1
|
Doaei S, Mardi A, Zare M. Role of micronutrients in the modulation of immune system and platelet activating factor in patients with COVID-19; a narrative review. Front Nutr 2023; 10:1207237. [PMID: 37781112 PMCID: PMC10540693 DOI: 10.3389/fnut.2023.1207237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background Dietary micronutrients may play important roles in the improvement of the immune responses against SARS-CoV-2. This study aimed to assess the effect of micronutrients on platelet activating factor (PAF) and immunity with a special focus on the coronavirus disease 2019 (COVID-19). Methods All paper published in English on the effects of micronutrients including fat soluble vitamins, water soluble vitamins, and minerals on PAF, immunity, and COVID-19 were collected from online valid databases. Results Vitamin A may modulate the expression of PAF-receptor gene in patients with COVID-19. Vitamin D may modulate inflammatory response through influencing PAF pathway. Vitamin E may improve COVID-19 related heart injuries by exert anti-PAF activities. Vitamin C status may have PAF related anti-inflammatory and micro-thrombotic effects in SARS-CoV-2 patients. Furthermore, some trace elements such as copper, selenium, and iron may have key roles in strengthens immunity by inactivate PAF acetyl hydrolase. Conclusion This narrative review study highlighted the importance of micronutrients in the improvement of immune function through modulation of PAF in patients with COVID-19. Further longitudinal studies are warranted.
Collapse
Affiliation(s)
- Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afrouz Mardi
- Department of Public Health, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Zare
- Department of Nutrition, Khalkhal University of Medical Sciences, Khalkhal, Iran
| |
Collapse
|
2
|
Kobayashi K, Kamekura R, Kamiya S, Ikegami I, Takano K, Uhara H, Ichimiya S. Effect of cigarette smoke on interleukin-17A- and interleukin-17F-driven skin inflammation: An in vitro study. J Dermatol Sci 2023:S0923-1811(23)00118-4. [PMID: 37179145 DOI: 10.1016/j.jdermsci.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Affiliation(s)
- Keiju Kobayashi
- Department of Human Immunology, Research Institute for Frontier Medicine Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shiori Kamiya
- Department of Human Immunology, Research Institute for Frontier Medicine Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ippei Ikegami
- Department of Human Immunology, Research Institute for Frontier Medicine Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
3
|
Comparison of aqueous humor ascorbic acid level in smokers and non-smokers. Exp Eye Res 2023; 226:109302. [PMID: 36334639 DOI: 10.1016/j.exer.2022.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
In this study, we studied effect of smoking on ascorbic acid level in aqueous humor. A cohort of 112 individuals undergoing cataract surgery for senile cataract (mean ± SD age-65 ± 8 years) was sub-grouped as smoker (n = 56) and non-smoker (n = 56) based on smoking habit. The aqueous humor sample was collected in beginning of the surgery and quantitative ascorbic acid estimation was done by colorimetric method (spectrophotometry at λ = 578 nm) using commercially available assay kits using the auto-analyzer assay procedure. The mean (±SD) aqueous humor ascorbic acid level was 1396 ± 629 μmol/L among non-smokers and 774 ± 436 μmol/L among smokers (p < 0.0001). The aqueous humor ascorbic acid concentration is significantly lower in smokers compared to non-smokers. The aqueous humor ascorbic acid concentration is affected by gender but not by age or morphology of cataract.
Collapse
|
4
|
The Anti-Inflammatory and Antithrombotic Properties of Bioactives from Orange, Sanguine and Clementine Juices and from Their Remaining By-Products. BEVERAGES 2022. [DOI: 10.3390/beverages8030039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The anti-oxidant properties of vitamin C and of phenolic compounds of citrus fruits are well established. However, the evaluation of the anti-inflammatory and antithrombotic potential of both vitamin C and of the more amphiphilic and lipophilic components of citrus fruits needs further attention. In this study, the anti-inflammatory and antithrombotic properties of vitamin C and of freshly squeezed juices and their lipid bioactives from the Navalina and Sanguine orange varieties and the Clementine variety of mandarins, as well as from their remaining by-products, were evaluated against the inflammatory and thrombotic pathways of the platelet-activating factor (PAF) and thrombin in platelets, as well as against PAF-biosynthesis in leukocytes. The non-oxidized juices of these citrus fruits and a vitamin C supplement showed stronger anti-PAF and antithrombin effects than their oxidized versions through their general anti-oxidant effect in platelets. The total lipids (TLs) and the HPLC-derived fractions of phenolic compounds and of polar lipid bioactives from both juices and their peels’ by-products showed a more specific stronger inhibitory effect against the inflammatory and thrombotic pathways of PAF and thrombin in platelets, while these bioactives strongly inhibited also the specific enzyme activities of the main biosynthetic enzymes of PAF in leukocytes. The stronger bioactivity of the dietary bioactives found in the juices of these citrus fruits against specific biochemical pathways of inflammation and thrombosis seems to act with synergy with the anti-oxidant potential of their vitamin C content, which further supports the notion that these juices are functional foods with anti-inflammatory protective health benefits. In addition, the presence of these dietary bioactive phenolic compounds and polar lipid bioactives in the remaining peels’ wastes further enhance the valorization of such food industry by-products as potential sources of anti-inflammatory bioactives to be used as ingredients for novel functional products.
Collapse
|
5
|
Oskolkova OV, Bochkov VN. Gain of function mechanisms triggering biological effects of oxidized phospholipids. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Abstract
Environmental stressors exert a profound effect on humans. Many environmental stressors have in common the ability to induce reactive oxygen species. The goal of this chapter is to present evidence that the potent lipid mediator platelet-activating factor (PAF) is involved in the effects of many stressors ranging from cigarette smoke to ultraviolet B radiation. These environmental stressors can generate PAF enzymatically as well as PAF-like lipids produced by free radical-mediated attack of glycerophosphocholines. Inasmuch as PAF exerts both acute inflammation and delayed immunosuppressive effects, involvement of the PAF system can provide an explanation for many consequences of environmental stressor exposures.
Collapse
Affiliation(s)
- Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, USA.
- Dayton Veterans Administration Medical Center, Dayton, OH, USA.
| |
Collapse
|
7
|
Conklin DJ, Schick S, Blaha MJ, Carll A, DeFilippis A, Ganz P, Hall ME, Hamburg N, O'Toole T, Reynolds L, Srivastava S, Bhatnagar A. Cardiovascular injury induced by tobacco products: assessment of risk factors and biomarkers of harm. A Tobacco Centers of Regulatory Science compilation. Am J Physiol Heart Circ Physiol 2019; 316:H801-H827. [PMID: 30707616 PMCID: PMC6483019 DOI: 10.1152/ajpheart.00591.2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/09/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Although substantial evidence shows that smoking is positively and robustly associated with cardiovascular disease (CVD), the CVD risk associated with the use of new and emerging tobacco products, such as electronic cigarettes, hookah, and heat-not-burn products, remains unclear. This uncertainty stems from lack of knowledge on how the use of these products affects cardiovascular health. Cardiovascular injury associated with the use of new tobacco products could be evaluated by measuring changes in biomarkers of cardiovascular harm that are sensitive to the use of combustible cigarettes. Such cardiovascular injury could be indexed at several levels. Preclinical changes contributing to the pathogenesis of disease could be monitored by measuring changes in systemic inflammation and oxidative stress, organ-specific dysfunctions could be gauged by measuring endothelial function (flow-mediated dilation), platelet aggregation, and arterial stiffness, and organ-specific injury could be evaluated by measuring endothelial microparticles and platelet-leukocyte aggregates. Classical risk factors, such as blood pressure, circulating lipoproteins, and insulin resistance, provide robust estimates of risk, and subclinical disease progression could be followed by measuring coronary artery Ca2+ and carotid intima-media thickness. Given that several of these biomarkers are well-established predictors of major cardiovascular events, the association of these biomarkers with the use of new and emerging tobacco products could be indicative of both individual and population-level CVD risk associated with the use of these products. Differential effects of tobacco products (conventional vs. new and emerging products) on different indexes of cardiovascular injury could also provide insights into mechanisms by which they induce cardiovascular harm.
Collapse
Affiliation(s)
- Daniel J Conklin
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Suzaynn Schick
- Department of Medicine, University of California-San Francisco , San Francisco, California
| | - Michael J Blaha
- Ciccarone Center for the Prevention of Heart Disease, Department of Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Alex Carll
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Andrew DeFilippis
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Peter Ganz
- Department of Medicine, University of California-San Francisco , San Francisco, California
| | - Michael E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Naomi Hamburg
- Department of Medicine/Cardiovascular Medicine, School of Medicine, Boston University , Boston, Massachusetts
| | - Tim O'Toole
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Lindsay Reynolds
- Department of Epidemiology and Prevention, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Sanjay Srivastava
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| |
Collapse
|
8
|
da Silva Junior IA, Andrade LNDS, Jancar S, Chammas R. Platelet activating factor receptor antagonists improve the efficacy of experimental chemo- and radiotherapy. Clinics (Sao Paulo) 2018; 73:e792s. [PMID: 30328954 PMCID: PMC6157068 DOI: 10.6061/clinics/2018/e792s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
Platelet activating factor is a lipid mediator of inflammation, and in recent decades, it has emerged as an important factor in tumor outcomes. Platelet activating factor acts by specific binding to its receptor, which is present in both tumor cells and cells that infiltrate tumors. Pro-tumorigenic effects of platelet activating factor receptor in tumors includes promotion of tumor cell proliferation, production of survival signals, migration of vascular cells and formation of new vessels and stimulation of dendritic cells and macrophages suppressor phenotype. In experimental models, blocking of platelet activating factor receptor reduced tumor growth and increased animal survival. During chemotherapy and radiotherapy, tumor cells that survive treatment undergo accelerated proliferation, a phenomenon known as tumor cell repopulation. Work from our group and others showed that these treatments induce overproduction of platelet activating factor-like molecules and increase expression of its receptor in tumor cells. In this scenario, antagonists of platelet activating factor markedly reduced tumor repopulation. Here, we note that combining chemo- and radiotherapy with platelet activating factor antagonists could be a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Ildefonso Alves da Silva Junior
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Laboratorio de Imunofarmacologia, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Luciana Nogueira de Sousa Andrade
- Laboratorio de Oncologia Experimental, Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Sonia Jancar
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Laboratorio de Imunofarmacologia, Sao Paulo, SP, BR
| | - Roger Chammas
- Laboratorio de Oncologia Experimental, Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
9
|
Romer E, Thyagarajan A, Krishnamurthy S, Rapp CM, Liu L, Fahy K, Awoyemi A, Sahu RP. Systemic Platelet-Activating Factor-Receptor Agonism Enhances Non-Melanoma Skin Cancer Growth. Int J Mol Sci 2018; 19:ijms19103109. [PMID: 30314274 PMCID: PMC6212876 DOI: 10.3390/ijms19103109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022] Open
Abstract
Platelet-activating factor-receptor (PAF-R) agonists are pleiotropic lipid factors that influence multiple biological processes, including the induction and resolution of inflammation as well as immunosuppression. PAF-R agonists have been shown to modulate tumorigenesis and/or tumor growth in various skin cancer models by suppressing either cutaneous inflammation and/or anti-tumoral adaptive immunity. We have previously shown that a chronic systemic PAF-R agonist administration of mice enhances the growth of subcutaneously implanted melanoma tumors. Conversely, chronic topical applications of a PAF-R agonist suppressed non-melanoma skin cancer (NMSC) in a topical chemical carcinogenesis model (dimethylbenz[a]anthracene/phorbol 12-myristate 13-acetate (DMBA/PMA)) in-part via anti-inflammatory effects. These results indicate that the context of PAF-R agonist exposure via either chronic cutaneous or systemic administration, result in seemingly disparate effects on tumor promotion. To further dissect the contextual role of PAF-R agonism on tumorigenesis, we chronically administered systemic PAF-R agonist, carbamoyl-PAF (CPAF) to mice under a cutaneous chemical carcinogenesis protocol, recently characterized to initiate both NMSC and melanocytic nevus formation that can progress to malignant melanoma. Our results showed that while systemic CPAF did not modulate melanocytic nevus formation, it enhanced the growth of NMSC tumors.
Collapse
Affiliation(s)
- Eric Romer
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University; Dayton, OH 45435, USA.
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University; Dayton, OH 45435, USA.
| | - Smita Krishnamurthy
- Department of Pathology and Dermatology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| | - Christine M Rapp
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University; Dayton, OH 45435, USA.
| | - Langni Liu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University; Dayton, OH 45435, USA.
| | - Katherine Fahy
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University; Dayton, OH 45435, USA.
| | - Azeezat Awoyemi
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University; Dayton, OH 45435, USA.
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University; Dayton, OH 45435, USA.
| |
Collapse
|
10
|
Sahu RP, Harrison KA, Weyerbacher J, Murphy RC, Konger RL, Garrett JE, Chin-Sinex HJ, Johnston ME, Dynlacht JR, Mendonca M, McMullen K, Li G, Spandau DF, Travers JB. Radiation therapy generates platelet-activating factor agonists. Oncotarget 2018; 7:20788-800. [PMID: 26959112 PMCID: PMC4991492 DOI: 10.18632/oncotarget.7878] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/06/2016] [Indexed: 01/22/2023] Open
Abstract
Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens.
Collapse
Affiliation(s)
- Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA
| | - Kathleen A Harrison
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO, USA
| | - Jonathan Weyerbacher
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO, USA
| | - Raymond L Konger
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joy Elizabeth Garrett
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Helen Jan Chin-Sinex
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Joseph R Dynlacht
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marc Mendonca
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin McMullen
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gengxin Li
- Department of Biostatistics, Wright State University, Dayton, OH, USA
| | - Dan F Spandau
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA.,Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA.,The Dayton V.A. Medical Center, Dayton, OH, USA
| |
Collapse
|
11
|
Prasad S, Kaisar MA, Cucullo L. Unhealthy smokers: scopes for prophylactic intervention and clinical treatment. BMC Neurosci 2017; 18:70. [PMID: 28985714 PMCID: PMC5639581 DOI: 10.1186/s12868-017-0388-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Globally, tobacco use causes approximately 6 million deaths per year, and predictions report that with current trends; more than 8 million deaths are expected annually by 2030. Cigarette smokings is currently accountable for more than 480,000 deaths each year in United States (US) and is the leading cause of preventable death in the US. On average, smokers die 10 years earlier than nonsmokers and if smoking continues at its current proportion among adolescents, one in every 13 Americans aged 17 years or younger is expected to die prematurely from a smoking-related illness. Even though there has been a marginal smoking decline of around 5% in recent years (2005 vs 2015), smokers still account for 15% of the US adult population. What is also concerning is that 41,000 out of 480,000 deaths results from secondhand smoke (SHS) exposure. Herein, we provide a detailed review of health complications and major pathological mechanisms including mutation, inflammation, oxidative stress, and hemodynamic and plasma protein changes associated with chronic smoking. Further, we discuss prophylactic interventions and associated benefits and provide a rationale for the scope of clinical treatment. CONCLUSIONS Considering these premises, it is evident that much detailed translational and clinical studies are needed. Factors such as the length of smoking cessation for ex-smokers, the level of smoke exposure in case of SHS, pre-established health conditions, genetics (and epigenetics modification caused by chronic smoking) are few of the criteria that need to be evaluated to begin assessing the prophylactic and/or therapeutic impact of treatments aimed at chronic and former smokers (especially early stage ex-smokers) including those frequently subjected to second hand tobacco smoke exposure. Herein, we provide a detailed review of health complications and major pathological mechanisms including mutation, inflammation, oxidative stress, and hemodynamic and plasma protein changes associated with chronic smoking. Further, we discuss about prophylactic interventions and associated benefits and provide a rationale and scope for clinical treatment.
Collapse
Affiliation(s)
- Shikha Prasad
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Mohammad Abul Kaisar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA. .,Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
12
|
Thyagarajan A, Sahu RP. Potential Contributions of Antioxidants to Cancer Therapy: Immunomodulation and Radiosensitization. Integr Cancer Ther 2017. [PMID: 28627256 PMCID: PMC6041931 DOI: 10.1177/1534735416681639] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antioxidants play important roles in the maintenance of cellular integrity and thus are critical in maintaining the homeostasis of the host immune system. A balance between the levels of pro-oxidants and antioxidants defines the cellular fate of genomic integrity via maintaining the redox status of the cells. An aberration in this balance modulates host immunity that affects normal cellular signaling pathways resulting in uncontrolled proliferation of cells leading to neocarcinogenesis. For decades, there have been scientific debates on the use of antioxidants for the treatment of human cancers. This review is focused on current updates on the implications of antioxidant use as adjuncts in cancer therapy with an emphasis on immunomodulation and radiosensitization.
Collapse
Affiliation(s)
| | - Ravi P. Sahu
- Wright State University, Dayton, OH, USA
- Ravi P. Sahu, Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, 230 Health Sciences Building, 3640 Colonel Glenn Highway, Dayton, OH 45435-0001, USA.
| |
Collapse
|
13
|
Damiani E, Puebla-Osorio N, Lege BM, Liu J, Neelapu SS, Ullrich SE. Platelet activating factor-induced expression of p21 is correlated with histone acetylation. Sci Rep 2017; 7:41959. [PMID: 28157211 PMCID: PMC5291204 DOI: 10.1038/srep41959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet (UV)-irradiated keratinocytes secrete the lipid mediator of inflammation, platelet-activating factor (PAF). PAF plays an essential role in UV-induced immune suppression and skin cancer induction. Dermal mast cell migration from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced PAF activates mast cell migration by up-regulating mast cell CXCR4 surface expression. Recent findings indicate that PAF up-regulates CXCR4 expression via histone acetylation. UV-induced PAF also activates cell cycle arrest and disrupts DNA repair, in part by increasing p21 expression. Do epigenetic alterations play a role in p21 up-regulation? Here we show that PAF increases Acetyl-CREB-binding protein (CBP/p300) histone acetyltransferase expression in a time and dose-dependent fashion. Partial deletion of the HAT domain in the CBP gene, blocked these effects. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the p21 promoter. PAF-treatment had no effect on other acetylating enzymes (GCN5L2, PCAF) indicating it is not a global activator of histone acetylation. This study provides further evidence that PAF activates epigenetic mechanisms to affect important cellular processes, and we suggest this bioactive lipid can serve as a link between the environment and the epigenome.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Dipartimento di Scienze della Vita e dell'Ambiente, Universita' Politecnica delle Marche, Ancona, Italy
| | - Nahum Puebla-Osorio
- Department of Lymphoma and Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Bree M Lege
- Department of Lymphoma and Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Jingwei Liu
- Department of Lymphoma and Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen E Ullrich
- Department of Immunology and The Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas Graduate School for Biomedical Sciences at Houston, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
14
|
Petsel Jacob S, Lakshminarayana Lakshmikanth C, M. McIntyre T, Kedihitlu Marathe G. Platelet-activating factor and oxidized phosphatidylcholines do not suppress endotoxin-induced pro-inflammatory signaling among human myeloid and endothelial cells. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.3.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Marentette J, Kolar G, McHowat J. Increased susceptibility to bladder inflammation in smokers: targeting the PAF-PAF receptor interaction to manage inflammatory cell recruitment. Physiol Rep 2015; 3:3/12/e12641. [PMID: 26660553 PMCID: PMC4760457 DOI: 10.14814/phy2.12641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic bladder inflammation can result in a significant reduction in quality of life. Smoking remains a leading preventable risk factor in many diseases. Despite the large amount of evidence supporting the risks of smoking, roughly 45 million people in the United States remain smokers. The impact of cigarette smoking on inflammation is well established, but how smoking promotes bladder inflammation is currently unknown. The aim of this study was to determine if cigarette smoke exposure impacts inflammatory cell adherence to bladder endothelial cells and if targeting the platelet‐activating factor (PAF)–PAF receptor (PAFR) interaction could be beneficial in managing bladder inflammation. In response to cigarette smoke extract (CSE) incubation, bladder endothelial cells from human or mouse displayed increased PAF accumulation, decreased PAF‐AH activity, and increased inflammatory cell adherence. Inhibition of endothelial cell calcium‐independent phospholipase A2β (iPLA2β) with (S)‐BEL, to block PAF production, prevented adherence of inflammatory cells. Pretreatment of inflammatory cells with PAFR antagonists, ginkgolide B or WEB2086 significantly reduced the number of adhered cells to bladder endothelium. Wild‐type mice exposed to cigarette smoke displayed increased presence of inflammatory infiltration which was absent in iPLA2β−/− mice and those exposed to room air. In conclusion, cigarette smoke exposure increases endothelial cell PAF accumulation and increased inflammatory cell adherence. Inhibition of PAF accumulation or PAFR antagonism markedly attenuated inflammatory cell adherence to bladder endothelial cells. The results detailed in this study highlight to potential therapeutic targets for managing bladder inflammation.
Collapse
Affiliation(s)
- John Marentette
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Grant Kolar
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Jane McHowat
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
16
|
Minervino D, Gumiero D, Nicolazzi MA, Carnicelli A, Fuorlo M, Guidone C, Di Gennaro L, Fattorossi A, Mingrone G, Landolfi R. Leukocyte Activation in Obese Patients: Effect of Bariatric Surgery. Medicine (Baltimore) 2015; 94:e1382. [PMID: 26447995 PMCID: PMC4616761 DOI: 10.1097/md.0000000000001382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The rising prevalence of obesity is a major global health problem. In severe obesity, bariatric surgery (BS) allows to obtain a significant weight loss and comorbidities improvement, among them one of the factors is the thrombotic risk. In this observational study, we measured indices of leukocyte activation in severely obese patients as markers of increased thrombotic risk in relation with serum markers of inflammation before and after BS. Frequency of polymorphonuclear neutrophil-platelet (PLT) and monocyte (MONO)-PLT aggregates as well as of tissue factor (TF) expressing MONOs was measured in the peripheral blood of 58 consecutive obese patients and 30 healthy controls. In 31 of the 58 obese patients, data obtained at the enrollment were compared with those obtained at 3, 6, and 12 months after BS. Compared with healthy controls, obese patients showed a higher frequency of polymorphonuclear leukocyte (PMNL)-PLT aggregates (7.47 ± 2.45 [6.82-8.11]% vs 5.85 ± 1.89 [5.14-6.55]%, P = 0.001), MONO-PLT aggregates (12.31 ± 7.33 [10.38-14.24]% vs 8.14 ± 2.22 [7.31-8.97]%, P < 0.001), and TF expressing MONOs (4.01 ± 2.11 [3.45-4.56]% vs 2.64 ± 1.65 [2.02-3.25]%, P = 0.002). PMNL-PLT and MONO-PLT aggregate frequency was positively correlated with TF expressing MONOs (R2 = 0.260, P = 0.049 and R2 = 0.318, P = 0.015, respectively). BS was performed in 31 patients and induced a significant reduction of the body mass index, and waist and hip circumferences. These effects were associated with a significant decrease of PMNL-PLT aggregates at 12 months (7.58 ± 2.27 [6.75-8.42]% vs 4.47 ± 1.11 [3.93-5.01]%, P < 0.001), and a reduction of TF expressing MONOs at 6 (3.82 ± 2.04 [3.07-4.57]% vs 1.60 ± 1.69 [0.30-2.90]%, P = 0.008) and 12 months (3.82 ± 2.04 [3.07-4.57]% vs 1.71 ± 0.54 [1.45-1.97]%, P = 0.001) after BS.These data suggest that leukocyte-PLT aggregate formation and MONO activation represent an important mechanism underlying the increased thrombotic risk of obese patients. We also show that BS is effective in normalizing these inflammatory indices.
Collapse
Affiliation(s)
- Daniele Minervino
- From the Institute of Internal Medicine and Geriatrics (DM, DG, MAN, AC, MF, CG, LDG, GM, RL); and Institute of Obstetrics and Gynaecology (AF), Catholic University School of Medicine, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Damiani E, Puebla-Osorio N, Gorbea E, Ullrich SE. Platelet-Activating Factor Induces Epigenetic Modifications in Human Mast Cells. J Invest Dermatol 2015; 135:3034-3040. [PMID: 26316070 PMCID: PMC4648694 DOI: 10.1038/jid.2015.336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 07/27/2015] [Accepted: 08/11/2015] [Indexed: 12/29/2022]
Abstract
Ultraviolet (UV) radiation-induced systemic immune suppression is a major risk factor for skin cancer induction. The migration of dermal mast cells from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced keratinocyte-derived platelet-activating factor (PAF) activates mast cell migration, in part by up regulating the expression of CXCR4 on the surface of mast cells. Others have indicated that epigenetic mechanisms regulate CXCR4 expression, so we asked whether PAF activates epigenetic mechanisms in mast cells. Human mast cells were treated with PAF and the effect on DNA methylation and/or acetylation was measured. PAF suppressed the expression of DNA methyltransferase (DNMT) 1 and 3b. On the other hand, PAF increased p300 histone acetyltransferase expression, and the acetylation of histone H3, which coincided with a decreased expression of the histone deacetylase HDAC2. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the CXCR4 promoter. Finally, inhibiting histone acetylation blocked p300 up-regulation and suppressed PAF-induced surface expression of CXCR4. Our findings suggest a novel molecular mechanism for PAF, activation of epigenetic modifications. We suggest that PAF may serve as an endogenous molecular mediator that links the environment (UV radiation) with the epigenome.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Dipartimento di Scienze delle Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy.,Department of Immunology and The Center for Cancer Immunology Research, The University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Nahum Puebla-Osorio
- Department of Immunology and The Center for Cancer Immunology Research, The University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Enrique Gorbea
- Department of Immunology and The Center for Cancer Immunology Research, The University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Stephen E Ullrich
- Department of Immunology and The Center for Cancer Immunology Research, The University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA.,The Graduate School for Biomedical Sciences, Houston, Texas, 77030, USA
| |
Collapse
|
18
|
Weyrich AS. Platelets: more than a sack of glue. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:400-403. [PMID: 25696885 DOI: 10.1182/asheducation-2014.1.400] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Platelets are primary effector cells in hemostasis. Emerging evidence over the last decade, however, demonstrates that platelets also have critical roles in immunity and inflammation. These nontraditional functions of platelets influence the development, progression, and evolution of numerous diseases, including arthritis, cancer, cardiovascular disease, and infectious syndromes. This chapters reviews recently discovered attributes of platelets that contribute to human disease, paying particular attention to the inflammatory activities of this anucleate cytoplast.
Collapse
Affiliation(s)
- Andrew S Weyrich
- Molecular Medicine Program and the Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
19
|
Ware LB, Lee JW, Wickersham N, Nguyen J, Matthay MA, Calfee CS. Donor smoking is associated with pulmonary edema, inflammation and epithelial dysfunction in ex vivo human donor lungs. Am J Transplant 2014; 14:2295-302. [PMID: 25146497 PMCID: PMC4169304 DOI: 10.1111/ajt.12853] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/22/2014] [Accepted: 05/31/2014] [Indexed: 01/25/2023]
Abstract
Although recipients of donor lungs from smokers have worse clinical outcomes, the underlying mechanisms are unknown. We tested the association between donor smoking and the degree of pulmonary edema (as estimated by lung weight), the rate of alveolar fluid clearance (AFC; measured by airspace instillation of 5% albumin) and biomarkers of lung epithelial injury and inflammation (bronchoalveolar lavage [BAL] surfactant protein-D (SP-D) and IL-8) in ex vivo lungs recovered from 298 organ donors. The extent of pulmonary edema was higher in current smokers (n = 127) compared to nonsmokers (median 408 g, interquartile range [IQR] 364-500 vs. 385 g, IQR 340-460, p = 0.009). Oxygenation at study enrollment was worse in current smokers versus nonsmokers (median PaO2 /FiO2 214 mm Hg, IQR 126-323 vs. 266 mm Hg, IQR 154-370, p = 0.02). Current smokers with the highest exposure (≥20 pack years) had significantly lower rates of AFC, suggesting that the effects of cigarette smoke on alveolar epithelial fluid transport function may be dose related. BAL IL-8 was significantly higher in smokers while SP-D was lower. These findings indicate that chronic exposure to cigarette smoke has important effects on inflammation, gas exchange, lung epithelial function and lung fluid balance in the organ donor that could influence lung function in the lung transplant recipient.
Collapse
Affiliation(s)
- Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Jae W. Lee
- Departments of Medicine and Anesthesia, University of California, San Francisco, CA
| | - Nancy Wickersham
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN
| | - John Nguyen
- California Transplant Donor Network, Oakland, CA
| | - Michael A. Matthay
- Departments of Medicine and Anesthesia, University of California, San Francisco, CA
| | - Carolyn S. Calfee
- Departments of Medicine and Anesthesia, University of California, San Francisco, CA
| | | |
Collapse
|
20
|
Hackler PC, Reuss S, Konger RL, Travers JB, Sahu RP. Systemic Platelet-activating Factor Receptor Activation Augments Experimental Lung Tumor Growth and Metastasis. CANCER GROWTH AND METASTASIS 2014; 7:27-32. [PMID: 25002816 PMCID: PMC4076476 DOI: 10.4137/cgm.s14501] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 12/27/2022]
Abstract
Pro-oxidative stressors including cigarette smoke (CS) generate novel lipids with platelet-activated factor-receptor (PAF-R) agonistic activity mediate systemic immunosuppression, one of the most recognized events in promoting carcinogenesis. Our previous studies have established that these oxidized-PAF-R-agonists augment murine B16F10 melanoma tumor growth in a PAF-R-dependent manner because of its effects on host immunity. As CS generates PAF-R agonists, the current studies sought to determine the impact of PAF-R agonists on lung cancer growth and metastasis. Using the murine Lewis Lung Carcinoma (LLC1) model, we demonstrate that treatment of C57BL/6 mice with a PAF-R agonist augments tumor growth and lung metastasis in a PAF-R-dependent manner as these findings were not seen in PAF-R-deficient mice. Importantly, this effect was because of host rather than tumor cells PAF-R dependent as LLC1 cells do not express functional PAF-R. These findings indicate that experimental lung cancer progression can be modulated by the PAF system.
Collapse
Affiliation(s)
- Patrick C Hackler
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah Reuss
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raymond L Konger
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA. ; Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey B Travers
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. ; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA. ; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ravi P Sahu
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA. ; Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
21
|
Marathe GK, Pandit C, Lakshmikanth CL, Chaithra VH, Jacob SP, D'Souza CJM. To hydrolyze or not to hydrolyze: the dilemma of platelet-activating factor acetylhydrolase. J Lipid Res 2014; 55:1847-54. [PMID: 24859738 DOI: 10.1194/jlr.r045492] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mounting ambiguity persists around the functional role of the plasma form of platelet-activating factor acetylhydrolase (PAF-AH). Because PAF-AH hydrolyzes PAF and related oxidized phospholipids, it is widely accepted as an anti-inflammatory enzyme. On the other hand, its actions can also generate lysophosphatidylcholine (lysoPC), a component of bioactive atherogenic oxidized LDL, thus allowing the enzyme to have proinflammatory capabilities. Presence of a canonical lysoPC receptor has been seriously questioned for a multitude of reasons. Animal models of inflammation show that elevating PAF-AH levels is beneficial and not deleterious and overexpression of PAF receptor (PAF-R) also augments inflammatory responses. Further, many Asian populations have a catalytically inert PAF-AH that appears to be a severity factor in a range of inflammatory disorders. Correlation found with elevated levels of PAF-AH and CVDs has led to the design of a specific PAF-AH inhibitor, darapladib. However, in a recently concluded phase III STABILITY clinical trial, use of darapladib did not yield promising results. Presence of structurally related multiple ligands for PAF-R with varied potency, existence of multi-molecular forms of PAF-AH, broad substrate specificity of the enzyme and continuous PAF production by the so called bi-cycle of PAF makes PAF more enigmatic. This review seeks to address the above concerns.
Collapse
Affiliation(s)
- Gopal Kedihitlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore 570006, India
| | - Chaitanya Pandit
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore 570006, India
| | | | | | - Shancy Petsel Jacob
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore 570006, India
| | | |
Collapse
|
22
|
Bullen C. Impact of tobacco smoking and smoking cessation on cardiovascular risk and disease. Expert Rev Cardiovasc Ther 2014; 6:883-95. [DOI: 10.1586/14779072.6.6.883] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem 2013; 28:314-28. [PMID: 24426232 DOI: 10.1007/s12291-013-0375-3] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022]
Abstract
The recognition of vitamin C is associated with a history of an unrelenting search for the cause of the ancient haemorrhagic disease scurvy. Isolated in 1928, vitamin C is essential for the development and maintenance of connective tissues. It plays an important role in bone formation, wound healing and the maintenance of healthy gums. Vitamin C plays an important role in a number of metabolic functions including the activation of the B vitamin, folic acid, the conversion of cholesterol to bile acids and the conversion of the amino acid, tryptophan, to the neurotransmitter, serotonin. It is an antioxidant that protects body from free radical damage. It is used as therapeutic agent in many diseases and disorders. Vitamin C protects the immune system, reduces the severity of allergic reactions and helps to fight off infections. However the significance and beneficial effect of vitamin C in respect to human disease such as cancer, atherosclerosis, diabetes, neurodegenerative disease and metal toxicity however remains equivocal. Thus further continuous uninterrupted efforts may open new vistas to understand its significance in disease management.
Collapse
Affiliation(s)
- Shailja Chambial
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Shailendra Dwivedi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Placheril J John
- Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, 302004 India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| |
Collapse
|
24
|
Yamazaki Y, Yasuda K, Matsuyama T, Ishihara T, Higa R, Sawairi T, Yamaguchi M, Egi M, Akai S, Miyase T, Ikari A, Miwa M, Sugatani J. A Penicillium sp. F33 metabolite and its synthetic derivatives inhibit acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase (a key enzyme in platelet-activating factor biosynthesis) and carrageenan-induced paw edema in mice. Biochem Pharmacol 2013; 86:632-44. [PMID: 23817078 DOI: 10.1016/j.bcp.2013.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 11/27/2022]
Abstract
Acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine (lyso-PAF) acetyltransferase is a key enzyme in the biosynthesis of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) in inflammatory cells. Substances which inhibit this enzyme are of therapeutic interest. In this study, we screened for new inhibitors of lyso-PAF acetyltransferase with anti-inflammatory effects. In a metabolite from Penicillium sp. F33, we isolated an acetyltransferase inhibitor identified as dihydrofumigatin (2-methoxy-1,3,4-trihydroxy-5-methylbenzene) from high resolution mass spectrometer and NMR data. Dihydrofumigatin had strong acetyltransferase inhibitory activity, but was not stable in aqueous solution. Thus, we chemically synthesized its oxidized form fumigatin (3-hydroxy-2-methoxy-5-methyl-1,4-benzoquinone) and derivatives thereof, and evaluated their inhibitory effects. Strong inhibitory activity was observed for saturated fatty acid esters of fumigatin; the order of inhibition was 3-decanoyloxy-2-methoxy-5-methyl-1,4-benzoquinone (termed FUD-7, IC₅₀ = 3 μM)>2-methoxy-5-methyl-3-tetradecanoyloxy-1,4-benzoquinone (termed FUD-8, IC₅₀ = 20 μM)>3-hexanoyloxy-2-methoxy-5-methyl-1,4-benzoquinone (IC₅₀ = 139 μM). Interestingly, these compounds also significantly suppressed the gene expression of lyso-PAF acetyltransferase/LPCAT2 in mouse bone marrow-derived macrophages stimulated by lipopolysaccharide (LPS). We further evaluated the effect of these substances on anti-inflammatory activity in vivo using the carrageenan-induced mouse paw edema test. FUD-7 and FUD-8 at 2.5 mg/kg showed significant, 47.9-51.7%, inhibition stronger than that of prednisolone at 10 mg/kg (41.9%). These results suggest that FUD-7 and FUD-8 are potent inhibitors with anti-inflammatory activity.
Collapse
Key Words
- 1,4-diacetoxy-2-methoxy-5-methyl-3-tetradecanoyloxybenzene
- 1-O-alkyl-sn-glycero-3-phosphocholine
- 1-hexadecyl-2-N-methylcarbamyl-sn-glycero-3-phosphocholine
- 2-methoxy-5-methyl-1,3,4-triacetoxybenzene
- 2-methoxy-5-methyl-3-octadecanoyloxy-1,4-benzoquinone
- 2-methoxy-5-methyl-3-tetradecanoyloxy-1,4-benzoquinone
- 3,4-dihydroxy-1,2-dimethoxy-5-methylbenzene
- 3-acetoxy-2-methoxy-5-methyl-1,4-benzoquinone
- 3-decanoyloxy-2-methoxy-5-methyl-1,4-benzoquinone
- 3-hexanoyloxy-2-methoxy-5-methyl-1,4-benzoquinone
- 3-hydroxy-2-methoxy-5-methyl-1,4-benzoquinone (fumigatin)
- BMDMs
- Carrageenan-induced edema
- DART
- FUD-1
- FUD-2
- FUD-3
- FUD-4
- FUD-5
- FUD-6
- FUD-7
- FUD-8
- FUD-9
- Fumigatin
- HPLC
- HRMS
- LPCAT2
- LPS
- Lyso-PAF acetyltransferase
- NDGA
- PAF
- PAF biosynthesis
- Platelet activating factor
- TCA
- TLC
- bone marrow-derived macrophages
- c-PAF
- direct analysis in real time
- high resolution mass spectrometer
- high-performance liquid chromatography
- lipopolysaccharide
- lyso-PAF
- lysophosphatidylcholine acyltransferase 2
- nordihydroguaiaretic acid
- platelet-activating factor, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine
- thin layer chromatography
- trichloroacetic acid
Collapse
Affiliation(s)
- Yasuhiro Yamazaki
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sahu RP, Petrache I, Van Demark MJ, Rashid BM, Ocana JA, Tang Y, Yi Q, Turner MJ, Konger RL, Travers JB. Cigarette smoke exposure inhibits contact hypersensitivity via the generation of platelet-activating factor agonists. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:2447-54. [PMID: 23355733 PMCID: PMC3577966 DOI: 10.4049/jimmunol.1202699] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous studies have established that pro-oxidative stressors suppress host immunity because of their ability to generate oxidized lipids with platelet-activating factor receptor (PAF-R) agonist activity. Although exposure to the pro-oxidative stressor cigarette smoke (CS) is known to exert immunomodulatory effects, little is known regarding the role of PAF in these events. The current studies sought to determine the role of PAF-R signaling in CS-mediated immunomodulatory effects. We demonstrate that CS exposure induces the generation of a transient PAF-R agonistic activity in the blood of mice. CS exposure inhibits contact hypersensitivity in a PAF-R-dependent manner as PAF-R-deficient mice were resistant to these effects. Blocking PAF-R agonist production either by systemic antioxidants or treatment with serum PAF-acetyl hydrolase enzyme blocked both the CS-mediated generation of PAF-R agonists and PAF-R-dependent inhibition of contact hypersensitivity (CHS) reactions, indicating a role for oxidized glycerophosphocholines with PAF-R agonistic activity in this process. In addition, cyclooxygenase-2 inhibition did not block PAF-R agonist production but prevented CS-induced inhibition of CHS. This suggests that cyclooxygenase-2 acts downstream of the PAF-R in mediating CS-induced systemic immunosuppression. Moreover, CS exposure induced a significant increase in the expression of the regulatory T cell reporter gene in Foxp3(EGFP) mice but not in Foxp3(EGFP) mice on a PAF-R-deficient background. Finally, regulatory T cell depletion via anti-CD25 Abs blocked CS-mediated inhibition of CHS, indicating the potential involvement of regulatory T cells in CS-mediated systemic immunosuppression. These studies provide the first evidence, to our knowledge, that the pro-oxidative stressor CS can modulate cutaneous immunity via the generation of PAF-R agonists produced through lipid oxidation.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2 Inhibitors/pharmacology
- Dermatitis, Contact/immunology
- Dermatitis, Contact/metabolism
- Dermatitis, Contact/pathology
- Dinitrofluorobenzene
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression/drug effects
- Glycerylphosphorylcholine/immunology
- Glycerylphosphorylcholine/metabolism
- Hydrolases/metabolism
- Immunosuppression Therapy
- Lipid Peroxidation/drug effects
- Lymphocyte Depletion
- Mice
- Mice, Transgenic
- Platelet Activating Factor/genetics
- Platelet Activating Factor/metabolism
- Platelet Membrane Glycoproteins/agonists
- Platelet Membrane Glycoproteins/genetics
- Platelet Membrane Glycoproteins/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Smoke/adverse effects
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Nicotiana/adverse effects
Collapse
Affiliation(s)
- Ravi P Sahu
- Department of Dermatology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Sahu RP, Turner MJ, DaSilva SC, Rashid BM, Ocana JA, Perkins SM, Konger RL, Touloukian CE, Kaplan MH, Travers JB. The environmental stressor ultraviolet B radiation inhibits murine antitumor immunity through its ability to generate platelet-activating factor agonists. Carcinogenesis 2012; 33:1360-7. [PMID: 22542595 PMCID: PMC3405652 DOI: 10.1093/carcin/bgs152] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/26/2012] [Accepted: 04/14/2012] [Indexed: 11/12/2022] Open
Abstract
Ubiquitous pro-oxidative stressor ultraviolet B radiation (UVB) to human or mouse skin generates platelet-activating factor (PAF) and novel oxidatively modified glycerophosphocholines (Ox-GPCs) with PAF-receptor (PAF-R) agonistic activity. These lipids mediate systemic immunosuppression in a process involving IL-10. The current studies sought to determine the functional significance of UVB-mediated systemic immunosuppression in an established model of murine melanoma. We show that UVB irradiation augments B16F10 tumor growth and is dependent on host, but not melanoma cell; PAF-R-expression as UVB or the PAF-R agonist, carbamoyl PAF (CPAF), both promote B16F10 tumor growth in wild-type (WT) mice, independent of whether B16F10 cells express PAF-Rs, but do not augment tumor growth in Pafr -/- mice. UVB-mediated augmentation of experimental murine tumor growth was inhibited with antioxidants, demonstrating the importance of Ox-GPC PAF-R agonists produced non-enzymatically. Host immune cells are required as CPAF-induced augmentation of tumor growth which is not seen in immunodeficient NOD SCID mice. Finally, depleting antibodies against IL-10 in WT mice or depletion of CD25-positive cells in FoxP3(EGFP) transgenic mice block UVB and/or CPAF-induced tumor growth supporting a requirement for IL-10 and Tregs in this process. These findings indicate that UVB-generated Ox-GPCs with PAF-R agonistic activity enhance experimental murine melanoma tumor growth through targeting host immune cells, most notably Tregs, to mediate systemic immunosuppression.
Collapse
Affiliation(s)
- Ravi P. Sahu
- Department of Dermatology
- Department of Pathology and Laboratory Medicine
| | | | | | | | | | | | - Raymond L. Konger
- Department of Dermatology
- Department of Pathology and Laboratory Medicine
| | | | - Mark H. Kaplan
- Department of Microbiology and Immunology
- H.B. Wells Center for Pediatric Research, Department of Pediatrics
| | - Jeffrey B. Travers
- Department of Dermatology
- H.B. Wells Center for Pediatric Research, Department of Pediatrics
- Department of Pharmacology and Toxicology
- The Richard L. Roudebush V.A. Medical Center, Indiana University School of Medicine, 1044 Walnut St. Rm. 202, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Yao Y, Harrison KA, Al-Hassani M, Murphy RC, Rezania S, Konger RL, Travers JB. Platelet-activating factor receptor agonists mediate xeroderma pigmentosum A photosensitivity. J Biol Chem 2012; 287:9311-21. [PMID: 22303003 DOI: 10.1074/jbc.m111.332395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To date, oxidized glycerophosphocholines (Ox-GPCs) with platelet-activating factor (PAF) activity produced non-enzymatically have not been definitively demonstrated to mediate any known disease processes. Here we provide evidence that these Ox-GPCs play a pivotal role in the photosensitivity associated with the deficiency of the DNA repair protein xeroderma pigmentosum type A (XPA). It should be noted that XPA-deficient cells are known to have decreased antioxidant defenses. These studies demonstrate that treatment of human XPA-deficient fibroblasts with the pro-oxidative stressor ultraviolet B (UVB) radiation resulted in increased reactive oxygen species and PAF receptor (PAF-R) agonistic activity in comparison with gene-corrected cells. The UVB irradiation-generated PAF-R agonists were inhibited by antioxidants. UVB irradiation of XPA-deficient (Xpa-/-) mice also resulted in increased PAF-R agonistic activity and skin inflammation in comparison with control mice. The increased UVB irradiation-mediated skin inflammation and TNF-α production in Xpa-/- mice were blocked by systemic antioxidants and by PAF-R antagonists. Structural characterization of PAF-R-stimulating activity in UVB-irradiated XPA-deficient fibroblasts using mass spectrometry revealed increased levels of sn-2 short-chain Ox-GPCs along with native PAF. These studies support a critical role for PAF-R agonistic Ox-GPCs in the pathophysiology of XPA photosensitivity.
Collapse
Affiliation(s)
- Yongxue Yao
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Sharma J, Young DM, Marentette JO, Rastogi P, Turk J, McHowat J. Lung endothelial cell platelet-activating factor production and inflammatory cell adherence are increased in response to cigarette smoke component exposure. Am J Physiol Lung Cell Mol Physiol 2012; 302:L47-55. [PMID: 21984569 PMCID: PMC3349370 DOI: 10.1152/ajplung.00179.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/03/2011] [Indexed: 12/30/2022] Open
Abstract
An early event in the pathogenesis of emphysema is the development of inflammation associated with accumulation of polymorphonuclear leukocytes (PMN) in small airways, and inflammatory cell recruitment from the circulation involves migration across endothelial and epithelial cell barriers. Platelet-activating factor (PAF) promotes transendothelial migration in several vascular beds, and we postulated that increased PAF production in the airways of smokers might enhance inflammatory cell recruitment and exacerbate inflammation. To examine this possibility, we incubated human lung microvascular endothelial cells (HMVEC-L) with cigarette smoke extract (CSE) and found that CSE inhibits PAF-acetylhydrolase (PAF-AH) activity. This enhances HMVEC-L PAF production and PMN adherence, and adherence is blocked by PAF receptor antagonists (CV3988 or ginkgolide B). CSE also inhibited PAF-AH activity of lung endothelial cells isolated from wild-type (WT) and iPLA(2)β knockout mice, and with WT cells, CSE enhanced PAF production and RAW 264.7 cell adherence. In contrast, CSE did not affect PAF production or RAW 264.7 cell adherence to iPLA(2)β-null cells, suggesting that iPLA(2)β plays an important role in PAF production by lung endothelial cells. These findings suggest that inhibition of PAF-AH by components of cigarette smoke may initiate or exacerbate inflammatory lung disease by enhancing PAF production and promoting accumulation of inflammatory cells in small airways. In addition, iPLA(2)β is identified as a potential target for therapeutic interventions to reduce airway inflammation and the progression of chronic lung disease.
Collapse
Affiliation(s)
- Janhavi Sharma
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Continued research and development in the field of wound healing holds the potential to affect both quality of life and incidence of mortality. For the health care provider to promote successful wound healing, an understanding of the function of nutrients in inflammation and tissue growth is helpful. The intent of this paper is to discuss the metabolic and cellular pathways crucial to wound healing and identify appropriate nutritional interventions and clinical applications.
Collapse
Affiliation(s)
- A R Sherman
- Department of Nutritional Sciences, Rutgers State University of New Jersey, USA.
| | | |
Collapse
|
31
|
Calfee CS, Matthay MA, Eisner MD, Benowitz N, Call M, Pittet JF, Cohen MJ. Active and passive cigarette smoking and acute lung injury after severe blunt trauma. Am J Respir Crit Care Med 2011; 183:1660-5. [PMID: 21471091 PMCID: PMC3136993 DOI: 10.1164/rccm.201011-1802oc] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/18/2011] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Cigarette smoking has been demonstrated in laboratory studies to have effects on lung epithelial and endothelial function similar to those observed in acute lung injury (ALI). However, the association between active and passive cigarette smoke exposure and susceptibility to ALI has not been prospectively studied. OBJECTIVES We hypothesized that both active and passive cigarette smoke exposure would be associated with increased susceptibility to ALI after severe blunt trauma. METHODS We measured levels of cotinine, a metabolite of nicotine and validated biomarker of tobacco use, in plasma samples obtained immediately on arrival at the emergency department from 144 adult subjects after severe blunt trauma. Patients were then followed for the development of ALI. MEASUREMENTS AND MAIN RESULTS Increasing quartiles of plasma cotinine were associated with the development of ALI (odds ratio [OR] for developing ALI in highest cotinine quartile, 3.25; 95% confidence interval [CI], 1.22-8.68; P = 0.017 for trend across quartiles). Moderate to heavy passive smoke exposure was associated with nearly the same odds of developing ALI as active smoking (OR for moderate to heavy passive smoking compared with no exposure or low level exposure, 3.03; 95% CI, 1.15-8.04; OR for active smoking, 2.77; 95% CI, 1.28-5.99). This association persisted after adjusting for other predictors of ALI, including Injury Severity Score and alcohol abuse. CONCLUSIONS Both moderate to heavy passive smoking and active smoking are independently associated with the development of ALI after severe blunt trauma. This finding has important implications both for public health and for understanding the pathogenesis of ALI.
Collapse
Affiliation(s)
- Carolyn S Calfee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA 94143-0111, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Chen R, Brady E, McIntyre TM. Human TMEM30a promotes uptake of antitumor and bioactive choline phospholipids into mammalian cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:3215-25. [PMID: 21289302 DOI: 10.4049/jimmunol.1002710] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antitumor alkylphospholipids initiate apoptosis in transformed HL-60 and Jurkat cells while sparing their progenitors. 1-O-Alkyl-2-carboxymethyl-sn-glycero-3-phosphocholine (Edelfosine) like other short-chained phospholipids--inflammatory platelet-activating factor (PAF) and apoptotic oxidatively truncated phospholipids--are proposed to have intracellular sites of action, yet a conduit for these choline phospholipids into mammalian cells is undefined. Edelfosine is also accumulated by Saccharomyces cerevisiae in a process requiring the membrane protein Lem3p, and the human genome contains a Lem3p homolog TMEM30a. We show that import of choline phospholipids into S. cerevisiae ΔLem3 is partially reconstituted by human TMEM30a and by Lem3p-TMEM30a chimeras, showing the proteins are orthologous. TMEM30a-GFP chimeras expressed in mammalian cells localized in plasma membranes, as well as internal organelles, and ectopic TMEM30a expression promoted uptake of exogenous choline and ethanolamine phospholipids. Short hairpin RNA knockdown of TMEM30a reduced fluorescent choline phospholipid and [(3)H]PAF import. This knockdown also reduced mitochondrial depolarization from exogenous Edelfosine or the mitotoxic oxidatively truncated phospholipid azelaoyl phosphatidylcholine, and the knockdown reduced apoptosis in response to these two phospholipids. These results show that extracellular choline phospholipids with short sn-2 residues can have intracellular roles and sites of metabolism because they are transport substrates for a TMEM30a phospholipid import system. Variation in this mechanism could limit sensitivity to short chain choline phospholipids such as Edelfosine, PAF, and proapoptotic phospholipids.
Collapse
Affiliation(s)
- Rui Chen
- Department of Cell Biology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
33
|
Unverdorben M, von Holt K, Winkelmann BR. Smoking and atherosclerotic cardiovascular disease: part II: role of cigarette smoking in cardiovascular disease development. Biomark Med 2010; 3:617-53. [PMID: 20477529 DOI: 10.2217/bmm.09.51] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Potential mechanisms and biomarkers of atherosclerosis related to cigarette smoking - a modifiable risk factor for that disease - are discussed in this article. These include smoking-associated inflammatory markers, such as leukocytes, high-sensitivity C-reactive protein, serum amyloid A, ICAM-1 and IL-6. Other reviewed markers are indicative for smoking-related impairment of arterial endothelial function (transcapillary leakage of albumin, inhibition of endogenous nitric oxide synthase activity and reduced endothelium-dependent vasodilation) or point to oxidative stress caused by various chemicals (cholesterol oxidation, autoantibodies to oxidized low-density lipoprotein, plasma levels of malondialdehyde and F(2)-isoprostanes and reduced antioxidant capacity). Smoking enhances platelet aggregability, increases blood viscosity and shifts the pro- and antithrombotic balance towards increased coagulability (e.g., fibrinogen, von Willebrand factor, ICAM-1 and P-selectin). Insulin resistance is higher in smokers compared with nonsmokers, and hemoglobin A1c is dose-dependently elevated, as is homocysteine. Smoke exposure may influence the kinetics of markers with different response to transient or chronic changes in cigarette smoking behavior.
Collapse
Affiliation(s)
- Martin Unverdorben
- Clinical Research Institute, Center for Cardiovascular Diseases, Heinz-Meise-Strasse 100, 36199 Rotenburg an der Fulda, Germany.
| | | | | |
Collapse
|
34
|
Muehlmann LA, Zanatta AL, Farias CLA, Bieberbach EW, Mazzonetto AC, Michellotto PV, Fernandes LC, Nishiyama A. Dietary supplementation with soybean lecithin increases pulmonary PAF bioactivity in asthmatic rats. J Nutr Biochem 2010; 21:532-7. [PMID: 19369053 DOI: 10.1016/j.jnutbio.2009.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 02/27/2009] [Accepted: 03/05/2009] [Indexed: 10/20/2022]
Abstract
The prevalence of asthma has risen over the last few decades, and some studies correlate this with the greater consumption of polyunsaturated fatty acids (PUFAs). Dietary PUFAs are known to increase the susceptibility of biological structures to lipid peroxidation, a process by which platelet-activating factor (PAF)-like lipids can be generated. These lipids functionally mimic the bioactivity of PAF, a potent proinflammatory mediator that exerts several deleterious effects on asthma. Thus, this work aimed to investigate if dietary supplementation with soybean lecithin (SL), a source of PUFAs, increases lipid peroxidation and PAF bioactivity in lungs of asthmatic Wistar rats. Animals were separated into groups: control, supplemented, asthmatic, asthmatic supplemented with SL (2 g/kg body weight), asthmatic supplemented with SL (2 g/kg body weight) and DL-alpha-tocopheryl acetate (100 mg/kg body weight). Asthmatic inflammation increased pulmonary lipid peroxidation, PAF bioactivity, alveolar-capillary barrier permeability and production of nitric oxide. In asthmatics, dietary supplementation with SL promoted an increase in pulmonary lipid peroxidation and PAF bioactivity, and an increase in the permeability of the alveolar-capillary barrier. Moreover, the treatment of asthmatic rats with DL-alpha-tocopheryl acetate inhibited the lipid peroxidation and decreased the PAF bioactivity. Therefore, the increase in pulmonary PAF bioactivity in asthmatic individuals elicited by the dietary supplementation with SL probably involves the generation of PAF-like lipids. This finding suggests that PAF-like lipids may account for the deleterious effects of dietary PUFAs on asthma.
Collapse
Affiliation(s)
- Luis A Muehlmann
- Department of Physiology, Federal University of Paraná, Biological Science Sector, 81530-990 Curitiba, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Travers JB, Berry D, Yao Y, Yi Q, Konger RL, Travers JB. Ultraviolet B radiation of human skin generates platelet-activating factor receptor agonists. Photochem Photobiol 2010; 86:949-54. [PMID: 20492565 DOI: 10.1111/j.1751-1097.2010.00743.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ultraviolet B radiation (UVB) is a potent stimulator of epidermal cytokine production. In addition to cytokines, such as tumor necrosis factor-alpha (TNF-alpha), UVB generates bioactive lipids including platelet-activating factor (PAF). Our previous in vitro studies in keratinocytes or epithelial cell lines have demonstrated that UVB-mediated production of PAF agonists is due primarily to the pro-oxidative effects of this stimulant, resulting in the nonenzymatic production of modified phosphocholines (oxidized glycerophosphocholines). The current studies use human skin to assess whether UVB irradiation generates PAF-receptor agonists, and the role of oxidative stress in their production. These studies demonstrate that UVB irradiation of human skin results in PAF agonists, which are blocked by the antioxidant vitamin C and the epidermal growth factor receptor inhibitor PD168393. Inasmuch as UVB-generated PAF agonists have been implicated in animal model systems as being involved in photobiologic processes including systemic immunosuppression and cytokine (TNF-alpha) production, these studies indicate that this novel activity could be involved in human disease.
Collapse
Affiliation(s)
- Jared B Travers
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
36
|
Yang L, Latchoumycandane C, McMullen MR, Pratt BT, Zhang R, Papouchado BG, Nagy LE, Feldstein AE, McIntyre TM. Chronic alcohol exposure increases circulating bioactive oxidized phospholipids. J Biol Chem 2010; 285:22211-20. [PMID: 20460374 DOI: 10.1074/jbc.m110.119982] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ethanol metabolism by liver generates short lived reactive oxygen species that damage liver but also affects distal organs through unknown mechanisms. We hypothesized that dissemination of liver oxidative stress proceeds through release of biologically active oxidized lipids to the circulation. We searched for these by tandem mass spectrometry in plasma of rats fed a Lieber-DeCarli ethanol diet or in patients with established alcoholic liver inflammation, steatohepatitis. We found a severalfold increase in plasma peroxidized phosphatidylcholines, inflammatory and pro-apoptotic oxidatively truncated phospholipids, and platelet-activating factor, a remarkably potent and pleiotropic inflammatory mediator, in rats chronically ingesting ethanol. Circulating peroxidized phospholipids also increased in humans with established steatohepatitis. However, reactive oxygen species generated by liver ethanol catabolism were not directly responsible for circulating oxidized phospholipids because the delayed appearance of these lipids did not correlate with ethanol exposure, hepatic oxidative insult, nor plasma alanine transaminase marking hepatocyte damage. Rather, circulating oxidized lipids correlated with steatohepatitis and tumor necrosis factor-alpha deposition in liver. The organic osmolyte 2-aminoethylsulfonic acid (taurine), which reduces liver endoplasmic reticulum stress and inflammation, even though it is not an antioxidant, abolished liver damage and the increase in circulating oxidized phospholipids. Thus, circulating oxidized phospholipids are markers of developing steatohepatitis temporally distinct from oxidant stress associated with hepatic ethanol catabolism. Previously, circulating markers of the critical transition to pathologic steatohepatitis were unknown. Circulating oxidatively truncated phospholipids are pro-inflammatory and pro-apoptotic mediators with the potential to systemically distribute the effect of chronic ethanol exposure. Suppressing hepatic inflammation, not ethanol catabolism, reduces circulating inflammatory and apoptotic agonists.
Collapse
Affiliation(s)
- Lili Yang
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yasui K, Kurata T, Yashiro M, Tsuge M, Ohtsuki S, Morishima T. The effect of ascorbate on minor recurrent aphthous stomatitis. Acta Paediatr 2010; 99:442-5. [PMID: 20003102 DOI: 10.1111/j.1651-2227.2009.01628.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM Minor recurrent aphthous stomatitis (MRAS) is a common, painful and inflammatory ailment of the oral cavity with juvenile onset and unknown aetiology. The purpose of this study was to evaluate the potential of ascorbate (vitamin C) to reduce the frequency of MRAS and severity of pain. PATIENTS AND METHODS Sixteen MRAS patients (9 boys and 7 girls: mean age, 12.0 +/- 2.4 years old) were assigned to take an oral dosage of 2000 mg/m(2)/day ascorbate. SUBJECTS Their baseline frequency of outbreaks and the level of pains were compared during the treatment; in addition, a crossover clinical trial was performed. Polymorphonuclear leucocytes play a role in the pathogenesis, and then superoxide anion production was evaluated in prior to ascorbate treatment. RESULTS The data indicated a statistically significant 50% reduction in oral ulcer outbreaks and a decline of pain level. Neutrophils were primed for superoxide anion production in the patients with MRAS. CONCLUSION Ascorbate may modulate the generation of reactive oxygen species and augment neutrophil apoptosis, which could prevent neutrophil-mediated inflammation. Ascorbate seems to be effective, but the findings of our study were preliminary and it should be re-evaluated with a larger randomized controlled clinical trials.
Collapse
Affiliation(s)
- K Yasui
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Neubauer H, Setiadi P, Pinto A, Günesdogan B, Meves SH, Börgel J, Mügge A. Upregulation of platelet CD40, CD40 ligand (CD40L) and P-Selectin expression in cigarette smokers: a flow cytometry study. Blood Coagul Fibrinolysis 2009; 20:694-8. [DOI: 10.1097/mbc.0b013e328331e6f2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Smoking induces lipoprotein-associated phospholipase A2 in cardiovascular disease free adults: The ATTICA Study. Atherosclerosis 2009; 206:303-8. [DOI: 10.1016/j.atherosclerosis.2009.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/19/2009] [Accepted: 02/01/2009] [Indexed: 11/20/2022]
|
40
|
Yao Y, Wolverton JE, Zhang Q, Marathe GK, Al-Hassani M, Konger RL, Travers JB. Ultraviolet B radiation generated platelet-activating factor receptor agonist formation involves EGF-R-mediated reactive oxygen species. THE JOURNAL OF IMMUNOLOGY 2009; 182:2842-8. [PMID: 19234179 DOI: 10.4049/jimmunol.0802689] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent studies have implicated the lipid mediator platelet-activating factor (PAF) in UVB-mediated systemic immunosuppression known to be a major cause for skin cancers. Previously, our group has demonstrated that UVB irradiation triggers the production of PAF and oxidized glycerophosphocholines that act as PAF-receptor (PAF-R) agonists. The present studies explored the mechanisms by which UVB generates PAF-R agonists. UVB irradiation of human epidermal KB cells resulted in both increased levels of reactive oxygen species (ROS) and PAF-R agonistic activity. Pretreatment of KB cells with antioxidants vitamin C and N-acetylcysteine or the pharmacological inhibitor PD168393 specific for the epidermal growth factor receptor all inhibited UVB-induced ROS as well as PAF-R agonists, yet had no effect on fMLP-mediated PAF-R agonist production. In addition, in vivo production of PAF-R agonists from UVB-irradiated mouse skin was blocked by both systemic vitamin C administration and topical PD168393 application. Moreover, both vitamin C and PD168393 abolished UVB-mediated but not the PAF-R agonist 1-hexadecyl-2-N-methylcarbamoyl glycerophosphocholine-mediated immunosuppression as measured by the inhibition of delayed type contact hypersensitivity to the chemical dinitrofluorobenzene. These studies suggest that UVB-induced systemic immunosuppression is due to epidermal growth factor receptor-mediated ROS which results in PAF-R agonist formation.
Collapse
Affiliation(s)
- Yongxue Yao
- Department of Dermatology, and the Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Lu Q, Björkhem I, Xiu RJ, Henriksson P, Freyschuss A. N-acetylcysteine improves microcirculatory flow during smoking: new effects of an old drug with possible benefits for smokers. Clin Cardiol 2009; 24:511-5. [PMID: 11444642 PMCID: PMC6654995 DOI: 10.1002/clc.4960240719] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cigarette smoking provokes marked acute changes in the microcirculatory vasculature, including a reduced blood flow velocity. In accordance with the hypothesis that the reduced blood flow is due to an imbalance between pro-oxidants and oxidants, we recently showed that most of the reduction could be reversed by a high dose of vitamin C. HYPOTHESIS In the present work we tested the hypothesis that N-acetylcysteine, a mucolyticum and an antioxidant, may have an effect on the smoking-induced changes observed by vital capillary microscopy of the nailfold. METHODS In all, 37 healthy volunteers of both genders and with varied smoking habits were treated with N-acetylcysteine 200 mg t.i.d. for 2 weeks. In vivo investigation of the microcirculation by capillaroscopy was performed before and after treatment. RESULTS Treatment with N-acetylcysteine significantly reduced the smoking-induced relative decrease in capillary blood flow velocity in a group of volunteers with varied smoking habits (p = 0.0016). The preventive effect was clearly significant in smokers (p = 0.003). CONCLUSION Treatment with N-acetylcysteine has a positive impact on microcirculatory flow during smoking, particularly in habitual smokers.
Collapse
Affiliation(s)
- Q Lu
- Department of Medicine, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
42
|
Togna AR, Latina V, Orlando R, Togna GI. Cigarette smoke inhibits adenine nucleotide hydrolysis by human platelets. Platelets 2009; 19:537-42. [PMID: 18979366 DOI: 10.1080/09537100802272626] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cigarette smoking is a recognized risk factor for cardiovascular diseases and has been implicated in the pathogenesis of atherosclerosis and thrombotic events. In athero-thrombotic diseases, the extracellular adenine nucleotides play an important role by triggering a range of effects such as the recruitment and activation of platelets, endothelial cell activation and vasoconstriction. NTPDase, a plasma membrane-bound enzyme, is the most relevant enzyme involved in the hydrolysis of extracellular tri- and di-phosphate nucleotides to adenosine monophosphate, which is further degraded by 5'ectonucleotidase to the anti-thrombotic and anti-inflammatory mediator adenosine. Thus, the preserved activity of these enzymes, regulating the extracellular concentrations of nucleotides, is critical in thromboregulatory functions. In the present in vitro study, performed on human platelets suspended in undiluted or diluted aqueous cigarette smoke extract (aCSE), we demonstrated that undiluted and 1 : 2 diluted aCSE is able to significantly reduce ADP hydrolysis (-24% and 12%, respectively) by intact human platelets. ATP degradation was also reduced (-31%) by undiluted aCSE. Conversely, aCSE did not alter platelet AMP hydrolysis. Results obtained by using N-acetylcysteine, a thiol-containing antioxidant, suggest that stable oxidants present in aCSE are responsible for the platelet NTPDase inhibition induced by aCSE. The decreased adenine nucleotide degradation could play a significant role in the extensive platelet activation and vascular inflammation observed in chronic smokers.
Collapse
Affiliation(s)
- Anna Rita Togna
- Department of Physiology and Pharmacology Vittorio Erspamer, University of Rome La Sapienza, Roma, Italy
| | | | | | | |
Collapse
|
43
|
Nutritional level and energetic source are determinants of elevated circulatory lipohydroperoxide concentration. Br J Nutr 2008; 99:1255-65. [DOI: 10.1017/s000711450886240x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dietary energetic impact on oxidative stress is incompletely understood. Therefore, effects of diets on oxidative stress were studied using a crossover block design. In Expt 1, intake of metabolizable energy (ME) was restricted orad libitum. In Expt 2, isoenergetic and isonitrogenic diets were fed, replacing carbohydrate energy by energy of fatty acids. Circulatory lipohydroperoxides (LOOH), markers of acute oxidative stress, were expressed absolutely and in terms of cholesterol or TAG levels. In Expt 1, plasma (jugularis vein) LOOH was assayed in combination with whole-body oxidative metabolism using gas exchange and heart rate (HR) during feeding periods and at rest. In Expt 2, LOOH was assayed in plasma from portal and a large udder vein and a mesenteric artery. In Expt 1, intake increased VO2, HR and LOOH following overnight fast with higher values (P < 0·05) when feeding MEad libitum. Intake of MEad libitum(3 weeks) increased cardiac protein of cytochrome oxidase and endothelial-type nitric oxide synthase (P < 0·05), indicating adaptation of the heart to higher activity. Transient HR responses evoked by an antidiabetic drug (levcromakalim) revealed a linear positive correlation with relative LOOH (r20·79), supporting the relationship between oxidative metabolic rate and lipoperoxidation. Evidence for exogenous lipids as LOOH source provided the vessel-specific rise in LOOH through replacing carbohydrate ME by lipid ME (Expt 2). Thus, dietary energy level and energetic source are important for circulatory LOOH with a role of vascular activity in production of oxidant.
Collapse
|
44
|
Oxidized glycerophosphocholines as biologically active mediators for ultraviolet radiation-mediated effects. Prostaglandins Other Lipid Mediat 2008; 87:1-8. [PMID: 18555720 DOI: 10.1016/j.prostaglandins.2008.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
Ultraviolet light radiation (UVR) has profound effects upon human skin. Yet, the exact targets for UVR are unclear. Inasmuch as UVR is a known pro-oxidative stressor, one potential target for UVR could be oxidatively modified glycerophosphocholines (GPC). Importantly, recent studies demonstrate that these oxidized GPCs (ox-GPC) are potent agonists for the platelet-activating factor receptor and peroxisome proliferator-activated receptor gamma. This review discusses these new biologically active lipids and their down-stream receptor targets that provide a unique system of biosensors for detecting and responding to UVR photo-oxidation.
Collapse
|
45
|
Platelet-leucocyte aggregates form in the mesenteric vasculature in patients with ulcerative colitis. Eur J Gastroenterol Hepatol 2008; 20:283-9. [PMID: 18334871 DOI: 10.1097/meg.0b013e3282f246c2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Inflammation and thrombosis are closely related processes, which may play a role in the pathogenesis, as well as complications, of inflammatory bowel disease (IBD). Platelet activation and platelet-leucocyte aggregation are increased and platelet aggregation is known to occur in the mesenteric vasculature in IBD. The aims of this study were to test the hypotheses that platelet-leucocyte aggregation, platelet activation and neutrophil activation occur in the mesenteric vessels of patients with ulcerative colitis (UC). PATIENTS AND METHODS Platelet-leucocyte aggregates (PLAs), platelet activation (P-selectin expression) and neutrophil activation (L-selectin expression, which decreases on neutrophil activation) were assessed flow cytometrically in mesenteric arterial, and venous blood sampled in eight patients with UC and eight controls with colonic carcinoma undergoing intestinal resections. RESULTS In the patients with UC, the number of PLAs in the mesenteric vein exceeded that in the artery, the median rise being 38% (P=0.02). In UC, arterial PLA numbers were 0.17 (0.02-0.32) (median, range) x 10(9)/l versus venous 0.26 (0.09-1.6) x 10(9)/l (P=0.02). The median percentage increase was 45%. Mesenteric PLA formation did not occur in patients with colonic carcinoma [arterial 0.06 (0.03-0.49) x 10(9)/l vs. venous 0.05 (0.02-0.35) x 10(9)/l; P=0.55]. The median percentage change was +45% for UC patients and -5% for controls. No arteriovenous gradient was observed in P-selectin expression, but L-selectin expression (arbitrary units), increased in the mesenteric vasculature of the UC patients [arterial 839 (503-995), venous 879 (477-1035); P=0.03] and fell in those with colonic carcinoma [arterial 900 (660-959), venous 850 (546-957); P=0.04]. The median percentage change was +4% for UC and -7% for controls. CONCLUSION The finding of increased numbers of PLAs in the venous mesenteric circulation supports the hypothesis that activated vascular endothelium stimulates PLA formation in UC.
Collapse
|
46
|
UVB radiation-mediated inhibition of contact hypersensitivity reactions is dependent on the platelet-activating factor system. J Invest Dermatol 2008; 128:1780-7. [PMID: 18200048 DOI: 10.1038/sj.jid.5701251] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Through its ability to both induce immunosuppression and act as a carcinogen, UVB radiation plays a major role in cutaneous malignancies. Recent studies have indicated that UVB-mediated inhibition of delayed-type hypersensitivity reactions is mediated, in part, by the lipid mediator platelet-activating factor (PAF). The objective of this study was to further define the mechanism by which UVB inhibits contact hypersensitivity (CHS) reactions. UVB irradiation resulted in an inhibition of subsequent CHS to the chemical DNFB in wild-type, but not in PAF-R-deficient mice. UVB-mediated inhibition of CHS was also blocked by a cyclooxygenase-2 (COX-2) inhibitor or a neutralizing antibody directed against IL-10. UVB irradiation upregulated IL-10 mRNA levels in lymph nodes and spleen only to significant levels in PAF-R-expressing mice. Bone marrow transplantation studies demonstrated that UVB-mediated immunomodulatory effects were dependent on PAF-R-positive bone marrow. These studies suggest that UVB irradiation results in epidermal production of PAF agonists, which then act on PAF-R-positive bone marrow-derived cells to upregulate IL-10 through COX-2-generated prostaglandins.
Collapse
|
47
|
Villacorta L, Azzi A, Zingg JM. Regulatory role of vitamins E and C on extracellular matrix components of the vascular system. Mol Aspects Med 2007; 28:507-37. [PMID: 17624419 DOI: 10.1016/j.mam.2007.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 05/17/2007] [Indexed: 12/14/2022]
Abstract
The protective effect of vitamins E (alpha-tocopherol) and C (L-ascorbic acid) in the prevention of cardiovascular disease (CVD) has been shown in a number of situations but a secure correlation is not universally accepted. Under certain conditions, both, L-ascorbic acid and alpha-tocopherol can exhibit antioxidant properties and thus may reduce the formation of oxidized small molecules, proteins and lipids, which are a possible cause of cellular de-regulation. However, non-antioxidant effects have also been suggested to play a role in the prevention of atherosclerosis. Vitamin E and C can modulate signal transduction and gene expression and thus affect many cellular reactions such as the proliferation of smooth muscle cells, the expression of cell adhesion and extracellular matrix molecules, the production of O(2)(-) by NADPH-oxidase, the aggregation of platelets and the inflammatory response. Vitamins E and C may modulate the extracellular matrix environment by affecting VSMC differentiation and the expression of connective tissue proteins involved in vascular remodeling as well as the maintenance of vascular wall integrity. This review summarizes individually the molecular activities of vitamins E and C on the cells within the connective tissue of the vasculature, which are centrally involved in the maintenance of an intact vascular wall as well as in the repair of atherosclerotic lesions during disease development.
Collapse
Affiliation(s)
- Luis Villacorta
- Cardiovascular Research Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
48
|
Abstract
Cigarette smoking is a major vascular risk factor and in this context, it is an independent risk factor for the development of aortic disease, especially the formation and growth of abdominal aortic aneurysms (AAA). Medline was searched up to January 31, 2007 for the relevant literature for this review of the mechanisms by which smoking causes aortic wall damage and its subsequent impact on the clinical manifestation of this process. Idiopathic AAAs and aortic dissection are considered, as well as other aortic diseases (eg, Takayasu, Kawasaki, Behcet and Buerger). There is evidence suggesting an abnormal homeostasis between proteolytic and antiproteolytic activity in the vascular wall during the development of AAAs, and these mechanisms can be influenced by smoking. Smoking cessation plays an important role in the management of aortic disease.
Collapse
Affiliation(s)
- A I Kakafika
- Department of Clinical Biochemistry, Royal Free Hospital, Royal Free and University College Medical School, London, UK
| | | |
Collapse
|
49
|
Becker RC. Atherothrombosis at a distance: contributing role of existing large-burden vascular disease, circulating biosignals and modulating extravascular tissues. Thromb Res 2006; 119:761-8. [PMID: 16919312 DOI: 10.1016/j.thromres.2006.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 05/23/2006] [Accepted: 05/30/2006] [Indexed: 01/10/2023]
Affiliation(s)
- Richard C Becker
- Duke University School of Medicine, Cardiovascular Thrombosis Center, Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
50
|
Marathe GK, Johnson C, Billings SD, Southall MD, Pei Y, Spandau D, Murphy RC, Zimmerman GA, McIntyre TM, Travers JB. Ultraviolet B Radiation Generates Platelet-activating Factor-like Phospholipids underlying Cutaneous Damage. J Biol Chem 2005; 280:35448-57. [PMID: 16115894 DOI: 10.1074/jbc.m503811200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ultraviolet B light (UVB) causes cutaneous inflammation and cell death, but the agents responsible are not defined. These studies examined the role of the platelet-activating factor (PAF) signaling system in UVB-mediated effects. Expression of the PAF receptor in the PAF receptor-negative epidermoid cell line KB augmented apoptosis in response to UVB irradiation. Overexpression of the PAF receptor in primary human keratinocytes also enhanced UVB-mediated apoptosis in vitro, and it enhanced apoptosis in an in vivo model of human keratinocytes grafted onto severe combined immune-deficient (SCID) mice. To define the mechanism by which UVB activates the PAF receptor, we used mass spectrometry to demonstrate significant amounts of the C4 PAF analogs 1-alkyl-2-(butanoyl and butenoyl)-sn-glycero-3-phosphocholine, as well as native PAF in an epidermal cell line after UVB irradiation. Supplementing the cells with the precursor phospholipid 1-hexadecyl-2-arachidonoyl-sn-glycero-3-phosphocholine (HAPC) increased the amount of C4 PAF analogs recovered after UVB exposure. We irradiated HAPC directly and found, even in the absence of a photosensitizer, fragmentation to C4-PAF receptor ligands. We conclude UVB photo-oxidizes cellular phospholipids, creating PAF analogs that stimulate the PAF receptor to induce further PAF synthesis and apoptosis. PAF signaling may participate in the cutaneous inflammation that occurs during photo-aggravated dermatoses.
Collapse
Affiliation(s)
- Gopal K Marathe
- Human Molecular Biology and Genetics Program, University of Utah, Salt Lake City 84112-5330, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|