction, blood–brain barrier (BBB) leakage, and persistent vascular- and neuro-inflammation, eventually leading to neurodegeneration. Although pathologically AD and CAA are well characterized diseases, the chronology of molecular changes that lead to their development is still unclear. Substantial evidence demonstrates defects in mitochondrial function in various cells of the neurovascular unit as well as in the brain parenchyma during the early stages of AD and CAA. Dysfunctional mitochondria release danger-associated molecular patterns (DAMPs) that activate a wide range of inflammatory pathways. In this review, we gather evidence to postulate a crucial role of the mitochondria, specifically of cerebral endothelial cells, as sensors and initiators of Aβ-induced vascular inflammation. The activated vasculature recruits circulating immune cells into the brain parenchyma, leading to the development of neuroinflammation and neurodegeneration in AD and CAA.
Collapse
Affiliation(s)
- Rebecca M. Parodi-Rullán
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00921, USA;
| | - Silvia Fossati
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Correspondence: ; Tel.: +1-215-707-6046
| |
Collapse
|
45
|
Mocanu CA, Fuior EV, Voicu G, Rebleanu D, Safciuc F, Deleanu M, Fenyo IM, Escriou V, Manduteanu I, Simionescu M, Calin M. P-selectin targeted RAGE-shRNA lipoplexes alleviate atherosclerosis-associated inflammation. J Control Release 2021; 338:754-772. [PMID: 34530051 DOI: 10.1016/j.jconrel.2021.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
The receptor for advanced glycation end products (RAGE) plays a central role in the chronic inflammatory process associated with atherosclerosis development. We aimed to develop lipoplexes carrying RAGE-short hairpin (sh) RNA, targeted to the adhesion molecule P-selectin, selectively expressed on the surface of activated endothelium (Psel-lipo/shRAGE) to down-regulate RAGE expression as a therapeutic strategy for atherosclerosis. In vitro, Psel-lipo/shRAGE lipoplexes were efficiently taken up by activated endothelial cells (EC), decreased the expression of RAGE protein, and proved to be functional by reducing the monocyte adhesion to activated EC. In ApoE-deficient mice, the targeted lipoplexes accumulated specifically and efficiently transfected the aorta. The repeated administration of Psel-lipo/shRAGE lipoplexes, twice per week for one month: i) reduced the expression of RAGE protein in the aorta by decreasing the expression of NF-kB and TNF-α; ii) diminished the plasma levels of TNF-α, IL6, IL-1β, and MCP-1; iii) inhibited the atherosclerotic plaque development and iv) had no significant adverse effects. In conclusion, the newly developed Psel-lipo/shRAGE lipoplexes reduce the inflammatory processes associated with RAGE signaling and the progression of atherosclerosis in ApoE-deficient mice. Downregulation of RAGE employing these lipoplexes may represent a promising new targeted therapy to block atherosclerosis progression.
Collapse
Affiliation(s)
- Cristina Ana Mocanu
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Elena Valeria Fuior
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Geanina Voicu
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Daniela Rebleanu
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Florentina Safciuc
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Mariana Deleanu
- "Liquid and Gas Chromatography" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Ioana Madalina Fenyo
- "Gene Regulation and Molecular Therapies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | | | - Ileana Manduteanu
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Maya Simionescu
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Manuela Calin
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania.
| |
Collapse
|
46
|
Malik P, Hoidal JR, Mukherjee TK. Implication of RAGE Polymorphic Variants in COPD Complication and Anti-COPD Therapeutic Potential of sRAGE. COPD 2021; 18:737-748. [PMID: 34615424 DOI: 10.1080/15412555.2021.1984417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a slowly progressive and poorly reversible airway obstruction disease. It is caused either alone or in combination of emphysema, chronic bronchitis (CB), and small airways disease. COPD is thought to be a multi-factorial disorder in which genetic susceptibility, environmental factors and tobacco exposure could be doubly or simultaneously implicated. Available medicines against COPD include anti-inflammatory drugs, such as β2-agonists and anticholinergics, which efficiently reduce airflow limitation but are unable to avert disease progression and mortality. Advanced glycation end products (AGE) and their receptors i.e. receptor for advanced glycation end products (RAGE) are some molecules that have been implicated in the complication of COPD. Several RAGE single nucleotide polymorphic (SNP) variants are produced by the mammalian cells. Based on the ethnicity some SNPs aggravate the COPD severity. Mammalian cells produce several alternative RAGE splice variants including a soluble RAGE (sRAGE) and an endogenous soluble RAGE (esRAGE). Both of these act as decoy receptor and thus may help to arrest the COPD complications. Several lines of evidences indicate a decreased level of sRAGE in the COPD subjects. One of the new strategies to reduce COPD complication may be sRAGE therapeutic administration to the COPD subjects. This comprehensive discussion sheds light on the role of RAGE and its polymorphic variants in the COPD complication along with sRAGE therapeutic significance in the COPD prevention.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - John R Hoidal
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tapan Kumar Mukherjee
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
47
|
Copur S, Rossing P, Afsar B, Sag AA, Siriopol D, Kuwabara M, Ortiz A, Kanbay M. A primer on metabolic memory: why existing diabesity treatments fail. Clin Kidney J 2021; 14:756-767. [PMID: 34512957 PMCID: PMC8422888 DOI: 10.1093/ckj/sfaa143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 11/28/2022] Open
Abstract
Despite massive government and private sector investments into prevention of cardiovascular disease, diabetes mellitus and obesity, efforts have largely failed, and the burden of cost remains in the treatment of downstream morbidity and mortality, with overall stagnating outcomes. A new paradigm shift in the approach to these patients may explain why existing treatment strategies fail, and offer new treatment targets. This review aims to provide a clinician-centred primer on metabolic memory, defined as the sum of irreversible genetic, epigenetic, cellular and tissue-level alterations that occur with long-time exposure to metabolic derangements.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Baris Afsar
- Department of Internal Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alan A Sag
- Department of Radiology, Division of Vascular and Interventional Radiology, Duke University Medical Center, Durham, NC, USA
| | - Dimitrie Siriopol
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, 'Grigore T. Popa' University of Medicine, Iasi, Romania
| | | | - Alberto Ortiz
- School of Medicine, Dialysis Unit, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
48
|
Otani T, Yamaguchi K, Nakao S, Sakamoto S, Horimasu Y, Masuda T, Miyamoto S, Nakashima T, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Association between glucose intolerance and chemotherapy-induced lung injury in patients with lung cancer and interstitial lung disease. Cancer Chemother Pharmacol 2021; 88:857-865. [PMID: 34350479 DOI: 10.1007/s00280-021-04341-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Cytotoxic chemotherapy-induced lung injury is a fatal complication in patients with lung cancer and interstitial lung disease (ILD). We aimed to evaluate the association between hyperglycemia and this form of lung injury in patients with lung cancer concomitant with ILD. METHODS From 1147 patients with advanced lung cancer, we retrospectively enrolled 98 patients with ILD whose hemoglobin A1c (HbA1c) levels were measured, and investigated the association between HbA1c levels and cytotoxic chemotherapy-induced lung injury. In 73 patients whose serum samples were retained, we measured serum levels of advanced glycation end products (AGE) and assessed the association of AGE levels with HbA1c levels and cytotoxic chemotherapy-induced lung injury. RESULTS The incidence of cytotoxic chemotherapy-induced lung injury was significantly higher in patients with HbA1c levels ≥ 5.8% than in those with HbA1c levels < 5.8%, but not in those with HbA1c levels ≥ 6.5% than in those with HbA1c levels < 6.5%. The multivariate logistic regression model revealed that HbA1c level ≥ 5.8% was a significant risk factor for this complication [odds ratio 3.178 (95% confidence interval 1.057-9.556), P = 0.040]. In addition, serum AGE levels were significantly higher in patients with HbA1c levels ≥ 5.8% than in those with HbA1c levels < 5.8% [median (interquartile range); 0.129 (0.023-0.290) and 0.474 (0.213-1.109) μg/mL, P = 0.001]. CONCLUSION Glucose intolerance (e.g., HbA1c level ≥ 5.8%) may be a risk factor of cytotoxic chemotherapy-induced lung injury, which might be associated with elevated AGE production due to hyperglycemia.
Collapse
Affiliation(s)
- Toshihito Otani
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Satoshi Nakao
- Department of Internal Medicine, Mitsugi General Hospital, 124, Ichi, Mitsugi-cho, Onomichi, Hiroshima, 722-0393, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
49
|
Genetics of Diabetic Retinopathy, a Leading Cause of Irreversible Blindness in the Industrialized World. Genes (Basel) 2021; 12:genes12081200. [PMID: 34440374 PMCID: PMC8394456 DOI: 10.3390/genes12081200] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic complication of diabetes and a leading cause of blindness in the industrialized world. Traditional risk factors, such as glycemic control and duration of diabetes, are unable to explain why some individuals remain protected while others progress to a more severe form of the disease. Differences are also observed in DR heritability as well as the response to anti-vascular endothelial growth factor (VEGF) treatment. This review discusses various aspects of genetics in DR to shed light on DR pathogenesis and treatment. First, we discuss the global burden of DR followed by a discussion on disease pathogenesis as well as the role genetics plays in the prevalence and progression of DR. Subsequently, we provide a review of studies related to DR’s genetic contribution, such as candidate gene studies, linkage studies, and genome-wide association studies (GWAS) as well as other clinical and meta-analysis studies that have identified putative candidate genes. With the advent of newer cutting-edge technologies, identifying the genetic components in DR has played an important role in understanding DR incidence, progression, and response to treatment, thereby developing newer therapeutic targets and therapies.
Collapse
|
50
|
Berger MT, Hemmler D, Walker A, Rychlik M, Marshall JW, Schmitt-Kopplin P. Molecular characterization of sequence-driven peptide glycation. Sci Rep 2021; 11:13294. [PMID: 34168180 PMCID: PMC8225897 DOI: 10.1038/s41598-021-92413-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Peptide glycation is an important, yet poorly understood reaction not only found in food but also in biological systems. The enormous heterogeneity of peptides and the complexity of glycation reactions impeded large-scale analysis of peptide derived glycation products and to understand both the contributing factors and how this affects the biological activity of peptides. Analyzing time-resolved Amadori product formation, we here explored site-specific glycation for 264 peptides. Intensity profiling together with in-depth computational sequence deconvolution resolved differences in peptide glycation based on microheterogeneity and revealed particularly reactive peptide collectives. These peptides feature potentially important sequence patterns that appear in several established bio- and sensory-active peptides from independent sources, which suggests that our approach serves system-wide applicability. We generated a pattern peptide map and propose that in peptide glycation the herein identified molecular checkpoints can be used as indication of sequence reactivity.
Collapse
Affiliation(s)
- Michelle T Berger
- Chair of Analytical Food Chemistry, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany. .,Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| | - Daniel Hemmler
- Chair of Analytical Food Chemistry, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.,Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany
| | - James W Marshall
- The Waltham Pet Science Institute, Mars Petcare UK, Waltham-on-the-Wolds, Leicestershire, LE14 4RT, UK
| | - Philippe Schmitt-Kopplin
- Chair of Analytical Food Chemistry, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany. .,Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|