1
|
Gallego-López MDC, Ojeda ML, Romero-Herrera I, Rua RM, Carreras O, Nogales F. Folic acid antioxidant supplementation to binge drinking adolescent rats improves hydric-saline balance and blood pressure, but fails to increase renal NO availability and glomerular filtration rate. FASEB J 2024; 38:e23341. [PMID: 38031982 DOI: 10.1096/fj.202301609r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Binge drinking (BD) is an especially pro-oxidant pattern of alcohol consumption, particularly widespread in the adolescent population. In the kidneys, it affects the glomerular filtration rate (GFR), leading to high blood pressure. BD exposure also disrupts folic acid (FA) homeostasis and its antioxidant properties. The aim of this study is to test a FA supplementation as an effective therapy against the oxidative, nitrosative, and apoptotic damage as well as the renal function alteration occurred after BD in adolescence. Four groups of adolescent rats were used: control, BD (exposed to intraperitoneal alcohol), control FA-supplemented group and BD FA-supplemented group. Dietary FA content in control groups was 2 ppm, and 8 ppm in supplemented groups. BD provoked an oxidative imbalance in the kidneys by dysregulating antioxidant enzymes and increasing the enzyme NADPH oxidase 4 (NOX4), which led to an increase in caspase-9. BD also altered the renal nitrosative status affecting the expression of the three nitric oxide (NO) synthase (NOS) isoforms, leading to a decrease in NO levels. Functionally, BD produced a hydric-electrolytic imbalance, a low GFR and an increase in blood pressure. FA supplementation to BD adolescent rats improved the oxidative, nitrosative, and apoptotic balance, recovering the hydric-electrolytic equilibrium and blood pressure. However, neither NO levels nor GFR were recovered, showing in this study for the first time that NO availability in the kidneys plays a crucial role in GFR regulation that the antioxidant effects of FA cannot repair.
Collapse
Affiliation(s)
| | - María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Inés Romero-Herrera
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Rui Manuel Rua
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
2
|
Liu R, Juncos LA, Lu Y, Wei J, Zhang J, Wang L, Lai EY, Carlstrom M, Persson AEG. The Role of Macula Densa Nitric Oxide Synthase 1 Beta Splice Variant in Modulating Tubuloglomerular Feedback. Compr Physiol 2023; 13:4215-4229. [PMID: 36715280 PMCID: PMC9990375 DOI: 10.1002/cphy.c210043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water retention, which facilitates the development and maintenance of hypertension, as well as acid-base and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula densa cells, which leads to activation of several intracellular processes followed by the production of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly expressed in the macula densa. NOS1β is the major splice variant and accounts for most of NO generation by the macula densa, which inhibits TGF response. Macula densa NOS1β-mediated modulation of TGF responses plays an essential role in control of sodium excretion, volume and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic conditions. © 2023 American Physiological Society. Compr Physiol 13:4215-4229, 2023.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Molecular Pharmacology & Physiology
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - Yan Lu
- Division of Nephrology, University of Alabama at Birmingham, Birmingham AL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A. Erik G Persson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Pereira BP, do Vale GT, Ceron CS. The role of nitric oxide in renovascular hypertension: from the pathophysiology to the treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:121-131. [PMID: 34994823 DOI: 10.1007/s00210-021-02186-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022]
Abstract
Renovascular hypertension is one of the most relevant causes of secondary hypertension, mostly caused by atherosclerotic renovascular stenosis or fibromuscular dysplasia. The increase in angiotensin II production, oxidative stress, and formation of peroxynitrite promotes the decrease in nitric oxide (NO) availability and the development of hypertension, renal and endothelial dysfunction, and cardiac and vascular remodeling. The NO produced by nitric oxide synthases (NOS) acts as a vasodilator; however, endothelial NOS uncoupling (eNOS) also contributes to NO reduced availability in renovascular hypertension. NO donors and NO-derived metabolites have been investigated in experimental renovascular hypertension and have shown promissory effects in attenuating blood pressure and organ damage in this condition. Therefore, understanding the role of decreased NO in the pathophysiology of renovascular hypertension promotes the study and development of NO donors and molecules that can be converted into NO (such as nitrate and nitrite), contributing for the treatment of this condition in the future.
Collapse
Affiliation(s)
- Bruna Pinheiro Pereira
- Departamento de Alimentos E Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Gabriel Tavares do Vale
- Departamento de Ciências Biomédicas E da Saúde, Universidade Do Estado de Minas Gerais (UEMG), Belo Horizonte, Minas Gerais, Brazil
| | - Carla Speroni Ceron
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brasil.
| |
Collapse
|
4
|
Abstract
The prevalence of cardiovascular and metabolic disease coupled with kidney dysfunction is increasing worldwide. This triad of disorders is associated with considerable morbidity and mortality as well as a substantial economic burden. Further understanding of the underlying pathophysiological mechanisms is important to develop novel preventive or therapeutic approaches. Among the proposed mechanisms, compromised nitric oxide (NO) bioactivity associated with oxidative stress is considered to be important. NO is a short-lived diatomic signalling molecule that exerts numerous effects on the kidneys, heart and vasculature as well as on peripheral metabolically active organs. The enzymatic L-arginine-dependent NO synthase (NOS) pathway is classically viewed as the main source of endogenous NO formation. However, the function of the NOS system is often compromised in various pathologies including kidney, cardiovascular and metabolic diseases. An alternative pathway, the nitrate-nitrite-NO pathway, enables endogenous or dietary-derived inorganic nitrate and nitrite to be recycled via serial reduction to form bioactive nitrogen species, including NO, independent of the NOS system. Signalling via these nitrogen species is linked with cGMP-dependent and independent mechanisms. Novel approaches to restoring NO homeostasis during NOS deficiency and oxidative stress have potential therapeutic applications in kidney, cardiovascular and metabolic disorders.
Collapse
|
5
|
Xu N, Jiang S, Persson PB, Persson EAG, Lai EY, Patzak A. Reactive oxygen species in renal vascular function. Acta Physiol (Oxf) 2020; 229:e13477. [PMID: 32311827 DOI: 10.1111/apha.13477] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/22/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are produced by the aerobic metabolism. The imbalance between production of ROS and antioxidant defence in any cell compartment is associated with cell damage and may play an important role in the pathogenesis of renal disease. NADPH oxidase (NOX) family is the major ROS source in the vasculature and modulates renal perfusion. Upregulation of Ang II and adenosine activates NOX via AT1R and A1R in renal microvessels, leading to superoxide production. Oxidative stress in the kidney prompts renal vascular remodelling and increases preglomerular resistance. These are key elements in hypertension, acute and chronic kidney injury, as well as diabetic nephropathy. Renal afferent arterioles (Af), the primary resistance vessel in the kidney, fine tune renal hemodynamics and impact on blood pressure. Vice versa, ROS increase hypertension and diabetes, resulting in upregulation of Af vasoconstriction, enhancement of myogenic responses and change of tubuloglomerular feedback (TGF), which further promotes hypertension and diabetic nephropathy. In the following, we highlight oxidative stress in the function and dysfunction of renal hemodynamics. The renal microcirculatory alterations brought about by ROS importantly contribute to the pathophysiology of kidney injury, hypertension and diabetes.
Collapse
Affiliation(s)
- Nan Xu
- Department of Physiology Zhejiang University School of Medicine Hangzhou China
| | - Shan Jiang
- Department of Physiology Zhejiang University School of Medicine Hangzhou China
| | - Pontus B. Persson
- Charité ‐ Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| | | | - En Yin Lai
- Department of Physiology Zhejiang University School of Medicine Hangzhou China
- Charité ‐ Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| | - Andreas Patzak
- Charité ‐ Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| |
Collapse
|
6
|
Zhang J, Wei J, Jiang S, Xu L, Wang L, Cheng F, Buggs J, Koepsell H, Vallon V, Liu R. Macula Densa SGLT1-NOS1-Tubuloglomerular Feedback Pathway, a New Mechanism for Glomerular Hyperfiltration during Hyperglycemia. J Am Soc Nephrol 2019; 30:578-593. [PMID: 30867247 DOI: 10.1681/asn.2018080844] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/27/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Glomerular hyperfiltration is common in early diabetes and is considered a risk factor for later diabetic nephropathy. We propose that sodium-glucose cotransporter 1 (SGLT1) senses increases in luminal glucose at the macula densa, enhancing generation of neuronal nitric oxide synthase 1 (NOS1)-dependent nitric oxide (NO) in the macula densa and blunting the tubuloglomerular feedback (TGF) response, thereby promoting the rise in GFR. METHODS We used microperfusion, micropuncture, and renal clearance of FITC-inulin to examine the effects of tubular glucose on NO generation at the macula densa, TGF, and GFR in wild-type and macula densa-specific NOS1 knockout mice. RESULTS Acute intravenous injection of glucose induced hyperglycemia and glucosuria with increased GFR in mice. We found that tubular glucose blunts the TGF response in vivo and in vitro and stimulates NO generation at the macula densa. We also showed that SGLT1 is expressed at the macula densa; in the presence of tubular glucose, SGLT1 inhibits TGF and NO generation, but this action is blocked when the SGLT1 inhibitor KGA-2727 is present. In addition, we demonstrated that glucose increases NOS1 expression and NOS1 phosphorylation at Ser1417 in mouse renal cortex and cultured human kidney tissue. In macula densa-specific NOS1 knockout mice, glucose had no effect on NO generation, TGF, and GFR. CONCLUSIONS We identified a novel mechanism of acute hyperglycemia-induced hyperfiltration wherein increases in luminal glucose at the macula densa upregulate the expression and activity of NOS1 via SGLT1, blunting the TGF response and promoting glomerular hyperfiltration.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology, College of Medicine,
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, College of Medicine
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, College of Medicine
| | - Lan Xu
- Department of Biostatistics, College of Public Health, and
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, College of Medicine
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa General Hospital, Tampa, Florida
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany; and
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, College of Medicine
| |
Collapse
|
7
|
Carlstrom M, Montenegro MF. Therapeutic value of stimulating the nitrate-nitrite-nitric oxide pathway to attenuate oxidative stress and restore nitric oxide bioavailability in cardiorenal disease. J Intern Med 2019; 285:2-18. [PMID: 30039620 DOI: 10.1111/joim.12818] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disorders including hypertension and associated renal disease are major health problems affecting more than 1.5 billion people worldwide. Apart from nonmodifiable factors such as ageing, family history and gender, both sedentary lifestyle and unhealthy dietary habits are considered as major risk factors. The disorders are interrelated suggesting common pathological pathways. Mechanistically, oxidative stress and compromised function of the nitric oxide synthase (NOS) system leading to endothelial dysfunction and reduction in nitric oxide (NO) bioavailability have been widely implicated and associated with development and progression of disease. New strategies that correct this redox imbalance and increase NO bioactivity may have major clinical implications. The inorganic anions, nitrate and nitrite, are endogenously formed by oxidization of NOS-derived NO, but there are also high amounts of nitrate in our daily diet. In this regard, accumulated evidence over the past two decades demonstrates that these anions can be recycled back to NO and other bioactive nitrogen oxides, thus offering an attractive alternative strategy for therapeutic exploitation. In this review, we describe how dietary stimulation of the nitrate-nitrite-NO pathway affects cardiovascular and renal functions in health and disease via modulation of oxidative stress and NO bioavailability. Clinical studies addressing potential effects on the renal system are still limited, but blood pressure-lowering effects of nitrate supplementation have been demonstrated in healthy and hypertensive subjects as well as in patients with chronic kidney disease. However, larger clinical studies are warranted to reveal whether chronic nitrate treatment can slow-down the progression of cardiorenal disease and associated complications.
Collapse
Affiliation(s)
- M Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - M F Montenegro
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Carlström M, Lundberg JO, Weitzberg E. Mechanisms underlying blood pressure reduction by dietary inorganic nitrate. Acta Physiol (Oxf) 2018; 224:e13080. [PMID: 29694703 DOI: 10.1111/apha.13080] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) importantly contributes to cardiovascular homeostasis by regulating blood flow and maintaining endothelial integrity. Conversely, reduced NO bioavailability is a central feature during natural ageing and in many cardiovascular disorders, including hypertension. The inorganic anions nitrate and nitrite are endogenously formed after oxidation of NO synthase (NOS)-derived NO and are also present in our daily diet. Knowledge accumulated over the past two decades has demonstrated that these anions can be recycled back to NO and other bioactive nitrogen oxides via serial reductions that involve oral commensal bacteria and various enzymatic systems. Intake of inorganic nitrate, which is predominantly found in green leafy vegetables and beets, has a variety of favourable cardiovascular effects. As hypertension is a major risk factor of morbidity and mortality worldwide, much attention has been paid to the blood pressure reducing effect of inorganic nitrate. Here, we describe how dietary nitrate, via stimulation of the nitrate-nitrite-NO pathway, affects various organ systems and discuss underlying mechanisms that may contribute to the observed blood pressure-lowering effect.
Collapse
Affiliation(s)
- M. Carlström
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - J. O. Lundberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - E. Weitzberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
9
|
Turner AJ, Brown RD, Brandon AE, Persson AEG, Gibson KJ. Tubuloglomerular feedback responses in offspring of dexamethasone-treated ewes. Am J Physiol Renal Physiol 2017; 313:F864-F873. [PMID: 28679594 DOI: 10.1152/ajprenal.00538.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 11/22/2022] Open
Abstract
Via developmental programming, prenatal perturbations, such as exposure to glucocorticoids and maternal malnutrition alter kidney development and contribute to the development of hypertension. To examine the possibility that alterations in tubuloglomerular feedback (TGF) contribute to the development of hypertension in offspring following maternal dexamethasone treatment (Dex) in early gestation, studies were conducted in fetal sheep and lambs. Pregnant ewes were infused with dexamethasone (0.48 mg/h) at 26-28 days gestation. No differences were observed in mean arterial pressure, glomerular filtration rate. or electrolyte excretion rates between the Dex and Untreated fetuses or lambs. Gestational exposure to Dex markedly enhanced TGF sensitivity, as the turning point in Dex-treated fetuses was significantly lower (12.9 ± 0.9 nl/min; P < 0.05) compared with Untreated fetuses (17.0 ± 1.0 nl/min). This resetting of TGF sensitivity persisted after birth (P < 0.01). TGF reactivity did not differ between the groups in fetuses or lambs. In response to nitric oxide inhibition, TGF sensitivity increased (the turning point decreased) and reactivity increased in Untreated fetuses and lambs, but these effects were blunted in the Dex-treated fetuses and lambs. Our data suggest that an altered TGF response may be an underlying renal mechanism contributing to the development of hypertension in the Dex model of fetal programming. The lower tonic level of NO production in these dexamethasone-exposed offspring may contribute to the development of hypertension as adults.
Collapse
Affiliation(s)
- Anita J Turner
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia; .,Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
| | - Russell D Brown
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and.,Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Amanda E Brandon
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
| | - A Erik G Persson
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and.,Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Karen J Gibson
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
| |
Collapse
|
10
|
Jose PA, Welch W. Do You Want to Ditch Sodium? Meet Nitric Oxide Synthase 1β at the Macula Densa. J Am Soc Nephrol 2016; 27:2217-8. [PMID: 26903534 DOI: 10.1681/asn.2015121378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Pedro A Jose
- Department of Medicine, Division of Kidney Diseases and Hypertension and Department of Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC; and
| | - William Welch
- Department of Medicine, Division of Nephrology and Hypertension, Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, DC
| |
Collapse
|
11
|
Wang X, Chandrashekar K, Wang L, Lai EY, Wei J, Zhang G, Wang S, Zhang J, Juncos LA, Liu R. Inhibition of Nitric Oxide Synthase 1 Induces Salt-Sensitive Hypertension in Nitric Oxide Synthase 1α Knockout and Wild-Type Mice. Hypertension 2016; 67:792-9. [PMID: 26883268 DOI: 10.1161/hypertensionaha.115.07032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023]
Abstract
We recently showed that α, β, and γ splice variants of neuronal nitric oxide synthase (NOS1) expressed in the macula densa and NOS1β accounts for most of the NO generation. We have also demonstrated that the mice with deletion of NOS1 specifically from the macula densa developed salt-sensitive hypertension. However, the global NOS1 knockout (NOS1KO) strain is neither hypertensive nor salt sensitive. This global NOS1KO strain is actually an NOS1αKO model. Consequently, we hypothesized that inhibition of NOS1β in NOS1αKO mice induces salt-sensitive hypertension. NOS1αKO and C57BL/6 wild-type (WT) mice were implanted with telemetry transmitters and divided into 7-nitroindazole (10 mg/kg/d)-treated and nontreated groups. All of the mice were fed a normal salt (0.4% NaCl) diet for 5 days, followed by a high-salt diet (4% NaCl). NO generation by the macula densa was inhibited by >90% in WT and NOS1αKO mice treated with 7-nitroindazole. Glomerular filtration rate in conscious mice was increased by ≈ 40% after a high-salt diet in both NOS1αKO and WT mice. In response to acute volume expansion, glomerular filtration rate, diuretic and natriuretic response were significantly blunted in the WT and knockout mice treated with 7-nitroindazole. Mean arterial pressure had no significant changes in mice fed a high-salt diet, but increased ≈ 15 mm Hg similarly in NOS1αKO and WT mice treated with 7-nitroindazole. We conclude that NOS1β, but not NOS1α, plays an important role in control of sodium excretion and hemodynamics in response to either an acute or a chronic salt loading.
Collapse
Affiliation(s)
- Ximing Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Kiran Chandrashekar
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Lei Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - En Yin Lai
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Jin Wei
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Gensheng Zhang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Shaohui Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Jie Zhang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Luis A Juncos
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Ruisheng Liu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.).
| |
Collapse
|
12
|
Lu Y, Wei J, Stec DE, Roman RJ, Ge Y, Cheng L, Liu EY, Zhang J, Hansen PBL, Fan F, Juncos LA, Wang L, Pollock J, Huang PL, Fu Y, Wang S, Liu R. Macula Densa Nitric Oxide Synthase 1β Protects against Salt-Sensitive Hypertension. J Am Soc Nephrol 2015; 27:2346-56. [PMID: 26647426 DOI: 10.1681/asn.2015050515] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/24/2015] [Indexed: 01/10/2023] Open
Abstract
Nitric oxide (NO) is an important negative modulator of tubuloglomerular feedback responsiveness. We recently found that macula densa expresses α-, β-, and γ-splice variants of neuronal nitric oxide synthase 1 (NOS1), and NOS1β expression in the macula densa increases on a high-salt diet. This study tested whether upregulation of NOS1β expression in the macula densa affects sodium excretion and salt-sensitive hypertension by decreasing tubuloglomerular feedback responsiveness. Expression levels of NOS1β mRNA and protein were 30- and five-fold higher, respectively, than those of NOS1α in the renal cortex of C57BL/6 mice. Furthermore, macula densa NO production was similar in the isolated perfused juxtaglomerular apparatus of wild-type (WT) and nitric oxide synthase 1α-knockout (NOS1αKO) mice. Compared with control mice, mice with macula densa-specific knockout of all nitric oxide synthase 1 isoforms (MD-NOS1KO) had a significantly enhanced tubuloglomerular feedback response and after acute volume expansion, significantly reduced GFR, urine flow, and sodium excretion. Mean arterial pressure increased significantly in MD-NOS1KO mice (P<0.01) but not NOS1flox/flox mice fed a high-salt diet. After infusion of angiotensin II, mean arterial pressure increased by 61.6 mmHg in MD-NOS1KO mice versus 32.0 mmHg in WT mice (P<0.01) fed a high-salt diet. These results indicate that NOS1β is a primary NOS1 isoform expressed in the macula densa and regulates the tubuloglomerular feedback response, the natriuretic response to acute volume expansion, and the development of salt-sensitive hypertension. These findings show a novel mechanism for salt sensitivity of BP and the significance of tubuloglomerular feedback response in long-term control of sodium excretion and BP.
Collapse
Affiliation(s)
- Yan Lu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Departments of Physiology and Biophysics and
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | | | - Richard J Roman
- Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ying Ge
- Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Liang Cheng
- Departments of Physiology and Biophysics and
| | - Eddie Y Liu
- Departments of Physiology and Biophysics and
| | - Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | | | - Fan Fan
- Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Jennifer Pollock
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Paul L Huang
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yiling Fu
- Departments of Physiology and Biophysics and
| | - Shaohui Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Departments of Physiology and Biophysics and
| |
Collapse
|
13
|
Turner AJ, Brown RD, Boyce A, Gibson KJ, Persson AEG. Fetal tubuloglomerular feedback in an ovine model of mild maternal renal disease. Physiol Rep 2015; 3:3/7/e12448. [PMID: 26169542 PMCID: PMC4552528 DOI: 10.14814/phy2.12448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fetuses of pregnant ewes, which were subtotally nephrectomized prior to mating, were studied to assess whether mild maternal renal impairment would affect fetal tubuloglomerular feedback (TGF) under control conditions and after the inhibition of macula densa-derived nitric oxide (NO). Based on previous observations we hypothesized that, the TGF curve of fetuses of subtotally nephrectomized (STNx) ewes would resemble that of a volume expanded fetus with a high production rate of NO and that inhibition of neuronal nitric oxide synthase (nNOS) would increase the sensitivity of the TGF system in these fetuses. Renal function studies were performed on anaesthetized fetal sheep (133–140 days gestation; term ∼150 days; Isoflurane 2–4% in oxygen). Fetuses were removed from the uterus and placed in a water bath (39.5°C) while maintaining umbilical blood flow. Glomerular filtration rate (GFR) and urine flow rate were markedly increased in fetuses of STNx ewes compared to fetuses of untreated ewes. Interestingly, and contrary to our hypothesis, the fetuses of STNx ewes exhibited no difference in TGF sensitivity in the presence or absence of 7-nitroindazole (7NI; nNOS inhibitor), compared to fetuses of untreated ewes, although sensitivity and reactivity increased in both groups after 7NI. There was however, a decrease in the stop flow pressure and net filtration pressure with an increase in the filtration coefficient (Kf). These factors suggest that maternal renal impairment drives the glomerular hypertrophy which has previously been found to be present in the neonatal period. Thus, we conclude that at ∼138 days gestation, the fetal kidney has matured functionally and fetuses of STNx ewes are able to maintain fluid and electrolyte homeostasis even in the presence of increased transplacental flux.
Collapse
Affiliation(s)
- Anita J Turner
- Australian School of Advanced Medicine Macquarie University, Sydney, New South Wales, Australia Department of Physiology, School of Medical Sciences University of New South Wales, Sydney, New South Wales, Australia
| | - Russell D Brown
- Department of Physiology, School of Medical Sciences University of New South Wales, Sydney, New South Wales, Australia Department of Medical Cell Biology, Division of Integrative Physiology, University of Uppsala, Uppsala, Sweden
| | - Amanda Boyce
- Department of Physiology, School of Medical Sciences University of New South Wales, Sydney, New South Wales, Australia
| | - Karen J Gibson
- Department of Physiology, School of Medical Sciences University of New South Wales, Sydney, New South Wales, Australia
| | - A Erik G Persson
- Department of Physiology, School of Medical Sciences University of New South Wales, Sydney, New South Wales, Australia Department of Medical Cell Biology, Division of Integrative Physiology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
14
|
Elnakish MT, Schultz EJ, Gearinger RL, Saad NS, Rastogi N, Ahmed AAE, Mohler PJ, Janssen PML. Differential involvement of various sources of reactive oxygen species in thyroxin-induced hemodynamic changes and contractile dysfunction of the heart and diaphragm muscles. Free Radic Biol Med 2015; 83:252-61. [PMID: 25795514 PMCID: PMC4441845 DOI: 10.1016/j.freeradbiomed.2015.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/12/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
Thyroid hormones are key regulators of basal metabolic state and oxidative metabolism. Hyperthyroidism has been reported to cause significant alterations in hemodynamics, and in cardiac and diaphragm muscle functions, all of which have been linked to increased oxidative stress. However, the definite source of increased reactive oxygen species (ROS) in each of these phenotypes is still unknown. The goal of the current study was to test the hypothesis that thyroxin (T4) may produce distinct hemodynamic, cardiac, and diaphragm muscle abnormalities by differentially affecting various sources of ROS. Wild-type and T4 mice with and without 2-week treatments with allopurinol (xanthine oxidase inhibitor), apocynin (NADPH oxidase inhibitor), L-NIO (nitric oxide synthase inhibitor), or MitoTEMPO (mitochondria-targeted antioxidant) were studied. Blood pressure and echocardiography were noninvasively evaluated, followed by ex vivo assessments of isolated heart and diaphragm muscle functions. Treatment with L-NIO attenuated the T4-induced hypertension in mice. However, apocynin improved the left-ventricular (LV) dysfunction without preventing the cardiac hypertrophy in these mice. Both allopurinol and MitoTEMPO reduced the T4-induced fatigability of the diaphragm muscles. In conclusion, we show here for the first time that T4 exerts differential effects on various sources of ROS to induce distinct cardiovascular and skeletal muscle phenotypes. Additionally, we find that T4-induced LV dysfunction is independent of cardiac hypertrophy and NADPH oxidase is a key player in this process. Furthermore, we prove the significance of both xanthine oxidase and mitochondrial ROS pathways in T4-induced fatigability of diaphragm muscles. Finally, we confirm the importance of the nitric oxide pathway in T4-induced hypertension.
Collapse
Affiliation(s)
- Mohammad T Elnakish
- Department of Physiology and Cell Biology, College of Medicine, and; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Eric J Schultz
- Department of Physiology and Cell Biology, College of Medicine, and; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Rachel L Gearinger
- Department of Physiology and Cell Biology, College of Medicine, and; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nancy S Saad
- Department of Physiology and Cell Biology, College of Medicine, and; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Neha Rastogi
- Department of Physiology and Cell Biology, College of Medicine, and; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Amany A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Peter J Mohler
- Department of Physiology and Cell Biology, College of Medicine, and; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, College of Medicine, and; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Gao X, Yang T, Liu M, Peleli M, Zollbrecht C, Weitzberg E, Lundberg JO, Persson AEG, Carlström M. NADPH Oxidase in the Renal Microvasculature Is a Primary Target for Blood Pressure–Lowering Effects by Inorganic Nitrate and Nitrite. Hypertension 2015; 65:161-70. [DOI: 10.1161/hypertensionaha.114.04222] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Renal oxidative stress and nitric oxide (NO) deficiency are key events in hypertension. Stimulation of a nitrate–nitrite–NO pathway with dietary nitrate reduces blood pressure, but the mechanisms or target organ are not clear. We investigated the hypothesis that inorganic nitrate and nitrite attenuate reactivity of renal microcirculation and blood pressure responses to angiotensin II (ANG II) by modulating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and NO bioavailability. Nitrite in the physiological range (10
−7
–10
−5
mol/L) dilated isolated perfused renal afferent arterioles, which were associated with increased NO. Contractions to ANG II (34%) and simultaneous NO synthase inhibition (56%) were attenuated by nitrite (18% and 26%). In a model of oxidative stress (superoxide dismutase-1 knockouts), abnormal ANG II–mediated arteriolar contractions (90%) were normalized by nitrite (44%). Mechanistically, effects of nitrite were abolished by NO scavenger and xanthine oxidase inhibitor, but only partially attenuated by inhibiting soluble guanylyl cyclase. Inhibition of NADPH oxidase with apocynin attenuated ANG II–induced contractility (35%) similar to that of nitrite. In the presence of nitrite, no further effect of apocynin was observed, suggesting NADPH oxidase as a possible target. In preglomerular vascular smooth muscle cells and kidney cortex, nitrite reduced both basal and ANG II–induced NADPH oxidase activity. These effects of nitrite were also abolished by xanthine oxidase inhibition. Moreover, supplementation with dietary nitrate (10
−2
mol/L) reduced renal NADPH oxidase activity and attenuated ANG II–mediated arteriolar contractions and hypertension (99±2–146±2 mm Hg) compared with placebo (100±3–168±3 mm Hg). In conclusion, these novel findings position NADPH oxidase in the renal microvasculature as a prime target for blood pressure–lowering effects of inorganic nitrate and nitrite.
Collapse
Affiliation(s)
- Xiang Gao
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Ting Yang
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Ming Liu
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Maria Peleli
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Christa Zollbrecht
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Eddie Weitzberg
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Jon O. Lundberg
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - A. Erik G. Persson
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| | - Mattias Carlström
- From the Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (X.G., A.E.G.P.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.Y., M.L., M.P., C.Z., E.W., J.O.L., M.C.)
| |
Collapse
|
16
|
Song J, Lu Y, Lai EY, Wei J, Wang L, Chandrashekar K, Wang S, Shen C, Juncos LA, Liu R. Oxidative status in the macula densa modulates tubuloglomerular feedback responsiveness in angiotensin II-induced hypertension. Acta Physiol (Oxf) 2015; 213:249-58. [PMID: 25089004 DOI: 10.1111/apha.12358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/27/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022]
Abstract
AIM Tubuloglomerular feedback (TGF) is an important mechanism in control of signal nephron glomerular filtration rate. The oxidative stress in the macula densa, primarily determined by the interactions between nitric oxide (NO) and superoxide (O2-), is essential in maintaining the TGF responsiveness. However, few studies examining the interactions between and amount of NO and O2- generated by the macula densa during normal and hypertensive states. METHODS In this study, we used isolated perfused juxtaglomerular apparatus to directly measure the amount and also studied the interactions between NO and O2- in macula densa in both physiological and slow pressor Angiotensin II (Ang II)-induced hypertensive mice. RESULTS We found that slow pressor Ang II at a dose of 600 ng kg(-1) min(-1) for two weeks increased mean arterial pressure by 26.1 ± 5.7 mmHg. TGF response increased from 3.4 ± 0.2 μm in control to 5.2 ± 0.2 μm in hypertensive mice. We first measured O2- generation by the macula densa and found it was undetectable in control mice. However, O2- generation by the macula densa increased to 21.4 ± 2.5 unit min(-1) in Ang II-induced hypertensive mice. We then measured NO generation and found that NO generation by the macula densa was 138.5 ± 9.3 unit min(-1) in control mice. The NO was undetectable in the macula densa in hypertensive mice infused with Ang II. CONCLUSIONS Under physiological conditions, TGF response is mainly controlled by the NO generated in the macula densa; in Ang II induced hypertension, the TGF response is mainly controlled by the O2- generated by the macula densa.
Collapse
Affiliation(s)
- J. Song
- State Key Laboratory of Cardiovascular Disease; Fuwai Hospital; National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - Y. Lu
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - E. Y. Lai
- Department of Physiology; Zhejiang University; Hanzhou China
| | - J. Wei
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - L. Wang
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - K. Chandrashekar
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - S. Wang
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - C. Shen
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - L. A. Juncos
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - R. Liu
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| |
Collapse
|
17
|
Different vasoactive effects of chronic endothelial and neuronal NO-synthase inhibition in young Wistar rats. J Physiol Biochem 2014; 70:749-60. [DOI: 10.1007/s13105-014-0343-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 06/18/2014] [Indexed: 12/16/2022]
|
18
|
Abstract
SIGNIFICANCE Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. RECENT ADVANCES Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. CRITICAL ISSUES AND FUTURE DIRECTIONS Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2(-•) rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension.
Collapse
Affiliation(s)
- Magali Araujo
- Hypertension, Kidney and Vascular Research Center, Georgetown University , Washington, District of Columbia
| | | |
Collapse
|
19
|
Zhang J, Chandrashekar K, Lu Y, Duan Y, Qu P, Wei J, Juncos LA, Liu R. Enhanced expression and activity of Nox2 and Nox4 in the macula densa in ANG II-induced hypertensive mice. Am J Physiol Renal Physiol 2013; 306:F344-50. [PMID: 24285500 DOI: 10.1152/ajprenal.00515.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NAD(P)H oxidase (Nox)2 and Nox4 are the isoforms of Nox expressed in the macula densa (MD). MD-derived superoxide (O₂⁻), primarily generated by Nox2, is enhanced by acute ANG II stimulation. However, the effects of chronic elevations in ANG II during ANG II-induced hypertension on MD-derived O₂⁻ are unknown. We infused a slow pressor dose of ANG II (600 ng·min⁻¹·kg⁻¹) for 2 wk in C57BL/6 mice and found that mean arterial pressure was elevated by 22.3 ± 3.4 mmHg (P < 0.01). We measured O₂⁻ generation in isolated and perfused MDs and found that O₂⁻ generation by the MD was increased from 9.4 ± 0.9 U/min in control mice to 34.7 ± 1.8 U/min in ANG II-induced hypertensive mice (P < 0.01). We stimulated MMDD1 cells, a MD-like cell line, with ANG II and found that O₂⁻ generation increased from 921 ± 91 to 3,687 ± 183 U·min⁻¹·10⁵ cells⁻¹, which was inhibited with apocynin, oxypurinol, or NS-398 by 46%, 14%, and 12%, respectively. We isolated MD cells using laser capture microdissection and measured mRNA levels of Nox. Nox2 and Nox4 levels increased by 3.7 ± 0.17- and 2.6 ± 0.15-fold in ANG II-infused mice compared with control mice. In MMDD1 cells treated with Nox2 or Nox4 small interfering (si)RNAs, ANG II-stimulated O₂⁻ generation was blunted by 50% and 41%, respectively. In cells treated with p22(phox) siRNA, ANG II-stimulated O₂⁻ generation was completely blocked. In conclusion, we found that a subpressor dose of ANG II enhances O₂⁻ generation in the MD and that the sources of this O₂⁻ are primarily Nox2 and Nox4.
Collapse
Affiliation(s)
- Jie Zhang
- Dept. of Physiology and Biophysics, Univ. of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Singh P, Thomson SC. Salt sensitivity of tubuloglomerular feedback in the early remnant kidney. Am J Physiol Renal Physiol 2013; 306:F172-80. [PMID: 24259514 DOI: 10.1152/ajprenal.00431.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported internephron heterogeneity in the tubuloglomerular feedback (TGF) response 1 wk after subtotal nephrectomy (STN), with 50% of STN nephrons exhibiting anomalous TGF (Singh P, Deng A, Blantz RC, Thomson SC. Am J Physiol Renal Physiol 296: F1158-F1165, 2009). Presently, we tested the theory that anomalous TGF is an adaptation of the STN kidney to facilitate increased distal delivery when NaCl balance forces the per-nephron NaCl excretion to high levels. To this end, the effect of dietary NaCl on the TGF response was tested by micropuncture in STN and sham-operated Wistar rats. An NaCl-deficient (LS) or high-salt NaCl diet (HS; 1% NaCl in drinking water) was started on day 0 after STN or sham surgery. Micropuncture followed 8 days later with measurements of single-nephron GFR (SNGFR), proximal reabsorption, and tubular stop-flow pressure (PSF) obtained at both extremes of TGF activation, while TGF was manipulated by microperfusing Henle's loop (LOH) from the late proximal tubule. Activating TGF caused SNGFR to decline by similar amounts in Sham-LS, Sham-HS and STN-LS [ΔSNGFR (nl/min) = -16 ± 2, -11 ± 3, -11 ± 2; P = not significant by Tukey]. Activating TGF in STN-HS actually increased SNGFR by 5 ± 2 nl/min (P < 0.0005 vs. each other group by Tukey). HS had no effect on the PSF response to LOH perfusion in sham [ΔPSF (mmHg) = -9.6 ± 1.1 vs. -9.8 ± 1.0] but eliminated the PSF response in STN (+0.3 ± 0.9 vs. -5.7 ± 1.0, P = 0.0002). An HS diet leads to anomalous TGF in the early remnant kidney, which facilitates NaCl and fluid delivery to the distal nephron.
Collapse
Affiliation(s)
- Prabhleen Singh
- Div. of Nephrology-Hypertension, VASDHS, 3350 La Jolla Village Dr. 9151, San Diego, CA 92161.
| | | |
Collapse
|
21
|
Carlström M, Brown RD, Yang T, Hezel M, Larsson E, Scheffer PG, Teerlink T, Lundberg JO, Persson AEG. L-arginine or tempol supplementation improves renal and cardiovascular function in rats with reduced renal mass and chronic high salt intake. Acta Physiol (Oxf) 2013; 207:732-41. [PMID: 23387940 DOI: 10.1111/apha.12079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 12/23/2022]
Abstract
AIM Early life reduction in nephron number and chronic high salt intake cause development of renal and cardiovascular disease, which has been associated with oxidative stress and nitric oxide (NO) deficiency. We investigated the hypothesis that interventions stimulating NO signalling or reducing oxidative stress may restore renal autoregulation, attenuate hypertension and reduce renal and cardiovascular injuries following reduction in renal mass and chronic high salt intake. METHODS Male Sprague-Dawley rats were uninephrectomized (UNX) or sham-operated at 3 weeks of age and given either a normal-salt (NS) or high-salt (HS) diet. Effects on renal and cardiovascular functions were assessed in rats supplemented with substrate for NO synthase (L-Arg) or a superoxide dismutase mimetic (Tempol). RESULTS Rats with UNX + HS developed hypertension and displayed increased renal NADPH oxidase activity, elevated levels of oxidative stress markers in plasma and urine, and reduced cGMP in plasma. Histological analysis showed signs of cardiac and renal inflammation and fibrosis. These changes were linked with abnormal renal autoregulation, measured as a stronger tubuloglomerular feedback (TGF) response. Simultaneous treatment with L-Arg or Tempol restored cGMP levels in plasma and increased markers of NO signalling in the kidney. This was associated with normalized TGF responses, attenuated hypertension and reduced signs of histopathological changes in the kidney and in the heart. CONCLUSION Reduction in nephron number during early life followed by chronic HS intake is associated with oxidative stress, impaired renal autoregulation and development of hypertension. Treatment strategies that increase NO bioavailability, or reduce levels of reactive oxygen species, were proven beneficial in this model of renal and cardiovascular disease.
Collapse
Affiliation(s)
| | | | - T. Yang
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm; Sweden
| | - M. Hezel
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm; Sweden
| | - E. Larsson
- Department of Genetics and Pathology; Uppsala University; Uppsala; Sweden
| | - P. G. Scheffer
- Department of Clinical Chemistry; VU University Medical Centre; Amsterdam; the Netherlands
| | - T. Teerlink
- Department of Clinical Chemistry; VU University Medical Centre; Amsterdam; the Netherlands
| | - J. O. Lundberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm; Sweden
| | - A. E. G. Persson
- Department of Medical Cell Biology; Uppsala University; Uppsala; Sweden
| |
Collapse
|
22
|
Huang CF, Hsu CN, Chien SJ, Lin YJ, Huang LT, Tain YL. Aminoguanidine attenuates hypertension, whereas 7-nitroindazole exacerbates kidney damage in spontaneously hypertensive rats: The role of nitric oxide. Eur J Pharmacol 2013. [DOI: 10.1016/j.ejphar.2012.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Aoki H, Nakata M, Dezaki K, Lu M, Gantulga D, Yamamoto K, Shimada K, Kario K, Yada T. Ghrelin counteracts salt-induced hypertension via promoting diuresis and renal nitric oxide production in Dahl rats. Endocr J 2013; 60:571-81. [PMID: 23328675 DOI: 10.1507/endocrj.ej12-0371] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ghrelin is the endogenous ligand for the growth hormone-secretagogue receptor expressed in various tissues including the heart, blood vessels and kidney. This study sought to determine the effects of long-term treatment with ghrelin (10 nmol/kg, twice a day, intraperitoneally) on the hypertension induced by high salt (8.0% NaCl) diet in Dahl salt-sensitive hypertensive (DS) rats. Systolic blood pressure (SBP) was measured by a tail cuff method. During the treatment period for 3 weeks, high salt diet increased blood pressure compared to normal salt (0.3% NaCl) diet, and this hypertension was partly but significantly (P<0.01) attenuated by simultaneous treatment with ghrelin. Ghrelin significantly increased urine volume and tended to increase urine Na⁺ excretion. Furthermore, ghrelin increased urine nitric oxide (NO) excretion and tended to increase renal neuronal nitric oxide synthase (nNOS) mRNA expression. Ghrelin did not alter the plasma angiotensin II level and renin activity, nor urine catecholamine levels. Furthermore, ghrelin prevented the high salt-induced increases in heart thickness and plasma ANP mRNA expression. These results demonstrate that long-term ghrelin treatment counteracts salt-induced hypertension in DS rats primarily through diuretic action associated with increased renal NO production, thereby exerting cardio-protective effects.
Collapse
Affiliation(s)
- Hirotaka Aoki
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gao X, Patzak A, Sendeski M, Scheffer PG, Teerlink T, Sällström J, Fredholm BB, Persson AEG, Carlström M. Adenosine A1-receptor deficiency diminishes afferent arteriolar and blood pressure responses during nitric oxide inhibition and angiotensin II treatment. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1669-81. [DOI: 10.1152/ajpregu.00268.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine mediates tubuloglomerular feedback responses via activation of A1-receptors on the renal afferent arteriole. Increased preglomerular reactivity, due to reduced nitric oxide (NO) production or increased levels of ANG II and reactive oxygen species (ROS), has been linked to hypertension. Using A1-receptor knockout (A1−/−) and wild-type (A1+/+) mice we investigated the hypothesis that A1-receptors modulate arteriolar and blood pressure responses during NO synthase (NOS) inhibition or ANG II treatment. Blood pressure and renal afferent arteriolar responses were measured in nontreated mice and in mice with prolonged Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) or ANG II treatment. The hypertensive responses to l-NAME and ANG II were clearly attenuated in A1−/− mice. Arteriolar contractions to l-NAME (10−4 mol/l; 15 min) and cumulative ANG II application (10−12 to 10−6 mol/l) were lower in A1−/− mice. Simultaneous treatment with tempol (10−4 mol/l; 15 min) attenuated arteriolar responses in A1+/+ but not in A1−/− mice, suggesting differences in ROS formation. Chronic treatment with l-NAME or ANG II did not alter arteriolar responses in A1−/− mice, but enhanced maximal contractions in A1+/+ mice. In addition, chronic treatments were associated with higher plasma levels of dimethylarginines (asymmetrical and symmetrical) and oxidative stress marker malondialdehyde in A1+/+ mice, and gene expression analysis showed reduced upregulation of NOS-isoforms and greater upregulation of NADPH oxidases. In conclusion, adenosine A1-receptors enhance preglomerular responses during NO inhibition and ANG II treatment. Interruption of A1-receptor signaling blunts l-NAME and ANG II-induced hypertension and oxidative stress and is linked to reduced responsiveness of afferent arterioles.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Mauricio Sendeski
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Peter G. Scheffer
- Department of Clinical Chemistry, VU University Medical Centre, Amsterdam, Netherlands; and
| | - Tom Teerlink
- Department of Clinical Chemistry, VU University Medical Centre, Amsterdam, Netherlands; and
| | - Johan Sällström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Bertil B. Fredholm
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | - Mattias Carlström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Brown RD, Hilliard LM, Head GA, Jones ES, Widdop RE, Denton KM. Sex differences in the pressor and tubuloglomerular feedback response to angiotensin II. Hypertension 2011; 59:129-35. [PMID: 22124434 DOI: 10.1161/hypertensionaha.111.178715] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Awareness of sex differences in the pathology of cardiovascular disease is increasing. Previously, we have shown a role for the angiotensin type 2 receptor (AT(2)R) in the sex differences in the arterial pressure response to Ang II. Tubuloglomerular feedback (TGF) contributes in setting pressure-natriuresis properties, and its responsiveness is closely coupled to renal Ang II levels. We hypothesize that, in females, the attenuated pressor response to Ang II is mediated via an enhanced AT(2)R mechanism that, in part, offsets Ang II-induced sensitization of the TGF mechanism. Mean arterial pressure was measured via telemetry in male and female wild-type (WT) and AT(2)R knockout (AT(2)R-KO) mice receiving Ang II (600 ng/kg per minute SC). Basal 24-hour mean arterial pressure did not differ among the 4 groups. After 10 days of Ang II infusion, mean arterial pressure increased in the male WT (28±6 mm Hg), male AT(2)R-KO (26±2 mm Hg), and female AT(2)R-KO (26±4 mm Hg) mice, however, the response was attenuated in female WT mice (12±4 mm Hg; P between sex and genotype=0.016). TGF characteristics were determined before and during acute subpressor Ang II infusion (100 ng/kg per minute IV). Basal TGF responses did not differ between groups. The expected increase in maximal change in stop-flow pressure and enhancement of TGF sensitivity in response to Ang II was observed in the male WT, male AT(2)R-KO, and female AT(2)R-KO but not in the female WT mice (P between sex and genotype <0.05; both). In conclusion, these data indicate that an enhanced AT(2)R-mediated pathway counterbalances the hypertensive effects of Ang II and attenuates the Ang II-dependent resetting of TGF activity in females. Thus, the enhancement of the AT(2)R may, in part, underlie the protection that premenopausal women demonstrate against cardiovascular disease.
Collapse
Affiliation(s)
- Russell D Brown
- Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Sällström J, Carlström M, Olerud J, Fredholm BB, Kouzmine M, Sandler S, Persson AEG. High-protein-induced glomerular hyperfiltration is independent of the tubuloglomerular feedback mechanism and nitric oxide synthases. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1263-8. [DOI: 10.1152/ajpregu.00649.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A high protein intake is associated with increased glomerular filtration rate (GFR), which has been suggested to be mediated by reduced signaling of the tubuloglomerular feedback (TGF) mechanism. Nitric oxide (NO) has been shown to contribute to high protein-induced glomerular hyperfiltration, but the specific NO synthase (NOS) isoform responsible is not clear. In this study, a model for high-protein-induced hyperfiltration in conscious mice was developed. Using this model, we investigated the role of TGF using adenosine A1-receptor knockout mice lacking the TGF mechanism. Furthermore, the role of the different NOS isoforms was studied using neuronal-, inducible-, and endothelial-NOS knockout mice, and furthermore, wild-type mice acutely administered with the unspecific NOS inhibitor Nω-nitro-l-arginine methyl ester (100 mg/kg). GFR was measured consecutively in mice given a low-protein diet (8% casein) for 10 days, followed by a high-protein diet (50% casein) for 10 days. All mice developed high protein-induced hyperfiltration to a similar degree. These results demonstrate that high protein-induced glomerular hyperfiltration is independent of the TGF mechanism and NOS isoforms.
Collapse
Affiliation(s)
- Johan Sällström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| | - Mattias Carlström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| | - Johan Olerud
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| | - Bertil B. Fredholm
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Mattias Kouzmine
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| | - Stellan Sandler
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| | - A. Erik G. Persson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| |
Collapse
|
27
|
Carlström M, Lai EY, Ma Z, Steege A, Patzak A, Eriksson UJ, Lundberg JO, Wilcox CS, Persson AEG. Superoxide dismutase 1 limits renal microvascular remodeling and attenuates arteriole and blood pressure responses to angiotensin II via modulation of nitric oxide bioavailability. Hypertension 2010; 56:907-13. [PMID: 20876452 DOI: 10.1161/hypertensionaha.110.159301] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oxidative stress is associated with vascular remodeling and increased preglomerular resistance that are both implicated in the pathogenesis of renal and cardiovascular disease. Angiotensin II induces superoxide production, which is metabolized by superoxide dismutase (SOD) or scavenged by NO. We investigated the hypothesis that SOD1 regulates renal microvascular remodeling, blood pressure, and arteriolar responsiveness and sensitivity to angiotensin II using SOD1-transgenic (SOD1-tg) and SOD1-knockout (SOD1-ko) mice. Blood pressure, measured telemetrically, rose more abruptly during prolonged angiotensin II infusion in SOD1-ko mice. The afferent arteriole media:lumen ratios were reduced in SOD1-tg and increased in SOD1-ko mice. Afferent arterioles from nontreated wild types had graded contraction to angiotensin II (sensitivity: 10(-9) mol/L; responsiveness: 40%). Angiotensin II contractions were less sensitive (10(-8) mol/L) and responsive (14%) in SOD1-tg but more sensitive (10(-13) mol/L) and responsive (89%) in SOD1-ko mice. Arterioles from SOD1-ko had 4-fold increased superoxide formation with angiotensin II at 10(-9) mol/L. N(G)-nitro-l-arginine methyl ester reduced arteriole diameter of SOD1-tg and enhanced angiotensin II sensitivity and responsiveness of wild-type and SOD1-tg mice to the level of SOD1-ko mice. SOD mimetic treatment with Tempol increased arteriole diameter and normalized the enhanced sensitivity and responsiveness to angiotensin II of SOD1-ko mice but did not affect wild-type or SOD1-tg mice. Neither SOD1 deficiency nor overexpression was associated with changes in nitrate/nitrite excretion or renal mRNA expression of NO synthase, NADPH oxidase, or SOD2/SOD3 isoforms and angiotensin II receptors. In conclusion, SOD1 limits afferent arteriole remodeling and reduces sensitivity and responsiveness to angiotensin II by reducing superoxide and maintaining NO bioavailability. This may prevent an early and exaggerated blood pressure response to angiotensin II.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Moreno-López B. Local isoform-specific NOS inhibition: a promising approach to promote motor function recovery after nerve injury. J Neurosci Res 2010; 88:1846-57. [PMID: 20143424 DOI: 10.1002/jnr.22353] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Physical injury to a nerve is the most frequent cause of acquired peripheral neuropathy, which is responsible for loss of motor, sensory and/or autonomic functions. Injured axons in the peripheral nervous system maintain the capacity to regenerate in adult mammals. However, after nerve transection, stumps of damaged nerves must be surgically joined to guide regenerating axons into the distal nerve stump. Even so, severe functional limitations persist after restorative surgery. Therefore, the identification of molecules that regulate degenerative and regenerative processes is indispensable in developing therapeutic tools to accelerate and improve functional recovery. Here, I consider the role of nitric oxide (NO) synthesized by the three major isoforms of NO synthases (NOS) in motor neuropathy. Neuronal NOS (nNOS) seems to be the primary source of NO that is detrimental to the survival of injured motoneurons. Endothelial NOS (eNOS) appears to be the major source of NO that interferes with axonal regrowth, at least soon after injury. Finally, NO derived from inducible NOS (iNOS) or nNOS is critical to the process of lipid breakdown for Wallerian degeneration and thereby benefits axonal regrowth. Specific inhibitors of these isoforms can be used to protect injured neurons from degeneration and promote axonal regeneration. A cautious proposal for the treatment of acquired motor neuropathy using therapeutic tools that locally interfere with eNOS/nNOS activities seems to merit consideration.
Collapse
|
29
|
Silva LA, Veira-Filho LD, Barreto IS, Cabral EV, Vieyra A, Paixão AD. Prenatal Undernutrition Changes Renovascular Responses of Nimesulide in Rat Kidneys. Basic Clin Pharmacol Toxicol 2010; 108:115-21. [DOI: 10.1111/j.1742-7843.2010.00625.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Lu D, Fu Y, Lopez-Ruiz A, Zhang R, Juncos R, Liu H, Manning RD, Juncos LA, Liu R. Salt-sensitive splice variant of nNOS expressed in the macula densa cells. Am J Physiol Renal Physiol 2010; 298:F1465-71. [PMID: 20335319 DOI: 10.1152/ajprenal.00650.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal nitric oxide synthase (nNOS), which is abundantly expressed in the macula densa cells, attenuates tubuloglomerular feedback (TGF). We hypothesize that splice variants of nNOS are expressed in the macula densa, and nNOS-beta is a salt-sensitive isoform that modulates TGF. Sprague-Dawley rats received a low-, normal-, or high-salt diet for 10 days and levels of the nNOS-alpha, nNOS-beta, and nNOS-gamma were measured in the macula densa cells isolated with laser capture microdissection. Three splice variants of nNOS, alpha-, beta-, and gamma-mRNAs, were detected in the macula densa cells. After 10 days of high-salt intake, nNOS-alpha decreased markedly, whereas nNOS-beta increased two- to threefold in the macula densa measured with real-time PCR and in the renal cortex measured with Western blot. NO production in the macula densa was measured in the perfused thick ascending limb with an intact macula densa plaque with a fluorescent dye DAF-FM. When the tubular perfusate was switched from 10 to 80 mM NaCl, a maneuver to induce TGF, NO production by the macula densa was increased by 38 +/- 3% in normal-salt rats and 52 +/- 6% (P < 0.05) in the high-salt group. We found 1) macula densa cells express nNOS-alpha, nNOS-beta, and nNOS-gamma, 2) a high-salt diet enhances nNOS-beta, and 3) TGF-induced NO generation from macula densa is enhanced in high-salt diet possibly from nNOS-beta. In conclusion, we found that the splice variants of nNOS expressed in macula densa cells were alpha-, beta-, and gamma-isoforms and propose that enhanced level of nNOS-beta during high-salt intake may contribute to macula densa NO production and help attenuate TGF.
Collapse
Affiliation(s)
- Deyin Lu
- Department of Physiology and Biophysics, Division of Nephrology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pereira TMC, Balarini CM, Silva IV, Cabral AM, Vasquez EC, Meyrelles SS. Endogenous angiotensin II modulates nNOS expression in renovascular hypertension. Braz J Med Biol Res 2010; 42:685-91. [PMID: 19578649 DOI: 10.1590/s0100-879x2009000700014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 05/06/2009] [Indexed: 01/13/2023] Open
Abstract
Nitric oxide (NO) influences renal blood flow mainly as a result of neuronal nitric oxide synthase (nNOS). Nevertheless, it is unclear how nNOS expression is modulated by endogenous angiotensin II, an inhibitor of NO function. We tested the hypothesis that the angiotensin II AT1 receptor and oxidative stress mediated by NADPH oxidase contribute to the modulation of renal nNOS expression in two-kidney, one-clip (2K1C) hypertensive rats. Experiments were performed on male Wistar rats (150 to 170 g body weight) divided into 2K1C (N = 19) and sham-operated (N = 19) groups. nNOS expression in kidneys of 2K1C hypertensive rats (N = 9) was compared by Western blotting to that of 2K1C rats treated with low doses of the AT1 antagonist losartan [10 mg x kg(-1) x day(-1); N = 5] or the superoxide scavenger tempol [0.2 mmol x kg(-1) x day(-1); N = 5], which still remain hypertensive. After 28 days, nNOS expression was significantly increased by 1.7-fold in the clipped kidneys of 2K1C rats and by 3-fold in the non-clipped kidneys of 2K1C rats compared with sham rats, but was normalized by losartan. With tempol treatment, nNOS expression increased 2-fold in the clipped kidneys and 1.4-fold in the non-clipped kidneys compared with sham rats. The changes in nNOS expression were not followed by changes in the enzyme activity, as measured indirectly by the cGMP method. In conclusion, AT1 receptors and oxidative stress seem to be primary stimuli for increased nNOS expression, but this up-regulation does not result in higher enzyme activity.
Collapse
Affiliation(s)
- T M C Pereira
- Laboratório de Transgenes e Controle Cardiovascular, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, 29043-900 Vitória, ES, Brasil
| | | | | | | | | | | |
Collapse
|
32
|
Carlström M. Causal link between neonatal hydronephrosis and later development of hypertension. Clin Exp Pharmacol Physiol 2010; 37:e14-23. [DOI: 10.1111/j.1440-1681.2009.05267.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Cacanyiova S, Kristek F, Gerova M, Krenek P, Klimas J. Effect of chronic nNOS inhibition on blood pressure, vasoactivity, and arterial wall structure in Wistar rats. Nitric Oxide 2009; 20:304-10. [PMID: 19303939 DOI: 10.1016/j.niox.2009.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 03/04/2009] [Accepted: 03/13/2009] [Indexed: 11/26/2022]
Abstract
While the unequivocal pattern of endothelial nitric oxide (NO) synthase (eNOS) inhibition in cardiovascular control has been recognised, the role of NO produced by neuronal NOS (nNOS) remains unclear. The purpose of the present study was to describe the cardiovascular effects of NO production interference by inhibition of nNOS with 7-nitroindazole (7-NI). Wistar rats (10 weeks old) were used: control and experimental rats were administered 7-NI 10 mg/kg b.w./day in drinking water for 6 weeks. Systolic blood pressure (BP) was measured by the tail-cuff plethysmographic method. Isolated thoracic aortas (TAs) were used to study vasomotor activity of the conduit artery in vitro. The BP response of anaesthetised animals was used to follow the cardiovascular-integrated response in vivo. Geometry of the TA was measured after perfusion fixation (120 mm Hg) by light microscopy. Expression of eNOS was measured in the TA by immunoblot analysis. Although 6 weeks of nNOS inhibition did not alter systolic BP, the heart/body weight ratio was decreased. Relaxation of the TA in response to acetylcholine (10(-9)-10(-5)mol/L) was moderately inhibited. However, no difference in the BP hypotensive response after acetylcholine (0.1, 1, 10 microg) was observed. The contraction of TA in response to noradrenaline (10(-10)-10(-5)mol/L), and the BP pressor response to noradrenaline (0.1, 1 microg) was attenuated. The inner diameter of the TA was increased, and the wall thickness, wall cross-sectional area, and wall thickness/inner diameter ratio were decreased. The expression of eNOS in the TA was increased. In summary, cardiac and TA wall hypotrophy, underlined by decreased contractile efficiency, were observed. The results suggested that two constitutive forms of NOS (nNOS, eNOS) likely participate in regulation of cardiovascular tone by different mechanisms.
Collapse
Affiliation(s)
- Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Centre of Excellence for Cardiovascular Research, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
34
|
Neuronal Nitric Oxide Synthase Activation Is Involved in Insulin-Mediated Cardiovascular Effects in the Nucleus Tractus Solitarii of Rats. Neuroscience 2009; 159:727-34. [DOI: 10.1016/j.neuroscience.2008.12.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 11/22/2008] [Accepted: 12/27/2008] [Indexed: 11/20/2022]
|
35
|
Moritz KM, Singh RR, Probyn ME, Denton KM. Developmental programming of a reduced nephron endowment: more than just a baby's birth weight. Am J Physiol Renal Physiol 2008; 296:F1-9. [PMID: 18653482 DOI: 10.1152/ajprenal.00049.2008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The risk of developing many adult-onset diseases, including hypertension, type 2 diabetes, and renal disease, is increased in low-birth-weight individuals. A potential underlying mechanism contributing to the onset of these diseases is the formation of a low nephron endowment during development. Evidence from the human, as well as many experimental animal models, has shown a strong association between low birth weight and a reduced nephron endowment. However, other animal models, particularly those in which the mother is exposed to elevated glucocorticoids for a short period, have shown a 20-40% reduction in nephron endowment without discernible changes in the birth weight of offspring. Such findings emphasize that a low birth weight is one, but certainly not the only, predictor of nephron endowment and suggests reduced nephron endowment and risk of developing adult-onset disease, even among normal-birth-weight individuals. Recognition of the dissociation between birth weight and nephron endowment is important for future studies aimed at elucidating the role of a reduced nephron endowment in the developmental programming of adult disease.
Collapse
Affiliation(s)
- Karen M Moritz
- School of Biomedical Sciences, Univ. of Queensland, 4072, Australia.
| | | | | | | |
Collapse
|
36
|
Mechanisms underlying sex differences in progressive renal disease. ACTA ACUST UNITED AC 2008; 5:10-23. [PMID: 18420162 DOI: 10.1016/s1550-8579(08)80004-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2008] [Indexed: 11/21/2022]
Abstract
Men with nondiabetic renal disease exhibit a faster rate of decline in renal function compared with women. To investigate this sex difference in renal disease progression, our research group has been studying the renal wrap (RW) model of hypertension in rats. Compared with RW female rats, the glomerulosclerosis index, mean glomerular volume, and proteinuria were greater (3.1-, 1.7-, and 1.8-fold, respectively) in RW males under conditions in which no differences in the degree of hypertension were detected, suggesting that sex differences may exist in the mechanisms underlying renal injury, independent of blood pressure. Gonadal steroids contribute to these sex differences, because orchidectomy attenuated and ovariectomy exacerbated the severity of renal injury, whereas dihydrotestosterone and 17beta-estradiol (E(2)) replacement prevented these respective effects. Chronic renal disease is associated with impairment in nitric oxide (NO) signaling and elevated levels of superoxide. Sex differences were observed in RW-induced changes in renal nitric oxide synthesis (NOS) protein abundance. Whereas RW had no effect on NOS in the female kidney, endothelial NOS was elevated and neuronal NOS was decreased in the male kidney, suggesting that renal injury may cause dysfunction in NO metabolism in the male. Sex differences in superoxide signaling were also observed. Renal cortical nicotinamide adenine dinucleotide phosphate oxidase activity was 1.3-fold higher in RW males than in RW females, and ovariectomy increased enzyme activity 1.4-fold, whereas E(2) replacement prevented this effect. These changes in enzyme activity were mirrored by changes in protein abundance of the p22(phox) regulatory subunit. Our findings suggest that E(2) may protect the female kidney from hypertension-associated renal disease by attenuating injury-induced superoxide production.
Collapse
|
37
|
Levine DZ, Iacovitti M, Robertson SJ. Modulation of single-nephron GFR in thedb/dbmouse model of type 2 diabetes mellitus. II. Effects of renal mass reduction. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1840-6. [DOI: 10.1152/ajpregu.00457.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examines for the first time the effects of uninephrectomy (Nx) on modulation of whole kidney glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and progression of diabetic nephropathy in the db/db mouse model of type 2 diabetes mellitus. To characterize SNGFR and tubuloglomerular feedback (TGF) responses to Nx and chronic neuronal nitric oxide synthase inhibition in the db/db mouse, we studied the effects of Nx on whole kidney GFR, SNGFR, and TGF characteristics in db/db and wild-type (WT) mice after Nx or sham Nx. We also documented progression of glomerular changes over a 6-mo period. Whole kidney GFR and SNGFR were significantly higher in db/db Nx than db/db sham mice, without change in proximal tubule reabsorptive rates. The TGF responses, determined as proximal-distal SNGFR differences, were brisk: 12.1 ± 1.0 vs. 8.4 ± 0.6 nl/min in WT sham ( P < 0.05), 15.7 ± 1.0 vs. 12.0 ± 1.0 nl/min in WT Nx ( P < 0.05), and 17.8 ± 1.3 vs. 14.3 ± 1.0 nl/min in db/db Nx ( P < 0.05) mice. Chronic ingestion of the neuronal nitric oxide synthase inhibitor S-methylthiocitrulline for 2–3 wk after Nx had no effect on SNGFR or the TGF response. These studies show further elevations in whole kidney GFR and SNGFR in these hyperglycemic morbidly obese db/db mice, with an intact TGF system after Nx. In addition, in the db/db Nx mice, 4–6 mo after Nx, there was an exacerbation of the lesions of diabetic nephropathy, as quantified by a significant increase in the ratio of mesangial surface area to total glomerular surface area.
Collapse
|
38
|
Carlström M, Lai EY, Steege A, Sendeski M, Ma Z, Zabihi S, Eriksson UJ, Patzak A, Persson AEG. Nitric Oxide Deficiency and Increased Adenosine Response of Afferent Arterioles in Hydronephrotic Mice With Hypertension. Hypertension 2008; 51:1386-92. [DOI: 10.1161/hypertensionaha.108.111070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Afferent arterioles were used to investigate the role of adenosine, angiotensin II, NO, and reactive oxygen species in the pathogenesis of increased tubuloglomerular feedback response in hydronephrosis. Hydronephrosis was induced in wild-type mice, superoxide dismutase-1 overexpressed mice (superoxide-dismutase-1 transgenic), and deficient mice (superoxide dismutase-1 knockout). Isotonic contractions in isolated perfused arterioles and mRNA expression of NO synthase isoforms, adenosine, and angiotensin II receptors were measured. In wild-type mice,
N
G
-nitro-
l
-arginine methyl ester (
l
-NAME) did not change the basal arteriolar diameter of hydronephrotic kidneys (−6%) but reduced it in control (−12%) and contralateral arterioles (−43%). Angiotensin II mediated a weaker maximum contraction of hydronephrotic arterioles (−18%) than in control (−42%) and contralateral arterioles (−49%). The maximum adenosine-induced constriction was stronger in hydronephrotic (−19%) compared with control (−8%) and contralateral kidneys (±0%). The response to angiotensin II became stronger in the presence of adenosine in hydronephrotic kidneys and attenuated in contralateral arterioles.
l
-NAME increased angiotensin II responses of all of the groups but less in hydronephrotic kidneys. The mRNA expression of endothelial NO synthase and inducible NO synthase was upregulated in the hydronephrotic arterioles. No differences were found for adenosine or angiotensin II receptors. In superoxide dismutase-1 transgenic mice, strong but similar
l
-NAME response (−40%) was observed for all of the groups. This response was totally abolished in arterioles of hydronephrotic superoxide dismutase-1 knockout mice. In conclusion, hydronephrosis is associated with changes in the arteriolar reactivity of both hydronephrotic and contralateral kidneys. Increased oxidative stress, reduced NO availability, and stronger reactivity to adenosine of the hydronephrotic kidney may contribute to the enhanced tubuloglomerular feedback responsiveness in hydronephrosis and be involved in the development of hypertension.
Collapse
Affiliation(s)
- Mattias Carlström
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - En Yin Lai
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Andreas Steege
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Mauricio Sendeski
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zufu Ma
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Sheller Zabihi
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ulf J. Eriksson
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Andreas Patzak
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - A. Erik G. Persson
- From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
39
|
Thomson SC, Blantz RC. Glomerulotubular balance, tubuloglomerular feedback, and salt homeostasis. J Am Soc Nephrol 2008; 19:2272-5. [PMID: 18322161 DOI: 10.1681/asn.2007121326] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The homeostasis of NaCl is critical to complex organisms with closed blood systems. Kidneys regulate this salt excretion by modulating the rapport between glomeruli and tubules. The tubules respond to glomeruli with glomerulotubular balance, whereas glomeruli respond to tubules through tubuloglomerular feedback. These relationships are dynamic, mysterious, and amenable to mathematical analyses. The biology underlining what is known about these interactions is observational, fragmentary, and somewhat inconclusive. Discussed here is a simple tethering of these interrelated concepts.
Collapse
Affiliation(s)
- Scott C Thomson
- Department of Medicine, Division of Nephrology-Hypertension, University of California San Diego, and VA San DiegoHealthcare System, San Diego, CA 92161, USA
| | | |
Collapse
|
40
|
Carlström M, Brown RD, Edlund J, Sällström J, Larsson E, Teerlink T, Palm F, Wåhlin N, Persson AEG. Role of nitric oxide deficiency in the development of hypertension in hydronephrotic animals. Am J Physiol Renal Physiol 2008; 294:F362-70. [DOI: 10.1152/ajprenal.00410.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hydronephrotic animals develop renal injury and hypertension, which is associated with an abnormal tubuloglomerular feedback (TGF). The TGF sensitivity is coupled to nitric oxide (NO) in the macula densa. The involvement of reduced NO availability in the development of hypertension in hydronephrosis was investigated. Hydronephrosis was induced by ureteral obstruction in young rats. Blood pressure and renal excretion were measured in adulthood, under different sodium conditions, and before and after chronic administration of either NG-nitro-l-arginine methyl ester (l-NAME) or l-arginine. Blood samples for ADMA, SDMA, and l-arginine analysis were taken and the renal tissue was used for histology and determination of NO synthase (NOS) proteins. TGF characteristics were determined by stop-flow pressure technique before and after administration of 7-nitroindazole (7-NI) or l-arginine. Hydronephrotic animals developed salt-sensitive hypertension, which was associated with pressure natriuresis and diuresis. The blood pressure response to l-NAME was attenuated and l-arginine supplementation decreased blood pressure in hydronephrotic animals, but not in the controls. Under control conditions, reactivity and sensitivity of the TGF response were greater in the hydronephrotic group. 7-NI administration increased TGF reactivity and sensitivity in control animals, whereas, in hydronephrotic animals, neuronal NOS (nNOS) inhibition had no effect. l-Arginine attenuated TGF response more in hydronephrotic kidneys than in controls. The hydronephrotic animals displayed various degrees of histopathological changes. ADMA and SDMA levels were higher and the renal expressions of nNOS and endothelial NOS proteins were lower in animals with hydronephrosis. Reduced NO availability in the diseased kidney in hydronephrosis, and subsequent resetting of the TGF mechanism, plays an important role in the development of hypertension.
Collapse
|
41
|
Sallstrom J, Carlstrom M, Jensen BL, Skott O, Brown RD, Persson AEG. Neuronal nitric oxide synthase-deficient mice have impaired renin release but normal blood pressure. Am J Hypertens 2008; 21:111-6. [PMID: 18091753 DOI: 10.1038/ajh.2007.16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Nitric oxide deficiency is involved in the development of hypertension, but the mechanisms are currently unclear. This study was conducted to further elucidate the role of neuronal nitric oxide synthase (nNOS) in blood pressure regulation and renin release in relation to different sodium loads. METHODS Blood pressure and heart rate were measured telemetrically and assessed during periods of physical activity and inactivity. Urinary solute excretion was measured by metabolism cages and plasma renin concentration (PRC) was determined by radioimmunoassay; all in nNOS knockout (nNOS(-/-)) and wild-type (nNOS(+/+)) mice after 10 days of low (0.01% NaCl) and high (4% NaCl) sodium diets. RESULTS The resting heart rate was reduced in nNOS(-/-) mice, but the two genotypes had similar blood pressure during the low (nNOS(+/+) 104 +/- 2 mm Hg; nNOS(-/-) 103 +/- 2 mm Hg) and high (nNOS(+/+) 107 +/- 3 mm Hg; nNOS(-/-) 108 +/- 2 mm Hg) sodium diets. During the high sodium diet, PRC did not differ between the genotypes (nNOS(+/+) 743 +/- 115 10(-5) Goldblatt units; nNOS(-/-) 822 +/- 63 10(-5) Goldblatt units), but during the low sodium diet, nNOS(-/-) mice failed to increase PRC (nNOS(+/+) 2164 +/- 220 10(-5) Goldblatt units; nNOS(-/-) 907 +/- 101 10(-5) Goldblatt units) and renal renin mRNA. On the low sodium diet, nNOS(-/-) mice also showed increased urine flow rate and osmolar excretion, observations not made during a high sodium diet. CONCLUSIONS Our results show that nNOS is necessary for stimulation of renin in response to sodium restriction. Furthermore, nNOS(-/-) mice are normotensive, and their blood pressure responds normally to an increased dietary sodium intake, indicating that nNOS deficiency does not cause salt-sensitive hypertension.
Collapse
|
42
|
Stegbauer J, Kuczka Y, Vonend O, Quack I, Sellin L, Patzak A, Steege A, Langnaese K, Rump LC. Endothelial nitric oxide synthase is predominantly involved in angiotensin II modulation of renal vascular resistance and norepinephrine release. Am J Physiol Regul Integr Comp Physiol 2007; 294:R421-8. [PMID: 18046021 DOI: 10.1152/ajpregu.00481.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is mainly generated by endothelial NO synthase (eNOS) or neuronal NOS (nNOS). Recent studies indicate that angiotensin II generates NO release, which modulates renal vascular resistance and sympathetic neurotransmission. Experiments in wild-type [eNOS(+/+) and nNOS(+/+)], eNOS-deficient [eNOS(-/-)], and nNOS-deficient [nNOS(-/-)] mice were performed to determine which NOS isoform is involved. Isolated mice kidneys were perfused with Krebs-Henseleit solution. Endogenous norepinephrine release was measured by HPLC. Angiotensin II dose dependently increased renal vascular resistance in all mice species. EC(50) and maximal pressor responses to angiotensin II were greater in eNOS(-/-) than in nNOS(-/-) and smaller in wild-type mice. The nonselective NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 0.3 mM) enhanced angiotensin II-induced pressor responses in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. In nNOS(+/+) mice, 7-nitroindazole monosodium salt (7-NINA; 0.3 mM), a selective nNOS inhibitor, enhanced angiotensin II-induced pressor responses slightly. Angiotensin II-enhanced renal nerve stimulation induced norepinephrine release in all species. L-NAME (0.3 mM) reduced angiotensin II-mediated facilitation of norepinephrine release in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. 7-NINA failed to modulate norepinephrine release in nNOS(+/+) mice. (4-Chlorophrnylthio)guanosine-3', 5'-cyclic monophosphate (0.1 nM) increased norepinephrine release. mRNA expression of eNOS, nNOS, and inducible NOS did not differ between mice strains. In conclusion, angiotensin II-mediated effects on renal vascular resistance and sympathetic neurotransmission are modulated by NO in mice. These effects are mediated by eNOS and nNOS, but NO derived from eNOS dominates. Only NO derived from eNOS seems to modulate angiotensin II-mediated renal norepinephrine release.
Collapse
Affiliation(s)
- Johannes Stegbauer
- Klinik für Nephrologie der Universitätsklinik Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Palumbo ML, Fosser NS, Rios H, Zorrilla Zubilete MA, Guelman LR, Cremaschi GA, Genaro AM. Loss of hippocampal neuronal nitric oxide synthase contributes to the stress-related deficit in learning and memory. J Neurochem 2007; 102:261-74. [PMID: 17419805 DOI: 10.1111/j.1471-4159.2007.04528.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) has been involved in many pathophysiological brain processes. However, the exact role of NO in the cognitive deficit associated to chronic stress exposure has not been elucidated. In this study, we investigated the participation of hippocampal NO production and their regulation by protein kinase C (PKC) in the memory impairment induced in mice subjected to chronic mild stress model (CMS). CMS mice showed a poor learning performance in both open field and passive avoidance inhibitory task respect to control mice. Histological studies showed a morphological alteration in the hippocampus of CMS mice. On the other hand, chronic stress induced a diminished NO production by neuronal nitric oxide synthase (nNOS) correlated with an increment in gamma and zeta PKC isoenzymes. Partial restoration of nNOS activity was obtained after PKC activity blockade. NO production by inducible nitric oxide synthase isoform was not detected. The magnitude of oxidative stress, evaluated by reactive oxygen species production, after excitotoxic levels of NMDA was increased in hippocampus of CMS mice. Moreover, ROS formation was higher in the presence of nNOS inhibitor in both control and CMS mice. Finally, treatment of mice with nNOS inhibitors results in behavioural alterations similar to those observed in CMS animals. These findings suggest a novel role for nNOS showing protective activity against insults that trigger tissue toxicity leading to memory impairments.
Collapse
Affiliation(s)
- María Laura Palumbo
- CEFYBO-CONICET and 1a. Cát. de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The kidney displays highly efficient autoregulation so that under steady-state conditions renal blood flow (RBF) is independent of blood pressure over a wide range of pressure. Autoregulation occurs in the preglomerular microcirculation and is mediated by two, perhaps three, mechanisms. The faster myogenic mechanism and the slower tubuloglomerular feedback contribute both directly and interactively to autoregulation of RBF and of glomerular capillary pressure. Multiple experiments have been used to study autoregulation and can be considered as variants of two basic designs. The first measures RBF after multiple stepwise changes in renal perfusion pressure to assess how a biological condition or experimental maneuver affects the overall pressure-flow relationship. The second uses time-series analysis to better understand the operation of multiple controllers operating in parallel on the same vascular smooth muscle. There are conceptual and experimental limitations to all current experimental designs so that no one design adequately describes autoregulation. In particular, it is clear that the efficiency of autoregulation varies with time and that most current techniques do not adequately address this issue. Also, the time-varying and nonadditive interaction between the myogenic mechanism and tubuloglomerular feedback underscores the difficulty of dissecting their contributions to autoregulation. We consider the modulation of autoregulation by nitric oxide and use it to illustrate the necessity for multiple experimental designs, often applied iteratively.
Collapse
Affiliation(s)
- William A Cupples
- Centre for Biomedical Research and Dept. of Biology, Univ. of Victoria, PO Box 3020, STN CSC, Victoria, BC, Canada.
| | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW The balance of angiotensin II and nitric oxide determines the sensitivity of the tubuloglomerular feedback mechanism, renal vascular resistance and filtration rate. Angiotensin II induces nitric oxide release, but the role of angiotensin II receptors here is not fully understood. Further, the angiotensin II-nitric oxide interaction can be modulated by reactive oxygen species. This review focuses on the angiotensin II-nitric oxide interaction and their modulation by reactive oxygen species in the control of renal blood flow. RECENT FINDINGS Ideas about the role of angiotensin II type 1 and angiotensin II type 2 receptors are extended by the observation of angiotensin II type 1-mediated nitric oxide release with direct effects on vascular tone, tubuloglomerular feedback and sympathetic neurotransmission. Angiotensin receptors elicit disparate effects on intrarenal circulation. Angiotensin II-nitric oxide interactions are modulated by reactive oxygen species, as shown by angiotensin II type 1-mediated activation of superoxide and depression of antioxidant enzymes leading to reduced nitric oxide concentration - mechanisms that may be also important in angiotensin II-dependent hypertension. SUMMARY Recent studies show that angiotensin II stimulates the nitric oxide system via angiotensin II type 1 and angiotensin II type 2 receptors, whereas receptors exert different effects on renal and medullary flow. The interaction via angiotensin II type 1 is modulated by reactive oxygen species.
Collapse
Affiliation(s)
- Andreas Patzak
- Johannes-Müller-Institute of Physiology, Humboldt-University of Berlin, University Hospital Charité, Berlin, Germany
| | | |
Collapse
|
46
|
Yamaleyeva LM, Gallagher PE, Vinsant S, Chappell MC. Discoordinate regulation of renal nitric oxide synthase isoforms in ovariectomized mRen2. Lewis rats. Am J Physiol Regul Integr Comp Physiol 2006; 292:R819-26. [PMID: 17023669 DOI: 10.1152/ajpregu.00389.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen depletion markedly exacerbates hypertension in female congenic mRen2. Lewis rats, a model of tissue renin overexpression. Because estrogen influences nitric oxide synthase (NOS) and NO may exert differential effects on blood pressure, the present study investigated the functional expression of NOS isoforms in the kidney of ovariectomized (OVX) mRen2. Lewis rats. OVX-mRen2. Lewis exhibited an increase in systolic blood pressure (SBP) of 171 +/- 5 vs. 141 +/- 7 mmHg (P < 0.01) for intact littermates. Renal cortical mRNA and protein levels for endothelial NOS (eNOS) were reduced 50-60% (P < 0.05) and negatively correlated with blood pressure. In contrast, cortical neuronal NOS (nNOS) mRNA and protein levels increased 100 to 300% (P < 0.05). In the OVX kidney, nNOS immunostaining was more evident in the macula densa, cortical tubules, and the medullary collecting ducts compared with the intact group. To determine whether the increase in renal nNOS expression constitutes a compensatory response to the reduction in renal eNOS, we treated both intact and OVX mRen2. Lewis rats with the selective nNOS inhibitor L-VNIO from 11 to 15 wk of age. The nNOS inhibitor reduced blood pressure in the OVX group (185 +/- 3 vs. 151 +/- 8 mmHg, P < 0.05), but pressure was not altered in the intact group (146 +/- 4 vs. 151 +/- 4 mmHg). In summary, exacerbation of blood pressure in the OVX mRen2. Lewis rats was associated with the discoordinate regulation of renal NOS isoforms. Estrogen sensitivity in this congenic strain may involve the influence of NO through the regulation of both eNOS and nNOS.
Collapse
Affiliation(s)
- Liliya M Yamaleyeva
- Hypertension and Vascular Disease Center, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, NC 27157-1095, USA
| | | | | | | |
Collapse
|
47
|
Carlström M, Wåhlin N, Sällström J, Skøtt O, Brown R, Persson AEG. Hydronephrosis causes salt-sensitive hypertension in rats. J Hypertens 2006; 24:1437-43. [PMID: 16794495 DOI: 10.1097/01.hjh.0000234126.78766.00] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hypertension is a common disease in the Western world and approximately 5% of all cases are secondary to kidney malfunction. It is not clear whether unilateral hydronephrosis due to partial obstruction affects blood pressure. AIM The aim of this study was to determine whether hypertension develops and to investigate the effects of different salt diets on the blood pressure in hydronephrotic animals. METHODS Unilateral partial ureteral obstruction was created in 3-week-old Sprague-Dawley rats. A telemetric device was implanted 4-6 weeks later and blood pressure was measured on normal, low- and high-salt diets. Plasma samples were collected on all diets for renin analysis. RESULTS All hydronephrotic animals developed hypertension that correlated to the degree of hydronephrosis. The blood pressure increased slowly with time and was salt sensitive. In severe hydronephrosis, blood pressure increased from 118 +/- 5 mmHg on low salt to 140 +/- 6 mmHg on high salt intake, compared to control levels of 82 +/- 2 and 84 +/- 2 mmHg, respectively. Plasma renin concentration was increased in the hydronephrotic group of animals compared to controls on all diets, but the difference was only significant on a normal salt diet, 165 +/- 15 versus 86 +/- 12 microGU/ml respectively. In animals with severe hydronephrosis the plasma renin levels were lower, and the changes less, than in those with mild and moderate hydronephrosis. CONCLUSION This study demonstrates the presence of a salt-sensitive hypertension in hydronephrosis. A systemic effect of the renin-angiotensin system alone cannot be responsible for the hypertension.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medical Cell Biology, Division of Integrative Physiology, University of Uppsala, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Cheng HF, Zhang MZ, Harris RC. Nitric oxide stimulates cyclooxygenase-2 in cultured cTAL cells through a p38-dependent pathway. Am J Physiol Renal Physiol 2006; 290:F1391-7. [PMID: 16380459 DOI: 10.1152/ajprenal.00315.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To examine the interaction of nitric oxide (NO) and cyclooxygenase (COX-2) and the signaling pathway involved, primary cultured rabbit cortical thick ascending limb (cTAL) were used. In these cells, immunoreactive COX-2 and vasodilatory prostaglandins were increased by a NO donor, S-nitros- N-acetylpenicillamine (SNAP; 2.5 ± 0.3-fold control, n = 6, P < 0.01). SNAP increased expression of phosphorylated p38 (pp38; 2.4 ± 0.3-fold control; n = 5; P < 0.01), which was inhibited by the p38 inhibitor SB-203580 (1.3 ± 0.1-fold control, n = 5, P < 0.01). SB-203580 inhibited SNAP-induced COX-2 expression [1.4 ± 0.2-fold control, n = 6, not significant (NS) vs. control] and levels of PGE2significantly. In cTAL cells transfected with a luciferase reporter driven by the wild-type mouse COX-2 promoter, SNAP stimulated luciferase activity, which was reversed by SB-203580 (control vs. SNAP vs. SNAP + SB-203580: 1.4 ± 0.2-, 8.3 ± 1.4-, and 0.4 ± 0.1-fold control, respectively, n = 4, P < 0.01). Electrophoretic mobility shift assay indicated that SNAP stimulated nuclear factor (NF)-κB binding activity in cTAL that was also inhibited by the p38 inhibitor. SNAP was not able to stimulate a mutant COX-2 promoter construct that is not activated by NF-κB (0.9 ± 0.1, 1.2 ± 0.1, and 1.0 ± 0.2 respectively, n = 4, NS). Low chloride increased COX-2 expression (2.7 ± 0.4-fold control, n = 6, P < 0.01) and pp38 expression (2.8 ± 0.3-fold; n = 5, P < 0.01), which were reversed by the specific NO synthase (NOS) inhibitor 7-nitroindazole. Administration of a low-salt diet increased immunoreactive COX-2 and neuronal NOS (nNOS) in the macula densa and surrounding cTAL of kidneys of wild-type mice but did not significantly elevate COX-2 expression in nNOS−/−mice. In summary, these studies indicate that, in cTAL, NO can increase COX-2 expression in cTAL and macula densa through p38-dependent signaling pathways via activation of NF-κB.
Collapse
Affiliation(s)
- Hui-Fang Cheng
- George M. O'Brien Kidney and Urologic Diseases Center and Division of Nephrology, Vanderbilt Univ. School of Medicine, and Nashville Veterans Affairs Hospital, Nashville, TN 37232, USA
| | | | | |
Collapse
|
49
|
Kuhlencordt PJ, Hötten S, Schödel J, Rützel S, Hu K, Widder J, Marx A, Huang PL, Ertl G. Atheroprotective effects of neuronal nitric oxide synthase in apolipoprotein e knockout mice. Arterioscler Thromb Vasc Biol 2006; 26:1539-44. [PMID: 16627802 PMCID: PMC3845660 DOI: 10.1161/01.atv.0000223143.88128.19] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE All 3 isoforms of the nitric oxide synthase (NOS) are expressed in atherosclerotic lesions. To test whether neuronal NOS (nNOS) deficiency affects atherosclerosis, we studied apoE/nNOSalpha double knockout (DKO) and apolipoprotein E (apoE) knockout (KO) control mice. METHODS AND RESULTS Lesion area was significantly increased in male DKO (66%) mice after 14 weeks and in female DKO animals (31%) after 24 weeks of "western" diet. Moreover, mean arterial blood pressure was significantly reduced in female DKO animals. Immunohistochemistry revealed nNOS expression in the neointima of KO mice. In DKO animals, residual nNOS staining was caused by the presence of nNOS splice variants. Whereas nNOSalpha was present in vessels of KO and absent in DKO animals, nNOSgamma was expressed in KO and DKO mice. CONCLUSIONS nNOSalpha protects against atherosclerosis as nNOSalpha deletion leads to an increase in plaque formation in apoE/nNOSalpha DKO mice. Female DKO mice showed a significant reduction in mean arterial blood pressure. Additionally, we found expression of nNOS splice variants in vessels of apoE KO mice. Our data highlights nNOSalpha overexpression as a potential therapeutic strategy and naturally occurring splice variants that lack exon 2 of the nNOS gene as a potential risk factor for vascular disease.
Collapse
|
50
|
Wang T, Takabatake T. Effects of vasopeptidase inhibition on renal function and tubuloglomerular feedback in spontaneously hypertensive rats. Hypertens Res 2006; 28:611-8. [PMID: 16335890 DOI: 10.1291/hypres.28.611] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vasopeptidase inhibitors are a novel class of antihypertensive agents that concomitantly inhibit angiotensin converting enzyme and neutral endopeptidase. Our purpose was to investigate the effects of omapatrilat, a vasopeptidase inhibitor, on renal function and tubuloglomerular feedback (TGF) response in anesthetized 9-10-week-old spontaneously hypertensive rats (SHR). Intravenous injection of omapatrilat at 10 micromol/kg decreased systemic blood pressure and renal vascular resistance. Renal plasma flow was unchanged, whereas glomerular filtration rate (GFR) and filtration fraction (FF) were reduced. Increased urinary sodium excretion of tubular origin was observed. These parameters remained unaltered with vehicle treatment. Micropuncture study revealed that the maximal reduction of early proximal flow rate (EPFR) induced by orthograde perfusion of Henle's loop with artificial tubular fluid (ATF) was significantly reduced by omapatrilat treatment (28.5+/-3.1% vs. 72.0+/-2.8% of control) and was not significantly changed in the vehicle-treated group (vehicle 70.8+/-1.7% vs. control 71.0+/-2.1%). EPFR at zero perfusion was comparable between omapatrilat and vehicle treatment (29.7+/-2.2 vs. 31.3+/-2.1 nl/min, respectively). Luminal perfusion of 10(-4) mol/l 7-nitroindazole in ATF abrogated the blunting of TGF response by omapatrilat but elicited no change in the vehicle-treated group. The suppression of the TGF mechanism and the reduction in FF suggest that omapatrilat respectively dilates the afferent and efferent arterioles. Under such conditions, reduction of GFR may indicate a fall in intraglomerular pressure. The restoration of nitric oxide signaling in the juxtaglomerular apparatus of SHR seems to participate in the inhibition of TGF by omapatrilat. These findings suggest that omapatrilat may provide a novel approach to the treatment of systemic and glomerular hypertension.
Collapse
Affiliation(s)
- Tao Wang
- Fourth Department of Internal Medicine, Shimane University School of Medicine, Izumo, Japan.
| | | |
Collapse
|