1
|
Binvignat M, Sellam J, Berenbaum F, Felson DT. The role of obesity and adipose tissue dysfunction in osteoarthritis pain. Nat Rev Rheumatol 2024; 20:565-584. [PMID: 39112603 DOI: 10.1038/s41584-024-01143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
Obesity has a pivotal and multifaceted role in pain associated with osteoarthritis (OA), extending beyond the mechanistic influence of BMI. It exerts its effects both directly and indirectly through various modifiable risk factors associated with OA-related pain. Adipose tissue dysfunction is highly involved in OA-related pain through local and systemic inflammation, immune dysfunction, and the production of pro-inflammatory cytokines and adipokines. Adipose tissue dysfunction is intricately connected with metabolic syndrome, which independently exerts specific effects on OA-related pain, distinct from its association with BMI. The interplay among obesity, adipose tissue dysfunction and metabolic syndrome influences OA-related pain through diverse pain mechanisms, including nociceptive pain, peripheral sensitization and central sensitization. These complex interactions contribute to the heightened pain experience observed in individuals with OA and obesity. In addition, pain management strategies are less efficient in individuals with obesity. Importantly, therapeutic interventions targeting obesity and metabolic syndrome hold promise in managing OA-related pain. A deeper understanding of the intricate relationship between obesity, metabolic syndrome and OA-related pain is crucial and could have important implications for improving pain management and developing innovative therapeutic options in OA.
Collapse
Affiliation(s)
- Marie Binvignat
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Sorbonne University, INSERM UMRS_959, I3 Lab Immunology Immunopathology Immunotherapy, Paris, France
| | - Jérémie Sellam
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France.
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Francis Berenbaum
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - David T Felson
- Boston University School of Medicine, Department of Medicine, Section of Rheumatology, Boston, MA, USA
| |
Collapse
|
2
|
Tricò D, Chiriacò M, Nouws J, Vash-Margita A, Kursawe R, Tarabra E, Galderisi A, Natali A, Giannini C, Hellerstein M, Ferrannini E, Caprio S. Alterations in Adipose Tissue Distribution, Cell Morphology, and Function Mark Primary Insulin Hypersecretion in Youth With Obesity. Diabetes 2024; 73:941-952. [PMID: 37870826 PMCID: PMC11109779 DOI: 10.2337/db23-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Excessive insulin secretion independent of insulin resistance, defined as primary hypersecretion, is associated with obesity and an unfavorable metabolic phenotype. We examined the characteristics of adipose tissue of youth with primary insulin hypersecretion and the longitudinal metabolic alterations influenced by the complex adipo-insular interplay. In a multiethnic cohort of adolescents with obesity but without diabetes, primary insulin hypersecretors had enhanced model-derived β-cell glucose sensitivity and rate sensitivity but worse glucose tolerance, despite similar demographics, adiposity, and insulin resistance measured by both oral glucose tolerance test and euglycemic-hyperinsulinemic clamp. Hypersecretors had greater intrahepatic and visceral fat depots at abdominal MRI, hypertrophic abdominal subcutaneous adipocytes, higher free fatty acid and leptin serum levels per fat mass, and faster in vivo lipid turnover assessed by a long-term 2H2O labeling protocol. At 2-year follow-up, hypersecretors had greater fat accrual and a threefold higher risk for abnormal glucose tolerance, while individuals with hypertrophic adipocytes or higher leptin levels showed enhanced β-cell glucose sensitivity. Primary insulin hypersecretion is associated with marked alterations in adipose tissue distribution, cellularity, and lipid dynamics, independent of whole-body adiposity and insulin resistance. Pathogenetic insight into the metabolic crosstalk between β-cell and adipocyte may help to identify individuals at risk for chronic hyperinsulinemia, body weight gain, and glucose intolerance. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa, Italy
| | - Martina Chiriacò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa, Italy
| | - Jessica Nouws
- Department of Pediatrics, Yale School of Medicine, New Haven, CT
| | - Alla Vash-Margita
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | | | | | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa, Italy
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti “G. d’Annunzio,” Chieti, Italy
| | - Marc Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Sonia Caprio
- Department of Pediatrics, Yale School of Medicine, New Haven, CT
| |
Collapse
|
3
|
Sato S. Adipo-oncology: adipocyte-derived factors govern engraftment, survival, and progression of metastatic cancers. Cell Commun Signal 2024; 22:52. [PMID: 38238841 PMCID: PMC10797898 DOI: 10.1186/s12964-024-01474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Conventional therapies for metastatic cancers have limited efficacy. Recently, cancer therapies targeting noncancerous cells in tumor microenvironments have shown improved clinical outcomes in patients. However, further advances in our understanding of the metastatic tumor microenvironment are required to improve treatment outcomes. Adipocytes are distributed throughout the body, and as a part of the metastatic tumor microenvironment, they interact with cancer cells in almost all organs. Adipocytes secrete various factors that are reported to exert clinical effects on cancer progression, including engraftment, survival, and expansion at the metastatic sites. However, only a few studies have comprehensively examined their impact on cancer cells. In this review, we examined the impact of adipocytes on cancer by describing the adipocyte-secreted factors that are involved in controlling metastatic cancer, focusing on adipokines, such as adiponectin, leptin, visfatin, chemerin, resistin, apelin, and omentin. Adipocyte-secreted factors promote cancer metastasis and contribute to various biological functions of cancer cells, including migration, invasion, proliferation, immune evasion, and drug resistance at the metastatic sites. We propose the establishment and expansion of "adipo-oncology" as a research field to enhance the comprehensive understanding of the role of adipocytes in metastatic cancers and the development of more robust metastatic cancer treatments.
Collapse
Affiliation(s)
- Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Department of Pathology, Kanagawa Cancer Center Hospital, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
| |
Collapse
|
4
|
Chiriacò M, Nesti L, Flyvbjerg A, Golay A, Nazare JA, Anderwald CH, Mitrakou A, Bizzotto R, Mari A, Natali A. At any Level of Adiposity, Relatively Elevated Leptin Concentrations Are Associated With Decreased Insulin Sensitivity. J Clin Endocrinol Metab 2024; 109:461-470. [PMID: 37650623 DOI: 10.1210/clinem/dgad505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
CONTEXT The impact of obesity on glucose homeostasis has high interindividual variability, which may be partially explained by different adipokine concentrations. Leptin regulates energy balance and metabolism, and although its plasma levels are proportional to fat mass, they vary significantly across individuals with the same level of adiposity. OBJECTIVE We tested whether glucose homeostasis differs in subjects with similar degrees of adiposity but different leptin levels. METHODS We analyzed 1290 healthy adults from the Relationship Between Insulin Sensitivity and Cardiovascular Disease study cohort (30-60 years; male/female, 577/713; body mass index [BMI], 25 ± 3 kg/m2) characterized for body composition and metabolic variables with a 75-g oral glucose tolerance test, euglycemic-hyperinsulinemic clamp, β-cell function, and lipidomics. RESULTS Individuals were divided into relatively high and low leptin (RHL and RLL) if they were above or below the sex-specific leptin-fat mass (%) regression. Despite similar glucose tolerance, RHL showed markedly higher fasting and oral glucose tolerance test insulin concentration (+30% and +29%, respectively; P < .0001) and secretion (+17% and +11%, respectively; P < .0001). Regardless of BMI, RHL individuals had lower whole-body (-17-23%, P < .0001) and adipose tissue insulin sensitivity (-24%, P < .0001) compared with RLL. Notably, lean RHL individuals showed similar insulin sensitivity and β-cell function to RLL individuals with overweight/obesity. CONCLUSION Subjects with leptin levels that are inappropriately elevated for their fat mass show whole-body/adipose tissue insulin resistance and hyperinsulinemia, regardless of BMI.
Collapse
Affiliation(s)
- Martina Chiriacò
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Lorenzo Nesti
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Allan Flyvbjerg
- Steno Diabetes Center Copenhagen, Capital Region of Denmark, 2730 Copenhagen, Denmark
| | - Alain Golay
- Department of Endocrinology, Diabetology, Nutrition and Therapeutic Education of the Patient, Geneva University Hospital, 1206 Geneva, Switzerland
| | - Julie-Anne Nazare
- Department of Human Nutrition Research Center Rhône-Alpes, CarMeN Laboratory, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Christian-Heinz Anderwald
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Asimina Mitrakou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Roberto Bizzotto
- Institute of Neuroscience, National Research Council, 35127 Padova, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, 35127 Padova, Italy
| | - Andrea Natali
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Murtazaliyeva A, Svyatova G, Berezina G, Urazbayeva G, Sadyrbekova A. Genes of Inflammation and Placental Function GWAS Associated with Idiopathic Recurrent Miscarriage in the Kazakh Population. J Hum Reprod Sci 2024; 17:42-49. [PMID: 38665610 PMCID: PMC11041318 DOI: 10.4103/jhrs.jhrs_134_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 04/28/2024] Open
Abstract
Background The loss of two or more pregnancies is considered recurrent miscarriage (RM). One of the causes of this pathology is the occurrence of mutations both in pleiotropic and pathway-specific regulators and in structural genes. The simplest type of such mutations is single nucleotide polymorphisms. Aims The aim of the study is to study the relationship between gene polymorphisms of anti- and pro-inflammatory cytokines - interferon-gamma (T874A), interleukin (IL1B) (C3954T), IL6 (G572C) and IL10 (G1082A); placental function, apoptosis and angiogenesis - apolipoprotein C-III (APOC3) (G5163C), kinase insert domain receptor (A1719T, G1192A), P53 (Arg72Pro) and signal transducer and activator of transcription 3 (STAT3) (C1697G) with the development of idiopathic RM (iRM) in the Kazakh population. Settings and Design This was a case-control study. Materials and Methods Molecular genetic studies were performed by TaqMan using a single site-specific amplification and real-time genotyping method in 302 women with iRM and 300 with normal reproduction. DNA isolation from the biomaterial was carried out using kits containing binding magnetic particles. Both samples were analysed for alleles and genotypes for the studied polymorphisms. Statistical Analysis Used For statistical data processing, Pearson's criterion, confidence interval (CI) and probability value were taken into account. Results It was found that the carriage of unfavourable genotypes (G/C, C/C) for the G5163C polymorphism of the APOC3 gene increases the risk of developing iRM by three times (odds ratio = 3.0; 95% CI = 2.24-4.07). Other studied polymorphisms in the genes of ILs, interferon, P53 proapoptotic protein, kinase domain receptor and STAT3 transcription activator were not associated with RM. Conclusion Significant associations of APOC3 gene genotypes with the development of iRM in the Kazakh population indicate the involvement of the placental system, which is realised by vascularisation defects and defective embryo implantation and leads to early pregnancy termination.
Collapse
Affiliation(s)
- Alexandra Murtazaliyeva
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| | - Gulnara Svyatova
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| | - Galina Berezina
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| | - Gulfairuz Urazbayeva
- Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| | - Aigerim Sadyrbekova
- Department of Public Health and Hygiene, Astana Medical University, Astana, Republic of Kazakhstan
| |
Collapse
|
6
|
Caprioli B, Eichler RAS, Silva RNO, Martucci LF, Reckziegel P, Ferro ES. Neurolysin Knockout Mice in a Diet-Induced Obesity Model. Int J Mol Sci 2023; 24:15190. [PMID: 37894869 PMCID: PMC10607720 DOI: 10.3390/ijms242015190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Neurolysin oligopeptidase (E.C.3.4.24.16; Nln), a member of the zinc metallopeptidase M3 family, was first identified in rat brain synaptic membranes hydrolyzing neurotensin at the Pro-Tyr peptide bond. The previous development of C57BL6/N mice with suppression of Nln gene expression (Nln-/-), demonstrated the biological relevance of this oligopeptidase for insulin signaling and glucose uptake. Here, several metabolic parameters were investigated in Nln-/- and wild-type C57BL6/N animals (WT; n = 5-8), male and female, fed either a standard (SD) or a hypercaloric diet (HD), for seven weeks. Higher food intake and body mass gain was observed for Nln-/- animals fed HD, compared to both male and female WT control animals fed HD. Leptin gene expression was higher in Nln-/- male and female animals fed HD, compared to WT controls. Both WT and Nln-/- females fed HD showed similar gene expression increase of dipeptidyl peptidase 4 (DPP4), a peptidase related to glucagon-like peptide-1 (GLP-1) metabolism. The present data suggest that Nln participates in the physiological mechanisms related to diet-induced obesity. Further studies will be necessary to better understand the molecular mechanism responsible for the higher body mass gain observed in Nln-/- animals fed HD.
Collapse
Affiliation(s)
- Bruna Caprioli
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Rosangela A. S. Eichler
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Renée N. O. Silva
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Luiz Felipe Martucci
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Patricia Reckziegel
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences (FCF), University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Emer S. Ferro
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| |
Collapse
|
7
|
Williamson A, da Silva A, do Carmo JM, Le Maitre C, Hall JE, Aberdein N. Impact of leptin deficiency on male tibia and vertebral body 3D bone architecture independent of changes in body weight. Physiol Rep 2023; 11:10.14814/phy2.15832. [PMID: 37786973 PMCID: PMC10546263 DOI: 10.14814/phy2.15832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023] Open
Abstract
Leptin an adipokine with potent effects on energy balance and body weight plays an important role in defining bone architecture in growing mammals. However, major changes in body weight can also influence morphology of trabecular and cortical bone. Therefore, we examined the impact of leptin deficiency on tibia and vertebral body 3D bone architecture independent of changes in body weight. Furthermore, advances in computational 3D image analysis suggest that average morphological values may mask regional specific differences in trabecular bone thickness. The study utilized leptin-deficient Ob/Ob mice (n = 8) weight-paired to C57BL/6 (C57) control mice (n = 8) which were split into either lean or obese groups for 24 ± 2 weeks. Whole tibias and L3 vertebrae were fixed before high resolution microcomputed tomography (μCT) scanning was performed. Leptin deficiency independent of body weight reduced tibia cortical bone volume, trabecular bone volume/tissue volume, number, and mineral density. Mean tibia trabecular thickness showed no significant differences between all groups; however, significant changes in trabecular thickness were found when analyzed by region. This study demonstrates that leptin deficiency significantly impacts tibia and vertebral body trabecular and cortical bone 3D architecture independent of changes in body weight.
Collapse
Affiliation(s)
- Alexander Williamson
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| | - Alexandre da Silva
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Jussara M. do Carmo
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Christine L. Le Maitre
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| | - John E. Hall
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Nicola Aberdein
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| |
Collapse
|
8
|
Hojeij B, Rousian M, Sinclair KD, Dinnyes A, Steegers-Theunissen RPM, Schoenmakers S. Periconceptional biomarkers for maternal obesity: a systematic review. Rev Endocr Metab Disord 2023; 24:139-175. [PMID: 36520252 PMCID: PMC10023635 DOI: 10.1007/s11154-022-09762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 12/23/2022]
Abstract
Periconceptional maternal obesity is linked to adverse maternal and neonatal outcomes. Identifying periconceptional biomarkers of pathways affected by maternal obesity can unravel pathophysiologic mechanisms and identify individuals at risk of adverse clinical outcomes. The literature was systematically reviewed to identify periconceptional biomarkers of the endocrine, inflammatory and one-carbon metabolic pathways influenced by maternal obesity. A search was conducted in Embase, Ovid Medline All, Web of Science Core Collection and Cochrane Central Register of Controlled Trials databases, complemented by manual search in PubMed until December 31st, 2020. Eligible studies were those that measured biomarker(s) in relation to maternal obesity, overweight/obesity or body mass index (BMI) during the periconceptional period (14 weeks preconception until 14 weeks post conception). The ErasmusAGE score was used to assess the quality of included studies. Fifty-one articles were included that evaluated over 40 biomarkers. Endocrine biomarkers associated with maternal obesity included leptin, insulin, thyroid stimulating hormone, adiponectin, progesterone, free T4 and human chorionic gonadotropin. C-reactive protein was associated with obesity as part of the inflammatory pathway, while the associated one-carbon metabolism biomarkers were folate and vitamin B12. BMI was positively associated with leptin, C-reactive protein and insulin resistance, and negatively associated with Free T4, progesterone and human chorionic gonadotropin. Concerning the remaining studied biomarkers, strong conclusions could not be established due to limited or contradictory data. Future research should focus on determining the predictive value of the optimal set of biomarkers for their use in clinical settings. The most promising biomarkers include leptin, adiponectin, human chorionic gonadotropin, insulin, progesterone and CRP.
Collapse
Affiliation(s)
- Batoul Hojeij
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Melek Rousian
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Kevin D Sinclair
- School of Biosciences, Sutton Bonnington Campus, University of Nottingham, Leicestershire, LE12 6HD, UK
| | - Andras Dinnyes
- BioTalentum Ltd., Godollo, 2100, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, 6720, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, 2100, Hungary
| | | | - Sam Schoenmakers
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands.
| |
Collapse
|
9
|
Musa M, Zeppieri M, Enaholo ES, Salati C, Parodi PC. Adipose Stem Cells in Modern-Day Ophthalmology. Clin Pract 2023; 13:230-245. [PMID: 36826163 PMCID: PMC9955457 DOI: 10.3390/clinpract13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Stem cells (SCs) have evolved as an interesting and viable factor in ophthalmologic patient care in the past decades. SCs have been classified as either embryonic, mesenchymal, tissue-specific, or induced pluripotent cells. Multiple novel management techniques and clinical trials have been established to date. While available publications are predominantly animal-model-based, significant material is derived from human studies and case-selected scenarios. This possibility of explanting cells from viable tissue to regenerate/repair damaged tissue points to an exciting future of therapeutic options in all fields of medicine, and ophthalmology is surely not left out. Adipose tissue obtained from lipo-aspirates has been shown to produce mesenchymal SCs that are potentially useful in different body parts, including the oculo-visual system. An overview of the anatomy, physiology, and extraction process for adipose-tissue-derived stem cells (ADSC) is important for better understanding the potential therapeutic benefits. This review examines published data on ADSCs in immune-modulatory, therapeutic, and regenerative treatments. We also look at the future of ADSC applications for ophthalmic patient care. The adverse effects of this relatively novel therapy are also discussed.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Correspondence:
| | | | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
10
|
A. Abd M, A. Abbas S, G. Shareef L. Impact of serum leptin and adiponectin levels on breast cancer in postmenopausal Iraqi women: an observational Study. F1000Res 2022; 11:1572. [DOI: 10.12688/f1000research.127528.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Breast cancer is the most common malignant tumor and the second most significant cause of death for women in Iraq, behind cardiovascular diseases. Obesity has been linked to a substantial increase in the risk of breast cancer. Adipose tissue functions as an endocrine gland, controlling the body's metabolism by secreting adipokines, which play a significant role in metabolism and inflammatory reactions. Methods: Overall, 90 postmenopausal women participated in this research. Of these, 60 patients with breast cancer were recruited at Baghdad's Oncology Teaching Hospital between October 2021 and February 2022: 30 were obese with a body mass index (BMI) of > 30 kg/m2 (group 1), and 30 were not obese (group 2). The third group consisted of 30 participants without breast cancer or obesity (group 3). Each person donated five milliliters of venous blood. The blood levels of adiponectin and leptin are determined using enzyme-linked immunosorbent assay (ELISA) kits. Results: Control individuals who were not obese (group 3) had greater blood adiponectin levels than patients with cancer who were both obese and non-obese (groups 1 and 2), with no significant difference in serum adiponectin levels seen between groups 1 and 2. The findings also showed that group 1 (patients with breast cancer and obesity) had greater serum leptin levels than both group 2 (patients with breast cancer without obesity) and the control group (group 3), with no significant difference in serum leptin levels between groups 2 and 3. Conclusions: Adiponectin levels in the blood of women with breast cancer and obesity were low which may be due to high BMI, which reduces adiponectin's protective effects. Conversely, Leptin levels were more significant in the blood of women with breast cancer and obesity than in the control group, which may be due to its pro-inflammatory effects in obesity, among other variables.
Collapse
|
11
|
Harris BHL, Macaulay VM, Harris DA, Klenerman P, Karpe F, Lord SR, Harris AL, Buffa FM. Obesity: a perfect storm for carcinogenesis. Cancer Metastasis Rev 2022; 41:491-515. [PMID: 36038791 PMCID: PMC9470699 DOI: 10.1007/s10555-022-10046-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Obesity-related cancers account for 40% of the cancer cases observed in the USA and obesity is overtaking smoking as the most widespread modifiable risk factor for carcinogenesis. Here, we use the hallmarks of cancer framework to delineate how obesity might influence the carcinogenic hallmarks in somatic cells. We discuss the effects of obesity on (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) resisting cell death; (d) enabling replicative immortality; (e) inducing angiogenesis; (f) activating invasion and metastasis; (g) reprogramming energy metabolism; and (h) avoiding immune destruction, together with its effects on genome instability and tumour-promoting inflammation. We present the current understanding and controversies in this evolving field, and highlight some areas in need of further cross-disciplinary focus. For instance, the relative importance of the many potentially causative obesity-related factors is unclear for each type of malignancy. Even within a single tumour type, it is currently unknown whether one obesity-related factor consistently plays a predominant role, or if this varies between patients or, even in a single patient with time. Clarifying how the hallmarks are affected by obesity may lead to novel prevention and treatment strategies for the increasingly obese population.
Collapse
Affiliation(s)
- Benjamin H L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- St Anne's College, 56 Woodstock Rd, Oxford, OX2 6HS, UK.
| | - Valentine M Macaulay
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
12
|
Theel W, Boxma-de Klerk BM, Dirksmeier-Harinck F, van Rossum EFC, Kanhai DA, Apers J, van Dalen BM, de Knegt RJ, Holleboom AG, Tushuizen ME, Grobbee DE, Wiebolt J, Castro Cabezas M. Evaluation of nonalcoholic fatty liver disease (NAFLD) in severe obesity using noninvasive tests and imaging techniques. Obes Rev 2022; 23:e13481. [PMID: 35692179 DOI: 10.1111/obr.13481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) and the more severe and inflammatory type, nonalcoholic steatohepatitis (NASH), is increasing rapidly. Especially in high-risk patients, that is those with obesity, metabolic syndrome, and type 2 diabetes mellitus, the prevalence of NAFLD can be as high as 80% while NASH may be present in 20% of these subjects. With the worldwide increase of obesity, it is most likely that these numbers will rise. Since advanced stages of NAFLD and NASH are strongly associated with morbidity and mortality-in particular, cardiovascular disease, liver cirrhosis, and hepatocellular carcinoma-it is of great importance to identify subjects at risk. A great variety of noninvasive tests has been published to diagnose NAFLD and NASH, especially using blood- and imaging-based tests. Liver biopsy remains the gold standard for NAFLD/NASH. This review aims to summarize the different mechanisms leading to NASH and liver fibrosis, the different noninvasive liver tests to diagnose and evaluate patients with severe obesity.
Collapse
Affiliation(s)
- Willy Theel
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Obesity Center CGG, Rotterdam, The Netherlands
| | - Bianca M Boxma-de Klerk
- Department of Statistics and Education, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Femme Dirksmeier-Harinck
- Department of Gastroenterology and Hepatology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danny A Kanhai
- Department of Pediatrics, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Jan Apers
- Department of Bariatric Surgery, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Bas M van Dalen
- Department of Cardiology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden UMC, Leiden, The Netherlands
| | - Diederick E Grobbee
- Julius Centre for Health Science and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.,Julius Clinical, Zeist, The Netherlands
| | - Janneke Wiebolt
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Obesity Center CGG, Rotterdam, The Netherlands
| | - Manuel Castro Cabezas
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Julius Clinical, Zeist, The Netherlands
| |
Collapse
|
13
|
The Association between Peptide Hormones with Obesity and Insulin Resistance Markers in Lean and Obese Individuals in the United Arab Emirates. Nutrients 2022; 14:nu14061271. [PMID: 35334929 PMCID: PMC8954130 DOI: 10.3390/nu14061271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Peptide hormones play a crucial role in body weight and glucose homeostasis. In this study, we aimed to explore this association and recruited 43 obese and 31 age- and sex-matched lean participants. We assessed their body mass index (BMI), waist circumference (WC), waist-to-height ratio (WtHR), percentage body fat (PBF), fasting blood levels of peptide hormones (GLP-1, GLP-2, insulin, leptin, ghrelin, CCK, and PYY), fasting blood sugar (FBS), and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). We tested the associations between peptide hormones and markers of obesity and insulin resistance (IR) by using the Independent-Samples t-test and Mann-Whitney U test, partial correlation, and logistic regression. FBS, insulin, HOMA-IR, GLP-1, GLP-2, and leptin were significantly higher in the obese group; ghrelin and CCK were significantly higher in lean participants, and no difference was seen for PYY. Controlling for BMI, GLP-1 was positively correlated with WtHR, while ghrelin was inversely correlated with WtHR. GLP-1 was correlated with HOMA-IR. GLP-1 was associated with obesity and IR markers in the regression model. Our results show that obese and lean adults display significant differences in plasma peptide hormone levels. GLP-1 levels were independently associated with markers of obesity and IR. Restoring the appetite hormone balance in obesity may represent a potential therapeutic target.
Collapse
|
14
|
Cordeiro MM, Ribeiro RA, Bubna PB, Almeida AC, Laginski TRF, Franco GCN, Scomparin DX. Physical exercise attenuates obesity development in Western‐diet fed obese rats, independently of vitamin D supplementation. Clin Exp Pharmacol Physiol 2022; 49:633-642. [DOI: 10.1111/1440-1681.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Maiara Mikuska Cordeiro
- General Biology Department, Biologic Science and Health Sector State University of Ponta Grossa Ponta Grossa Puerto Rico Brazil
| | - Rosane Aparecida Ribeiro
- General Biology Department, Biologic Science and Health Sector State University of Ponta Grossa Ponta Grossa Puerto Rico Brazil
| | - Patrícia Biscaia Bubna
- General Biology Department, Biologic Science and Health Sector State University of Ponta Grossa Ponta Grossa Puerto Rico Brazil
| | - Any Caroline Almeida
- General Biology Department, Biologic Science and Health Sector State University of Ponta Grossa Ponta Grossa Puerto Rico Brazil
| | | | - Gilson César Nobre Franco
- General Biology Department, Biologic Science and Health Sector State University of Ponta Grossa Ponta Grossa Puerto Rico Brazil
| | - Dionízia Xavier Scomparin
- General Biology Department, Biologic Science and Health Sector State University of Ponta Grossa Ponta Grossa Puerto Rico Brazil
| |
Collapse
|
15
|
Cowman W, Scroggins SM, Hamilton WS, Karras AE, Bowdler NC, Devor EJ, Santillan MK, Santillan DA. Association between plasma leptin and cesarean section after induction of labor: a case control study. BMC Pregnancy Childbirth 2022; 22:29. [PMID: 35031012 PMCID: PMC8759283 DOI: 10.1186/s12884-021-04372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background Obesity in pregnancy is common, with more than 50% of pregnant women being overweight or obese. Obesity has been identified as an independent predictor of dysfunctional labor and is associated with increased risk of failed induction of labor resulting in cesarean section. Leptin, an adipokine, is secreted from adipose tissue under the control of the obesity gene. Concentrations of leptin increase with increasing percent body fat due to elevated leptin production from the adipose tissue of obese individuals. Interestingly, the placenta is also a major source of leptin production during pregnancy. Leptin has regulatory effects on neuronal tissue, vascular smooth muscle, and nonvascular smooth muscle systems. It has also been demonstrated that leptin has an inhibitory effect on myometrial contractility with both intensity and frequency of contractions decreased. These findings suggest that leptin may play an important role in dysfunctional labor and be associated with the outcome of induction of labor at term. Our aim is to determine whether maternal plasma leptin concentration is indicative of the outcome of induction of labor at term. We hypothesize that elevated maternal plasma leptin levels are associated with a failed term induction of labor resulting in a cesarean delivery. Methods In this case-control study, leptin was measured in 3rd trimester plasma samples. To analyze labor outcomes, 174 women were selected based on having undergone an induction of labor (IOL), (115 women with successful IOL and 59 women with a failed IOL). Plasma samples and clinical information were obtained from the UI Maternal Fetal Tissue Bank (IRB# 200910784). Maternal plasma leptin and total protein concentrations were measured using commercially available assays. Bivariate analyses and logistic regression models were constructed using regression identified clinically significant confounding variables. All variables were tested at significance level of 0.05. Results Women with failed IOL had higher maternal plasma leptin values (0.5 vs 0.3 pg, P = 0.01). These women were more likely to have obesity (mean BMI 32 vs 27 kg/m2, P = 0.0002) as well as require multiple induction methods (93% vs 73%, p = 0.008). Logistic regression showed Bishop score (OR 1.5, p < 0.001), BMI (OR 0.92, P < 0.001), preeclampsia (OR 0.12, P = 0.010), use of multiple methods of induction (OR 0.22, P = 0.008) and leptin (OR 0.42, P = 0.017) were significantly associated with IOL outcome. Specifically, after controlling for BMI, Bishop Score, and preeclampsia, leptin was still predictive of a failed IOL with an odds ratio of 0.47 (P = 0.046). Finally, using leptin as a predictor for fetal outcomes, leptin was also associated with of fetal intolerance of labor, with an odds ratio of 2.3 (P = 0.027). This association remained but failed to meet statistical significance when controlling for successful (IOL) (OR 1.5, P = 0.50). Conclusions Maternal plasma leptin may be a useful tool for determining which women are likely to have a failed induction of labor and for counseling women about undertaking an induction of labor versus proceeding with cesarean delivery.
Collapse
Affiliation(s)
- Whitney Cowman
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, 200 Hawkins Drive, 463 MRF, Iowa City, IA, 52242, USA.,Present Address: Department of Obstetrics & Gynecology, Iowa Methodist Medical Center, 1200 Pleasant Street, Des Moines, IA, 50309, USA
| | - Sabrina M Scroggins
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, 200 Hawkins Drive, 463 MRF, Iowa City, IA, 52242, USA
| | - Wendy S Hamilton
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, 200 Hawkins Drive, 463 MRF, Iowa City, IA, 52242, USA
| | - Alexandra E Karras
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, 200 Hawkins Drive, 463 MRF, Iowa City, IA, 52242, USA
| | - Noelle C Bowdler
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, 200 Hawkins Drive, 463 MRF, Iowa City, IA, 52242, USA
| | - Eric J Devor
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, 200 Hawkins Drive, 463 MRF, Iowa City, IA, 52242, USA
| | - Mark K Santillan
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, 200 Hawkins Drive, 463 MRF, Iowa City, IA, 52242, USA
| | - Donna A Santillan
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, 200 Hawkins Drive, 463 MRF, Iowa City, IA, 52242, USA.
| |
Collapse
|
16
|
Vasilakos LK, Steinbrekera B, Santillan DA, Santillan MK, Brandt DS, Dagle D, Roghair RD. Umbilical Cord Blood Leptin and IL-6 in the Presence of Maternal Diabetes or Chorioamnionitis. Front Endocrinol (Lausanne) 2022; 13:836541. [PMID: 35197933 PMCID: PMC8859102 DOI: 10.3389/fendo.2022.836541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 12/05/2022] Open
Abstract
Diabetes during pregnancy is associated with elevated maternal insulin, leptin and IL-6. Within the placenta, IL-6 can further stimulate leptin production. Despite structural similarities and shared roles in inflammation, leptin and IL-6 have contrasting effects on neurodevelopment, and the relative importance of maternal diabetes or chorioamnionitis on fetal hormone exposure has not been defined. We hypothesized that there would be a positive correlation between IL-6 and leptin with progressively increased levels in pregnancies complicated by maternal diabetes and chorioamnionitis. To test this hypothesis, cord blood samples were obtained from 104 term infants, including 47 exposed to maternal diabetes. Leptin, insulin, and IL-6 were quantified by multiplex assay. Factors independently associated with hormone levels were identified by univariate and multivariate linear regression. Unlike IL-6, leptin and insulin were significantly increased by maternal diabetes. Maternal BMI and birth weight were independent predictors of leptin and insulin with birth weight the strongest predictor of leptin. Clinically diagnosed chorioamnionitis and neonatal sepsis were associated with increased IL-6 but not leptin. Among appropriate for gestational age infants without sepsis, IL-6 and leptin were strongly correlated (R=0.6, P<0.001). In summary, maternal diabetes and birth weight are associated with leptin while chorioamnionitis is associated with IL-6. The constraint of the positive association between leptin and IL-6 to infants without sepsis suggests that the term infant and placenta may have a limited capacity to increase cord blood levels of the neuroprotective hormone leptin in the presence of increased cord blood levels of the potential neurotoxin IL-6.
Collapse
Affiliation(s)
- Lauren K. Vasilakos
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Baiba Steinbrekera
- Department of Pediatrics, University of South Dakota, Sioux Falls, SD, United States
| | - Donna A. Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Mark K. Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Debra S. Brandt
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Daniel Dagle
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Robert D. Roghair
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- *Correspondence: Robert D. Roghair,
| |
Collapse
|
17
|
Adamska A, Popławska-Kita A, Siewko K, Łebkowska A, Krentowska A, Buczyńska A, Popławski Ł, Szumowski P, Szelachowska M, Krętowski AJ, Kowalska I. Body Composition and Serum Anti-Müllerian Hormone Levels in Euthyroid Caucasian Women With Hashimoto Thyroiditis. Front Endocrinol (Lausanne) 2021; 12:657752. [PMID: 34393994 PMCID: PMC8358788 DOI: 10.3389/fendo.2021.657752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022] Open
Abstract
Objective Women with Hashimoto thyroiditis (HT) are characterized by increased incidence of infertility and disturbances in body composition. Serum anti-Müllerian hormone (AMH), which reflects functional ovarian reserve, is decreased in women with HT and it be related to body mass. The aim of the present study was to investigate the relation between serum levels of AMH and body composition in HT compared to control group. Patients and Methods We examined 85 euthyroid women: 39 subjects with HT and 46 control women. Body composition was analysed by dual-energy X-ray absorptiometry and with bioimpedance method. Serum concentrations of AMH, leptin, TSH, thyroid hormones were assessed. Results We observed lower serum concentration of AMH in women with HT in comparison to the control group (p=0.01), but without differences in serum concentration of leptin between studied groups (p=0.28). Women with HT were characterized by higher %body fat (p=0.01) estimated with bioimpedance method without differences in BMI, android and gynoid fat mass and visceral adipose tissue (VAT) mass estimated with DXA method when compared to the control group (all p>0.05). We found a negative relationship between serum concentration of AMH and %body fat (r=-0.38,p=0.03) in women with HT. Additionally, in HT group, the relationship between serum levels of AMH and leptin was not statistically significant (r=0.01,p=0.96). We observed a relationship between serum concentration of leptin and BMI, %body fat mass, android, gynoid and VAT mass in HT and in the control group (all p<0.01). Conclusions Women with HT are characterized by lower levels of AMH and it is associated with higher fat mass, independently of serum levels of leptin.
Collapse
Affiliation(s)
- Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland
| | - Anna Popławska-Kita
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland
| | - Agnieszka Łebkowska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Białystok, Bialystok, Poland
| | - Anna Krentowska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Białystok, Bialystok, Poland
| | - Angelika Buczyńska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland
| | - Łukasz Popławski
- Department of Radiology, Medical University of Białystok, Bialystok, Poland
| | - Piotr Szumowski
- Department of Nuclear Medicine, Medical University of Białystok, Bialystok, Poland
| | - Małgorzata Szelachowska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland
| | - Adam Jacek Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland
- Clinical Research Centre, Medical University of Białystok, Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Białystok, Bialystok, Poland
| |
Collapse
|
18
|
Crudele L, Piccinin E, Moschetta A. Visceral Adiposity and Cancer: Role in Pathogenesis and Prognosis. Nutrients 2021; 13:2101. [PMID: 34205356 PMCID: PMC8234141 DOI: 10.3390/nu13062101] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
The prevalence of being overweight and obese has been expanded dramatically in recent years worldwide. Obesity usually occurs when the energetic introit overtakes energy expenditure from metabolic and physical activity, leading to fat accumulation mainly in the visceral depots. Excessive fat accumulation represents a risk factor for many chronic diseases, including cancer. Adiposity, chronic low-grade inflammation, and hyperinsulinemia are essential factors of obesity that also play a crucial role in tumor onset. In recent years, several strategies have been pointed toward boundary fat accumulation, thus limiting the burden of cancer attributable to obesity. While remodeling fat via adipocytes browning seems a tempting prospect, lifestyle interventions still represent the main pathway to prevent cancer and enhance the efficacy of treatments. Specifically, the Mediterranean Diet stands out as one of the best dietary approaches to curtail visceral adiposity and, therefore, cancer risk. In this Review, the close relationship between obesity and cancer has been investigated, highlighting the biological mechanisms at the basis of this link. Finally, strategies to remodel fat, including browning and lifestyle interventions, have been taken into consideration as a major perspective to limit excess body weight and tumor onset.
Collapse
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (L.C.); (E.P.)
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (L.C.); (E.P.)
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (L.C.); (E.P.)
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
- National Cancer Center, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| |
Collapse
|
19
|
Westgate CS, Botfield HF, Alimajstorovic Z, Yiangou A, Walsh M, Smith G, Singhal R, Mitchell JL, Grech O, Markey KA, Hebenstreit D, Tennant DA, Tomlinson JW, Mollan SP, Ludwig C, Akerman I, Lavery GG, Sinclair AJ. Systemic and adipocyte transcriptional and metabolic dysregulation in idiopathic intracranial hypertension. JCI Insight 2021; 6:145346. [PMID: 33848268 PMCID: PMC8262372 DOI: 10.1172/jci.insight.145346] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Idiopathic intracranial hypertension (IIH) is a condition predominantly affecting obese women of reproductive age. Recent evidence suggests that IIH is a disease of metabolic dysregulation, androgen excess, and an increased risk of cardiovascular morbidity. Here we evaluate systemic and adipose specific metabolic determinants of the IIH phenotype. METHODS In fasted, matched IIH (n = 97) and control (n = 43) patients, we assessed glucose and insulin homeostasis and leptin levels. Body composition was assessed along with an interrogation of adipose tissue function via nuclear magnetic resonance metabolomics and RNA sequencing in paired omental and subcutaneous biopsies in a case-control study. RESULTS We demonstrate an insulin- and leptin-resistant phenotype in IIH in excess of that driven by obesity. Adiposity in IIH is preferentially centripetal and is associated with increased disease activity and insulin resistance. IIH adipocytes appear transcriptionally and metabolically primed toward depot-specific lipogenesis. CONCLUSION These data show that IIH is a metabolic disorder in which adipose tissue dysfunction is a feature of the disease. Managing IIH as a metabolic disease could reduce disease morbidity and improve cardiovascular outcomes. FUNDING This study was supported by the UK NIHR (NIHR-CS-011-028), the UK Medical Research Council (MR/K015184/1), Diabetes UK, Wellcome Trust (104612/Z/14/Z), the Sir Jules Thorn Award, and the Midlands Neuroscience Teaching and Research Fund.
Collapse
Affiliation(s)
- Connar Sj Westgate
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Hannah F Botfield
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zerin Alimajstorovic
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Andreas Yiangou
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Neurology, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Mark Walsh
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Gabrielle Smith
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Rishi Singhal
- Upper GI Unit and Minimally Invasive Unit, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham United Kingdom
| | - James L Mitchell
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Olivia Grech
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Keira A Markey
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Neurology, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Daniel Hebenstreit
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology & Metabolism, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Headington, Oxford, United Kingdom
| | - Susan P Mollan
- Birmingham Neuro-Ophthalmology, Ophthalmology Department, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Ildem Akerman
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Alexandra J Sinclair
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,Department of Neurology, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
20
|
Kowalska K, Dembczyński R, Gołąbek A, Olkowicz M, Olejnik A. ROS Modulating Effects of Lingonberry ( Vaccinium vitis-idaea L.) Polyphenols on Obese Adipocyte Hypertrophy and Vascular Endothelial Dysfunction. Nutrients 2021; 13:nu13030885. [PMID: 33803343 PMCID: PMC7999824 DOI: 10.3390/nu13030885] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and dysregulated adipocytokine secretion accompanying hypertrophied adipose tissue induce chronic inflammation, which leads to vascular endothelial dysfunction. The present study investigated the ability of anthocyanin (ACN) and non-anthocyanin polyphenol (PP) fractions from lingonberry fruit to mitigate adipose tissue hypertrophy and endothelial dysfunction using 3T3-L1 adipocytes and human umbilical vein endothelial cells (HUVECs). This study showed that the PP fraction decreased intracellular ROS generation in hypertrophied adipocytes by enhancing antioxidant enzyme expression (SOD2) and inhibiting oxidant enzyme expression (NOX4, iNOS). Moreover, PP and ACN fractions reduced triglyceride content in adipocytes accompanied by downregulation of the expression of lipogenic genes such as aP2, FAS, and DAGT1. Treatment with both fractions modulated the mRNA expression and protein secretion of key adipokines in hypertrophied adipocytes. Expression and secretion of leptin and adiponectin were, respectively, down- and upregulated. Furthermore, PP and ACN fractions alleviated the inflammatory response in TNF-α-induced HUVECs by inhibiting the expression of pro-inflammatory genes (IL-6, IL-1β) and adhesion molecules (VCAM-1, ICAM-1, SELE). The obtained results suggest that consuming polyphenol-rich lingonberry fruit may help prevent and treat obesity and endothelial dysfunction due to their antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
- Katarzyna Kowalska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland; (K.K.); (R.D.); (A.G.)
| | - Radosław Dembczyński
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland; (K.K.); (R.D.); (A.G.)
| | - Agata Gołąbek
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland; (K.K.); (R.D.); (A.G.)
| | - Mariola Olkowicz
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland;
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland; (K.K.); (R.D.); (A.G.)
- Correspondence:
| |
Collapse
|
21
|
Korac A, Srdic-Galic B, Kalezic A, Stancic A, Otasevic V, Korac B, Jankovic A. Adipokine signatures of subcutaneous and visceral abdominal fat in normal-weight and obese women with different metabolic profiles. Arch Med Sci 2021; 17:323-336. [PMID: 33747267 PMCID: PMC7959090 DOI: 10.5114/aoms/92118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Metabolic syndrome arises from abnormal adipose function accompanied by insulin resistance. As early factors reflecting/impacting lipid storage dysfunction of adipose tissues, we sought to determine adipokine levels in subcutaneous and visceral adipose tissues (SAT and VAT). MATERIAL AND METHODS Gene and protein expression levels of leptin, adiponectin, and resistin were analysed in SAT and VAT of normal-weight and overweight/obese women, subclassified according to insulin resistance index, triglyceride, total, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol levels into metabolically healthy and "at risk" groups. RESULTS Compared with normal-weight women, obese women had higher serum leptin levels (p < 0.05), as well as increased leptin gene and protein expression in VAT. Conversely, expression levels of leptin were lower in SAT of obese women, and minor in the SAT of "at risk" groups of women, compared with weight-matched healthy groups. In addition, lower adiponectin levels were detected in SAT of metabolically healthy obese women (p < 0.01), and lower in SAT and VAT (p < 0.05) of "at risk" obese women compared to healthy, obese women. Significant differences in resistin levels were only observed in obese women; resistin gene expression was higher in VAT and SAT of obese, compared to normal-weight women. However, higher gene expression was not consistent with protein expression of resistin. CONCLUSIONS Low adiponectin in both examined adipose tissues and inappropriate leptin expression levels in SAT appear to be important characteristics of obesity-related metabolic syndrome. Intriguingly, this adipokine dysregulation is primary seen in SAT, suggesting that endocrine dysfunction in this abdominal depot may be an early risk sign of metabolic syndrome.
Collapse
Affiliation(s)
- Aleksandra Korac
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Biljana Srdic-Galic
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Andjelika Kalezic
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Stancic
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Otasevic
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Jankovic
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
Abstract
Adipose, or fat, tissue (AT) was once considered an inert tissue that primarily existed to store lipids, and was not historically recognized as an important organ in the regulation and maintenance of health. With the rise of obesity and more rigorous research, AT is now recognized as a highly complex metabolic organ involved in a host of important physiological functions, including glucose homeostasis and a multitude of endocrine capabilities. AT dysfunction has been implicated in several disease states, most notably obesity, metabolic syndrome and type 2 diabetes. The study of AT has provided useful insight in developing strategies to combat these highly prevalent metabolic diseases. This review highlights the major functions of adipose tissue and the consequences that can occur when disruption of these functions leads to systemic metabolic dysfunction.
Collapse
Affiliation(s)
- Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
23
|
Linares AM, Rayens MK, Moylan JS, Miller CS. Degree of Agreement Between Infant Serum and Salivary Concentration of Leptin and Adiponectin and Its Association With Infants' Feeding. Biol Res Nurs 2020; 23:541-549. [PMID: 33251850 DOI: 10.1177/1099800420973366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Leptin and adiponectin, two adipokines involved in glucose and lipid metabolism, have been linked to regulation of growth in early infancy, energy balance, and metabolic disorders in childhood. The aim of this study was to determine if concentrations of leptin and adiponectin could be measured reliably in infants' saliva, to evaluate the degree of agreement with infant serum levels, and to explore their association with infant feeding status. METHODS A total of 34 infants were recruited after birth and followed for 20 weeks. After log-transformation of the values, a Bland-Altman graphical approach was used to summarize the direction of the difference between the serum and saliva values. Repeated measures mixed modeling was used to evaluate differences over time in these outcomes by feeding status. RESULTS Mean concentration of salivary leptin and adiponectin in infants was 3.7 (SD = .8) ng/mL and 2.9 (SD = 0.7) ng/mL, respectively. The degree of agreement between serum and saliva for log-transformed leptin and adiponectin values were relatively robust, albeit with a non-zero bias between the two methods, given that serum values were greater than corresponding saliva values for both adipokines in all infants. Each of the four repeated measures mixed models (one for each adipokine measure) had a significant main effect; however, the interaction between time and feeding status was not significant in any of the models. CONCLUSION This study demonstrated that leptin and adiponectin can be measured in infant saliva, but in some cases leptin concentrations may be more difficult to detect.
Collapse
Affiliation(s)
- Ana M Linares
- College of Nursing, 4530University of Kentucky, Lexington, KY, USA
| | - Mary Kay Rayens
- College of Nursing, 4530University of Kentucky, Lexington, KY, USA
| | - Jennifer S Moylan
- Center for Clinical and Translational Science, 16104University of Kentucky, Lexington, KY, USA
| | - Craig S Miller
- College of Dentistry, 160339University of Kentucky, Lexington, KY, USA
| |
Collapse
|
24
|
Stadler JT, Marsche G. Obesity-Related Changes in High-Density Lipoprotein Metabolism and Function. Int J Mol Sci 2020; 21:E8985. [PMID: 33256096 PMCID: PMC7731239 DOI: 10.3390/ijms21238985] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
In obese individuals, atherogenic dyslipidemia is a very common and important factor in the increased risk of cardiovascular disease. Adiposity-associated dyslipidemia is characterized by low high-density lipoprotein cholesterol (HDL-C) levels and an increase in triglyceride-rich lipoproteins. Several factors and mechanisms are involved in lowering HDL-C levels in the obese state and HDL quantity and quality is closely related to adiponectin levels and the bioactive lipid sphingosine-1-phosphate. Recent studies have shown that obesity profoundly alters HDL metabolism, resulting in altered HDL subclass distribution, composition, and function. Importantly, weight loss through gastric bypass surgery and Mediterranean diet, especially when enriched with virgin olive oil, is associated with increased HDL-C levels and significantly improved metrics of HDL function. A thorough understanding of the underlying mechanisms is crucial for a better understanding of the impact of obesity on lipoprotein metabolism and for the development of appropriate therapeutic approaches. The objective of this review article was to summarize the newly identified changes in the metabolism, composition, and function of HDL in obesity and to discuss possible pathophysiological consequences.
Collapse
Affiliation(s)
- Julia T. Stadler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
25
|
Zhang P, Konja D, Wang Y. Adipose tissue secretory profile and cardiometabolic risk in obesity. ENDOCRINE AND METABOLIC SCIENCE 2020. [DOI: 10.1016/j.endmts.2020.100061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
26
|
Lee H, Fenske RJ, Akcan T, Domask E, Davis DB, Kimple ME, Engin F. Differential Expression of Ormdl Genes in the Islets of Mice and Humans with Obesity. iScience 2020; 23:101324. [PMID: 32659722 PMCID: PMC7358727 DOI: 10.1016/j.isci.2020.101324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 05/05/2020] [Accepted: 06/25/2020] [Indexed: 12/28/2022] Open
Abstract
The orosomucoid-like (Ormdl) proteins play a critical role in sphingolipid homeostasis, inflammation, and ER stress, all of which are associated with obesity and βcell dysfunction. However, their roles in β cells and obesity remain unknown. Here, we show that islets from overweight/obese human donors displayed marginally reduced ORMDL1-2 expression, whereas ORMDL3 expression was significantly downregulated compared with islets from lean donors. In contrast, Ormdl3 was substantially upregulated in the islets of leptin-deficient obese (ob/ob) mice compared with lean mice. Treatment of ob/ob mice and their islets with leptin markedly reduced islet Ormld3 expression. Ormdl3 knockdown in a β cell line induced expression of pro-apoptotic markers, which was rescued by ceramide synthase inhibitor fumonisin B1. Our results reveal differential expression of Ormdl3 in the islets of a mouse model and humans with obesity, highlight the potential effect of leptin in this differential regulation, and suggest a role for Ormdl3 in β cell apoptosis. Islets of overweight/obese human donors display markedly reduced ORMDL3 expression Ormdl3 expression was significantly upregulated in the islets of ob/ob mice Leptin treatment markedly reduced Ormld3 expression in the islets of ob/ob mice Fumonisin B1 restores increased apoptotic marker levels induced by Ormdl3 silencing
Collapse
Affiliation(s)
- Hugo Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53706, USA
| | - Rachel J Fenske
- Interdepartmental Graduate Program in Nutritional Sciences, Madison, WI 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Tugce Akcan
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53706, USA
| | - Elliot Domask
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53706, USA
| | - Dawn B Davis
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Michelle E Kimple
- Interdepartmental Graduate Program in Nutritional Sciences, Madison, WI 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, Madison, WI 53705, USA; Department of Academic Affairs, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53705, USA.
| |
Collapse
|
27
|
Kochhar P, Manikandan C, Ravikumar G, Dwarkanath P, Sheela CN, George S, Thomas A, Crasta J, Thomas T, Kurpad AV, Mukhopadhyay A. Placental expression of leptin: fetal sex-independent relation with human placental growth. Eur J Clin Nutr 2020; 74:1603-1612. [PMID: 32382074 DOI: 10.1038/s41430-020-0649-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Leptin (LEP) is a vital placental hormone that is known to affect different aspects of placental function and fetal development. The present study aimed to determine the association of placental LEP transcript abundance with maternal, placental, and newborn parameters. SUBJECTS/METHODS In this retrospective case-control study, placental samples (n = 105) were collected from small (SGA) and appropriate (AGA) for gestational age full-term singleton pregnancies (n = 44 SGA and n = 61 AGA). Placental transcript abundance of LEP was assessed by real-time quantitative PCR after normalization to a reference gene panel. LEP methylation was measured using a quantitative MethyLight assay in a subset of samples (n = 54). RESULTS Placental LEP transcript abundance was negatively and significantly associated with placental weight (β = -3.883, P = 0.015). This association continued to be significant in the SGA group (β = -10.332, P = 0.001), both in female (β = -15.423, P = 0.021) and male births (β = -10.029, P = 0.007). LEP transcript abundance was not associated with LEP methylation levels (Spearman's ρ = 0.148, P = 0.287). CONCLUSION We conclude that placental upregulation of LEP is an integral and fetal sex-independent component of placental growth restriction, which can be potentially targeted through maternal dietary modifications to improve fetoplacental growth.
Collapse
Affiliation(s)
- P Kochhar
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - C Manikandan
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India.,School of Biosciences and Technology; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, India
| | - G Ravikumar
- Department of Pathology, St John's Medical College Hospital, Bangalore, India
| | - P Dwarkanath
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - C N Sheela
- Department of Obstetrics and Gynaecology, St John's Medical College Hospital, Bangalore, India
| | - S George
- Department of Obstetrics and Gynaecology, St John's Medical College Hospital, Bangalore, India
| | - A Thomas
- Department of Obstetrics and Gynaecology, St John's Medical College Hospital, Bangalore, India
| | - J Crasta
- Department of Pathology, St John's Medical College Hospital, Bangalore, India
| | - T Thomas
- Department of Biostatistics, St. John's Medical College Hospital, Bangalore, India
| | - A V Kurpad
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - A Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India.
| |
Collapse
|
28
|
Raspberry (Rubus idaeus L.) fruit extract decreases oxidation markers, improves lipid metabolism and reduces adipose tissue inflammation in hypertrophied 3T3-L1 adipocytes. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103568] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
29
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
30
|
Ferrer B, Peres TV, dos Santos AA, Bornhorst J, Morcillo P, Gonçalves CL, Aschner M. Methylmercury Affects the Expression of Hypothalamic Neuropeptides That Control Body Weight in C57BL/6J Mice. Toxicol Sci 2018; 163:557-568. [PMID: 29850906 PMCID: PMC5974793 DOI: 10.1093/toxsci/kfy052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Methylmercury (MeHg) is an environmental pollutant that affects primarily the central nervous system (CNS), causing neurological alterations. An early symptom of MeHg poisoning is the loss of body weight and appetite. Moreover, the CNS has an important role in controlling energy homeostasis. It is known that in the hypothalamus nutrient and hormonal signals converge to orchestrate control of body weight and food intake. In this study, we investigated if MeHg is able to induce changes in the expression of key hypothalamic neuropeptides that regulate energy homeostasis. Thus, hypothalamic neuronal mouse cell line GT 1-7 was treated with MeHg at different concentrations (0, 0.5, 1, and 5 µM). MeHg induced the expression of the anorexigenic neuropeptide pro-omiomelanocortin (Pomc) and the orexigenic peptide Agouti-related peptide (Agrp) in a concentration-dependent manner, suggesting deregulation of mechanisms that control body weight. To confirm these in vitro observations, 8-week-old C57BL/6J mice (males and females) were exposed to MeHg in drinking water, modeling the most prevalent exposure route to this metal. After 30-day exposure, no changes in body weight were detected. However, MeHg treated males showed a significant decrease in fat depots. Moreover, MeHg affected the expression of hypothalamic neuropeptides that control food intake and body weight in a gender- and dose-dependent manner. Thus, MeHg increases Pomc mRNA only in males in a dose-dependent way, and it does not have effects on the expression of Agrp mRNA. The present study shows, for first time, that MeHg is able to induce changes in hypothalamic neuropeptides that regulate energy homeostasis, favoring an anorexigenic/catabolic profile.
Collapse
Affiliation(s)
- Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Tanara Vieira Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | - Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Patricia Morcillo
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Cinara Ludvig Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
31
|
Kim MJ, Namkung J, Chang JS, Kim SJ, Park KS, Kong ID. Leptin regulates the expression of angiopoietin-like 6. Biochem Biophys Res Commun 2018; 502:397-402. [PMID: 29852166 DOI: 10.1016/j.bbrc.2018.05.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 05/26/2018] [Indexed: 09/30/2022]
Abstract
Angiopoietin-like 6 (ANGPTL6) is a hepatokine that antagonizes obesity and insulin resistance by increasing energy expenditure. Despite its beneficial effects on metabolism, human studies have shown a paradoxical increase in ANGPTL6 level in the serum of patients with metabolic diseases, which has been interpreted as a compensatory upregulation. However, the regulatory mechanism of ANGPTL6 remains unclear. Since upregulation of ANGPTL6 is induced on metabolic stress, we investigated the hepatic expression of ANGPTL6 by leptin, a representative adipokine of obesity. Mice on a high-fat diet showed increased serum leptin levels and hepatic Angptl6 expression, which were attenuated by exercise training. A single leptin injection also induced hepatic ANGPTL6 expression and increased serum ANGPTL6 levels. In an in vitro model using primary hepatocytes, leptin treatment significantly upregulated ANGPTL6 expression at the mRNA and protein levels, as well as the amount of secreted ANGPTL6 protein in conditioned media. Similarly, exercise training on human participants also showed diminished serum levels of leptin and ANGPTL6. Altogether, these results strongly indicated that hepatic ANGPTL6 expression was determined by leptin.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Jun Namkung
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, South Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Jae Seung Chang
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, South Korea; Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Soo-Jin Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, South Korea; Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - In Deok Kong
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| |
Collapse
|
32
|
Chatree S, Sitticharoon C, Maikaew P, Uawithya P, Chearskul S. Adipose Y5R mRNA is higher in obese than non-obese humans and is correlated with obesity parameters. Exp Biol Med (Maywood) 2018; 243:786-795. [PMID: 29763369 PMCID: PMC5956667 DOI: 10.1177/1535370218774889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/13/2018] [Indexed: 01/13/2023] Open
Abstract
Neuropeptide Y is mainly expressed in the central nervous system to regulate food intake via its receptors, Y receptors, and in various peripheral tissues including adipose tissue. The objectives of this study were to compare Y5R mRNA and adipocyte parameters consisting of area, width, height, and perimeter either between obese and non-obese subjects or between subcutaneous and visceral fat as well as to compare between NPY, Y1R, Y2R, and Y5R mRNA expressions in subcutaneous and visceral adipose tissues. In subcutaneous and visceral adipose tissues, Y5R was greater in obese than in non-obese humans (both P < 0.05). Y1R mRNA expression was highest followed by Y5R, Y2R, and NPY mRNA expressions, respectively, in subcutaneous and visceral adipose tissues. Visceral Y5R mRNA had positive correlations with body weight, body mass index, waist circumference, hip circumference (R ≍ 0.4), and visceral Y1R mRNA (R = 0.773), but had a negative correlation with the quantitative insulin sensitivity check index (R=-0.421) (all P < 0.05). Subcutaneous and visceral adipocyte parameters were positively correlated with body weight, waist circumference, hip circumference, and waist-to-hip ratio, with greater values of correlation coefficient shown in visceral (R ≍ 0.5-0.8) than in subcutaneous adipocytes (R ≍ 0.4-0.6, all P < 0.05). The parameters of visceral adipocytes had positive correlations with serum NPY levels (R ≍ 0.4, all P < 0.05). Y5R mRNA in visceral adipose tissue is related to increased obesity and reduced insulin sensitivity. The dominant Y receptors in subcutaneous and visceral adipose tissue might be the Y1R and Y5R. Visceral adipocytes show higher correlations with obesity parameters than subcutaneous adipocytes, suggestive of an increased risk of metabolic syndrome in visceral obesity. Y1R and Y5R in visceral adipose tissue might be targets of drug development in prevention or treatment of adiposity. Impact statement Obesity, defined as excess fat accumulation, has been increasingly diagnosed worldwide causing adverse health consequences. The novel findings of this study were that Y5R mRNA expression in both subcutaneous and visceral fat was higher in obese than non-obese subjects. Furthermore, Y5R only in visceral fat, not subcutaneous fat, was positively correlated with visceral Y1R and obesity parameters but it was negatively correlated with the QUICKI. Moreover, we found that Y1R expression was highest followed by Y5R and Y2R, respectively, in both subcutaneous and visceral fat. Our results suggested that Y5R in visceral fat was associated with increased obesity and decreased insulin sensitivity. Y1R and Y5R might be the dominant receptors that mediate the effect of NPY-induced fat accumulation in both subcutaneous and visceral adipose tissues. Y1R and Y5R in visceral adipose tissue might be targets of drug development in prevention or treatment of obesity.
Collapse
Affiliation(s)
- Saimai Chatree
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chantacha Sitticharoon
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pailin Maikaew
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Panapat Uawithya
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Supornpim Chearskul
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
33
|
Boutens L, Hooiveld GJ, Dhingra S, Cramer RA, Netea MG, Stienstra R. Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses. Diabetologia 2018; 61:942-953. [PMID: 29333574 PMCID: PMC6448980 DOI: 10.1007/s00125-017-4526-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS Recent studies have identified intracellular metabolism as a fundamental determinant of macrophage function. In obesity, proinflammatory macrophages accumulate in adipose tissue and trigger chronic low-grade inflammation, that promotes the development of systemic insulin resistance, yet changes in their intracellular energy metabolism are currently unknown. We therefore set out to study metabolic signatures of adipose tissue macrophages (ATMs) in lean and obese conditions. METHODS F4/80-positive ATMs were isolated from obese vs lean mice. High-fat feeding of wild-type mice and myeloid-specific Hif1α-/- mice was used to examine the role of hypoxia-inducible factor-1α (HIF-1α) in ATMs part of obese adipose tissue. In vitro, bone marrow-derived macrophages were co-cultured with adipose tissue explants to examine adipose tissue-induced changes in macrophage phenotypes. Transcriptome analysis, real-time flux measurements, ELISA and several other approaches were used to determine the metabolic signatures and inflammatory status of macrophages. In addition, various metabolic routes were inhibited to determine their relevance for cytokine production. RESULTS Transcriptome analysis and extracellular flux measurements of mouse ATMs revealed unique metabolic rewiring in obesity characterised by both increased glycolysis and oxidative phosphorylation. Similar metabolic activation of CD14+ cells in obese individuals was associated with diabetes outcome. These changes were not observed in peritoneal macrophages from obese vs lean mice and did not resemble metabolic rewiring in M1-primed macrophages. Instead, metabolic activation of macrophages was dose-dependently induced by a set of adipose tissue-derived factors that could not be reduced to leptin or lactate. Using metabolic inhibitors, we identified various metabolic routes, including fatty acid oxidation, glycolysis and glutaminolysis, that contributed to cytokine release by ATMs in lean adipose tissue. Glycolysis appeared to be the main contributor to the proinflammatory trait of macrophages in obese adipose tissue. HIF-1α, a key regulator of glycolysis, nonetheless appeared to play no critical role in proinflammatory activation of ATMs during early stages of obesity. CONCLUSIONS/INTERPRETATION Our results reveal unique metabolic activation of ATMs in obesity that promotes inflammatory cytokine release. Further understanding of metabolic programming in ATMs will most likely lead to novel therapeutic targets to curtail inflammatory responses in obesity. DATA AVAILABILITY Microarray data of ATMs isolated from obese or lean mice have been submitted to the Gene Expression Omnibus (accession no. GSE84000).
Collapse
Affiliation(s)
- Lily Boutens
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Guido J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands.
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.
| |
Collapse
|
34
|
Kim SO, Aberdeen G, Lynch TJ, Albrecht ED, Pepe GJ. Adipose and Liver Function in Primate Offspring with Insulin Resistance Induced by Estrogen Deprivation in Utero. ENDOCRINOLOGY, DIABETES AND METABOLISM JOURNAL 2017; 1:http://researchopenworld.com/wp-content/uploads/2017/10/EDMJ-2017-109-Gerald-J.-Pepe-USA.pdf. [PMID: 29983904 PMCID: PMC6035008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE We recently demonstrated that offspring delivered to baboons deprived of estrogen during the second half of gestation exhibited insulin resistance. Therefore, because skeletal muscle accounts for >80% of insulin dependent glucose disposal, we suggested that estrogen in utero programs factors in fetal skeletal muscle important for insulin sensitivity in offspring. However, liver and adipose are also sites of insulin action and adipose insulin resistance can increase serum free fatty acid (FFA) levels and thereby reduce skeletal muscle insulin sensitivity. Therefore, in the current study we determined whether estrogen-deprived offspring exhibit normal adipose and hepatic function. RESULTS The fasting serum levels of adiponectin, leptin, glucose, and analytes of liver function as well as the basal levels of serum FFA were similar in offspring of estrogen replete/suppressed baboons. Moreover, the normal glucose-induced decline in serum FFA levels measured in untreated offspring was also measured in offspring of letrozole-treated baboons. Fetal serum levels of adiponectin and leptin in late gestation also were similar and expression of nitrotyrosine negligible in fetal liver and adipose of untreated and letrozole-treated animals. CONCLUSIONS These results indicate that offspring of letrozole-treated baboons have normal adipose and liver function and do not exhibit adipose insulin resistance. Therefore, we suggest that the insulin resistance observed in estrogen-deprived offspring primarily reflects a decline in insulin-stimulated glucose clearance by skeletal muscle and which supports our original suggestion that estrogen in utero programs factors in fetal skeletal muscle that promote insulin sensitivity in offspring.
Collapse
Affiliation(s)
- Soon Ok Kim
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Graham Aberdeen
- Departments of Obstetrics/Gynecology/Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Terrie J. Lynch
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Eugene D. Albrecht
- Departments of Obstetrics/Gynecology/Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gerald J. Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
35
|
Kiehn JT, Tsang AH, Heyde I, Leinweber B, Kolbe I, Leliavski A, Oster H. Circadian Rhythms in Adipose Tissue Physiology. Compr Physiol 2017; 7:383-427. [PMID: 28333377 DOI: 10.1002/cphy.c160017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.
Collapse
Affiliation(s)
- Jana-Thabea Kiehn
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Anthony H Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isabel Heyde
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Alexei Leliavski
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
36
|
Baumeier C, Saussenthaler S, Kammel A, Jähnert M, Schlüter L, Hesse D, Canouil M, Lobbens S, Caiazzo R, Raverdy V, Pattou F, Nilsson E, Pihlajamäki J, Ling C, Froguel P, Schürmann A, Schwenk RW. Hepatic DPP4 DNA Methylation Associates With Fatty Liver. Diabetes 2017; 66:25-35. [PMID: 27999105 DOI: 10.2337/db15-1716] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
Hepatic DPP4 expression is elevated in subjects with ectopic fat accumulation in the liver. However, whether increased dipeptidyl peptidase 4 (DPP4) is involved in the pathogenesis or is rather a consequence of metabolic disease is not known. We therefore studied the transcriptional regulation of hepatic Dpp4 in young mice prone to diet-induced obesity. Already at 6 weeks of age, expression of hepatic Dpp4 was increased in mice with high weight gain, independent of liver fat content. In the same animals, methylation of four intronic CpG sites was decreased, amplifying glucose-induced transcription of hepatic Dpp4 In older mice, hepatic triglyceride content was increased only in animals with elevated Dpp4 expression. Expression and release of DPP4 were markedly higher in the liver compared with adipose depots. Analysis of human liver biopsy specimens revealed a correlation of DPP4 expression and DNA methylation to stages of hepatosteatosis and nonalcoholic steatohepatitis. In summary, our results indicate a crucial role of the liver in participation to systemic DPP4 levels. Furthermore, the data show that glucose-induced expression of Dpp4 in the liver is facilitated by demethylation of the Dpp4 gene early in life. This might contribute to early deteriorations in hepatic function, which in turn result in metabolic disease such as hepatosteatosis later in life.
Collapse
Affiliation(s)
- Christian Baumeier
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrüecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sophie Saussenthaler
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrüecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Anne Kammel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrüecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrüecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Luisa Schlüter
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrüecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Deike Hesse
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrüecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Mickaël Canouil
- CNRS UMR 8199, Lille Pasteur Institute, Lille, France
- Lille 1 University, Lille, France
- European Genome Institute for Diabetes, Lille, France
| | - Stephane Lobbens
- CNRS UMR 8199, Lille Pasteur Institute, Lille, France
- Lille 1 University, Lille, France
- European Genome Institute for Diabetes, Lille, France
| | - Robert Caiazzo
- Lille 1 University, Lille, France
- European Genome Institute for Diabetes, Lille, France
- INSERM UMR 1190, CHU Lille, Lille, France
| | - Violeta Raverdy
- Lille 1 University, Lille, France
- European Genome Institute for Diabetes, Lille, France
- INSERM UMR 1190, CHU Lille, Lille, France
| | - François Pattou
- Lille 1 University, Lille, France
- European Genome Institute for Diabetes, Lille, France
- INSERM UMR 1190, CHU Lille, Lille, France
| | - Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Philippe Froguel
- CNRS UMR 8199, Lille Pasteur Institute, Lille, France
- Lille 1 University, Lille, France
- European Genome Institute for Diabetes, Lille, France
- Department of Genomics of Common Disease, School of Public Health, Hammersmith Hospital, Imperial College London, London, U.K
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrüecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Robert W Schwenk
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrüecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
37
|
Burnett LC, Skowronski AA, Rausch R, LeDuc CA, Leibel RL. Determination of the half-life of circulating leptin in the mouse. Int J Obes (Lond) 2016; 41:355-359. [PMID: 28025576 PMCID: PMC5340585 DOI: 10.1038/ijo.2016.238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/16/2016] [Accepted: 12/11/2016] [Indexed: 01/01/2023]
Abstract
Background The adipokine hormone, leptin, is a major component of body weight homeostasis. Numerous studies have been performed administering recombinant mouse leptin as an experimental reagent; however, the half life of circulating leptin following exogenous administration of recombinant mouse leptin has not been carefully evaluated. Methods Exogenous leptin was administered (3 mg leptin/kg body weight) to ten week old fasted non-obese male mice and plasma was serially collected at seven time points; plasma leptin concentration was measured by ELISA at each time point to estimate the circulating half life of mouse leptin. Results Under the physiological circumstances tested, the half life of mouse leptin was 40.2 (+/− 2.2) minutes. Circulating leptin concentrations up to one hour following exogenous leptin administration were 170-fold higher than endogenous levels at fasting. Conclusions The half life of mouse leptin was determined to be 40.2 minutes. These results should be useful in planning and interpreting experiments employing exogenous leptin. The unphysiological elevations in circulating leptin resulting from widely used dosing regimens for exogenous leptin are likely to confound inferences regarding some aspects of the hormone’s clinical biology.
Collapse
Affiliation(s)
- L C Burnett
- Columbia University Institute of Human Nutrition, New York, NY, USA.,Columbia University Department of Pediatrics, Division of Molecular Genetics, New York, NY, USA.,Naomi Berrie Diabetes Center, New York, NY, USA
| | - A A Skowronski
- Columbia University Institute of Human Nutrition, New York, NY, USA.,Columbia University Department of Pediatrics, Division of Molecular Genetics, New York, NY, USA.,Naomi Berrie Diabetes Center, New York, NY, USA
| | - R Rausch
- Columbia University Department of Pediatrics, Division of Molecular Genetics, New York, NY, USA.,Naomi Berrie Diabetes Center, New York, NY, USA
| | - C A LeDuc
- Columbia University Department of Pediatrics, Division of Molecular Genetics, New York, NY, USA.,Naomi Berrie Diabetes Center, New York, NY, USA.,New York Obesity Research Center, New York, NY, USA
| | - R L Leibel
- Columbia University Department of Pediatrics, Division of Molecular Genetics, New York, NY, USA.,Naomi Berrie Diabetes Center, New York, NY, USA.,New York Obesity Research Center, New York, NY, USA
| |
Collapse
|
38
|
Combined high dose vitamin C and E increases oxidative stress and visceral fat mass in rats treated by depot-medroxyprogesterone acetate. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2016. [DOI: 10.1016/j.mefs.2016.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Nagy K, Nagaraju SP, Rhee CM, Mathe Z, Molnar MZ. Adipocytokines in renal transplant recipients. Clin Kidney J 2016; 9:359-73. [PMID: 27274819 PMCID: PMC4886901 DOI: 10.1093/ckj/sfv156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023] Open
Abstract
In the last two decades, perceptions about the role of body fat have changed. Adipocytes modulate endocrine and immune homeostasis by synthesizing hundreds of hormones, known as adipocytokines. Many studies have been investigating the influences and effects of these adipocytokines and suggest that they are modulated by the nutritional and immunologic milieu. Kidney transplant recipients (KTRs) are a unique and relevant population in which the function of adipocytokines can be examined, given their altered nutritional and immune status and subsequent dysregulation of adipocytokine metabolism. In this review, we summarize the recent findings about four specific adipocytokines and their respective roles in KTRs. We decided to evaluate the most widely described adipocytokines, including leptin, adiponectin, visfatin and resistin. Increasing evidence suggests that these adipocytokines may lead to cardiovascular events and metabolic changes in the general population and may also increase mortality and graft loss rate in KTRs. In addition, we present findings on the interrelationship between serum adipocytokine levels and nutritional and immunologic status, and mechanisms by which adipocytokines modulate morbidity and outcomes in KTRs.
Collapse
Affiliation(s)
- Kristof Nagy
- Department of Transplantation and Surgery , Semmelweis University , Budapest , Hungary
| | | | - Connie M Rhee
- Harold Simmons Center for Chronic Disease Research and Epidemiology, Division of Nephrology and Hypertension , University of California Irvine , Orange, CA , USA
| | - Zoltan Mathe
- Department of Transplantation and Surgery , Semmelweis University , Budapest , Hungary
| | - Miklos Z Molnar
- Division of Nephrology, Department of Medicine , University of Tennessee Health Science Center , Memphis, TN , USA
| |
Collapse
|
40
|
Kowalska K, Olejnik A, Rychlik J, Grajek W. Cranberries (Oxycoccus quadripetalus) inhibit lipid metabolism and modulate leptin and adiponectin secretion in 3T3-L1 adipocytes. Food Chem 2015; 185:383-8. [DOI: 10.1016/j.foodchem.2015.03.152] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/11/2015] [Accepted: 03/31/2015] [Indexed: 12/30/2022]
|
41
|
Briffa JF, Grinfeld E, Mathai ML, Poronnik P, McAinch AJ, Hryciw DH. Acute leptin exposure reduces megalin expression and upregulates TGFβ1 in cultured renal proximal tubule cells. Mol Cell Endocrinol 2015; 401:25-34. [PMID: 25478926 DOI: 10.1016/j.mce.2014.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 01/14/2023]
Abstract
Increased leptin concentrations observed in obesity can lead to proteinuria, suggesting that leptin may play a role in obesity-related kidney disease. Obesity reduces activation of AMP-activated protein kinase (AMPK) and increases transforming growth factor-β1 (TGF-β1) expression in the kidney, leading to albuminuria. Thus we investigated if elevated leptin altered AMPK and TGF-β1 signaling in proximal tubule cells (PTCs). In opossum kidney (OK) PTCs Western blot analysis demonstrated that leptin upregulates TGF-β1 secretion (0.50 µg/ml) and phosphorylated AMPKα (at 0.25, and 0.50 µg/ml), and downregulates megalin expression at all concentrations (0.05-0.50 µg/ml). Using the AMPK inhibitor, Compound C, leptin exposure regulated TGF-β1 expression and secretion in PTCs via an AMPK mediated pathway. In addition, elevated leptin exposure (0.50 µg/ml) reduced albumin handling in OK cells independently of megalin expression. This study demonstrates that leptin upregulates TGF-β1, reduces megalin, and reduces albumin handling in PTCs by an AMPK mediated pathway.
Collapse
Affiliation(s)
- Jessica F Briffa
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Vic. 3021, Australia; Department of Physiology, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - Esther Grinfeld
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Vic. 3021, Australia
| | - Michael L Mathai
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Vic. 3021, Australia
| | - Phillip Poronnik
- School of Medical Sciences, The Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Vic. 3021, Australia
| | - Deanne H Hryciw
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Vic. 3021, Australia; Department of Physiology, The University of Melbourne, Parkville, Vic. 3010, Australia.
| |
Collapse
|
42
|
Abstract
In an industrialized society, the increase in obesity incidence has led to an increase in premature morbidity and mortality rates. There is a relationship between body mass index (BMI) and the increased incidence of hypertension, dyslipidemia, type 2 diabetes mellitus, and cardiovascular disease, an increase in mortality. However, obese individuals with these conditions may have better outcomes than their lean counterparts, thus the term "obesity paradox." Most studies supporting this paradox are cross-sectional and do not take into account the quantity or type of adiposity, the disease severity, and comorbidities. Although BMI is an indicator of the amount of body fat, it does not differentiate between adiposity types. Adipocytes that are highly functional have good fuel storage capacity are different from adipocytes found in visceral obesity, which are poorly functioning, laden with macrophages, and causing low-grade inflammation. Individuals with high BMI may be physically fit and have a lower mortality risk when compared with individuals with a lower BMI and poorly functioning adiposity. We review the complexity of adipose tissue and its location, function, metabolic implications, and role in cardiovascular morbidity and mortality. The terminology "obesity paradox" may reflect a lack of understanding of the complex pathophysiology of obesity and the association between adiposity and cardiovascular disease.
Collapse
|
43
|
Mody N, Mcilroy GD. The mechanisms of Fenretinide-mediated anti-cancer activity and prevention of obesity and type-2 diabetes. Biochem Pharmacol 2014; 91:277-86. [DOI: 10.1016/j.bcp.2014.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022]
|
44
|
Arner E, Forrest ARR, Ehrlund A, Mejhert N, Itoh M, Kawaji H, Lassmann T, Laurencikiene J, Rydén M, Arner P. Ceruloplasmin is a novel adipokine which is overexpressed in adipose tissue of obese subjects and in obesity-associated cancer cells. PLoS One 2014; 9:e80274. [PMID: 24676332 PMCID: PMC3968011 DOI: 10.1371/journal.pone.0080274] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/11/2013] [Indexed: 01/04/2023] Open
Abstract
Obesity confers an increased risk of developing specific cancer forms. Although the mechanisms are unclear, increased fat cell secretion of specific proteins (adipokines) may promote/facilitate development of malignant tumors in obesity via cross-talk between adipose tissue(s) and the tissues prone to develop cancer among obese. We searched for novel adipokines that were overexpressed in adipose tissue of obese subjects as well as in tumor cells derived from cancers commonly associated with obesity. For this purpose expression data from human adipose tissue of obese and non-obese as well as from a large panel of human cancer cell lines and corresponding primary cells and tissues were explored. We found expression of ceruloplasmin to be the most enriched in obesity-associated cancer cells. This gene was also significantly up-regulated in adipose tissue of obese subjects. Ceruloplasmin is the body's main copper carrier and is involved in angiogenesis. We demonstrate that ceruloplasmin is a novel adipokine, which is produced and secreted at increased rates in obesity. In the obese state, adipose tissue contributed markedly (up to 22%) to the total circulating protein level. In summary, we have through bioinformatic screening identified ceruloplasmin as a novel adipokine with increased expression in adipose tissue of obese subjects as well as in cells from obesity-associated cancers. Whether there is a causal relationship between adipose overexpression of ceruloplasmin and cancer development in obesity cannot be answered by these cross-sectional comparisons.
Collapse
Affiliation(s)
- Erik Arner
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
- Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Huddinge, Sweden
- RIKEN Omics Science Center, Yokohama, Kanagawa, Japan
| | - Alistair R. R. Forrest
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa, Japan
| | - Anna Ehrlund
- Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Huddinge, Sweden
| | - Niklas Mejhert
- Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Huddinge, Sweden
| | - Masayoshi Itoh
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa, Japan
| | - Hideya Kawaji
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa, Japan
| | - Timo Lassmann
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa, Japan
| | - Jurga Laurencikiene
- Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Huddinge, Sweden
| | - Mikael Rydén
- Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Huddinge, Sweden
| | - Peter Arner
- Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Huddinge, Sweden
| | | |
Collapse
|
45
|
Briffa JF, Grinfeld E, McAinch AJ, Poronnik P, Hryciw DH. Short term exposure to elevated levels of leptin reduces proximal tubule cell metabolic activity. Mol Cell Endocrinol 2014; 382:38-45. [PMID: 24036423 DOI: 10.1016/j.mce.2013.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 08/08/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022]
Abstract
Leptin plays a pathophysiological role in the kidney, however, its acute effects on the proximal tubule cells (PTCs) are unknown. In opossum kidney (OK) cells in vitro, Western blot analysis identified that exposure to leptin increases the phosphorylation of the mitogen-activated protein kinase (MAPK) p44/42 and the mammalian target of rapamycin (mTOR). Importantly leptin (0.05, 0.10, 0.25 and 0.50 μg/ml) significantly reduced the metabolic activity of PTCs, and significantly decreased protein content per cell. Investigation of the role of p44/42 and mTOR on metabolic activity and protein content per cell, demonstrated that in the presence of MAPK inhibitor U0126 and mTOR inhibitor Ku-63794, that the mTOR pathway is responsible for the reduction in PTC metabolic activity in response to leptin. However, p44/42 and mTOR play no role the reduced protein content per cell in OKs exposed to leptin. Therefore, leptin modulates metabolic activity in PTCs via an mTOR regulated pathway.
Collapse
Affiliation(s)
- Jessica F Briffa
- Biomedical and Lifestyle Diseases (BioLED) Unit, College of Health and Biomedicine, Victoria University, St Albans, VIC 3021, Australia; Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Esther Grinfeld
- Biomedical and Lifestyle Diseases (BioLED) Unit, College of Health and Biomedicine, Victoria University, St Albans, VIC 3021, Australia
| | - Andrew J McAinch
- Biomedical and Lifestyle Diseases (BioLED) Unit, College of Health and Biomedicine, Victoria University, St Albans, VIC 3021, Australia
| | - Philip Poronnik
- School of Medical Sciences, The Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - Deanne H Hryciw
- Biomedical and Lifestyle Diseases (BioLED) Unit, College of Health and Biomedicine, Victoria University, St Albans, VIC 3021, Australia; Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
46
|
Leptin and leptin-related gene polymorphisms, obesity, and influenza A/H1N1 vaccine-induced immune responses in older individuals. Vaccine 2013; 32:881-7. [PMID: 24360890 DOI: 10.1016/j.vaccine.2013.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/15/2013] [Accepted: 12/01/2013] [Indexed: 02/08/2023]
Abstract
Obesity is a risk factor for complicated influenza A/H1N1 disease and poor vaccine immunogenicity. Leptin, an adipocyte-derived hormone/cytokine, has many immune regulatory functions and therefore could explain susceptibility to infections and poor vaccine outcomes. We recruited 159 healthy adults (50-74 years old) who were immunized with inactivated TIV influenza vaccine that contained A/California/7/2009/H1N1 virus. We found a strong correlation between leptin concentration and BMI (r=0.55, p<0.0001), but no association with hemagglutination antibody inhibition (HAI), B-cell, or granzyme B responses. We found a slight correlation between leptin concentration and an immunosenescence marker (TREC: T-cell receptor excision circles) level (r=0.23, p=0.01). We found eight SNPs in the LEP/LEPR/GHRL genes that were associated with leptin levels and four SNPs in the PTPN1/LEPR/STAT3 genes associated with peripheral blood TREC levels (p<0.05). Heterozygosity of the synonymous variant rs2230604 in the PTPN1 gene was associated with a significantly lower (531 vs. 259, p=0.005) TREC level, as compared to the homozygous major variant. We also found eight SNPs in the LEP/PPARG/CRP genes associated with variations in influenza-specific HAI and B-cell responses (p<0.05). Our results suggest that specific allelic variations in the leptin-related genes may influence adaptive immune responses to influenza vaccine.
Collapse
|
47
|
Lorente-Cebrián S, Decaunes P, Dungner E, Bouloumié A, Arner P, Dahlman I. Allograft inflammatory factor 1 (AIF-1) is a new human adipokine involved in adipose inflammation in obese women. BMC Endocr Disord 2013; 13:54. [PMID: 24267103 PMCID: PMC4175115 DOI: 10.1186/1472-6823-13-54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Allograft inflammatory factor 1 (AIF-1) is a putative obesity gene. Our aim was to examine the expression of AIF-1 in human white adipose tissue (WAT) in relation to obesity and metabolic phenotypes in women. METHODS WAT secretion of AIF-1 was determined in subcutaneous adipose tissue pieces in vitro by ELISA from 5 subjects. mRNA expression of AIF-1 was determined by RT-qPCR in the isolated cell fractions of adipose tissue (n = 5-6 per group), in subcutaneous and visceral WAT pieces from non-obese (n = 12) and obese women (n = 23), and in some subcutaneous WAT also before and after weight reduction (n = 10). Finally, adipose AIF-1 mRNA was related to metabolic phenotypes in 96 subjects with a wide range of BMI. RESULTS AIF-1 was secreted in a time dependent fashion from WAT. The major source of AIF-1 was WAT resident macrophages. Expression of AIF-1 was similar in visceral and subcutaneous WAT and was two-fold increased in obese women (P < 0.01). AIF-1 mRNA expression levels were normalized after weight reduction (P < 0.01). Expression of AIF-1 was inversely correlated with insulin sensitivity as assessed by insulin tolerance test (KITT), and circulating levels of adiponectin (P = 0.02), and positively correlated with insulin resistance as estimated by HOMA (=0.0042). CONCLUSIONS AIF-1 is a novel adipokine produced mainly by macrophages within human WAT. Its expression is increased in obese women and associates with unfavourable metabolic phenotypes. AIF-1 may play a paracrine role in the regulation of WAT function through cross-talk between macrophages and other cell types within the adipose tissue.
Collapse
Affiliation(s)
- Silvia Lorente-Cebrián
- Department of Medicine Huddinge, Lipid Laboratory, Novum, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Huddinge, Stockholm, Sweden
| | - Pauline Decaunes
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des maladies cardiovasculaires et métaboliques, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Elisabeth Dungner
- Department of Medicine Huddinge, Lipid Laboratory, Novum, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Huddinge, Stockholm, Sweden
| | - Anne Bouloumié
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des maladies cardiovasculaires et métaboliques, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Peter Arner
- Department of Medicine Huddinge, Lipid Laboratory, Novum, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Huddinge, Stockholm, Sweden
| | - Ingrid Dahlman
- Department of Medicine Huddinge, Lipid Laboratory, Novum, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Huddinge, Stockholm, Sweden
| |
Collapse
|
48
|
Briffa JF, McAinch AJ, Poronnik P, Hryciw DH. Adipokines as a link between obesity and chronic kidney disease. Am J Physiol Renal Physiol 2013; 305:F1629-36. [PMID: 24107418 DOI: 10.1152/ajprenal.00263.2013] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adipocytes secrete a number of bioactive adipokines that activate a variety of cell signaling pathways in central and peripheral tissues. Obesity is associated with the altered production of many adipokines and is linked to a number of pathologies. As an increase in body weight is directly associated with an increased risk for developing chronic kidney disease (CKD), there is significant interest in the link between obesity and renal dysfunction. Altered levels of the adipokines leptin, adiponectin, resistin, and visfatin can decrease the glomerular filtration rate and increase albuminuria, which are pathophysiological changes typical of CKD. Specifically, exposure of the glomerulus to altered adipokine levels can increase its permeability, fuse the podocytes, and cause mesangial cell hypertrophy, all of which alter the glomerular filtration rate. In addition, the adipokines leptin and adiponectin can act on tubular networks. Thus, adipokines can act on multiple cell types in the development of renal pathophysiology. Importantly, most studies have been performed using in vitro models, with future studies in vivo required to further elucidate the specific roles that adipokines play in the development and progression of CKD.
Collapse
Affiliation(s)
- Jessica F Briffa
- Dept. of Physiology, The Univ. of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | | |
Collapse
|
49
|
Okubo T, Takemura N, Yoshida A, Sonoyama K. KK/Ta Mice Administered Lactobacillus plantarum Strain No. 14 Have Lower Adiposity and Higher Insulin Sensitivity. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2013; 32:93-100. [PMID: 24936367 PMCID: PMC4034365 DOI: 10.12938/bmfh.32.93] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 01/23/2013] [Indexed: 12/16/2022]
Abstract
Excess accumulation of white adipose tissue can lead to obesity-related metabolic
abnormalities such as insulin resistance. We previously reported that intragastric
administration of Lactobacillus plantarum No. 14 reduced adipocyte size
in diet-induced obese C57BL/6 mice. The present study tested whether L.
plantarum No. 14 affects adiposity and insulin sensitivity in an animal model
of type-2 diabetes mellitus. Male KK/Ta mice were fed a normal-fat diet and
intragastrically given L. plantarum No. 14 (108 CFU/mouse) or
vehicle daily for 10 weeks. Interscapular brown adipose tissue and inguinal, mesenteric,
and retroperitoneal white adipose tissue weights, serum leptin and insulin concentrations,
and insulin resistance index (HOMA-IR) were significantly lower in L.
plantarum No. 14-fed mice than in vehicle-fed mice. The sum of the inguinal,
epididymal, mesenteric and retroperitoneal white adipose tissue weights correlated with
serum leptin and non-esterified fatty acid concentrations and HOMA-IR. The mesenteric
adipose tissue mRNA levels of monocyte chemoattractant protein-1 and tumor necrosis
factor-α were significantly lower in L. plantarum No. 14-fed mice than in
vehicle-fed mice. Mesenteric adipose tissue weight correlated with interleukin-6, monocyte
chemoattractant protein-1, and tumor necrosis factor-α mRNA levels. HOMA-IR correlated
with monocyte chemoattractant protein-1 and tumor necrosis factor-α mRNA levels. These
data suggest that L. plantarum No. 14 prevents the development of insulin
resistance, which is at least partly attributable to the prevention of obesity, in KK/Ta
mice.
Collapse
Affiliation(s)
- Takuma Okubo
- Graduate School of Life Science, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Naoki Takemura
- Graduate School of Life Science, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Ayako Yoshida
- Laboratory of Food Biochemistry, Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Kei Sonoyama
- Laboratory of Food Biochemistry, Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|
50
|
Rega-Kaun G, Kaun C, Wojta J. More than a simple storage organ: adipose tissue as a source of adipokines involved in cardiovascular disease. Thromb Haemost 2013; 110:641-50. [PMID: 23846791 DOI: 10.1160/th13-03-0212] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/19/2013] [Indexed: 01/04/2023]
Abstract
Overweight and obesity in many countries have developed into a serious health problem by themselves and by their impact on other pathologies such as insulin resistance, type 2 diabetes, hypertension, heart disease and cancer. The modulation of these diseases by adipose tissue-derived biomolecules, so-called adipokines, could be the key to differentiate between metabolically healthy and unhealthy obesity. This review will discuss the pathophysiological role of selected adipokines, primarily focusing on cardiovascular diseases. Furthermore, we will highlight possible therapeutic approaches, which target these biomolecules.
Collapse
Affiliation(s)
- Gersina Rega-Kaun
- Johann Wojta, Department of Internal Medicine II, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria, Tel.: +43 1 40400 73500, Fax: +43 1 40400 73586, E-mail:
| | | | | |
Collapse
|