1
|
Schoberleitner I, Faserl K, Tripp CH, Pechriggl EJ, Sigl S, Brunner A, Zelger B, Hermann-Kleiter N, Baier L, Steinkellner T, Sarg B, Egle D, Brunner C, Wolfram D. Silicone implant surface microtopography modulates inflammation and tissue repair in capsular fibrosis. Front Immunol 2024; 15:1342895. [PMID: 38566997 PMCID: PMC10985323 DOI: 10.3389/fimmu.2024.1342895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Excessive fibrous capsule formation around silicone mammary implants (SMI) involves immune reactions to silicone. Capsular fibrosis, a common SMI complication linked to host responses, worsens with specific implant topographies. Our study with 10 patients investigated intra- and inter-individually, reduced surface roughness effects on disease progression, wound responses, chronic inflammation, and capsular composition. The results illuminate the significant impact of surface roughness on acute inflammatory responses, fibrinogen accumulation, and the subsequent fibrotic cascade. The reduction of surface roughness to an average roughness of 4 μm emerges as a promising approach for mitigating detrimental immune reactions, promoting healthy wound healing, and curbing excessive fibrosis. The identified proteins adhering to rougher surfaces shed light on potential mediators of pro-inflammatory and pro-fibrotic processes, further emphasizing the need for meticulous consideration of surface design. The composition of the implant capsule and the discovery of intracapsular HSP60 expression highlight the intricate web of stress responses and immune activation that can impact long-term tissue outcomes.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Faserl
- Protein Core Facility, Institute of Medical Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph H. Tripp
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Judith Pechriggl
- Department of Anatomy, Histology and Embryology, Institute of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Sigl
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Brunner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- INNPATH GmbH, Tirol Kliniken, Innsbruck, Austria
| | - Bettina Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Leoni Baier
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresia Steinkellner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Sarg
- Protein Core Facility, Institute of Medical Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel Egle
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christine Brunner
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
von Mentzer U, Corciulo C, Stubelius A. Biomaterial Integration in the Joint: Pathological Considerations, Immunomodulation, and the Extracellular Matrix. Macromol Biosci 2022; 22:e2200037. [PMID: 35420256 DOI: 10.1002/mabi.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Indexed: 11/08/2022]
Abstract
Defects of articular joints are becoming an increasing societal burden due to a persistent increase in obesity and aging. For some patients suffering from cartilage erosion, joint replacement is the final option to regain proper motion and limit pain. Extensive research has been undertaken to identify novel strategies enabling earlier intervention to promote regeneration and cartilage healing. With the introduction of decellularized extracellular matrix (dECM), researchers have tapped into the potential for increased tissue regeneration by designing biomaterials with inherent biochemical and immunomodulatory signals. Compared to conventional and synthetic materials, dECM-based materials invoke a reduced foreign body response. It is therefore highly beneficial to understand the interplay of how these native tissue-based materials initiate a favorable remodeling process by the immune system. Yet, such an understanding also demands increasing considerations of the pathological environment and remodeling processes, especially for materials designed for early disease intervention. This knowledge would avoid rejection and help predict complications in conditions with inflammatory components such as arthritides. This review outlines general issues facing biomaterial integration and emphasizes the importance of tissue-derived macromolecular components in regulating essential homeostatic, immunological, and pathological processes to increase biomaterial integration for patients suffering from joint degenerative diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ula von Mentzer
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, 41296, Sweden
| | - Carmen Corciulo
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, Gothenburg, 41296, Sweden
| | - Alexandra Stubelius
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, 41296, Sweden
| |
Collapse
|
3
|
Coron AE, Kjesbu JS, Kjærnsmo F, Oberholzer J, Rokstad AMA, Strand BL. Pericapsular fibrotic overgrowth mitigated in immunocompetent mice through microbead formulations based on sulfated or intermediate G alginates. Acta Biomater 2022; 137:172-185. [PMID: 34634509 DOI: 10.1016/j.actbio.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022]
Abstract
Cell encapsulation in alginate microbeads is a promising approach to provide immune isolation in cell therapy without immunosuppression. However, the efficacy is hampered by pericapsular fibrotic overgrowth (PFO), causing encapsulated cells to lose function. Stability of the microbeads is important to maintain immune isolation in the long-term. Here, we report alginate microbeads with minimal PFO in immunocompetent C57BL/6JRj mice. Microbead formulations included either alginate with an intermediate (47 %) guluronate (G) content (IntG) or sulfated alginate (SA), gelled in Ca2+/Ba2+ or Sr2+. A screening panel of eleven microbead formulations were evaluated for PFO, yielding multiple promising microbeads. Two candidate formulations were evaluated for 112 days in vivo, exhibiting maintained stability and minimal PFO. Microbeads investigated in a human whole blood assay revealed low cytokine and complement responses, while SA microbeads activated coagulation. Protein deposition on microbeads explanted from mice investigated by confocal laser scanning microscopy (CLSM) showed minimal deposition of complement C3. Fibrinogen was positively associated with PFO, with a high deposition on microbeads of high G (68 %) alginate compared to IntG and SA microbeads. Overall, stable microbeads containing IntG or SA may serve in long-term therapeutic applications of cell encapsulation. STATEMENT OF SIGNIFICANCE: Alginate-based hydrogels in the format of micrometer size beads is a promising approach for the immunoisolation of cells in cell therapy. Clinical trials in type 1 diabetes have so far had limited success due to fibrotic responses that hinder the diffusion of nutrients and oxygen to the encapsulated cells, resulting in graft failure. In this study, minimal fibrotic response towards micrometer size alginate beads was achieved by chemical modification of alginate with sulfate groups. Also, the use of alginate with intermediate guluronic acid content resulted in minimally fibrotic microbeads. Fibrinogen deposition was revealed to be a good indicator of fibrosis. This study points to both new microsphere developments and novel insight in the mechanisms behind the fibrotic responses.
Collapse
Affiliation(s)
- Abba E Coron
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.; Centre of Molecular Inflammation Research, Department of Clinical and Molecular Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joachim S Kjesbu
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Fredrikke Kjærnsmo
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.; Centre of Molecular Inflammation Research, Department of Clinical and Molecular Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - José Oberholzer
- Charles O. Strickler Transplant Center. Division of Transplantation, Department of Surgery, University of Virginia, VA 22903, USA
| | - Anne Mari A Rokstad
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Research, Norwegian University of Science and Technology, Trondheim, Norway.; Centre for Obesity, Clinic of Surgery, St. Olav's University Hospital, NO-7006 Trondheim, Norway
| | - Berit L Strand
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway..
| |
Collapse
|
4
|
Fibrin polymer on the surface of biomaterial implants drives the foreign body reaction. Biomaterials 2021; 277:121087. [PMID: 34478933 DOI: 10.1016/j.biomaterials.2021.121087] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022]
Abstract
Implantation of biomaterials and medical devices in the body triggers the foreign body reaction (FBR) which is characterized by macrophage fusion at the implant surface leading to the formation of foreign body giant cells and the development of the fibrous capsule enveloping the implant. While adhesion of macrophages to the surface is an essential step in macrophage fusion and implanted biomaterials are known to rapidly acquire a layer of host proteins, a biological substrate that is responsible for this process in vivo is unknown. Here we show that mice with genetically imposed fibrinogen deficiency display a dramatic reduction of macrophage fusion on biomaterials implanted intraperitoneally and subcutaneously and are protected from the formation of the fibrin-containing fibrous capsule. Furthermore, macrophage fusion on biomaterials implanted in FibAEK mice that express a mutated form of fibrinogen incapable of thrombin-mediated polymerization was strongly reduced. Despite the lack of fibrin, the capsule was formed in FibAEK mice, although it had a different composition and distinct mechanical properties than that in wild-type mice. Specifically, while mononuclear α-SMA-expressing macrophages embedded in the capsule of both strains of mice secreted collagen, the amount of collagen and its density in the tissue of FibAEK mice was reduced. These data identify fibrin polymer as a key biological substrate driving the development of the FBR.
Collapse
|
5
|
Szin N, Silva SM, Moulton SE, Kapsa RMI, Quigley AF, Greene GW. Cellular Interactions with Lubricin and Hyaluronic Acid-Lubricin Composite Coatings on Gold Electrodes in Passive and Electrically Stimulated Environments. ACS Biomater Sci Eng 2021; 7:3696-3708. [PMID: 34283570 DOI: 10.1021/acsbiomaterials.1c00479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the field of bionics, the long-term effectiveness of implantable bionic interfaces depends upon maintaining a "clean" and unfouled electrical interface with biological tissues. Lubricin (LUB) is an innately biocompatible glycoprotein with impressive antifouling properties. Unlike traditional antiadhesive coatings, LUB coatings do not passivate electrode surfaces, giving LUB coatings great potential for controlling surface fouling of implantable electrode interfaces. This study characterizes the antifouling properties of bovine native LUB (N-LUB), recombinant human LUB (R-LUB), hyaluronic acid (HA), and composite coatings of HA and R-LUB (HA/R-LUB) on gold electrodes against human primary fibroblasts and chondrocytes in passive and electrically stimulated environments for up to 96 h. R-LUB coatings demonstrated highly effective antifouling properties, preventing nearly all adhesion and proliferation of fibroblasts and chondrocytes even under biphasic electrical stimulation. N-LUB coatings, while showing efficacy in the short term, failed to produce sustained antifouling properties against fibroblasts or chondrocytes over longer periods of time. HA/R-LUB composite films also demonstrated highly effective antifouling performance equal to the R-LUB coatings in both passive and electrically stimulated environments. The high electrochemical stability and long-lasting antifouling properties of R-LUB and HA/R-LUB coatings in electrically stimulating environments reveal the potential of these coatings for controlling unwanted cell adhesion in implantable bionic applications.
Collapse
Affiliation(s)
- Natalie Szin
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, VIC 3216, Australia
| | - Saimon M Silva
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital Melbourne, Melbourne, VIC 3065, Australia.,ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Simon E Moulton
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital Melbourne, Melbourne, VIC 3065, Australia.,ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Robert M I Kapsa
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital Melbourne, Melbourne, VIC 3065, Australia.,School of Electrical and Biomedical Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Anita F Quigley
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital Melbourne, Melbourne, VIC 3065, Australia.,School of Electrical and Biomedical Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, VIC 3216, Australia
| |
Collapse
|
6
|
Galanakis DK, Protopopova A, Zhang L, Li K, Marmorat C, Scheiner T, Koo J, Savitt AG, Rafailovich M, Weisel J. Fibers Generated by Plasma Des-AA Fibrin Monomers and Protofibril/Fibrinogen Clusters Bind Platelets: Clinical and Nonclinical Implications. TH OPEN 2021; 5:e273-e285. [PMID: 34240000 PMCID: PMC8260279 DOI: 10.1055/s-0041-1725976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Objective Soluble fibrin (SF) is a substantial component of plasma fibrinogen (fg), but its composition, functions, and clinical relevance remain unclear. The study aimed to evaluate the molecular composition and procoagulant function(s) of SF. Materials and Methods Cryoprecipitable, SF-rich (FR) and cryosoluble, SF-depleted (FD) fg isolates were prepared and adsorbed on one hydrophilic and two hydrophobic surfaces and scanned by atomic force microscopy (AFM). Standard procedures were used for fibrin polymerization, crosslinking by factor XIII, electrophoresis, and platelet adhesion. Results Relative to FD fg, thrombin-induced polymerization of FR fg was accelerated and that induced by reptilase was markedly delayed, attributable to its decreased (fibrinopeptide A) FpA. FR fg adsorption to each surface yielded polymeric clusters and co-cryoprecipitable solitary monomers. Cluster components were crosslinked by factor XIII and comprised ≤21% of FR fg. In contrast to FD fg, FR fg adsorption on hydrophobic surfaces resulted in fiber generation enabled by both clusters and solitary monomers. This began with numerous short protofibrils, which following prolonged adsorption increased in number and length and culminated in surface-linked three-dimensional fiber networks that bound platelets. Conclusion The abundance of adsorbed protofibrils resulted from (1) protofibril/fg clusters whose fg was dissociated during adsorption, and (2) adsorbed des-AA monomers that attracted solution counterparts initiating protofibril assembly and elongation by their continued incorporation. The substantial presence of both components in transfused plasma and cryoprecipitate augments hemostasis by accelerating thrombin-induced fibrin polymerization and by tightly anchoring the resulting clot to the underlying wound or to other abnormal vascular surfaces.
Collapse
Affiliation(s)
- Dennis K Galanakis
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Anna Protopopova
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Liudi Zhang
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York
| | - Kao Li
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York
| | - Clement Marmorat
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York
| | - Tomas Scheiner
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Jaseung Koo
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York
| | - Anne G Savitt
- Department of Microbiology and Immunology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Miriam Rafailovich
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York
| | - John Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
|
8
|
Zhang J, Peng CA. Blockade of macrophage adhesion to CD200-treated polystyrene culture surface. J Biomed Mater Res A 2020; 109:365-373. [PMID: 32506802 DOI: 10.1002/jbm.a.37029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/08/2020] [Accepted: 05/19/2020] [Indexed: 02/02/2023]
Abstract
CD200 is an anti-inflammatory transmembrane glycoprotein in the immunoglobulin superfamily. The interaction of CD200 and its receptor CD200R has shown to inhibit inflammatory response of myeloid cells to foreign materials. The purpose of this study is to create a CD200 immobilized biomaterial surface through polydopamine coating to suppress macrophage cell adhesion and reduce inflammatory cytokine secretion accordingly by macrophages. In this study, tissue-culture treated polystyrene (TCPS) surface was modified with biotin through polydopamine coating. Purified CD200-streptavidin fusion protein was then immobilized onto the biotinylated TCPS surface through the high affinity between biotin and streptavidin. Mouse J774A.1 macrophages were seeded on CD200-immobilized TCPS surface to evaluate the effect of CD200 on preventing macrophage attachment. The effects of CD200-immobilized TCPS surface on pro-inflammatory cytokine secretion from J774A.1 macrophages were measured by enzyme-linked immunosorbent assay. As a result, CD200-immobilized TCPS surface suppressed macrophage attachment for up to 9 hr. The level of IL-6 and TNF-α secreted from J774A.1 macrophages interacted with CD200-coated TCPS surface was reduced by 36.3% and 32.4%, respectively.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biological Engineering, University of Idaho, Moscow, Idaho, USA
| | - Ching-An Peng
- Department of Biological Engineering, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
9
|
Qiao Y, Li Y, Zhang Q, Wang Q, Gao J, Wang L. Dopamine-Mediated Zwitterionic Polyelectrolyte-Coated Polypropylene Hernia Mesh with Synergistic Anti-inflammation Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5251-5261. [PMID: 32336102 DOI: 10.1021/acs.langmuir.0c00602] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over 20 million ventral hernia repairs are performed worldwide annually and only a minority (<10%) of cases are not mesh-based. However, even polypropylene (PP), endorsed as the "gold standard" of all prosthetic materials used in this field, is still subject to many complications caused by the foreign body reaction (FBR). Here, we describe the buildup of dopamine-mediated zwitterionic poly(sulfobetaine methacrylate) (PSBMA) coatings to inhibit nonspecific protein adsorption. Based on the universal adhesive ability of polydopamine (PDA), PSBMA has been coated on the PP mesh surface via two strategies: sequential deposition (PSBMA-PDA-PP) and co-deposition (PSBMA@PDA-PP). The presence of PSBMA shows great contribution to obviously decreased hydrophobicity of the PP surface (WCAco = 36.3° and WCAseq = 30.7°) as well as improved protein resistance (Reductionco = 74% and Reductionseq = 82%). Notably, as the intermedia between PP and PSBMA, PDA can endow the PP mesh with antioxidant activity, further featuring synergistic anti-inflammation therapeutic effect when coupled with PSBMA. With almost equal surface content of PSBMA, PSBMA-PDA-PP exhibited a more superior ability against macrophage adhesion and proliferation and showed more significantly decreased releases of TNF-α and IL-6 (p < 0.05) than those of PSBMA@PDA-PP, fundamentally attributed to its more neutral surface potential and the protection for polyphenols of PDA from oxidation with PSBMA as the outer layer. Furthermore, the coating layers demonstrated good stability and no sacrifice of the pristine mechanical property. The proposed dopamine-mediated PSBMA coatings possess high potential in biomedical implant areas for attenuating the FBR.
Collapse
Affiliation(s)
- Yansha Qiao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jing Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
10
|
Kim J. Systematic approach to characterize the dynamics of protein adsorption on the surface of biomaterials using proteomics. Colloids Surf B Biointerfaces 2020; 188:110756. [DOI: 10.1016/j.colsurfb.2019.110756] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
|
11
|
Hermann JK, Ravikumar M, Shoffstall AJ, Ereifej ES, Kovach KM, Chang J, Soffer A, Wong C, Srivastava V, Smith P, Protasiewicz G, Jiang J, Selkirk SM, Miller RH, Sidik S, Ziats NP, Taylor DM, Capadona JR. Inhibition of the cluster of differentiation 14 innate immunity pathway with IAXO-101 improves chronic microelectrode performance. J Neural Eng 2019; 15:025002. [PMID: 29219114 DOI: 10.1088/1741-2552/aaa03e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Neuroinflammatory mechanisms are hypothesized to contribute to intracortical microelectrode failures. The cluster of differentiation 14 (CD14) molecule is an innate immunity receptor involved in the recognition of pathogens and tissue damage to promote inflammation. The goal of the study was to investigate the effect of CD14 inhibition on intracortical microelectrode recording performance and tissue integration. APPROACH Mice implanted with intracortical microelectrodes in the motor cortex underwent electrophysiological characterization for 16 weeks, followed by endpoint histology. Three conditions were examined: (1) wildtype control mice, (2) knockout mice lacking CD14, and (3) wildtype control mice administered a small molecule inhibitor to CD14 called IAXO-101. MAIN RESULTS The CD14 knockout mice exhibited acute but not chronic improvements in intracortical microelectrode performance without significant differences in endpoint histology. Mice receiving IAXO-101 exhibited significant improvements in recording performance over the entire 16 week duration without significant differences in endpoint histology. SIGNIFICANCE Full removal of CD14 is beneficial at acute time ranges, but limited CD14 signaling is beneficial at chronic time ranges. Innate immunity receptor inhibition strategies have the potential to improve long-term intracortical microelectrode performance.
Collapse
Affiliation(s)
- John K Hermann
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Rehabilitation Research and Development, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland OH 44106, United States of America. Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 Martin Luther King Jr Drive, Wickenden Bldg, Cleveland OH 44106, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Veiseh O, Vegas AJ. Domesticating the foreign body response: Recent advances and applications. Adv Drug Deliv Rev 2019; 144:148-161. [PMID: 31491445 PMCID: PMC6774350 DOI: 10.1016/j.addr.2019.08.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 01/03/2023]
Abstract
The foreign body response is an immunological process that leads to the rejection of implanted devices and presents a fundamental challenge to their performance, durability, and therapeutic utility. Recent advances in materials development and device design are now providing strategies to overcome this immune-mediated reaction. Here, we briefly review our current mechanistic understanding of the foreign body response and highlight new anti-FBR technologies from this decade that have been applied successfully in biomedical applications relevant to implants, devices, and cell-based therapies. Further development of these important technologies promises to enable new therapies, diagnostics, and revolutionize the management of patient care for many intractable diseases.
Collapse
Affiliation(s)
- Omid Veiseh
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77030, USA.
| | - Arturo J Vegas
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Lin P, Chuang TL, Chen PZ, Lin CW, Gu FX. Low-Fouling Characteristics of Ultrathin Zwitterionic Cysteine SAMs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1756-1767. [PMID: 30056710 DOI: 10.1021/acs.langmuir.8b01525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface fouling remains an exigent issue for many biological implants. Unwanted solutes adsorb to reduce device efficiency and hasten degradation while increasing the risks of microbial colonization and adverse inflammatory response. To address unwanted fouling in modern implants in vivo, surface modification with antifouling polymers has become indispensable. Recently, zwitterionic self-assembled monolayers, which contain two or more charged functional groups but are electrostatically neutral and form highly hydrated surfaces, have been the focus of many antifouling coatings. Reports using various compositions of zwitterionic polymer brushes have demonstrated ultralow fouling in the ng/cm2 range. These coatings, however, are thick and can hinder the target application of biological devices. Here, we report an ultrathin (8.52 Å) antifouling self-assembled monolayer composed of cysteine that is amenable to facile fabrication. The antifouling characteristics of the zwitterionic surfaces were evaluated against bovine serum albumin, fibrinogen, and human blood in real time using quartz crystal microbalance and surface plasmon resonance imaging. Compared to untreated gold surfaces, the ultrathin cysteine coating reduced the adsorption of bovine serum albumin by 95% (43 ng/cm2 adsorbed) after 3 h and 90% reduction after 24 h. Similarly, the cysteine self-assembled monolayer reduced the adsorption of fibrinogen as well as human blood by >90%. The surfaces were further characterized using scanning electron microscopy: protein-enhanced adsorption and cellular adsorption in human blood was found on untreated surfaces but not on the cysteine SAM-protected surfaces. These findings suggest that surfaces can be functionalized with an ultrathin layer of cysteine to resist the adsorption of key proteins, with performance comparable to zwitterionic polymer brushes. As such, cysteine surface coatings are a promising methodology to improve the long-term utility of biological devices.
Collapse
Affiliation(s)
- Peter Lin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Tsung-Liang Chuang
- Graduate Institute of Biomedical Engineering, Department of Electrical Engineering , National Taiwan University , Taipei 106 , Taiwan
| | - Paul Z Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Chii-Wann Lin
- Graduate Institute of Biomedical Engineering, Department of Electrical Engineering , National Taiwan University , Taipei 106 , Taiwan
| | - Frank X Gu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
- Department of Chemical Engineering & Applied Chemistry , University of Toronto , Toronto , Ontario M5T 3A1 , Canada
| |
Collapse
|
14
|
Anderson TS, Rance GA, Jiang L, Piggott MJ, Field EJ, Chanoit GP. Changes in chemical and ultrastructural composition of ameroid constrictors following in vitro expansion. PLoS One 2018; 13:e0207471. [PMID: 30440023 PMCID: PMC6237400 DOI: 10.1371/journal.pone.0207471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/31/2018] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To (1) characterise the chemical and ultra-structural composition of ameroid constrictors, at a native state and during in vitro expansion and (2) determine the presence of irritant compounds at the surface or within the bulk of the constrictor. METHODS Twelve sterile, commercially packaged ameroid constrictors (3 repeats of 3.5 mm, 5 mm, 6 mm and 7 mm internal diameter) were analysed by time-of-flight secondary ion mass spectrometry, Raman spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy and scanning electron microscopy. RESULTS Ameroid constrictors have a composition commensurate with casein with little-to-no intra- or inter- constrictor variation. Microscopic analysis indicated that the topographical features of the constrictor surfaces were consistent between all constrictors. Following in vitro expansion there was a reproducible decrease in Ca+ ion content, little-to-no variation in secondary protein structure and morphological changes including the presence of surface aggregates present only at the inner surface of the ameroid constrictor. The potential irritant polydimethylsiloxane was found on the constrictor surface. A trace quantity of an ion fragment assigned as formaldehyde was detected; however, the extremely low level is thought highly unlikely to play a role as an inflammatory trigger clinically. DISCUSSION There is a high degree of inter- and intra-constrictor homogeneity from different batches, and reproducible ultrastructural changes following in vitro expansion. Variations occur in both the surface chemistry and topography of the device during closure, which can potentially affect the biomaterial-host interface. Ameroid constrictor closure mechanism is likely involving calcium-mediated inter-protein interactions rather than the imbibition of water only.
Collapse
Affiliation(s)
- Thomas S. Anderson
- Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Langford, Bristol, United Kingdom
| | - Graham A. Rance
- Nanoscale and Microscale Research Centre, Faculty of Science, University of Nottingham, Nottingham, United Kingdom
| | - Long Jiang
- Advanced Materials and Healthcare Technologies, School of Pharmacy, Faculty of Science, University of Nottingham, Nottingham, United Kingdom
| | - Matthew J. Piggott
- Advanced Materials and Healthcare Technologies, School of Pharmacy, Faculty of Science, University of Nottingham, Nottingham, United Kingdom
| | - Elinor J. Field
- Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Langford, Bristol, United Kingdom
| | - Guillaume P. Chanoit
- Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Langford, Bristol, United Kingdom
| |
Collapse
|
15
|
Barr SP, Hill EW, Bayat A. Novel Proteomic Assay of Breast Implants Reveals Proteins With Significant Binding Differences: Implications for Surface Coating and Biocompatibility. Aesthet Surg J 2018; 38:962-969. [PMID: 29590306 DOI: 10.1093/asj/sjy018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Silicone elastomer, a ubiquitous biomaterial and main constituent of breast implants, has been used for breast augmentation and reconstruction for over 50 years. Breast implants have direct local and purported systemic effects on normal tissue homeostasis dictated by the chemical and physical presence of the implant. OBJECTIVES Protein adsorption has been demonstrated to be a key driver of local reactions to silicone. We sought to develop an assay and identify the proteins that coat implants during breast implantation. METHODS Wound fluid was salvaged from women who had undergone breast reduction and incubated in contact with the surface of 13 commercially available implant surfaces. An in situ digestion technique was optimized to elute bound proteins. Samples were analyzed on an Orbitrap elite analyser, proteins identified in Mascot Demon and analyzed in Progenesis. RESULTS A total of 822 proteins were identified, bound to the surfaces of the implants. Extracellular proteins were the most abundant ontology, followed by intracellular proteins. Fibrinogen, a proinflammatory protein and Albumin, an anti-inflammatory protein had significant (P < 0.0001) binding differences between the surfaces studied. Complement C3, C5, and factor H were also shown to have significantly different binding affinities for the implants included in the study (P < 0.05). CONCLUSIONS We have developed a novel assay of breast implant protein binding and demonstrated significant binding affinities for relevant proteins derived from breast tissue wound fluid. LEVEL OF EVIDENCE 5
Collapse
Affiliation(s)
| | - Ernie W Hill
- University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
16
|
Cytokines as biomarkers of inflammatory response after open versus endovascular repair of abdominal aortic aneurysms: a systematic review. Acta Pharmacol Sin 2018; 39:1164-1175. [PMID: 29770795 DOI: 10.1038/aps.2017.212] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 12/31/2017] [Indexed: 01/01/2023] Open
Abstract
The repair of an abdominal aortic aneurysm (AAA) is a high-risk surgical procedure related to hormonal and metabolic stress-related response with an ensuing activation of the inflammatory cascade. In contrast to open repair (OR), endovascular aortic aneurysm repair (EVAR) seems to decrease the postoperative stress by offering less extensive incisions, dissection, and tissue manipulation. However, these beneficial effects may be offset by the release of cytokines and arachidonic acid metabolites during intra-luminal manipulation of the thrombus using catheters in endovascular repair, resulting in systemic inflammatory response (SIR), which is clinically called post-implantation syndrome. In this systematic review we compared OR with EVAR in terms of the post-interventional inflammatory response resulting from alterations in the circulating cytokine levels. We sought to summarize all the latest evidence regarding post-implantation syndrome after EVAR. We searched Medline (PubMed), ClinicalTrials.gov and the Cochrane library for clinical studies reporting on the release of cytokines as part of the inflammatory response after both open/conventional and endovascular repair of the AAA. We identified 17 studies examining the cytokine levels after OR versus EVAR. OR seemed to be associated with a greater SIR than EVAR, as evidenced by the increased cytokine levels, particularly IL-6 and IL-8, whereas IL-1β, IL-10 and TNF-α showed conflicting results or no difference between the two groups. Polyester endografts appear to be positively correlated with the incidence of post-implantation syndrome after EVAR. Future large prospective studies are warranted to delineate the underlying mechanisms of the cytokine interaction in the post-surgical inflammatory response setting.
Collapse
|
17
|
Saxena AK. Surgical perspectives regarding application of biomaterials for the management of large congenital diaphragmatic hernia defects. Pediatr Surg Int 2018; 34:475-489. [PMID: 29610961 DOI: 10.1007/s00383-018-4253-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2018] [Indexed: 02/07/2023]
Abstract
This review focuses on the surgical viewpoints on patch repairs in neonates with large congenital diaphragmatic hernia defects. The main focus is on the various biomaterials that have been employed to date with regard to their source of origins, degradation properties as well as tissue integration characteristics. Further focus is on the present knowledge on patch integration when biomaterials are placed in the diaphragmatic defect. The review will also look at the present evidence on the biomechanical characteristics of the most commonly used biomaterials and compares these materials to diaphragmatic tissue to offer more insight on the present practice of patch repairs in large defects. Since tissue engineering and regenerative medicine has offered another dimension to diaphragmatic replacement, a detailed overview of this technology will be undertaken with regard to cell sourcing, scaffolds, in vitro versus in vivo implants as well as quality of tissue produced, to explore the limitations and the feasibility facing the scientific community in its clinical implementation of skeletal muscle-engineered tissue beyond laboratory research for diaphragmatic replacement.
Collapse
Affiliation(s)
- Amulya K Saxena
- Department of Pediatric Surgery, Chelsea Children's Hospital, Chelsea and Westminster Hospital NHS Foundation Trust, Imperial College London, London, UK.
| |
Collapse
|
18
|
Firkowska-Boden I, Zhang X, Jandt KD. Controlling Protein Adsorption through Nanostructured Polymeric Surfaces. Adv Healthc Mater 2018; 7. [PMID: 29193909 DOI: 10.1002/adhm.201700995] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/09/2017] [Indexed: 12/11/2022]
Abstract
The initial host response to healthcare materials' surfaces after implantation is the adsorption of proteins from blood and interstitial fluids. This adsorbed protein layer modulates the biological/cellular responses to healthcare materials. This stresses the significance of the surface protein assembly for the biocompatibility and functionality of biomaterials and necessitates a profound fundamental understanding of the capability to control protein-surface interactions. This review, therefore, addresses this by systematically analyzing and discussing strategies to control protein adsorption on polymeric healthcare materials through the introduction of specific surface nanostructures. Relevant proteins, healthcare materials' surface properties, clinical applications of polymer healthcare materials, fabrication methods for nanostructured polymer surfaces, amorphous, semicrystalline and block copolymers are considered with a special emphasis on the topographical control of protein adsorption. The review shows that nanostructured polymer surfaces are powerful tools to control the amount, orientation, and order of adsorbed protein layers. It also shows that the understanding of the biological responses to such ordered protein adsorption is still in its infancy, yet it has immense potential for future healthcare materials. The review, which is-as far as it is known-the first one discussing protein adsorption on nanostructured polymer surfaces, concludes with highlighting important current research questions.
Collapse
Affiliation(s)
- Izabela Firkowska-Boden
- Chair of Materials Science (CMS); Otto Schott Institute of Materials Research (OSIM); Friedrich Schiller University Jena; Löbdergraben 32 07743 Jena Germany
| | - Xiaoyuan Zhang
- Chair of Materials Science (CMS); Otto Schott Institute of Materials Research (OSIM); Friedrich Schiller University Jena; Löbdergraben 32 07743 Jena Germany
| | - Klaus D. Jandt
- Chair of Materials Science (CMS); Otto Schott Institute of Materials Research (OSIM); Friedrich Schiller University Jena; Löbdergraben 32 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Jena School for Microbial Communication (JSMC); Neugasse 23 07743 Jena Germany
| |
Collapse
|
19
|
Barbeck M, Serra T, Booms P, Stojanovic S, Najman S, Engel E, Sader R, Kirkpatrick CJ, Navarro M, Ghanaati S. Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components - Guidance of the inflammatory response as basis for osteochondral regeneration. Bioact Mater 2017; 2:208-223. [PMID: 29744431 PMCID: PMC5935508 DOI: 10.1016/j.bioactmat.2017.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was the in vitro and in vivo analysis of a bi-layered 3D-printed scaffold combining a PLA layer and a biphasic PLA/bioglass G5 layer for regeneration of osteochondral defects in vivo Focus of the in vitro analysis was on the (molecular) weight loss and the morphological and mechanical variations after immersion in SBF. The in vivo study focused on analysis of the tissue reactions and differences in the implant bed vascularization using an established subcutaneous implantation model in CD-1 mice and established histological and histomorphometrical methods. Both scaffold parts kept their structural integrity, while changes in morphology were observed, especially for the PLA/G5 scaffold. Mechanical properties decreased with progressive degradation, while the PLA/G5 scaffolds presented higher compressive modulus than PLA scaffolds. The tissue reaction to PLA included low numbers of BMGCs and minimal vascularization of its implant beds, while the addition of G5 lead to higher numbers of BMGCs and a higher implant bed vascularization. Analysis revealed that the use of a bi-layered scaffold shows the ability to observe distinct in vivo response despite the physical proximity of PLA and PLA/G5 layers. Altogether, the results showed that the addition of G5 enables to reduce scaffold weight loss and to increase mechanical strength. Furthermore, the addition of G5 lead to a higher vascularization of the implant bed required as basis for bone tissue regeneration mediated by higher numbers of BMGCs, while within the PLA parts a significantly lower vascularization was found optimally for chondral regeneration. Thus, this data show that the analyzed bi-layered scaffold may serve as an ideal basis for the regeneration of osteochondral tissue defects. Additionally, the results show that it might be able to reduce the number of experimental animals required as it may be possible to analyze the tissue response to more than one implant in one experimental animal.
Collapse
Affiliation(s)
| | - Tiziano Serra
- Institute for Bioengineering of Catalonia (IBEC), Biomaterials for Regenerative Medicine, Barcelona, Spain
| | - Patrick Booms
- Clinic of Oro-Maxillofacial and Plastic Surgery, FORM-Lab, Goethe University Frankfurt, Frankfurt, Germany
| | - Sanja Stojanovic
- University of Niš, Faculty of Medicine, Department for Cell and Tissue Engineering, Institute of Biology and Human Genetics, Niš, Serbia
| | - Stevo Najman
- University of Niš, Faculty of Medicine, Department for Cell and Tissue Engineering, Institute of Biology and Human Genetics, Niš, Serbia
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), Biomaterials for Regenerative Medicine, Barcelona, Spain
- Technical University of Catalonia (UPC), Dpt. Materials Science and Metallurgy, Spain
- CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Robert Sader
- Clinic of Oro-Maxillofacial and Plastic Surgery, FORM-Lab, Goethe University Frankfurt, Frankfurt, Germany
| | - Charles James Kirkpatrick
- Clinic of Oro-Maxillofacial and Plastic Surgery, FORM-Lab, Goethe University Frankfurt, Frankfurt, Germany
| | - Melba Navarro
- Institute for Bioengineering of Catalonia (IBEC), Biomaterials for Regenerative Medicine, Barcelona, Spain
| | - Shahram Ghanaati
- Clinic of Oro-Maxillofacial and Plastic Surgery, FORM-Lab, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
20
|
Baylón K, Rodríguez-Camarillo P, Elías-Zúñiga A, Díaz-Elizondo JA, Gilkerson R, Lozano K. Past, Present and Future of Surgical Meshes: A Review. MEMBRANES 2017; 7:E47. [PMID: 28829367 PMCID: PMC5618132 DOI: 10.3390/membranes7030047] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
Surgical meshes, in particular those used to repair hernias, have been in use since 1891. Since then, research in the area has expanded, given the vast number of post-surgery complications such as infection, fibrosis, adhesions, mesh rejection, and hernia recurrence. Researchers have focused on the analysis and implementation of a wide range of materials: meshes with different fiber size and porosity, a variety of manufacturing methods, and certainly a variety of surgical and implantation procedures. Currently, surface modification methods and development of nanofiber based systems are actively being explored as areas of opportunity to retain material strength and increase biocompatibility of available meshes. This review summarizes the history of surgical meshes and presents an overview of commercial surgical meshes, their properties, manufacturing methods, and observed biological response, as well as the requirements for an ideal surgical mesh and potential manufacturing methods.
Collapse
Affiliation(s)
- Karen Baylón
- Centro de Innovación en Diseño y Tecnología, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico.
| | - Perla Rodríguez-Camarillo
- Centro de Innovación en Diseño y Tecnología, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico.
| | - Alex Elías-Zúñiga
- Centro de Innovación en Diseño y Tecnología, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico.
| | | | - Robert Gilkerson
- Departments of Biology and Clinical Laboratory Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
| | - Karen Lozano
- Mechanical Engineering Department, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
| |
Collapse
|
21
|
Nair A, Tang L. Influence of scaffold design on host immune and stem cell responses. Semin Immunol 2017; 29:62-71. [PMID: 28431919 DOI: 10.1016/j.smim.2017.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/17/2017] [Accepted: 03/24/2017] [Indexed: 12/29/2022]
Abstract
The combined culture of isolated stem cells in tissue engineering scaffolds represents a popular strategy for the regeneration of specialized tissues. Despite of improved outcomes in some tissues, this stem cell-seeded tissue engineering strategy has not led to significant tissue regeneration as expected. The lower-than-expected outcome may be caused by overwhelming immune responses to scaffold materials and poor survival of seeded stem cells following implantation. This review is aimed at summarizing the success and failure of this strategy and also shedding some light on new directions to design scaffolds for promoting regenerative responses via autologous stem cells. The first half of this review summarizes the influence of scaffold physical and chemical properties on immune cell responses to scaffold implants. The second half focuses on the influence of scaffold design to alter immune and stem cell responses for achieving desirable tissue regeneration.
Collapse
Affiliation(s)
- Ashwin Nair
- Joint Biomedical Engineering Program, University of Texas at Arlington, Arlington, TX 76019 and University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390.
| | - Liping Tang
- Joint Biomedical Engineering Program, University of Texas at Arlington, Arlington, TX 76019 and University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
22
|
Zheng H, Song N, Li X, Jia Q. Anchoring β-cyclodextrin modified lysine to polymer monolith with biotin: specific capture of plasminogen. Analyst 2017; 142:4773-4781. [PMID: 29160868 DOI: 10.1039/c7an01436h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A biotin-Lys-CD based monolithic material was employed for the specific capture of plasminogen.
Collapse
Affiliation(s)
- Haijiao Zheng
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Naizhong Song
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiqian Li
- China-Japan Hospital of Jilin University
- Changchun 130033
- China
| | - Qiong Jia
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
23
|
Distinct Effects of Integrins αXβ2 and αMβ2 on Leukocyte Subpopulations during Inflammation and Antimicrobial Responses. Infect Immun 2016; 85:IAI.00644-16. [PMID: 27799334 DOI: 10.1128/iai.00644-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
Abstract
Integrins αMβ2 and αXβ2 are homologous adhesive receptors that are expressed on many of the same leukocyte populations and bind many of the same ligands. Although αMβ2 was extensively characterized and implicated in leukocyte inflammatory and immune functions, the roles of αXβ2 remain largely obscure. Here, we tested the ability of mice deficient in integrin αMβ2 or αXβ2 to deal with opportunistic infections and the capacity of cells derived from these animals to execute inflammatory functions. The absence of αMβ2 affected the recruitment of polymorphonuclear neutrophils (PMN) to bacterial and fungal pathogens as well as to model inflammatory stimuli, and αMβ2-deficient PMN displayed defective inflammatory functions. In contrast, deficiency of αXβ2 abrogated intraperitoneal recruitment and adhesive functions of monocytes and macrophages (Mϕ) and the ability of these cells to kill/phagocytose Candida albicans or Escherichia coli cells both ex vivo and in vivo During systemic candidiasis, the absence of αXβ2 resulted in the loss of antifungal activity by tissue Mϕ and inhibited the production of tumor necrosis factor alpha (TNF-α)/interleukin-6 (IL-6) in infected kidneys. Deficiency of αMβ2 suppressed Mϕ egress from the peritoneal cavity, decreased the production of anti-inflammatory IL-10, and stimulated the secretion of IL-6. The absence of αXβ2, but not of αMβ2, increased survival against a septic challenge with lipopolysaccharide (LPS) by 2-fold. Together, these results suggest that αMβ2 plays a primary role in PMN inflammatory functions and regulates the anti-inflammatory functions of Mϕ, whereas αXβ2 is central in the regulation of inflammatory functions of recruited and tissue-resident Mϕ.
Collapse
|
24
|
The impact of surface chemistry modification on macrophage polarisation. Immunobiology 2016; 221:1237-46. [DOI: 10.1016/j.imbio.2016.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/01/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
|
25
|
Surface modification of electrospun fibres for biomedical applications: A focus on radical polymerization methods. Biomaterials 2016; 106:24-45. [DOI: 10.1016/j.biomaterials.2016.08.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
|
26
|
Xie T, Vora A, Mulcahey PJ, Nanescu SE, Singh M, Choi DS, Huang JK, Liu CC, Sanders DP, Hahm JI. Surface Assembly Configurations and Packing Preferences of Fibrinogen Mediated by the Periodicity and Alignment Control of Block Copolymer Nanodomains. ACS NANO 2016; 10:7705-7720. [PMID: 27462904 DOI: 10.1021/acsnano.6b03071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability to control the specific adsorption and packing behaviors of biomedically important proteins by effectively guiding their preferred surface adsorption configuration and packing orientation on polymeric surfaces may have utility in many applications such as biomaterials, medical implants, and tissue engineering. Herein, we investigate the distinct adhesion configurations of fibrinogen (Fg) proteins and the different organization behaviors between single Fg molecules that are mediated by the changes in the periodicity and alignment of chemically alternating nanodomains in thin films of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymer (BCP). Specifically, the adsorption characteristics of individual Fg molecules were unambiguously resolved on four different PS-b-PMMA templates of dsa PS-b-PMMA, sm PS-b-PMMA, com PS-b-PMMA, and PS-r-PMMA. By direct visualization through high resolution imaging, the distinct adsorption and packing configurations of both isolated and interacting Fg molecules were determined as a function of the BCP template-specific nanodomain periodicity, domain alignment (random versus fully aligned), and protein concentration. The three dominant Fg adsorption configurations, SP∥, SP⊥, and TP, were observed and their occurrence ratios were ascertained on each PS-b-PMMA template. During surface packing, the orientation of the protein backbone was largely governed by the periodicity and alignment of the underlying PS-b-PMMA nanodomains whose specific direction was explicitly resolved relative to the polymeric nanodomain axis. The use of PS-b-PMMA with a periodicity much smaller than (and comparable to) the length of Fg led to a Fg scaffold with the protein backbone aligned parallel (and perpendicular) to the nanodomain major axis. In addition, we have successfully created fully Fg-decorated BCP constructs analogous to two-dimensional Fg crystals in which aligned protein molecules are arranged either side-on or end-on, depending on the BCP template. Our results demonstrate that the geometry and orientation of the protein can be effectively guided during Fg self-assembly by controlling the physical dimensions and orientations of the underlying BCP templates. Finally, the biofunctionality of the BCP surface-bound Fg was assessed and the Fg/BCP construct was successfully used in the Ca-P nanoparticle nucleation/growth and microglia cell activation.
Collapse
Affiliation(s)
- Tian Xie
- Department of Chemistry, Georgetown University , 37th & O Streets NW, Washington, D.C. 20057, United States
| | - Ankit Vora
- IBM Research-Almaden , 650 Harry Rd, San Jose, California 95120, United States
| | - Patrick J Mulcahey
- Department of Chemistry, Georgetown University , 37th & O Streets NW, Washington, D.C. 20057, United States
| | - Sonia E Nanescu
- Department of Biology, Georgetown University , 37th & O Streets NW, Washington, D.C. 20057
| | - Manpreet Singh
- Department of Chemistry, Georgetown University , 37th & O Streets NW, Washington, D.C. 20057, United States
| | - Daniel S Choi
- Department of Chemistry, Georgetown University , 37th & O Streets NW, Washington, D.C. 20057, United States
| | - Jeffrey K Huang
- Department of Biology, Georgetown University , 37th & O Streets NW, Washington, D.C. 20057
| | - Chi-Chun Liu
- IBM Research-Albany Nanotech , 257 Fuller Rd, Albany, New York 12203, United States
| | - Daniel P Sanders
- IBM Research-Almaden , 650 Harry Rd, San Jose, California 95120, United States
| | - Jong-In Hahm
- Department of Chemistry, Georgetown University , 37th & O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
27
|
Busuttil SJ, Drumm C, Plow EF. In Vivo Comparison of the Inflammatory Response Induced by Different Vascular Biomaterials. Vascular 2016; 13:230-5. [PMID: 16229796 DOI: 10.1258/rsmvasc.13.4.230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biomaterial implants induce a local inflammatory response. A comparison of the inflammatory cell response was made between several biomaterials commonly used as vascular prostheses. Disks of polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), aluminum, titanium, copper, and stainless steel were surgically placed into the peritoneum of mice. Recruited macrophage and neutrophil populations were measured after recovery from the disk surface and peritoneal lavage. Following peritoneal biomaterial implants, there was no difference in total neutrophil or macrophage recruitment between mice implanted with PET, PTFE, aluminum, or titanium disks. However, there was significant attenuation of total neutrophil and macrophage recruitment to stainless steel compared with the other implants. Similarly, there was no significant difference in the percentage of leukocytes adherent to the PET, aluminum, or titanium disks. Macrophage adherence to the stainless steel disks was attenuated by 19.1%, and the number of neutrophils was attenuated by 69.1% when compared with PET implant mice. Mice implanted with copper disks universally expired. Leukocyte recruitment did not differ between PET, PTFE, aluminum, or titanium disks, suggesting that these materials stimulate similar inflammatory responses. Stainless steel disks recruited both fewer neutrophils and fewer macrophages and support lower adherence of these cells than the other biomaterials. Copper incited an overwhelming and fatal response.
Collapse
Affiliation(s)
- Steven J Busuttil
- Department of Surgery, Case Western Reserve University and Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.
| | | | | |
Collapse
|
28
|
Mahou R, Passemard S, Carvello M, Petrelli A, Noverraz F, Gerber-Lemaire S, Wandrey C. Contribution of polymeric materials to progress in xenotransplantation of microencapsulated cells: a review. Xenotransplantation 2016; 23:179-201. [PMID: 27250036 DOI: 10.1111/xen.12240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
Cell microencapsulation and subsequent transplantation of the microencapsulated cells require multidisciplinary approaches. Physical, chemical, biological, engineering, and medical expertise has to be combined. Several natural and synthetic polymeric materials and different technologies have been reported for the preparation of hydrogels, which are suitable to protect cells by microencapsulation. However, owing to the frequent lack of adequate characterization of the hydrogels and their components as well as incomplete description of the technology, many results of in vitro and in vivo studies appear contradictory or cannot reliably be reproduced. This review addresses the state of the art in cell microencapsulation with special focus on microencapsulated cells intended for xenotransplantation cell therapies. The choice of materials, the design and fabrication of the microspheres, as well as the conditions to be met during the cell microencapsulation process, are summarized and discussed prior to presenting research results of in vitro and in vivo studies. Overall, this review will serve to sensitize medically educated specialists for materials and technological aspects of cell microencapsulation.
Collapse
Affiliation(s)
- Redouan Mahou
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Solène Passemard
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Carvello
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | | | - François Noverraz
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christine Wandrey
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
Dragneva N, Rubel O, Floriano WB. Molecular Dynamics of Fibrinogen Adsorption onto Graphene, but Not onto Poly(ethylene glycol) Surface, Increases Exposure of Recognition Sites That Trigger Immune Response. J Chem Inf Model 2016; 56:706-20. [DOI: 10.1021/acs.jcim.5b00703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nadiya Dragneva
- Thunder Bay Regional Research Institute, 290 Munro Street, Thunder Bay, Ontario P7A 7T1, Canada
- Biotechnology
Ph.D. Program, Faculty of Science and Environment Studies, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Oleg Rubel
- Thunder Bay Regional Research Institute, 290 Munro Street, Thunder Bay, Ontario P7A 7T1, Canada
- Department
of Materials Science and Engineering, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Wely B. Floriano
- Thunder Bay Regional Research Institute, 290 Munro Street, Thunder Bay, Ontario P7A 7T1, Canada
- Biotechnology
Ph.D. Program, Faculty of Science and Environment Studies, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
30
|
Meyer F, Buerger T, Halloul Z, Lippert H, König B, Tautenhahn J. Effects Of Gelatine-Coated Vascular Grafts On Human Neutrophils. POLISH JOURNAL OF SURGERY 2016; 87:443-52. [PMID: 26812839 DOI: 10.1515/pjs-2015-0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 11/15/2022]
Abstract
UNLABELLED The aim of the study was to investigate the immune-modulatory potential of commercially available PTFE and polyester vascular grafts with and without gelatine-coating. The biomaterial-cell-interaction was characterized by changes of established parameters such as PMN-related receptors/mediators, phagocytosis potential and capacity as well as the effect of an additional plasma-dependent modulation. MATERIAL AND METHODS By means of a standardized experimental in vitro model, various vascular graft material (PTFE/polyester/uncoated/gelatine-coated) was used for incubation with or without plasma and co-culturing with human neutrophile granulocytes (PMN) followed by analysis of representative receptors and mediators (CD62L, CD11b, CXCR2, fMLP-R, IL-8, Elastase, LTB4). Oxidative burst assessed phagocytosis capacity. RESULTS Comparing the vascular grafts, un-coated PTFE induced the lowest magnitude of cell stimulation whereas in case of gelatine-coating, cell response exceeded those of the other vascular grafts. This was also found comparing the polyester-based prosthetic material. Gelatine-coated polyester led to a more pronounced release of elastase than gelatine-coated PTFE and the uncoated materials. The results of oxidative burst indicated a reduced phagocytosis capacity in case of gelatine-coated polyester. Plasma incubation did also provide an impact on the cellular response. While in case of gelatine-coating, PMN-related receptor stimulation became lower, it increased by native polyester. The latter one did also induce more mediators such as IL-8 and LTB4 than gelatine-coated material. CONCLUSIONS There have been no extensive data on cell-cell interactions, cytokines and general histo-/hemocompatibility of human cells by the new generation of vascular grafts. It remains still open whether healing process and infectious resistance can be compromised by material-dependent over-stimulation or reduced phagocytosis potential of the immune cells of the primary unspecific immune response induced by gelatine-coated materials.
Collapse
|
31
|
Köhler S, Schmid F, Settanni G. Molecular Dynamics Simulations of the Initial Adsorption Stages of Fibrinogen on Mica and Graphite Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13180-90. [PMID: 26569042 DOI: 10.1021/acs.langmuir.5b03371] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fibrinogen, a blood glycoprotein of vertebrates, plays an essential role in blood clotting by polymerizing into fibrin when activated. Upon adsorption on material surfaces, it also contributes to determine their biocompatibility and has been implicated in the onset of thrombosis and inflammation at medical implants. Here we present the first fully atomistic simulations of the initial stages of the adsorption process of fibrinogen on mica and graphite surfaces. The simulations reveal a weak adsorption on mica that allows frequent desorption and reorientation events. This adsorption is driven by electrostatic interactions between the protein and the silicate surface as well as the counterion layer. Preferred adsorption orientations for the globular regions of the protein are identified. The adsorption on graphite is found to be stronger with fewer reorientation and desorption events and shows the onset of denaturation of the protein.
Collapse
Affiliation(s)
- Stephan Köhler
- Institut für Physik, ‡Graduate School Materials Science in Mainz, and §Max Planck Graduate Center, Johannes Gutenberg-Universität , Mainz 55099, Germany
| | - Friederike Schmid
- Institut für Physik, ‡Graduate School Materials Science in Mainz, and §Max Planck Graduate Center, Johannes Gutenberg-Universität , Mainz 55099, Germany
| | - Giovanni Settanni
- Institut für Physik, ‡Graduate School Materials Science in Mainz, and §Max Planck Graduate Center, Johannes Gutenberg-Universität , Mainz 55099, Germany
| |
Collapse
|
32
|
Köhler S, Schmid F, Settanni G. The Internal Dynamics of Fibrinogen and Its Implications for Coagulation and Adsorption. PLoS Comput Biol 2015; 11:e1004346. [PMID: 26366880 PMCID: PMC4569070 DOI: 10.1371/journal.pcbi.1004346] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/19/2015] [Indexed: 11/22/2022] Open
Abstract
Fibrinogen is a serum multi-chain protein which, when activated, aggregates to form fibrin, one of the main components of a blood clot. Fibrinolysis controls blood clot dissolution through the action of the enzyme plasmin, which cleaves fibrin at specific locations. Although the main biochemical factors involved in fibrin formation and lysis have been identified, a clear mechanistic picture of how these processes take place is not available yet. This picture would be instrumental, for example, for the design of improved thrombolytic or anti-haemorrhagic strategies, as well as, materials with improved biocompatibility. Here, we present extensive molecular dynamics simulations of fibrinogen which reveal large bending motions centered at a hinge point in the coiled-coil regions of the molecule. This feature, likely conserved across vertebrates according to our analysis, suggests an explanation for the mechanism of exposure to lysis of the plasmin cleavage sites on fibrinogen coiled-coil region. It also explains the conformational variability of fibrinogen observed during its adsorption on inorganic surfaces and it is supposed to play a major role in the determination of the hydrodynamic properties of fibrinogen. In addition the simulations suggest how the dynamics of the D region of fibrinogen may contribute to the allosteric regulation of the blood coagulation cascade through a dynamic coupling between the a- and b-holes, important for fibrin polymerization, and the integrin binding site P1. Fibrinogen, a protein found in the blood of vertebrates, when activated, aggregates and forms fibrin fibers, the basis of a blood clot. Clots are broken down by the enzyme plasmin, which cuts fibrin fibers at specific places, thus helping the regulation of clot persistence. A mechanistic understanding of fibrin degradation by plasmin is still missing. An important determinant of this process might be the flexibility of fibrinogen. The flexible nature of fibrinogen is reported, for example, by the great variety of conformations observed when fibrinogen adsorbs on material surfaces. However, limits in the spatial resolution of these experiments preclude the identification of the atomistic mechanism behind this flexibility. Here, we perform computer simulations that help identifying with atomistic detail large bending motions occurring at a specific hinge on the molecule. We show how these bending motions can explain the variable conformations observed in experiments and how they help exposing sites where plasmin can cut fibrinogen. Furthermore, our simulations let us identify cooperative effects involving several distant parts of fibrinogen that may play a role in the assembly of fibrin fibers. Both the bending and the cooperative effects, thus, represent potential mechanisms for the regulation of blood clotting.
Collapse
Affiliation(s)
- Stephan Köhler
- Institut für Physik, Johannes Gutenberg–Universität Mainz, Mainz, Germany
- Graduate School Materials Science in Mainz, Mainz, Germany
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg–Universität Mainz, Mainz, Germany
| | - Giovanni Settanni
- Institut für Physik, Johannes Gutenberg–Universität Mainz, Mainz, Germany
- Max Planck Graduate Center mit der Johannes Gutenberg-Universität Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
33
|
Lewandowska-Szumiel M. Alternative methods for assessing biocompatibility and function of implant materials. Altern Lab Anim 2014; 27:271-81. [PMID: 25426591 DOI: 10.1177/026119299902700209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biocompatibility testing is used to evaluate the host response to implantable materials and to assess their ability to perform in applications in which they are intended to interact with biological systems. In compliance with international and/or national standards, such assessment is based mainly on the results of experimental implantation into animal tissues. However, the development of in vitro experimental techniques creates new opportunities to observe and to understand the interaction of biomaterials with host tissue. The state-of-the-art application of alternative methods in biocompatibility testing is presented in this review article. It is discussed with respect to the Three Rs concept (reduction, refinement, replacement) of Russell & Burch. Perspectives on alternative methods in biocompatibility studies are discussed with regard to the possible role of biomaterials in tissue engineering.
Collapse
Affiliation(s)
- M Lewandowska-Szumiel
- Institute of Biostructure, Department of Transplantology and Central Tissue Bank, The Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
34
|
Moris DN, Kontos MI, Mantonakis EI, Athanasiou AK, Spartalis ED, Bakoyiannis CN, Chrousos GP, Georgopoulos SE. Concept of the aortic aneurysm repair-related surgical stress: a review of the literature. Int J Clin Exp Med 2014; 7:2402-2412. [PMID: 25356092 PMCID: PMC4211742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 08/16/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Abdominal aorta aneurysm (AAA) is a serious threat for human life. AAA repair is a high-risk procedure which results in a severe surgical stress response. We aim to give a conceptual description of the underlying pathophysiology of stress after surgical repair of AAA. METHODS The MEDLINE/PubMed database was searched for publications with the medical subject heading "surgical stress" and keywords "abdominal aortic aneurysms (AAA)", or "cytokines" or "hormones" or "open repair (OR)" or "endovascular repair (EVAR)". We restricted our search to English till 2012 and only in cases of abdominal and thoracoabdominal aneurysms (TAAA). RESULTS We identified 93 articles that were available in English as abstracts or/and full-text articles that were deemed appropriate for our review. CONCLUSIONS Literature highlights no statistical significance for early acute TNF-α production in EVAR and no TNF-α production in OR. IL-6 and IL-8 levels are higher after OR especially when compared with those of EVAR. IL-10 peak was observed during ischemic phase in aneurysm surgical repair. Cortisol and epinephrine levels are higher in OR patients in comparison to EVAR patients. Finally, the incidence of systemic inflammatory response syndrome was significantly higher in OR than EVAR patients.
Collapse
Affiliation(s)
- Demetrios N Moris
- The First Department of Surgery, Division of Vascular Surgery, “Laiko” General Hospital, Medical School, National and Kapodistrian University of AthensAthens, Greece
| | - Michalis I Kontos
- The First Department of Surgery, Division of Vascular Surgery, “Laiko” General Hospital, Medical School, National and Kapodistrian University of AthensAthens, Greece
| | - Eleftherios I Mantonakis
- The First Department of Surgery, Division of Vascular Surgery, “Laiko” General Hospital, Medical School, National and Kapodistrian University of AthensAthens, Greece
| | - Antonios K Athanasiou
- The First Department of Surgery, Division of Vascular Surgery, “Laiko” General Hospital, Medical School, National and Kapodistrian University of AthensAthens, Greece
| | - Eleftherios D Spartalis
- The First Department of Surgery, Division of Vascular Surgery, “Laiko” General Hospital, Medical School, National and Kapodistrian University of AthensAthens, Greece
| | - Chris N Bakoyiannis
- The First Department of Surgery, Division of Vascular Surgery, “Laiko” General Hospital, Medical School, National and Kapodistrian University of AthensAthens, Greece
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, University of Athens Medical School, Aghia Sophia Children’s HospitalAthens, Greece
| | - Sotirios E Georgopoulos
- The First Department of Surgery, Division of Vascular Surgery, “Laiko” General Hospital, Medical School, National and Kapodistrian University of AthensAthens, Greece
| |
Collapse
|
35
|
Chen Y, Yan J, Wang X, Yu S, Wang Z, Zhang X, Zhang S, Zheng Y, Zhao C, Zheng Q. In vivo and in vitro evaluation of effects of Mg-6Zn alloy on apoptosis of common bile duct epithelial cell. Biometals 2014; 27:1217-30. [DOI: 10.1007/s10534-014-9784-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/30/2014] [Indexed: 12/28/2022]
|
36
|
Chen YC, Tsai CY, Lee CY, Lin IN. In vitro and in vivo evaluation of ultrananocrystalline diamond as an encapsulation layer for implantable microchips. Acta Biomater 2014; 10:2187-99. [PMID: 24440422 DOI: 10.1016/j.actbio.2014.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/21/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022]
Abstract
Thin ultrananocrystalline diamond (UNCD) films were evaluated for use as hermetic and bioinert encapsulating coatings for implantable microchips, where the reaction to UNCD in vitro and in vivo tissue was investigated. Leakage current tests showed that depositing UNCD coatings, which were conformally grown in (1% H2) Ar/CH4 plasma, on microchips rendered the surface electrochemically inactive, i.e. with a very low leakage current density (2.8×10(-5)Acm(-2) at -1V and 1.9×10(-3)Acm(-2) at ±5V) ex vivo. The impact of UNCD with different surface modifications on the growth and activation of macrophages was compared to that of standard-grade polystyrene. Macrophages attached to oxygen-terminated UNCD films down-regulated their production of cytokines and chemokines. Moreover, with UNCD-coated microchips, which were implanted subcutaneously into BALB/c mice for up to 3months, the tissue reaction and capsule formation was significantly decreased compared to the medical-grade titanium alloy Ti-6Al-4V and bare silicon. Additionally, the leakage current density, elicited by electrochemical activity, on silicon chips encapsulated in oxygen-terminated UNCD coatings remained at the low level of 2.5×10(-3)Acm(-2) at 5V for up to 3months in vivo, which is half the level of those encapsulated in hydrogen-terminated UNCD coatings. Thus, controlling the surface properties of UNCDs makes it possible to manipulate the in vivo functionality and stability of implantable devices so as to reduce the host inflammatory response following implantation. These observations suggest that oxygen-terminated UNCDs are promising candidates for use as encapsulating coatings for implantable microelectronic devices.
Collapse
|
37
|
Zaveri TD, Lewis JS, Dolgova NV, Clare-Salzler MJ, Keselowsky BG. Integrin-directed modulation of macrophage responses to biomaterials. Biomaterials 2014; 35:3504-15. [PMID: 24462356 PMCID: PMC3970928 DOI: 10.1016/j.biomaterials.2014.01.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/07/2014] [Indexed: 01/08/2023]
Abstract
Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (~30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (~45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials.
Collapse
Affiliation(s)
- Toral D Zaveri
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Natalia V Dolgova
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
38
|
Rokstad AMA, Lacík I, de Vos P, Strand BL. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev 2014; 67-68:111-30. [PMID: 23876549 DOI: 10.1016/j.addr.2013.07.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023]
Abstract
Cell encapsulation has already shown its high potential and holds the promise for future cell therapies to enter the clinics as a large scale treatment option for various types of diseases. The advancement in cell biology towards this goal has to be complemented with functional biomaterials suitable for cell encapsulation. This cannot be achieved without understanding the close correlation between cell performance and properties of microspheres. The ongoing challenges in the field of cell encapsulation require a critical view on techniques and approaches currently utilized to characterize microspheres. This review deals with both principal subjects of microspheres characterization in the cell encapsulation field: physico-chemical characterization and biocompatibility. The up-to-day knowledge is summarized and discussed with the focus to identify missing knowledge and uncertainties, and to propose the mandatory next steps in characterization of microspheres for cell encapsulation. The primary conclusion of this review is that further success in development of microspheres for cell therapies cannot be accomplished without careful selection of characterization techniques, which are employed in conjunction with biological tests.
Collapse
Affiliation(s)
- Anne Mari A Rokstad
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia.
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA11, 9700 RB Groningen, The Netherlands.
| | - Berit L Strand
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; Department of Biotechnology, NTNU, Sem Saelandsvei 6/8, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| |
Collapse
|
39
|
Shen J, Nair A, Saxena R, Zhang CC, Borrelli J, Tang L. Tissue engineering bone using autologous progenitor cells in the peritoneum. PLoS One 2014; 9:e93514. [PMID: 24681529 PMCID: PMC3969359 DOI: 10.1371/journal.pone.0093514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/06/2014] [Indexed: 01/01/2023] Open
Abstract
Despite intensive research efforts, there remains a need for novel methods to improve the ossification of scaffolds for bone tissue engineering. Based on a common phenomenon and known pathological conditions of peritoneal membrane ossification following peritoneal dialysis, we have explored the possibility of regenerating ossified tissue in the peritoneum. Interestingly, in addition to inflammatory cells, we discovered a large number of multipotent mesenchymal stem cells (MSCs) in the peritoneal lavage fluid from mice with peritoneal catheter implants. The osteogenic potential of these peritoneal progenitor cells was demonstrated by their ability to easily infiltrate decalcified bone implants, produce osteocalcin and form mineralized bone in 8 weeks. Additionally, when poly(l-lactic acid) scaffolds loaded with bone morphogenetic protein-2 (a known osteogenic differentiation agent) were implanted into the peritoneum, signs of osteogenesis were seen within 8 weeks of implantation. The results of this investigation support the concept that scaffolds containing BMP-2 can stimulate the formation of bone in the peritoneum via directed autologous stem and progenitor cell responses.
Collapse
Affiliation(s)
- Jinhui Shen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Ashwin Nair
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Ramesh Saxena
- Division of Nephrology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Cheng Cheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Joseph Borrelli
- Texas Health Physicians Group, Texas Health Arlington Memorial Hospital, Arlington, Texas, United States of America
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, United States of America
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
40
|
Alexandre N, Ribeiro J, Gärtner A, Pereira T, Amorim I, Fragoso J, Lopes A, Fernandes J, Costa E, Santos-Silva A, Rodrigues M, Santos JD, Maurício AC, Luís AL. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting--In vitro and in vivo studies. J Biomed Mater Res A 2014; 102:4262-75. [PMID: 24488670 DOI: 10.1002/jbm.a.35098] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 11/08/2022]
Abstract
Polyvinyl alcohol hydrogel (PVA) is a synthetic polymer with an increasing application in the biomedical field that can potentially be used for vascular grafting. However, the tissue and blood-material interactions of such gels and membranes are unknown in detail. The objectives of this study were to: (a) assess the biocompatibility and (b) hemocompatibility of PVA-based membranes in order to get some insight into its potential use as a vascular graft. PVA was evaluated isolated or in copolymerization with dextran (DX), a biopolymer with known effects in blood coagulation homeostasis. The effects of the mesenchymal stem cells (MSCs) isolated from the umbilical cord Wharton's jelly in the improvement of PVA biocompatibility and in the vascular regeneration were also assessed. The biocompatibility of PVA was evaluated by the implantation of membranes in subcutaneous tissue using an animal model (sheep). Histological samples were assessed and the biological response parameters such as polymorphonuclear neutrophilic leucocytes and macrophage scoring evaluated in the implant/tissue interface by International Standards Office (ISO) Standard 10993-6 (annex E). According to the scoring system based on those parameters, a total value was obtained for each animal and for each experimental group. The in vitro hemocompatibility studies included the classic hemolysis assay and both human and sheep bloods were used. Relatively to biocompatibility results, PVA was slightly irritant to the surrounding tissues; PVA-DX or PVA plus MSCs groups presented the lowest score according to ISO Standard 10993-6. Also, PVA was considered a nonhemolytic biomaterial, presenting the lowest values for hemolysis when associated to DX.
Collapse
Affiliation(s)
- Nuno Alexandre
- Departamento de Zootecnia, Universidade de Évora (UE), Pólo da Mitra, Apartado 94, 7002-554, Évora, Portugal; Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora (UE), Pólo da Mitra, Apartado 94, 7002-554, Évora, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Optical imaging of fibrin deposition to elucidate participation of mast cells in foreign body responses. Biomaterials 2013; 35:2089-2096. [PMID: 24342726 DOI: 10.1016/j.biomaterials.2013.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/14/2013] [Indexed: 11/22/2022]
Abstract
Mast cell activation has been shown to be an initiator and a key determinant of foreign body reactions. However, there is no non-invasive method that can quantify the degree of implant-associated mast cell activation. Taking advantage of the fact that fibrin deposition is a hallmark of mast cell activation around biomaterial implants, a near infrared probe was fabricated to have high affinity to fibrin. Subsequent in vitro testing confirmed that this probe has high affinity to fibrin. Using a subcutaneous particle implantation model, we found significant accumulation of fibrin-affinity probes at the implant sites as early as 15 min following particle implantation. The accumulation of fibrin-affinity probes at the implantation sites could also be substantially reduced if anti-coagulant - heparin was administered at the implant sites. Further studies have shown that subcutaneous administration of mast cell activator - compound 48/80 - prompted the accumulation of fibrin-affinity probes. However, implant-associated fibrin-affinity probe accumulation was substantially reduced in mice with mast cell deficiency. The results show that our fibrin-affinity probes may serve as a powerful tool to monitor and measure the extent of biomaterial-mediated fibrin deposition and mast cell activation in vivo.
Collapse
|
42
|
Pujari S, Hoess A, Shen J, Thormann A, Heilmann A, Tang L, Karlsson-Ott M. Effects of nanoporous alumina on inflammatory cell response. J Biomed Mater Res A 2013; 102:3773-80. [PMID: 24288233 DOI: 10.1002/jbm.a.35048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/02/2013] [Accepted: 11/20/2013] [Indexed: 11/07/2022]
Abstract
The present study focuses on the effects of nanoscale porosity on inflammatory response in vitro and in vivo. Nanoporous alumina membranes with different pore sizes, 20 and 200 nm in diameter, were used. We first evaluated cell/alumina interactions in vitro by observing adhesion, proliferation, and activation of a murine fibroblast and a macrophage cell line. To investigate the chronic inflammatory response, the membranes were implanted subcutaneously in mice for 2 weeks. Cell recruitment to the site of implantation was determined by histology and the production of cytokines was measured by protein array analysis. Both in vitro and in vivo studies showed that 200 nm pores induced a stronger inflammatory response as compared to the alumina with 20 nm pores. This was observed by an increase in macrophage activation in vitro as well as higher cell recruitment and generation of proinflammatory cytokines around the alumina with 200 nm pores, in vivo. Our results suggest that nanofeatures can be modulated in order to control the inflammatory response to implants.
Collapse
Affiliation(s)
- Shiuli Pujari
- Applied Material Science, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 21, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Naito Y, Rocco K, Kurobe H, Maxfield M, Breuer C, Shinoka T. Tissue engineering in the vasculature. Anat Rec (Hoboken) 2013; 297:83-97. [PMID: 24293111 DOI: 10.1002/ar.22838] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2013] [Indexed: 01/22/2023]
Abstract
Tissue engineering holds great promise to address complications and limitations encountered with the use of traditional prosthetic materials, such as thrombogenicity, infection, and future degeneration which represent the major morbidity and mortality after device implant surgery. The general concept of tissue engineering consists of three main components: a scaffold material, a cell type for seeding the scaffold, and biochemical, physio-chemical signaling and remodeling process. This remodeling process is guided by cell signals derived from both seeded cells and host inflammatory cells that infiltrate the scaffold and deposit extracellular matrix, forming the neotissue. Vascular tissue engineering is at the forefront in the translation of this technology to clinical practice, as tissue engineered vascular grafts (TEVGs) have now been successfully implanted in children with congenital heart disease. In this report, we review the history, advances, and state of the art in TEVGs.
Collapse
Affiliation(s)
- Yuji Naito
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | | | |
Collapse
|
44
|
Maciel J, Oliveira MI, Colton E, McNally AK, Oliveira C, Anderson JM, Barbosa MA. Adsorbed fibrinogen enhances production of bone- and angiogenic-related factors by monocytes/macrophages. Tissue Eng Part A 2013; 20:250-63. [PMID: 23937279 DOI: 10.1089/ten.tea.2012.0439] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Macrophages are phagocytic cells with great importance in guiding multiple stages of inflammation and tissue repair. By producing a large number of biologically active molecules, they can affect the behavior of other cells and events, such as the foreign body response and angiogenesis. Since protein adsorption to biomaterials is crucial for the inflammatory process, we addressed the ability of the pro-inflammatory molecule fibrinogen (Fg) to modulate macrophage behavior toward tissue repair/regeneration. For this purpose, we used chitosan (Ch) as a substrate for Fg adsorption. Freshly isolated human monocytes were seeded on Ch substrates alone or previously adsorbed with Fg, and allowed to differentiate into macrophages for 10 days. Cell adhesion and morphology, formation of foreign body giant cells (FBGC), and secretion of a total of 80 cytokines and growth factors were evaluated. Both substrates showed similar numbers of adherent macrophages along differentiation as compared with RGD-coated surfaces, which were used as positive controls. Fg did not potentiate FBGC formation. In addition, actin cytoskeleton staining revealed the presence of punctuate F-actin with more elongated and interconnecting cells on Ch substrates. Antibody array screening and quantification of inflammation- and wound-healing-related factors indicated an overall reduction in Ch-based substrates versus RGD-coated surfaces. At late times, most inflammatory agents were down-regulated in the presence of Fg, in contrast to growth factor production, which was stimulated by Fg. Importantly, on Ch+Fg substrates, fully differentiated macrophages produced significant amounts of macrophage inflammatory protein-1delta (MIP-1δ), platelet-derived growth factor-BB, bone morphogenetic protein (BMP)-5, and BMP-7 compared with Ch alone. In addition, other important factors involved in bone homeostasis and wound healing, such as growth hormone, transforming growth factor-β3, and insulin-like growth factor-binding proteins, as well as several angiogenic mediators, including endocrine gland-derived vascular endothelial factor, fibroblast growth factor-7, and placental growth factor, were significantly promoted by Fg. This work provides a new perspective on the inflammatory response in the context of bone repair/regeneration mediated by a pro-inflammatory protein (Fg) adsorbed onto a biomaterial (Ch) that does not otherwise exhibit osteogenic properties.
Collapse
Affiliation(s)
- Joana Maciel
- 1 INEB-Instituto de Engenharia Biomédica, Universidade do Porto , Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
45
|
Superior in vivo compatibility of hydrophilic polymer coated prosthetic vascular grafts. J Vasc Access 2013; 15:95-101. [PMID: 24170585 DOI: 10.5301/jva.5000166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2013] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Protein adsorption, cell adhesion and graft patency was compared in hydrophilic versus hydrophobic polymer-coated prosthetic vascular grafts. We hypothesize that in vivo compatibility of hydrophilic polymer-coated prosthetic vascular grafts is superior to in vivo compatibility of hydrophobic grafts. METHODS A pairwise side-to-side common carotid artery interposition graft was placed eight female landrace goats (mean weight 55 kg). Protein adsorption was assessed using Western Blot in two hydrophilic and two hydrophobic grafts harvested after three days. Graft patency was monitored for 28 days in six goats with continuous wave Doppler ultrasonography. Adherence of endothelial cells, leukocytes and platelets was determined with ELISA and compared between the two graft types after 28 days. RESULTS After three days, more ApoA-I, albumin and VEGF and less fibrin adsorbed to hydrophilic grafts. After 28 days, compared to hydrophobic grafts, higher numbers of endothelial cells were present on hydrophilic grafts (P=0.016), and less thrombocytes and leukocytes (P=0.012 and 0.024, respectively). Two out of eight hydrophobic grafts lost patency, while none of the hydrophilic grafts failed (P=0.157). CONCLUSIONS Hydrophilic polymer-coated vascular grafts have superior in vivo compatibility when compared to hydrophobic grafts as characterized by reduced platelet and leukocyte adherence as well as higher endothelialization.
Collapse
|
46
|
Love RJ, Jones KS. The recognition of biomaterials: pattern recognition of medical polymers and their adsorbed biomolecules. J Biomed Mater Res A 2013; 101:2740-52. [PMID: 23613455 DOI: 10.1002/jbm.a.34577] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/04/2013] [Indexed: 12/31/2022]
Abstract
All biomedical materials are recognized as foreign entities by the host immune system despite the substantial range of different materials that have been developed by material scientists and engineers. Hydrophobic biomaterials, hydrogels, biomaterials with low protein binding surfaces, and those that readily adsorb a protein layer all seem to incite similar host responses in vivo that may differ in magnitude, but ultimately result in encapsulation by fibrotic tissue. The recognition of medical materials by the host is explained by the very intricate pattern recognition system made up of integrins, toll-like receptors, scavenger receptors, and other surface proteins that enable leukocytes to perceive almost any foreign body. In this review, we describe the various pattern recognition receptors and processes that occur on biomedical material surfaces that permit detection of a range of materials within the host.
Collapse
Affiliation(s)
- Ryan J Love
- School of Biomedical Engineering, McMaster University, Hamilton, Ontarion, Canada
| | | |
Collapse
|
47
|
Riedel T, Riedelová-Reicheltová Z, Májek P, Rodriguez-Emmenegger C, Houska M, Dyr JE, Brynda E. Complete identification of proteins responsible for human blood plasma fouling on poly(ethylene glycol)-based surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:3388-3397. [PMID: 23391268 DOI: 10.1021/la304886r] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The resistance of poly(ethylene glycol) (PEG) against protein adsorption is crucial and has been widely utilized in various biomedical applications. In this work, the complete protein composition of biofilms deposited on PEG-based surfaces from human blood plasma (BP) was identified for the first time using nanoLC-MS/MS, a powerful tool in protein analysis. The mass of deposited BP and the number of different proteins contained in the deposits on individual surfaces decreased in the order of self-assembling monolayers of oligo(ethylene glycol) alkanethiolates (SAM) > poly(ethylene glycol) end-grafted onto a SAM > poly(oligo(ethylene glycol) methacrylate) brushes prepared by surface initiated polymerization (poly(OEGMA)). The BP deposit on the poly(OEGMA) surface was composed only of apolipoprotein A-I, apolipoprotein B-100, complement C3, complement C4-A, complement C4-B, histidine-rich glycoprotein, Ig mu chain C region, fibrinogen (Fbg), and serum albumin (HSA). The total resistance of the surface to the Fbg and HSA adsorption from single protein solutions suggested that their deposition from BP was mediated by some of the other proteins. Current theories of protein resistance are not sufficient to explain the observed plasma fouling. The research focused on the identified proteins, and the experimental approach used in this work can provide the basis for the understanding and rational design of plasma-resistant surfaces.
Collapse
Affiliation(s)
- Tomáš Riedel
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, vvi, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
48
|
The induction of cytokines by polycation containing microspheres by a complement dependent mechanism. Biomaterials 2013; 34:621-30. [DOI: 10.1016/j.biomaterials.2012.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/04/2012] [Indexed: 12/28/2022]
|
49
|
Vorup-Jensen T. On the roles of polyvalent binding in immune recognition: perspectives in the nanoscience of immunology and the immune response to nanomedicines. Adv Drug Deliv Rev 2012; 64:1759-81. [PMID: 22705545 DOI: 10.1016/j.addr.2012.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 12/31/2022]
Abstract
Immunology often conveys the image of large molecules, either in the soluble state or in the membrane of leukocytes, forming multiple contacts with a target for actions of the immune system. Avidity names the ability of a polyvalent molecule to form multiple connections of the same kind with ligands tethered to the same surface. Polyvalent interactions are vastly stronger than their monovalent equivalent. In the present review, the functional consequences of polyvalent interactions are explored in a perspective of recent theoretical advances in understanding the thermodynamics of such binding. From insights on the structural biology of soluble pattern recognition molecules as well as adhesion molecules in the cell membranes or in their proteolytically shed form, this review documents the prominent role of polyvalent interactions in making the immune system a formidable barrier to microbial infection as well as constituting a significant challenge to the application of nanomedicines.
Collapse
|
50
|
Wang LC, Chen XG, Xu QC, Liu CS, Yu LJ, Zhou YM. Plasma protein adsorption pattern and tissue-implant reaction of poly(vinyl alcohol)/carboxymethyl-chitosan blend films. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 19:113-29. [DOI: 10.1163/156856208783227659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ling Chong Wang
- a College of Marine Life Science, Ocean University of China, 5# Yusan Road, Qingdao 266003, P.R. China
| | - Xi Guang Chen
- b College of Marine Life Science, Ocean University of China, 5# Yusan Road, Qingdao 266003, P.R. China
| | - Quan Chen Xu
- c The Affiliated Hospital of Medical College Qingdao University, Qingdao 266042, P.R. China
| | - Cheng Sheng Liu
- d College of Marine Life Science, Ocean University of China, 5# Yusan Road, Qingdao 266003, P.R. China
| | - Le Jun Yu
- e College of Marine Life Science, Ocean University of China, 5# Yusan Road, Qingdao 266003, P.R. China
| | - Ying Min Zhou
- f College of Marine Life Science, Ocean University of China, 5# Yusan Road, Qingdao 266003, P.R. China; Fishery Technology Popularizing Station of Rongcheng, Weihai 264300, P.R. China
| |
Collapse
|