1
|
Deng J, Wang D, Shi Y, Lin L, Gao W, Sun Y, Song X, Li Y, Li J. Mitochondrial unfolded protein response mechanism and its cardiovascular protective effects. Biomed Pharmacother 2024; 177:116989. [PMID: 38959609 DOI: 10.1016/j.biopha.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a cytoprotective response in response to cellular stress that is activated in response to mitochondrial stress to maintain intra-protein homeostasis, thereby protecting the cell from a variety of stimuli. The activation of this response has been linked to cardiovascular diseases. Here, we reviewed the current understanding of UPRmt and discussed its specific molecular mechanism, mainly in mammals, as well as addressing its protective role against cardiovascular diseases, so as to provide direction for further research on UPRmt and therapies targeting cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Jinlan Deng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weihan Gao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiayinan Song
- Chinese University of Traditional Chinese Medicine,Beijing University of Chinese Medicine, Chaoyang, China
| | - Yunlun Li
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Naatz A, Yeo CT, Hogg N, Corbett JA. β-Cell-selective regulation of gene expression by nitric oxide. Am J Physiol Regul Integr Comp Physiol 2024; 326:R552-R566. [PMID: 38586887 PMCID: PMC11381020 DOI: 10.1152/ajpregu.00240.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Nitric oxide is produced at low micromolar levels following the induction of inducible nitric oxide synthase (iNOS) and is responsible for mediating the inhibitory actions of cytokines on glucose-stimulated insulin secretion by islets of Langerhans. It is through the inhibition of mitochondrial oxidative metabolism, specifically aconitase and complex 4 of the electron transport chain, that nitric oxide inhibits insulin secretion. Nitric oxide also attenuates protein synthesis, induces DNA damage, activates DNA repair pathways, and stimulates stress responses (unfolded protein and heat shock) in β-cells. In this report, the time- and concentration-dependent effects of nitric oxide on the expression of six genes known to participate in the response of β-cells to this free radical were examined. The genes included Gadd45α (DNA repair), Puma (apoptosis), Hmox1 (antioxidant defense), Hsp70 (heat shock), Chop (UPR), and Ppargc1α (mitochondrial biogenesis). We show that nitric oxide stimulates β-cell gene expression in a narrow concentration range of ∼0.5-1 µM or levels corresponding to iNOS-derived nitric oxide. At concentrations greater than 1 µM, nitric oxide fails to stimulate gene expression in β-cells, and this is associated with the inhibition of mitochondrial oxidative metabolism. This narrow concentration range of responses is β-cell selective, as the actions of nitric oxide in non-β-cells (α-cells, mouse embryonic fibroblasts, and macrophages) are concentration dependent. Our findings suggest that β-cells respond to a narrow concentration range of nitric oxide that is consistent with the levels produced following iNOS induction, and that these concentration-dependent actions are selective for insulin-containing cells.
Collapse
Affiliation(s)
- Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Chay Teng Yeo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
3
|
Limonta G, Panti C, Fossi MC, Nardi F, Baini M. Exposure to virgin and marine incubated microparticles of biodegradable and conventional polymers modulates the hepatopancreas transcriptome of Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133819. [PMID: 38402680 DOI: 10.1016/j.jhazmat.2024.133819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Biodegradable polymers have been proposed as an alternative to conventional plastics to mitigate the impact of marine litter, but the research investigating their toxicity is still in its infancy. This study evaluates the potential ecotoxicological effects of both virgin and marine-incubated microparticles (MPs), at environmentally relevant concentration (0.1 mg/l), made of different biodegradable polymers (Polycaprolactone, Mater-Bi, cellulose) and conventional polymers (Polyethylene) on Mytilus galloprovincialis by using transcriptomics. This approach is increasingly being used to assess the effects of pollutants on organisms, obtaining data on numerous biological pathways simultaneously. Whole hepatopancreas de novo transcriptome sequencing was performed, individuating 972 genes differentially expressed across experimental groups compared to the control. Through the comparative transcriptomic profiling emerges that the preponderant effect is attributable to the marine incubation of MPs, especially for incubated polycaprolactone (731 DEGs). Mater-Bi and cellulose alter the smallest number of genes and biological processes in the mussel hepatopancreas. All microparticles, regardless of their polymeric composition, dysregulated innate immunity, and fatty acid metabolism biological processes. These findings highlight the necessity of considering the interactions of MPs with the environmental factors in the marine ecosystem when performing ecotoxicological evaluations. The results obtained contribute to fill current knowledge gaps regarding the potential environmental impacts of biodegradable polymers.
Collapse
Affiliation(s)
- Giacomo Limonta
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Cristina Panti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy.
| | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesco Nardi
- National Biodiversity Future Center (NBFC), Palermo, Italy; Department of Life Sciences, University of Siena, Via A. Moro, 2, Siena, Italy
| | - Matteo Baini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
4
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
5
|
Ghai S, Young A, Su KH. Proteotoxic stress response in atherosclerotic cardiovascular disease: Emerging role of heat shock factor 1. Front Cardiovasc Med 2023; 10:1155444. [PMID: 37077734 PMCID: PMC10106699 DOI: 10.3389/fcvm.2023.1155444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Atherosclerosis is a major risk factor for cardiovascular diseases. Hypercholesterolemia has been both clinically and experimentally linked to cardiovascular disease and is involved in the initiation of atherosclerosis. Heat shock factor 1 (HSF1) is involved in the control of atherosclerosis. HSF1 is a critical transcriptional factor of the proteotoxic stress response that regulates the production of heat shock proteins (HSPs) and other important activities such as lipid metabolism. Recently, HSF1 is reported to directly interact with and inhibit AMP-activated protein kinase (AMPK) to promote lipogenesis and cholesterol synthesis. This review highlights roles of HSF1 and HSPs in critical metabolic pathways of atherosclerosis, including lipogenesis and proteome homeostasis.
Collapse
|
6
|
Gogiraju R, Renner L, Bochenek ML, Zifkos K, Molitor M, Danckwardt S, Wenzel P, Münzel T, Konstantinides S, Schäfer K. Arginase-1 Deletion in Erythrocytes Promotes Vascular Calcification via Enhanced GSNOR (S-Nitrosoglutathione Reductase) Expression and NO Signaling in Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2022; 42:e291-e310. [PMID: 36252109 DOI: 10.1161/atvbaha.122.318338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Erythrocytes (red blood cells) participate in the control of vascular NO bioavailability. The purpose of this study was to determine whether and how genetic deletion of ARG1 (arginase-1) affects vascular smooth muscle cell NO signaling, osteoblastic differentiation, and atherosclerotic lesion calcification. METHODS Atherosclerosis-prone mice with conditional, erythrocyte-restricted deletion of ARG1 (apoE-/- red blood cell.ARG1 knockout) were generated and vascular calcification studied using molecular imaging of the osteogenic activity agent OsteoSense, Alizarin staining or immunohistochemistry, qPCR of osteogenic markers and ex vivo assays. RESULTS Atherosclerotic lesion size at the aortic root did not differ, but calcification was significantly more pronounced in apoE-/- mice lacking erythrocyte ARG1. Incubation of murine and human VSMCs with lysed erythrocyte membranes from apoE-/- red blood cell. ARG1-knockout mice accelerated their osteogenic differentiation, and mRNA transcripts of osteogenic markers decreased following NO scavenging. In addition to NO signaling via sGC (soluble guanylyl cyclase), overexpression of GSNOR (S-nitrosoglutathione reductase) enhanced degradation of S-nitrosoglutathione to glutathione and reduced protein S-nitrosation of HSP (heat shock protein)-70 were identified as potential mechanisms of vascular smooth muscle cell calcification in mice lacking ARG1 in erythrocytes, and calcium phosphate deposition was enhanced by heat shock and prevented by GSNOR inhibition. Messenger RNA levels of enzymes metabolizing the arginase products L-ornithine and L-proline also were elevated in VSMCs, paralleled by increased proliferation, myofibroblast marker and collagen type 1 expression. CONCLUSIONS Our findings support an important role of erythrocyte ARG1 for NO bioavailability and L-arginine metabolism in VSMCs, which controls atherosclerotic lesion composition and calcification.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Luisa Renner
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Magdalena L Bochenek
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Konstantinos Zifkos
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Michael Molitor
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Sven Danckwardt
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany.,Institute for Clinical Chemistry (S.D.), University Medical Center Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Stavros Konstantinides
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| |
Collapse
|
7
|
Ding X, An Q, Zhao W, Song Y, Tang X, Wang J, Chang CC, Zhao G, Hsiai T, Fan G, Fan Y, Li S. Distinct patterns of responses in endothelial cells and smooth muscle cells following vascular injury. JCI Insight 2022; 7:153769. [DOI: 10.1172/jci.insight.153769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
|
8
|
Jiao S, Bai C, Qi C, Wu H, Hu L, Li F, Yang K, Zhao C, Ouyang H, Pang D, Tang X, Xie Z. Identification and Functional Analysis of the Regulatory Elements in the pHSPA6 Promoter. Genes (Basel) 2022; 13:genes13020189. [PMID: 35205234 PMCID: PMC8872561 DOI: 10.3390/genes13020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022] Open
Abstract
Functional and expressional research of heat shock protein A6 (HSPA6) suggests that the gene is of great value for neurodegenerative diseases, biosensors, cancer, etc. Based on the important value of pigs in agriculture and biomedicine and to advance knowledge of this little-studied HSPA member, the stress-sensitive sites in porcine HSPA6 (pHSPA6) were investigated following different stresses. Here, two heat shock elements (HSEs) and a conserved region (CR) were identified in the pHSPA6 promoter by a CRISPR/Cas9-mediated precise gene editing strategy. Gene expression data showed that sequence disruption of these regions could significantly reduce the expression of pHSPA6 under heat stress. Stimulation studies indicated that these regions responded not only to heat stress but also to copper sulfate, MG132, and curcumin. Further mechanism studies showed that downregulated pHSPA6 could significantly affect some important members of the HSP family that are involved in HSP40, HSP70, and HSP90. Overall, our results provide a new approach for investigating gene expression and regulation that may contribute to gene regulatory mechanisms, drug target selection, and breeding stock selection.
Collapse
Affiliation(s)
- Shuyu Jiao
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Chunyan Bai
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Chunyun Qi
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Heyong Wu
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Lanxin Hu
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Feng Li
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Kang Yang
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Chuheng Zhao
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
| | - Hongsheng Ouyang
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Daxin Pang
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Xiaochun Tang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
- Correspondence: (X.T.); (Z.X.)
| | - Zicong Xie
- College of Animal Science, Jilin University, Changchun 130062, China; (S.J.); (C.B.); (C.Q.); (H.W.); (L.H.); (F.L.); (K.Y.); (C.Z.); (H.O.); (D.P.)
- Correspondence: (X.T.); (Z.X.)
| |
Collapse
|
9
|
Rigopoulos AG, Kalogeropoulos AS, Tsoporis JN, Sakadakis EA, Triantafyllis AS, Noutsias M, Gupta S, Parker TG, Rizos I. Heat Shock Protein 70 Is Associated With Cardioversion Outcome and Recurrence of Symptomatic Recent Onset Atrial Fibrillation in Hypertensive Patients. J Cardiovasc Pharmacol 2021; 77:360-369. [PMID: 33298735 DOI: 10.1097/fjc.0000000000000962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/11/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Accumulating evidence indicates that heat shock proteins (HSPs) may represent a suitable biomarker to predict atrial fibrillation (AF). We investigated the relation of circulating serum HSP70 (sHSP70) with inflammatory cytokines and recurrence of symptomatic recent onset AF (ROAF). We enrolled 90 patients with ROAF (the duration from onset of symptoms ≤24 hours) and 30 controls. Patients received amiodarone for cardioversion and rhythm control. The association of serum HSP70, serum interleukin-2 (sIL-2), and serum interleukin-4 (sIL-4) with the presence of cardioversion and AF recurrence within a year was investigated. Toll-like receptor 4 (TLR4) signaling dependence for IL-2 and IL-4 induction in response to stimulation with HSP70 was tested in rat aortic vascular smooth muscle cell cultures. Patients had higher sHSP70 and sIL-2 and lower sIL-4 compared with controls. Serum HSP70 was independently associated with ROAF (P = 0.005) and correlated with sIL-2 (r = 0.494, P < 0.001) and sIL-4 (r = -0.550, P < 0.001). By 48 hours, 71 of the 90 patients were cardioverted, with noncardioverted patients having higher sHSP70 and sIL-2 and lower sIL-4, which were the only independent factors associated with cardioversion. AF recurred in 38 of the 71 cardioverted patients in 1 year. A cutoff value of sHSP70 ≥0.65 ng/mL and sIL-2 ≥0.21 pg/mL was the only independent factor associated with AF recurrence (hazard ratio: 3.311, 95% confidence interval: 1.503-7.293, P = 0.003 and hazard ratio: 3.144, 95% confidence interval: 1.341-7.374, P = 0.008, respectively). The exposure of smooth muscle cell to HSP70 in vitro increased the expression of IL-2 (5×) and IL-4 (1.5×) through TLR4-dependent and receptor-independent mechanisms. In conclusion, sHSP70 and sIL-2 might constitute a prognostic tool for determining the cardioversion and recurrence likelihood in ROAF.
Collapse
Affiliation(s)
- Angelos G Rigopoulos
- 2nd Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
- Department of Internal Medicine III, Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany ; and
| | - Andreas S Kalogeropoulos
- 2nd Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
| | - James N Tsoporis
- The Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Eleftherios A Sakadakis
- 2nd Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
| | - Andreas S Triantafyllis
- 2nd Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
| | - Michel Noutsias
- Department of Internal Medicine III, Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany ; and
| | - Sahil Gupta
- The Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Thomas G Parker
- The Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Ioannis Rizos
- 2nd Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
| |
Collapse
|
10
|
Bolanle IO, Riches-Suman K, Williamson R, Palmer TM. Emerging roles of protein O-GlcNAcylation in cardiovascular diseases: Insights and novel therapeutic targets. Pharmacol Res 2021; 165:105467. [PMID: 33515704 DOI: 10.1016/j.phrs.2021.105467] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. While the major focus of pharmacological and non-pharmacological interventions has been on targeting disease pathophysiology and limiting predisposing factors, our understanding of the cellular and molecular mechanisms underlying the pathogenesis of CVDs remains incomplete. One mechanism that has recently emerged is protein O-GlcNAcylation. This is a dynamic, site-specific reversible post-translational modification of serine and threonine residues on target proteins and is controlled by two enzymes: O-linked β-N-acetylglucosamine transferase (OGT) and O-linked β-N-acetylglucosaminidase (OGA). Protein O-GlcNAcylation alters the cellular functions of these target proteins which play vital roles in pathways that modulate vascular homeostasis and cardiac function. Through this review, we aim to give insights on the role of protein O-GlcNAcylation in cardiovascular diseases and identify potential therapeutic targets in this pathway for development of more effective medicines to improve patient outcomes.
Collapse
Key Words
- (R)-N-(Furan-2-ylmethyl)-2-(2-methoxyphenyl)-2-(2-oxo-1,2-dihydroquinoline-6-sulfonamido)-N-(thiophen-2-ylmethyl)acetamide [OSMI-1] (PubChem CID: 118634407)
- 2-(2-Amino-3-methoxyphenyl)-4H-chromen-4-one [PD98059] (PubChem CID: 4713)
- 5H-Pyrano[3,2-d]thiazole-6,7-diol, 2-(ethylamino)-3a,6,7,7a-tetrahydro-5-(hydroxymethyl)-(3aR,5R,6S,7R,7aR) [Thiamet-G] (PubChem CID: 1355663540)
- 6-Diazo-5-oxo-l-norleucine [DON] (PubChem CID: 9087)
- Alloxan (PubChem CID: 5781)
- Azaserine (PubChem CID: 460129)
- BADGP, Benzyl-2-acetamido-2-deoxy-α-d-galactopyranoside [BADGP] (PubChem CID: 561184)
- Cardiovascular disease
- Methoxybenzene-sulfonamide [KN-93] (PubChem CID: 5312122)
- N-[(5S,6R,7R,8R)-6,7-Dihydroxy-5-(hydroxymethyl)-2-(2-phenylethyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridin-8-yl]-2-methylpropanamide [GlcNAcstatin] (PubChem CID: 122173013)
- O-(2-Acetamido-2-deoxy-d-glucopyranosyliden)amino-N-phenylcarbamate [PUGNAc] (PubChem CID: 9576811)
- O-GlcNAc transferase
- O-GlcNAcase
- Protein O-GlcNAcylation
- Streptozotocin (PubCHem CID: 7067772)
Collapse
Affiliation(s)
- Israel Olapeju Bolanle
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Kirsten Riches-Suman
- School of Chemistry and Bioscience, University of Bradford, Bradford BD7 1DP, UK
| | - Ritchie Williamson
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Timothy M Palmer
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
11
|
Heck T, Ludwig M, Frizzo M, Rasia-Filho A, Homem de Bittencourt PI. Suppressed anti-inflammatory heat shock response in high-risk COVID-19 patients: lessons from basic research (inclusive bats), light on conceivable therapies. Clin Sci (Lond) 2020; 134:1991-2017. [PMID: 32749472 PMCID: PMC7403894 DOI: 10.1042/cs20200596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/05/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The major risk factors to fatal outcome in COVID-19 patients, i.e., elderliness and pre-existing metabolic and cardiovascular diseases (CVD), share in common the characteristic of being chronic degenerative diseases of inflammatory nature associated with defective heat shock response (HSR). The molecular components of the HSR, the principal metabolic pathway leading to the physiological resolution of inflammation, is an anti-inflammatory biochemical pathway that involves molecular chaperones of the heat shock protein (HSP) family during homeostasis-threatening stressful situations (e.g., thermal, oxidative and metabolic stresses). The entry of SARS coronaviruses in target cells, on the other hand, aggravates the already-jeopardized HSR of this specific group of patients. In addition, cellular counterattack against virus involves interferon (IFN)-mediated inflammatory responses. Therefore, individuals with impaired HSR cannot resolve virus-induced inflammatory burst physiologically, being susceptible to exacerbated forms of inflammation, which leads to a fatal "cytokine storm". Interestingly, some species of bats that are natural reservoirs of zoonotic viruses, including SARS-CoV-2, possess an IFN-based antiviral inflammatory response perpetually activated but do not show any sign of disease or cytokine storm. This is possible because bats present a constitutive HSR that is by far (hundreds of times) more intense and rapid than that of human, being associated with a high core temperature. Similarly in humans, fever is a physiological inducer of HSR while antipyretics, which block the initial phase of inflammation, impair the resolution phase of inflammation through the HSR. These findings offer a rationale for the reevaluation of patient care and fever reduction in SARS, including COVID-19.
Collapse
Affiliation(s)
- Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
| | - Alberto Antonio Rasia-Filho
- Federal University of Health Sciences of Porto Alegre (UFCSPA), Graduate Program in Biosciences, Porto Alegre, RS, 90050-170 Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90050-170 Brazil
| |
Collapse
|
12
|
Rai KK, Rai N, Aamir M, Tripathi D, Rai SP. Interactive role of salicylic acid and nitric oxide on transcriptional reprogramming for high temperature tolerance in lablab purpureus L.: Structural and functional insights using computational approaches. J Biotechnol 2020; 309:113-130. [PMID: 31935417 DOI: 10.1016/j.jbiotec.2020.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Salicylic acid (SA) and nitric oxide (NO) are considered as putative plant growth regulators that are involved in the regulation of an array of plant's growth and developmental functions under environmental fluctuations when applied at lower concentrations. The possible involvement of NO in SA induced attenuation of high temperature (HT) induced oxidative stress in plants is however, still vague and need to be explored. Therefore, the present study aimed to investigates the biochemical and physiological changes induced by foliar spray of SA and NO combinations to ameliorate HT induced oxidative stress in Lablab purpureus L. Foliar application of combined SA and NO significantly improved relative water content (27.8 %), photosynthetic pigment content (67.2 %), membrane stability (45 %), proline content (1.0 %), expression of enzymatic antioxidants (7.1-18 %) along with pod yield (1.0 %). Heat Shock Factors (HSFs) play crucial roles in plants abiotic stress tolerance, however there structural and functional classifications in L. purpureus L. is still unknown. So, In-silico approach was also used for functional characterization and homology modelling of HSFs in L. purpureus. The experimental findings depicted that combine effect of SA and NO enhances tolerance in HT stressed L. purpureus L. plants by regulating physiological functions, antioxidants, expression and regulation of stress-responsive genes via transcriptional regulation of heat shock factor.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India; Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini (Shahanshahpur), Varanasi, 221305, Uttar Pradesh, India
| | - Nagendra Rai
- Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini (Shahanshahpur), Varanasi, 221305, Uttar Pradesh, India
| | - Mohd Aamir
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India
| | - Deepika Tripathi
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India
| | - Shashi Pandey Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India.
| |
Collapse
|
13
|
Jiao C, Gu Z. iTRAQ-based proteomic analysis reveals changes in response to sodium nitroprusside treatment in soybean sprouts. Food Chem 2019; 292:372-376. [PMID: 31054689 DOI: 10.1016/j.foodchem.2018.02.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/04/2018] [Accepted: 02/11/2018] [Indexed: 01/28/2023]
Abstract
In recent years, nitric oxide (NO) has been considered a plant signaling compound involved in antioxidant systems and flavonoid production enhancement. Nevertheless, its mechanism of action, from the perspective of protein expression, remains largely unknown. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) was employed to investigate NO donor sodium nitroprusside treatment-induced proteomic changes in soybean sprouts. Among the 3033 proteins identified, compared with the control, sodium nitroprusside treatment up- and down-regulated 256 proteins. These proteins were involved in antioxidant system pathways, such as the thioredoxin, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR) and lipoxygenase (LOX) pathways, including allene oxide synthase and lipoxygenase. In addition, heat shock proteins (HSPs) and flavonoid biosynthetic proteins, such as cinnamate 4-hydroxylase, chalcone isomerase, chalcone synthase, isoflavone synthase and isoflavone reductase, were also modulated in response to sodium nitroprusside treatment.
Collapse
Affiliation(s)
- Caifeng Jiao
- College of Food Technology, Xuzhou University of Technology, Xuzhou, Jiangsu 221000, People's Republic of China.
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
14
|
Antiapoptotic Effect of β1 Blockers in Ascending Thoracic Aortic Smooth Muscle Cells: The Role of HSP70 Expression. J Cardiovasc Pharmacol 2019; 72:86-96. [PMID: 29738368 DOI: 10.1097/fjc.0000000000000596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heat shock proteins (HSPs) play an important role in the cellular adaptation to stress, a requisite for cell survival. The aortic wall appears to be a target for increased expression of HSPs during surgical stress. We aimed to define the expression and function of aortic HSP70 in 31 patients with normal ascending thoracic aortic diameter who underwent aortic valve replacement due to aortic valve stenosis and in 35 patients with dilated ascending thoracic aorta who underwent replacement of an ascending thoracic aortic aneurysm. To elucidate responsible signaling mechanisms we used an in vitro model of rat hypoxic aortic vascular smooth muscle cell (AVSMC) cultures. We demonstrated an increase in AVSMC HSP70 and an attenuation of the apoptotic markers (TUNEL-positive nuclei, caspase-3 activity, Bax/Bcl2 ratio) in aortic wall tissue specimens from both aortic valve stenosis and ascending thoracic aortic aneurysm patients on β1 blockade with metoprolol. In vitro, metoprolol treatment of hypoxic rat AVSMCs increased nitric oxide (NO) production, induced heat shock factor 1 transport to the nucleus, upregulated HSP70, decreased p53 phosphorylation and attenuated apoptosis. Blockade of NO production, resulted in decreased HSP70 and prevented the metoprolol-induced anti-apoptotic response of hypoxic AVSMCs. We demonstrate an anti-apoptotic effect of metoprolol dependent on NO-induced HSP70 expression, and thus augmentation of HSP70 expression should be considered as a therapeutic approach to limit apoptosis in the human ascending thoracic aorta of patients undergoing cardiac surgery.
Collapse
|
15
|
Patinen T, Adinolfi S, Cortés CC, Härkönen J, Jawahar Deen A, Levonen AL. Regulation of stress signaling pathways by protein lipoxidation. Redox Biol 2019; 23:101114. [PMID: 30709792 PMCID: PMC6859545 DOI: 10.1016/j.redox.2019.101114] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 12/30/2022] Open
Abstract
Enzymatic and non-enzymatic oxidation of unsaturated fatty acids gives rise to reactive species that covalently modify nucleophilic residues within redox sensitive protein sensors in a process called lipoxidation. This triggers adaptive signaling pathways that ultimately lead to increased resistance to stress. In this graphical review, we will provide an overview of pathways affected by protein lipoxidation and the key signaling proteins being altered, focusing on the KEAP1-NRF2 and heat shock response pathways. We review the mechanisms by which lipid peroxidation products can serve as second messengers and evoke cellular responses via covalent modification of key sensors of altered cellular environment, ultimately leading to adaptation to stress.
Collapse
Affiliation(s)
- Tommi Patinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | - Simone Adinolfi
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | - Carlos Cruz Cortés
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland; Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City MX-07360, Mexico
| | - Jouni Härkönen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | - Ashik Jawahar Deen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | - Anna-Liisa Levonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland.
| |
Collapse
|
16
|
Stephanou A, Latchman DS. Transcriptional regulation of the heat shock protein genes by STAT family transcription factors. Gene Expr 2018; 7:311-9. [PMID: 10440232 PMCID: PMC6174665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
We have previously demonstrated that interleukin-6 (IL-6) increases the levels of the heat shock protein 90 (Hsp90) and activates the Hsp90beta promoter via the IL-6-activated transcription factors NF-IL6 and STAT-3. In addition, interferon-gamma (IFN-gamma) treatment increases the levels of Hsp70 and Hsp90 and also enhances the activity of the Hsp70 and Hsp90beta promoters with these effects being dependent on activation of the STAT-1 transcription factor by IFN-gamma. The effect of IL-6/STAT-3 and IFN-gamma/STAT-1 was mediated via a short region of the Hsp70/Hsp90 promoters, which also mediates the effects of NF-IL6. This region also contains a binding site for the stress-activated transcription factor HSF-1. Furthermore, STAT-1 and HSF-1 interact with one another via a protein-protein interaction and produce a strong activation of transcription. In contrast, STAT-3 and HSF-1 antagonize one another and reduce the activation of both the Hsp70 and Hsp90 promoters. Thus, STAT-1 or STAT-3 activation alone or together results in the activation of Hsp promoters. However, STAT-1 or STAT-3 interact differently with HSF-1 to regulate Hsp promoter activity. These results indicate that STATs are able to moduate the Hsp70 and Hsp90 gene promoters and that these transcription factors are likely to play a very important role in Hsp gene activation by nonstressful stimuli and the integration of these responses with the stress response of these genes.
Collapse
Affiliation(s)
- A Stephanou
- Department of Molecular Pathology, Windyer Institute of Medical Sciences, University College London, UK
| | | |
Collapse
|
17
|
Williams BL, Wiebler JM, Lee RE, Costanzo JP. Nitric oxide metabolites in hypoxia, freezing, and hibernation of the wood frog, Rana sylvatica. J Comp Physiol B 2018; 188:957-966. [PMID: 30209557 DOI: 10.1007/s00360-018-1182-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/31/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is a gaseous free radical that in diverse organisms performs many signaling and protective functions, such as vasoregulation, inhibition of apoptosis, antioxidation, and metabolic suppression. Increased availability of NO may be especially important during life-history periods when organisms contend with multiple stresses. We investigated dynamics of the NO metabolites, nitrite (NO2-) and nitrate (NO3-), in the blood plasma, heart, liver, and skeletal muscle of the wood frog (Rana sylvatica), an amphibian that endures chronic cold, freezing, hypoxia, dehydration, and extended aphagia during hibernation. We found elevated concentrations of NO2- and/or NO3- in the plasma (up to 4.1-fold), heart (3.1-fold), and liver (up to 4.1-fold) of frogs subjected to experimental hypoxia (24 h, 4 °C), and in the liver (up to 3.8-fold) of experimentally frozen frogs (48 h, - 2.5 °C), suggesting that increased NO availability aids in survival of these stresses. During a 38-week period of simulated hibernation, NO2- and/or NO3- increased in the plasma (up to 10.4-fold), heart (up to 3.3-fold), and liver (5.0-fold) during an initial 5-week winter-acclimatization regimen and generally remained elevated thereafter. In hibernation, plasma NO2- was higher in frogs indigenous to Interior Alaska than in conspecifics from a temperate locale (southern Ohio), suggesting that NO availability is matched to the severity of environmental conditions prevailing in winter. The comparatively high NO availability in R. sylvatica, a stress-tolerant species, together with published values for other species, suggest that the NO protection system is of general importance in the stress adaptation of vertebrates.
Collapse
Affiliation(s)
- Bethany L Williams
- Department of Biology, Miami University, Oxford, OH, 45056, USA
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, 43202, USA
| | - James M Wiebler
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Jon P Costanzo
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
18
|
Miragem AA, Homem de Bittencourt PI. Nitric oxide-heat shock protein axis in menopausal hot flushes: neglected metabolic issues of chronic inflammatory diseases associated with deranged heat shock response. Hum Reprod Update 2018; 23:600-628. [PMID: 28903474 DOI: 10.1093/humupd/dmx020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although some unequivocal underlying mechanisms of menopausal hot flushes have been demonstrated in animal models, the paucity of similar approaches in humans impedes further mechanistic outcomes. Human studies might show some as yet unexpected physiological mechanisms of metabolic adaptation that permeate the phase of decreased oestrogen levels in both symptomatic and asymptomatic women. This is particularly relevant because both the severity and time span of hot flushes are associated with increased risk of chronic inflammatory disease. On the other hand, oestrogen induces the expression of heat shock proteins of the 70 kDa family (HSP70), which are anti-inflammatory and cytoprotective protein chaperones, whose expression is modulated by different types of physiologically stressful situations, including heat stress and exercise. Therefore, lower HSP70 expression secondary to oestrogen deficiency increases cardiovascular risk and predisposes the patient to senescence-associated secretory phenotype (SASP) that culminates in chronic inflammatory diseases, such as obesities, type 2 diabetes, neuromuscular and neurodegenerative diseases. OBJECTIVE AND RATIONALE This review focuses on HSP70 and its accompanying heat shock response (HSR), which is an anti-inflammatory and antisenescent pathway whose intracellular triggering is also oestrogen-dependent via nitric oxide (NO) production. The main goal of the manuscript was to show that the vasomotor symptoms that accompany hot flushes may be a disguised clue for important neuroendocrine alterations linking oestrogen deficiency to the anti-inflammatory HSR. SEARCH METHODS Results from our own group and recent evidence on hypothalamic control of central temperature guided a search on PubMed and Google Scholar websites. OUTCOMES Oestrogen elicits rapid production of the vasodilatory gas NO, a powerful activator of HSP70 expression. Whence, part of the protective effects of oestrogen over cardiovascular and neuroendocrine systems is tied to its capacity of inducing the NO-elicited HSR. The hypothalamic areas involved in thermoregulation (infundibular nucleus in humans and arcuate nucleus in other mammals) and whose neurons are known to have their function altered after long-term oestrogen ablation, particularly kisspeptin-neurokinin B-dynorphin neurons, (KNDy) are the same that drive neuroprotective expression of HSP70 and, in many cases, this response is via NO even in the absence of oestrogen. From thence, it is not illogical that hot flushes might be related to an evolutionary adaptation to re-equip the NO-HSP70 axis during the downfall of circulating oestrogen. WIDER IMPLICATIONS Understanding of HSR could shed light on yet uncovered mechanisms of menopause-associated diseases as well as on possible manipulation of HSR in menopausal women through physiological, pharmacological, nutraceutical and prebiotic interventions. Moreover, decreased HSR indices (that can be clinically determined with ease) in perimenopause could be of prognostic value in predicting the moment and appropriateness of starting a HRT.
Collapse
Affiliation(s)
- Antônio Azambuja Miragem
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil.,Federal Institute of Education, Science and Technology 'Farroupilha', Rua Uruguai 1675, Santa Rosa, RS 98900-000, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
19
|
Mazzei L, Cuello-Carrión FD, Docherty N, Manucha W. Heat shock protein 70/nitric oxide effect on stretched tubular epithelial cells linked to WT-1 cytoprotection during neonatal obstructive nephropathy. Int Urol Nephrol 2017; 49:1875-1892. [PMID: 28711961 DOI: 10.1007/s11255-017-1658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/10/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mechanical stress is a key pathogenic driver of apoptosis in the tubular epithelium in obstructive nephropathy. Heat shock protein 70 (Hsp70) and Wilms' tumor (WT-1) have been proposed to represent linked downstream effectors of the cytoprotective properties of NO. In the present study, we sought to evaluate whether the cytoprotective effects of L-arginine in neonatal obstructive nephropathy may be associated with NO-dependent increases in WT-1 and Hsp70 expression. METHODS Neonatal Wistar-Kyoto rats were submitted to complete unilateral ureteral obstruction (UUO) and treated thereafter with vehicle, L-NAME or L-arginine by daily gavage for 14 days to block or augment NO levels, respectively. Normal rat kidney epithelial cells by NRK-52E were exposed to mechanical stress in vitro in the presence or absence of L-NAME, L-arginine, sodium nitroprusside (SNP), L-arginine + SNP or L-arginine/L-NAME. Induction of apoptosis and the mRNA expression of WT-1 and Hsp70 genes were assessed. RESULTS WT-1 and Hsp70 genes expression decreased in the presence of L-NAME and following UUO coincident with increased tubular apoptosis. L-arginine treatment increased NO levels, reduced apoptosis and restored expression levels of WT-1 and Hsp70 to control levels. L-arginine treatment in vitro reduced basal apoptotic rates and prevented apoptosis in response to mechanical strain, an effect enhanced by SNP co-incubation. L-NAME increased apoptosis and prevented the anti-apoptotic action of L-arginine. CONCLUSIONS L-arginine treatment in experimental neonatal UUO reduces apoptosis coincident with restoration of WT-1 and Hsp70 expression levels and directly inhibits mechanical strain-induced apoptosis in an NO-dependent manner in vitro. This potentially implicates an NO-Hsp70-WT-1 axis in the cytoprotective effects of L-arginine.
Collapse
Affiliation(s)
- Luciana Mazzei
- Laboratorio de Farmacología Experimental Básica y Traslacional. IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina.,Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Fernando Darío Cuello-Carrión
- Laboratorio de Farmacología Experimental Básica y Traslacional. IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina
| | - Neil Docherty
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina. .,Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina. .,Pharmacology Area, Pathology Department, Medical Sciences College, National University of Cuyo, Mendoza, CP5500, Argentina.
| |
Collapse
|
20
|
Zeghir-Bouteldja R, Polomé A, Bousbata S, Touil-Boukoffa C. Comparative proteome profiling of hydatid fluid from Algerian patients reveals cyst location-related variation in Echinococcus granulosus. Acta Trop 2017; 171:199-206. [PMID: 28412048 DOI: 10.1016/j.actatropica.2017.03.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 12/22/2022]
Abstract
Human cystic echinococcosis, an endemic zoonosis in Algeria, is caused by larvae of the cestode Echinococcus granulosus. Parasitic modulation of the immune response allows E. granulosus to persist in intermediate hosts. Previous in vitro and in vivo immunological studies have shown differences in host immune responses according to the status and location of the hydatid cysts in the body. In this study, a proteomic analysis of human hydatid fluids was performed to identify the proteins in hydatid cyst fluids. Hydatid fluid was obtained after cystic surgical removal from three patients with these cysts. The study was conducted on fertile hydatid fluids from lungs, vertebra, and infertile paravertebral fluids. Comparisons of the protein compositions of these fluids revealed differences in their protein profiles. These differences are probably related to the cyst location and fertility status of the parasite. Notably, our analysis identified new proteins from the parasite and human host. The identification of host proteins in hydatid fluids indicates that the hydatid walls are permeable allowing a high protein exchange rate between the metacestode and the affected tissue. Interestingly, our study also revealed that parasite antigenic protein expression variations reflect the differences observed in host immunostimulation.
Collapse
Affiliation(s)
- Razika Zeghir-Bouteldja
- Laboratory of Cellular and Molecular Biology, Team 'Cytokines and NO Synthases' Faculty of Biological Science University of Sciences and Technology Houari Boumediene, USTHB, PB 32 El-Alia, Algiers 16111, Algeria; Department of Biological Science, Akli Mohand Oulhadj University, Bouira, Algeria.
| | - Andy Polomé
- Proteomic Platform, Microbiology Laboratory, Department of Molecular Biology, Université Libre de Bruxelles, Belgium.
| | - Sabrina Bousbata
- Proteomic Platform, Microbiology Laboratory, Department of Molecular Biology, Université Libre de Bruxelles, Belgium.
| | - Chafia Touil-Boukoffa
- Laboratory of Cellular and Molecular Biology, Team 'Cytokines and NO Synthases' Faculty of Biological Science University of Sciences and Technology Houari Boumediene, USTHB, PB 32 El-Alia, Algiers 16111, Algeria.
| |
Collapse
|
21
|
Dayalan Naidu S, Dinkova-Kostova AT. Regulation of the mammalian heat shock factor 1. FEBS J 2017; 284:1606-1627. [PMID: 28052564 DOI: 10.1111/febs.13999] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/17/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Abstract
Living organisms are endowed with the capability to tackle various forms of cellular stress due to the presence of molecular chaperone machinery complexes that are ubiquitous throughout the cell. During conditions of proteotoxic stress, the transcription factor heat shock factor 1 (HSF1) mediates the elevation of heat shock proteins, which are crucial components of the chaperone complex machinery and function to ameliorate protein misfolding and aggregation and restore protein homeostasis. In addition, HSF1 orchestrates a versatile transcriptional programme that includes genes involved in repair and clearance of damaged macromolecules and maintenance of cell structure and metabolism, and provides protection against a broad range of cellular stress mediators, beyond heat shock. Here, we discuss the structure and function of the mammalian HSF1 and its regulation by post-translational modifications (phosphorylation, sumoylation and acetylation), proteasomal degradation, and small-molecule activators and inhibitors.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, UK
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, UK
- Department of Pharmacology and Molecular Sciences, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Camargo AB, Manucha W. Potential protective role of nitric oxide and Hsp70 linked to functional foods in the atherosclerosis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.artere.2016.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Camargo AB, Manucha W. Potencial rol protector del óxido nítrico y Hsp70 asociado a alimentos funcionales en la aterosclerosis. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2017; 29:36-45. [DOI: 10.1016/j.arteri.2016.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
|
24
|
Manukhina EB, Downey HF, Mallet RT. Role of Nitric Oxide in Cardiovascular Adaptation to Intermittent Hypoxia. Exp Biol Med (Maywood) 2016; 231:343-65. [PMID: 16565431 DOI: 10.1177/153537020623100401] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hypoxia is one of the most frequently encountered stresses in health and disease. The duration, frequency, and severity of hypoxic episodes are critical factors determining whether hypoxia is beneficial or harmful. Adaptation to intermittent hypoxia has been demonstrated to confer cardiovascular protection against more severe and sustained hypoxia, and, moreover, to protect against other stresses, including ischemia. Thus, the direct and cross protective effects of adaptation to intermittent hypoxia have been used for treatment and prevention of a variety of diseases and to increase efficiency of exercise training. Evidence is mounting that nitric oxide (NO) plays a central role in these adaptive mechanisms. NO-dependent protective mechanisms activated by intermittent hypoxia include stimulation of NO synthesis as well as restriction of NO overproduction. In addition, alternative, nonenzymic sources of NO and negative feedback of NO synthesis are important factors in optimizing NO concentrations. The adaptive enhancement of NO synthesis and/or availability activates or increases expression of other protective factors, including heat shock proteins, antioxidants and prostaglandins, making the protection more robust and sustained. Understanding the role of NO in mechanisms of adaptation to hypoxia will support development of therapies to prevent and treat hypoxic or ischemic damage to organs and cells and to increase adaptive capabilities of the organism.
Collapse
|
25
|
Gellai R, Hodrea J, Lenart L, Hosszu A, Koszegi S, Balogh D, Ver A, Banki NF, Fulop N, Molnar A, Wagner L, Vannay A, Szabo AJ, Fekete A. Role of O-linked N-acetylglucosamine modification in diabetic nephropathy. Am J Physiol Renal Physiol 2016; 311:F1172-F1181. [PMID: 27029430 DOI: 10.1152/ajprenal.00545.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022] Open
Abstract
Increased O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) is a known contributor to diabetes; however, its relevance in diabetic nephropathy (DN) is poorly elucidated. Here, we studied the process and enzymes of O-GlcNAcylation with a special emphasis on Akt-endothelial nitric oxide synthase (eNOS) and heat shock protein (HSP)72 signaling. Since tubular injury is the prominent site of DN, the effect of hyperglycemia was first measured in proximal tubular (HK2) cells cultured in high glucose. In vivo O-GlcNAcylation and protein levels of O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), phosphorylated (p)Akt/Akt, peNOS/eNOS, and HSP72 were assessed in the kidney cortex of streptozotocin-induced diabetic rats. The effects of various renin-angiotensin-aldosterone system (RAAS) inhibitors were also evaluated. In proximal tubular cells, hyperglycemia-induced OGT expression led to increased O-GlcNAcylation, which was followed by a compensatory increase of OGA. In parallel, peNOS and pAkt levels decreased, whereas HSP72 increased. In diabetic rats, elevated O-GlcNAcylation was accompanied by decreased OGT and OGA. RAAS inhibitors ameliorated diabetes-induced kidney damage and prevented the elevation of O-GlcNAcylation and the decrement of pAkt, peNOS, and HSP72. In conclusion, hyperglycemia-induced elevation of O-GlcNAcylation contributes to the progression of DN via inhibition of Akt/eNOS phosphorylation and HSP72 induction. RAAS blockers successfully inhibit this process, suggesting a novel pathomechanism of their renoprotective action in the treatment of DN.
Collapse
Affiliation(s)
- Renata Gellai
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Judit Hodrea
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Lilla Lenart
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Adam Hosszu
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Sandor Koszegi
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Dora Balogh
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Agota Ver
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Nora F Banki
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Norbert Fulop
- Teaching Hospital Mór Kaposi, Kaposvar, Hungary; and
| | - Agnes Molnar
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Laszlo Wagner
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Adam Vannay
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila J Szabo
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Andrea Fekete
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary; .,First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
MacInnes AW. The role of the ribosome in the regulation of longevity and lifespan extension. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:198-212. [PMID: 26732699 DOI: 10.1002/wrna.1325] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/14/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022]
Abstract
The most energy-consuming process that a cell must undertake to stay viable is the continuous biogenesis of ribosomes for the translation of RNA into protein. Given the inextricable links between energy consumption and cellular lifespan, it is not surprising that mutations and environmental cues that reduce ribosome biogenesis result in an extension of eukaryotic lifespan. This review goes into detail describing recent discoveries of different and often unexpected elements that play a role in the regulation of longevity by virtue of their ribosome biogenesis functions. These roles include controlling the transcription and processing of ribosomal RNA (rRNA), the translation of ribosomal protein (RP) genes, and the number of ribosomes overall. Together these findings suggest that a fundamental mechanism across eukaryotic species for extending lifespan is to slow down or halt the expenditure of cellular energy that is normally absorbed by the manufacturing and assembly of new ribosomes.
Collapse
|
27
|
Endothelial nitric oxide synthase induces heat shock protein HSPA6 (HSP70B') in human arterial smooth muscle cells. Nitric Oxide 2015; 52:41-8. [PMID: 26656590 DOI: 10.1016/j.niox.2015.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 11/22/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) is the major source of nitric oxide (NO) production in blood vessels. One of the pleitropic functions of eNOS derived NO is to inhibit vascular smooth muscle cell proliferation in the blood vessel wall, and whose dysfunction is a primary cause of atherosclerosis and restenosis. In this study there was an interest in examining the gene profile of eNOS adenoviral (Ad-eNOS) transduced human coronary artery smooth muscle cells (HCASMC) to further understand the eNOS inhibitory effect on smooth muscle cell proliferation. To this aim a whole genome wide analysis of eNOS transduced HCASMCs was performed. A total of 19 genes were up regulated, and 31 genes down regulated in Ad-eNOS transduced HCASMCs compared to cells treated with an empty adenovirus. Noticeably, a cluster of HSP70 gene family members was amongst the genes up regulated. Quantitative PCR confirmed that transcripts for HSPA1A (HSP70A), HSPA1B (HSP70B) and HSPA6 (HSP70B') were elevated 2, 1.7 and 14-fold respectively in Ad-eNOS treated cells. The novel gene HSPA6 was further explored as a potential mediator of eNOS signaling in HCASMC. Immunoblotting showed that HSPA6 protein was induced by Ade-NOS. To functionally examine the effect of HSPA6 on SMCs, an adenovirus harboring the HSPA6 gene under the control of a constitutive promoter was generated. Transduction of HCASMCs with Ad-HSPA6 inhibited SMC proliferation at 3 and 6 days post serum growth stimulation, and paralleled the Ad-eNOS inhibition of SMC growth. The identification in this study that HSPA6 overexpression inhibits SMC proliferation coupled with the recent finding that inhibition of HSP90 has a similar effect, progresses the field of targeting HSPs for vascular repair.
Collapse
|
28
|
Mazzei L, Docherty NG, Manucha W. Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy. Cell Stress Chaperones 2015; 20:893-906. [PMID: 26228633 PMCID: PMC4595437 DOI: 10.1007/s12192-015-0622-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/24/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022] Open
Abstract
Urinary heat shock protein 70 (Hsp70) is rapidly increased in patients with clinical acute kidney injury, indicating that it constitutes a component of the endogenous stress response to renal injury. Moreover, experimental models have demonstrated that Hsp70 activation is associated with the cytoprotective actions of several drugs following obstruction, including nitric oxide (NO) donors, geranylgeranylacetone, vitamin D, and rosuvastatin. Discrete and synergistic effects of the biological activities of Hsp70 may explain its cytoprotective role in obstructive nephropathy. Basic studies point to a combination of effects including inhibition of apoptosis and inflammation, repair of damaged proteins, prevention of unfolded protein aggregation, targeting of damaged protein for degradation, and cytoskeletal stabilization as primary effectors of Hsp70 action. This review summarizes our understanding of how the biological actions of Hsp70 may affect renal cytoprotection in the context of obstructive injury. The potential of Hsp70 to be of central importance to the mechanism of action of various drugs that modify the genesis of experimental obstructive nephropathy is considered.
Collapse
Affiliation(s)
- Luciana Mazzei
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
- IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina.
| | - Neil G Docherty
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina
| |
Collapse
|
29
|
Wt-1 Expression Linked to Nitric Oxide Availability during Neonatal Obstructive Nephropathy. Adv Urol 2013; 2013:401750. [PMID: 24288526 PMCID: PMC3833023 DOI: 10.1155/2013/401750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/22/2022] Open
Abstract
The wt-1 gene encodes a zinc finger DNA-binding protein that acts as a transcriptional activator or repressor depending on the cellular or chromosomal context. The wt-1 regulates the expression of a large number of genes that have a critical role in kidney development. Congenital obstructive nephropathy disrupts normal renal development and causes chronic progressive interstitial fibrosis, which contributes to renal growth arrest, ultimately leading to chronic renal failure. Wt-1 is downregulated during congenital obstructive nephropathy, leading to apoptosis. Of great interest, nitric oxide bioavailability associated with heat shock protein 70 (Hsp70) interaction may modulate wt-1 mRNA expression, preventing obstruction-induced cell death during neonatal unilateral ureteral obstruction. Moreover, recent genetic researches have allowed characterization of many of the complex interactions among the individual components cited, but the realization of new biochemical, molecular, and functional experiments as proposed in our and other research labs allows us to establish a deeper level of commitment among proteins involved and the potential pathogenic consequences of their imbalance.
Collapse
|
30
|
Berendse K, Ebberink MS, Ijlst L, Poll-The BT, Wanders RJA, Waterham HR. Arginine improves peroxisome functioning in cells from patients with a mild peroxisome biogenesis disorder. Orphanet J Rare Dis 2013; 8:138. [PMID: 24016303 PMCID: PMC3844471 DOI: 10.1186/1750-1172-8-138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/30/2013] [Indexed: 01/13/2023] Open
Abstract
Background Zellweger spectrum disorders (ZSDs) are multisystem genetic disorders caused by a lack of functional peroxisomes, due to mutations in one of the PEX genes, encoding proteins involved in peroxisome biogenesis. The phenotypic spectrum of ZSDs ranges from an early lethal form to much milder presentations. In cultured skin fibroblasts from mildly affected patients, peroxisome biogenesis can be partially impaired which results in a mosaic catalase immunofluorescence pattern. This peroxisomal mosaicism has been described for specific missense mutations in various PEX genes. In cell lines displaying peroxisomal mosaicism, peroxisome biogenesis can be improved when these are cultured at 30°C. This suggests that these missense mutations affect the folding and/or stability of the encoded protein. We have studied if the function of mutant PEX1, PEX6 and PEX12 can be improved by promoting protein folding using the chemical chaperone arginine. Methods Fibroblasts from three PEX1 patients, one PEX6 and one PEX12 patient were cultured in the presence of different concentrations of arginine. To determine the effect on peroxisome biogenesis we studied the following parameters: number of peroxisome-positive cells, levels of PEX1 protein and processed thiolase, and the capacity to β-oxidize very long chain fatty acids and pristanic acid. Results Peroxisome biogenesis and function in fibroblasts with mild missense mutations in PEX1, 6 and 12 can be improved by arginine. Conclusion Arginine may be an interesting compound to promote peroxisome function in patients with a mild peroxisome biogenesis disorder.
Collapse
Affiliation(s)
- Kevin Berendse
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University Hospital of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Sandoval-Montiel AA, Zentella-de-Piña M, Ventura-Gallegos JL, Frías-González S, López-Macay A, Zentella-Dehesa A. HSP-72 accelerated expression in mononuclear cells induced in vivo by acetyl salicylic acid can be reproduced in vitro when combined with H2O2. PLoS One 2013; 8:e65449. [PMID: 23762376 PMCID: PMC3675067 DOI: 10.1371/journal.pone.0065449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/30/2013] [Indexed: 11/19/2022] Open
Abstract
Background Among NSAIDs acetyl salicylic acid remains as a valuable tool because of the variety of benefic prophylactic and therapeutic effects. Nevertheless, the molecular bases for these responses have not been complete understood. We explored the effect of acetyl salicylic acid on the heat shock response. Results Peripheral blood mononuclear cells from rats challenged with acetyl salicylic acid presented a faster kinetics of expression of HSP-72 messenger RNA and protein in response to in vitro heat shock. This effect reaches its maximum 2 h after treatment and disappeared after 5 h. On isolated peripheral blood mononuclear cells from untreated rats, incubation with acetyl salicylic acid was ineffective to produce priming, but this effect was mimicked when the cells were incubated with the combination of H2O2+ ASA. Conclusions Administration of acetyl salicylic acid to rats alters HSP-72 expression mechanism in a way that it becomes more efficient in response to in vitro heat shock. The fact that in vitro acetyl salicylic acid alone did not induce this priming effect implies that in vivo other signals are required. Priming could be reproduces in vitro with the combination of acetyl salicylic acid+H2O2.
Collapse
Affiliation(s)
- Alvaro A. Sandoval-Montiel
- Departmento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
| | - Martha Zentella-de-Piña
- Departmento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México
| | - José L. Ventura-Gallegos
- Departmento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
| | - Susana Frías-González
- Departmento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
| | - Ambar López-Macay
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación, México D.F., México
| | - Alejandro Zentella-Dehesa
- Departmento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., México
- * E-mail:
| |
Collapse
|
32
|
Piterková J, Luhová L, Mieslerová B, Lebeda A, Petřivalský M. Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:57-65. [PMID: 23602099 DOI: 10.1016/j.plantsci.2013.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 02/08/2013] [Accepted: 02/16/2013] [Indexed: 05/02/2023]
Abstract
Heat shock proteins (HSP) are produced in response to various stress stimuli to prevent cell damage. We evaluated the involvement of nitric oxide (NO) and reactive oxygen species (ROS) in the accumulation of Hsp70 proteins in tomato leaves induced by abiotic and biotic stress stimuli. A model system of leaf discs was used with two tomato genotypes, Solanum lycopersicum cv. Amateur and Solanum chmielewskii, differing in their resistance to fungal pathogen Oidium neolycopersici. Leaf discs were exposed to stress factors as heat shock and pathogen infection alone or in a combination, and treated with substances modulating endogenous NO and ROS levels. Two proteins of Hsp70 family were detected in stressed tomato leaf discs: a heat-inducible 72 kDa protein and a constitutive 75 kDa protein. The pathogenesis and mechanical stress influenced Hsp75 accumulation, whereas heat stress induced mainly Hsp72 production. Treatment with NO donor and NO scavenger significantly modulated the level of Hsp70 in variable manner related to the genotype resistance. Hsp70 accumulation correlated with endogenous NO level in S. lycopersicum and ROS levels in S. chmielewskii. We conclude NO and ROS are involved in the regulation of Hsp70 production and accumulation under abiotic and biotic stresses in dependence on plant ability to trigger its defence mechanisms.
Collapse
Affiliation(s)
- Jana Piterková
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
33
|
Gusarov I, Gautier L, Smolentseva O, Shamovsky I, Eremina S, Mironov A, Nudler E. Bacterial nitric oxide extends the lifespan of C. elegans. Cell 2013; 152:818-30. [PMID: 23415229 DOI: 10.1016/j.cell.2012.12.043] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 11/13/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
Nitric oxide (NO) is an important signaling molecule in multicellular organisms. Most animals produce NO from L-arginine via a family of dedicated enzymes known as NO synthases (NOSes). A rare exception is the roundworm Caenorhabditis elegans, which lacks its own NOS. However, in its natural environment, C. elegans feeds on Bacilli that possess functional NOS. Here, we demonstrate that bacterially derived NO enhances C. elegans longevity and stress resistance via a defined group of genes that function under the dual control of HSF-1 and DAF-16 transcription factors. Our work provides an example of interspecies signaling by a small molecule and illustrates the lifelong value of commensal bacteria to their host.
Collapse
Affiliation(s)
- Ivan Gusarov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Kornej J, Reinhardt C, Kosiuk J, Arya A, Hindricks G, Adams V, Husser D, Bollmann A. Response of circulating heat shock protein 70 and anti-heat shock protein 70 antibodies to catheter ablation of atrial fibrillation. J Transl Med 2013; 11:49. [PMID: 23432758 PMCID: PMC3599085 DOI: 10.1186/1479-5876-11-49] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 02/20/2013] [Indexed: 01/05/2023] Open
Abstract
Background This pilot study investigated the association between heat shock protein 70 (HSP70) and anti-HSP70 antibodies as well as their changes and rhythm outcome after atrial fibrillation (AF) catheter ablation. Methods We studied 67 patients with AF (59±11 years, 66% male, 66% lone AF) undergoing catheter ablation. Circulating HSP70 and anti-HSP70 antibody levels were quantified using commercially available assays before and 6 months after catheter ablation. Serial 7-day Holter ECGs were used to detect AF recurrences. Results At baseline, HSP70 was detectable in 14 patients (21%), but there was no correlation between clinical or echocardiographic variables and the presence or the level of HSP70. In contrast, patients with paroxysmal AF (n=39) showed lower anti-HSP70 antibodies (median [IQR] of 43 [28 – 62] μg/ml) than patients with persistent AF (n=28; 53 [41 – 85] μg/ml, p=0.035). Using multivariable regression analysis, AF type was the only variable associated with anti-HSP70 antibodies (Beta=0.342, p=0.008). At 6 months, HSP70 was present in 27 patients (41%, p<0.001 vs. baseline). Similarly, there was an increase of anti-HSP70 antibodies (48 [36 – 72] vs. 57 [43 – 87] μg/ml, p<0.001). AF recurrence rates were higher in patients with HSP70 increase ≥0.025 ng/ml (32 vs. 11%, p=0.038) or anti-HSP70 increase ≥2.5 μg/ml (26 vs. 4%, p=0.033). Conclusions HSP70 and anti-HSP70 antibodies may – at least in part – be associated in the progression of AF and AF recurrence after catheter ablation.
Collapse
Affiliation(s)
- Jelena Kornej
- Department of Electrophysiology, Heart Center Leipzig, Strümpellstr, 39, 04289 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lam KK, Cheng PY, Lee YM, Liu YP, Ding C, Liu WH, Yen MH. The role of heat shock protein 70 in the protective effect of YC-1 on heat stroke rats. Eur J Pharmacol 2012; 699:67-73. [PMID: 23219797 DOI: 10.1016/j.ejphar.2012.11.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/22/2012] [Accepted: 11/23/2012] [Indexed: 01/30/2023]
Abstract
Heat stroke is a life-threatening illness characterized by an elevated core body temperature. Despite adequate lowering of the body temperature and support treatment of multiple organ-system function, heat stroke is often fatal. 3-(5'-Hydoxymethyl-2'-furyl)-1-benzyl-indazol (YC-1) been identified as an activator of soluble guanylate cyclase. To evaluate whether YC-1 protects multiple organ dysfunctions and improves survival during heat stroke and its mechanism. Male Sprague-Dawley rats untreated or treated with either YC-1 or quercetin (heat shock protein (Hsp) 70 inhibitor) were exposures to heat as a model of heat stroke. The mean arterial pressure (MAP), heart rate, rectal temperature (Tco), survival time, and plasma biochemical data, intracellular Hsp70 and heat shock factor-1 expression were measured. The value of MAP, heart rate and Tco of untreated heat stroke (HS) group were all significantly lower than that of normothermal (NT) group. Biochemical markers evidenced that liver and kidney injuries of HS group were significantly higher than that of NT groups. YC-1 (20mg/kg) pretreatment with heat stroke (YC-1+HS) group, the MAP and heart rate were return to normal, and the biochemical markers were all significantly recovered to normal. The survival time of HS group, NT group and YC-1+HS group were 21, 480, and 445 min, respectively. The expression of Hsp70 and HSF-1 in liver and renal of YC-1+HS group was significantly higher than that of HS group. All of the protective effects of YC-1 were all significantly suppressed when pretreated with quercetin (400mg/kg). Results indicate that YC-1 may improve survival due to induce Hsp70 overexpression.
Collapse
Affiliation(s)
- Kwok-Keung Lam
- Department of Pharmacology, Taipei Medical University, Taipei 114, Taiwan
| | | | | | | | | | | | | |
Collapse
|
36
|
Lunz W, Capettini LSA, Davel APC, Munhoz CD, da Silva JF, Rossoni LV, Lemos VS, Baldo MP, Carneiro-Junior MA, Natali AJ, de Lacerda LHS, Mill JG. L-NAME treatment enhances exercise-induced content of myocardial heat shock protein 72 (Hsp72) in rats. Cell Physiol Biochem 2011; 27:479-86. [PMID: 21691065 DOI: 10.1159/000329969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Nitric oxide (NO) modulates the expression of the chaperone Hsp72 in the heart, and exercise stimulates both NO production and myocardial Hsp72 expression. The main purpose of the study was to investigate whether NO interferes with an exercise-induced myocardial Hsp72 expression. METHODS Male Wistar rats (70-100 days) were divided into control (C, n=12), L-NAME-treated (L, n=12), exercise (E, n=13) and exercise plus L-NAME-treated (EL, n=20) groups. L-NAME was given in drinking water (700 mg·L(-1)) and the exercise was performed on a treadmill (15-25 m·min(-1), 40-60 min.day(-1)) for seven days. Left ventricle (LV) protein Hsp content, NOS and phosphorylated-NOS (p-NOS) isoforms were measured using Western blotting. The activity of NOS was assayed in LV homogenates by the conversion of [(3)H]L-arginine to [(3)H]L-citrulline. RESULTS Hsp72 content was increased significantly (223%; p < 0.05) in the E group compared to the C group, but exercise alone did not alter the NOS content, p-NOS isoforms or NOS activity. Contrary to our expectation, L-NAME enhanced (p < 0.05) the exercise-induced Hsp72 content (EL vs. C, L and E groups = 1019%, 548% and 457%, respectively). Although the EL group had increased stimulatory p-eNOS(Ser1177) (over 200%) and decreased inhibitory p-nNOS(Ser852) (ñ50%) compared to both the E and L groups (p < 0.05), NOS activity was similar in all groups. CONCLUSIONS Our results suggest that exercise-induced cardiac Hsp72 expression does not depend on NO. Conversely, the in vivo L-NAME treatment enhances exercise-induced Hsp72 production. This effect may be due to an increase in cardiac stress.
Collapse
Affiliation(s)
- Wellington Lunz
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Vitória, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Golbidi S, Laher I. Molecular mechanisms in exercise-induced cardioprotection. Cardiol Res Pract 2011; 2011:972807. [PMID: 21403846 PMCID: PMC3051318 DOI: 10.4061/2011/972807] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 12/16/2010] [Accepted: 01/03/2011] [Indexed: 01/23/2023] Open
Abstract
Physical inactivity is increasingly recognized as modifiable behavioral risk factor for cardiovascular diseases. A partial list of proposed mechanisms for exercise-induced cardioprotection include induction of heat shock proteins, increase in cardiac antioxidant capacity, expression of endoplasmic reticulum stress proteins, anatomical and physiological changes in the coronary arteries, changes in nitric oxide production, adaptational changes in cardiac mitochondria, increased autophagy, and improved function of sarcolemmal and/or mitochondrial ATP-sensitive potassium channels. It is currently unclear which of these protective mechanisms are essential for exercise-induced cardioprotection. However, most investigations focus on sarcolemmal KATP channels, NO production, and mitochondrial changes although it is very likely that other mechanisms may also exist. This paper discusses current information about these aforementioned topics and does not consider potentially important adaptations within blood or the autonomic nervous system. A better understanding of the molecular basis of exercise-induced cardioprotection will help to develop better therapeutic strategies.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
38
|
Manucha W, Kurbán F, Mazzei L, Benardón ME, Bocanegra V, Tosi MR, Vallés P. eNOS/Hsp70 interaction on rosuvastatin cytoprotective effect in neonatal obstructive nephropathy. Eur J Pharmacol 2010; 650:487-95. [PMID: 20940012 DOI: 10.1016/j.ejphar.2010.09.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 02/07/2023]
Abstract
There is growing evidence that statins may exert renoprotective effects beyond cholesterol reduction. The cholesterol-independent or "pleiotropic" effects of statins include the upregulation of endothelial nitric oxide synthase (eNOS). Here we determined whether eNOS associated with Hsp70 expression is involved in rosuvastatin resistance to obstruction-induced oxidative stress and cell death. Neonatal rats subjected to unilateral ureteral obstruction (UUO) within two days of birth and controls were treated daily with vehicle or rosuvastatin (10 mg/kg/day) for 14 days. Decreased endogenous nitric oxide (NO) and lower mRNA and protein eNOS expression associated with downregulation of heat shock factor 1 (Hsf1) mRNA and Hsp70 protein levels were observed in the obstructed kidney cortex. Increased nicotinamide adenine dinucleotide phosphate (NADHP) oxidase activity and apoptosis induction, regulated by mitochondrial signal pathway through an increased pro-apoptotic Bax/BcL(2) ratio and caspase 3 activity, were demonstrated. Conversely, in cortex membrane fractions from rosuvastatin-treated UUO rats, marked upregulation of eNOS expression at transcriptional and posttranscriptional levels linked to increased Hsf1 mRNA expression and enhanced mRNA and protein Hsp70 expression, were observed. Consequently, there was an absence of apoptotic response and transiently decreased NADPH oxidase activity. In addition, interaction between eNOS and Hsp70 was determined by communoprecipitation in cortex membrane fractions, showing an increased ratio of both proteins, after rosuvastatin treatment in obstructed kidney. In summary, our data demonstrate that the effect of rosuvastatin on eNOS interacting with Hsp70, results in the capacity of both to prevent mitochondrial apoptotic pathway and oxidative stress in neonatal early kidney obstruction.
Collapse
Affiliation(s)
- Walter Manucha
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Exercise training has been shown to reduce many risk factors related to cardiovascular disease, including high blood pressure, high cholesterol, obesity, and insulin resistance. More importantly, exercise training has been consistently shown to confer sustainable protection against myocardial infarction in animal models and has been associated with improved survival following a heart attack in humans. It is still unclear how exercise training is able to protect the heart, but some studies have suggested that it increases a number of classical signalling molecules. For instance, exercise can increase components of the endogenous antioxidant defences (i.e. superoxide dismutase and catalase), increase the expression of heat shock proteins, activate ATP-sensitive potassium (K(ATP)) channels, and increase the expression and activity of endothelial nitric oxide (NO) synthase resulting in an increase in NO levels. This review article will provide a brief summary of the role that these signalling molecules play in mediating the cardioprotective effects of exercise. In particular, it will highlight the role that NO plays and introduce the idea that the stable NO metabolite, nitrite, may play a major role in mediating these cardioprotective effects.
Collapse
Affiliation(s)
- John W Calvert
- Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, 550 Peachtree Street NE, Atlanta, GA 30308, USA.
| |
Collapse
|
40
|
Modrego J, Moñux G, Mateos-Cáceres PJ, Martínez-López I, Segura A, Zamorano-León JJ, Rodríguez-Sierra P, Serrano J, Macaya C, López-Farré AJ. Effects of platelets on the protein expression in aortic segments: A proteomic approach. J Cell Biochem 2010; 111:889-98. [DOI: 10.1002/jcb.22777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Cristofaro B, Stone OA, Caporali A, Dawbarn D, Ieronimakis N, Reyes M, Madeddu P, Bates DO, Emanueli C. Neurotrophin-3 is a novel angiogenic factor capable of therapeutic neovascularization in a mouse model of limb ischemia. Arterioscler Thromb Vasc Biol 2010; 30:1143-50. [PMID: 20360537 DOI: 10.1161/atvbaha.109.205468] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate the novel hypothesis that neurotrophin-3 (NT-3), an established neurotrophic factor that participates in embryonic heart development, promotes blood vessel growth. METHODS AND RESULTS We evaluated the proangiogenic capacity of recombinant NT-3 in vitro and of NT-3 gene transfer in vivo (rat mesenteric angiogenesis assay and mouse normoperfused adductor muscle). Then, we studied whether either transgenic or endogenous NT-3 mediates postischemic neovascularization in a mouse model of limb ischemia. In vitro, NT-3 stimulated endothelial cell survival, proliferation, migration, and network formation on the basement membrane matrix Matrigel. In the mesenteric assay, NT-3 increased the number and size of functional vessels, including vessels covered with mural cells. Consistently, NT-3 overexpression increased muscular capillary and arteriolar densities in either the absence or the presence of ischemia and improved postischemic blood flow recovery in mouse hind limbs. NT-3-induced microvascular responses were accompanied by tropomyosin receptor kinase C (an NT-3 high-affinity receptor) phosphorylation and involved the phosphatidylinositol 3-kinase-Akt kinase-endothelial nitric oxide synthase pathway. Finally, endogenous NT-3 was shown to be essential in native postischemic neovascularization, as demonstrated by using a soluble tropomyosin receptor kinase C receptor domain that neutralizes NT-3. CONCLUSIONS Our results provide the first insight into the proangiogenic capacity of NT-3 and propose NT-3 as a novel potential agent for the treatment of ischemic disease.
Collapse
Affiliation(s)
- Brunella Cristofaro
- Experimental Cardiovascular Medicine Division, University of Bristol, Bristol, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Expression of heat shock proteins and nitrotyrosine in small arteries from patients with coronary heart disease. Heart Vessels 2009; 24:260-6. [PMID: 19626397 DOI: 10.1007/s00380-008-1117-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 09/11/2008] [Indexed: 10/20/2022]
Abstract
Heat shock proteins (HSPs) have been suggested to play an important role in the pathogenesis of cardiovascular disease; however, their levels in resistance arteries and their role as useful markers for endothelial dysfunction are not well known. In this paper we studied the levels of HSP90, HSP70, HSP60, HSP27, and of the oxidative stress marker nitrotyrosine (NT) in isolated small subcutaneous arteries from female and male patients with coronary heart disease (CHD) and compared them with healthy controls. HSPs and NT levels were analyzed by immunohistochemistry (IHC) with streptavidin-biotin complex and 3,3'-diaminobenzidine (DAB) staining. The results were assessed with a semi-quantitative method. The study showed lower levels of HSP90 in arteries from both male and female patients when compared to the healthy controls, while levels of HSP70 were lower only in male patients versus controls. The levels of HSP60 and HSP27 did not show any significant difference in either the male or the female groups. NT levels were higher in the arteries from female patients as compared to controls. In conclusion, the present study strengthens the concept that HSPs may play an important role in the pathogenesis of CHD, and that at least two of them, HSP70 and HSP90, may have useful applications as markers of vascular dysfunction in resistance arteries.
Collapse
|
43
|
YC-1 induces heat shock protein 70 expression and prevents oxidized LDL-mediated apoptosis in vascular smooth muscle cells. Shock 2008; 30:274-9. [PMID: 18197143 DOI: 10.1097/shk.0b013e318162c63a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heat shock protein 70 (hsp70) functioning as molecular chaperon in physiological conditions is induced under stress environment, which affords a defensive mechanism for cells to escape cellular damage. Hence, it is a critical issue to develop a nontoxic hsp70-inducing compound against cellular death. The present study was conducted to evaluate whether 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl-indazol (YC-1) can effectively induce hsp70 expression and protect vascular smooth muscle cells (VSMCs) against oxidized low-density lipoprotein-induced cytotoxicity. We showed that YC-1 enhanced hsp70 expression in VSMCs through a concentration- and time-dependent manner with maximum expression at 18 and 24 h without involving the cyclic guanosine monophosphate and reactive oxygen species signal in the pathway. Furthermore, we did not observe significant cytotoxicity after YC-1 treatment through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, lactic dehydrogenase, and fluorescence activating cell sorting scan assays. We demonstrated that the nuclear level of heat shock transcription factor 1 increased at 2 h after YC-1 treatment, and hsp70 expression was directed by the up-regulation of hsp70 mRNA, which peaked at 6 h and was followed by a decline. Hence, translocation of heat shock transcription factor 1 and increased level of hsp70 mRNA would account for Hsp70 expression. Finally, we found that YC-1 protects VSMCs from oxidized low-density lipoprotein-inducing apoptosis. According to our observations, YC-1 would be an effectively pharmacological hsp70 inducer that can be used as a cytoprotective agent in vascular diseases.
Collapse
|
44
|
Manucha W, Vallés P. Hsp70/nitric oxide relationship in apoptotic modulation during obstructive nephropathy. Cell Stress Chaperones 2008; 13:413-20. [PMID: 18563630 PMCID: PMC2673925 DOI: 10.1007/s12192-008-0050-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 04/22/2008] [Accepted: 04/29/2008] [Indexed: 11/25/2022] Open
Abstract
The functional integrity of the kidney depends on normal development as well as on physiological cell turnover. Apoptosis induction is essential for these mechanisms. Multiple mechanisms are unleashed during obstructive nephropathy, one of the most complex being programmed cell death that leads to renal tubular atrophy and tubular loss. This review will focus on the interaction of nitric oxide and Hsp70 and on the regulation of renal antiapoptotic and protective oxidative stress responses.
Collapse
Affiliation(s)
- Walter Manucha
- Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza, Argentina
- IMBECU-CONICET (Consejo Nacional de Investigación Ciencia y Tecnológica), Mendoza, Argentina
| | - Patricia Vallés
- Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza, Argentina
- IMBECU-CONICET (Consejo Nacional de Investigación Ciencia y Tecnológica), Mendoza, Argentina
| |
Collapse
|
45
|
Oc M, Ucar HI, Pinar A, Akbulut B, Oc B, Akyon Y, Kanbak M, Dogan R. Heat Shock Protein70: A New Marker for Subsequent Atrial Fibrillation Development? Artif Organs 2008; 32:846-50. [DOI: 10.1111/j.1525-1594.2008.00640.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Loufrani L, Henrion D. Role of the cytoskeleton in flow (shear stress)-induced dilation and remodeling in resistance arteries. Med Biol Eng Comput 2008; 46:451-60. [PMID: 18246377 DOI: 10.1007/s11517-008-0306-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 01/10/2008] [Indexed: 11/28/2022]
Abstract
Cytoskeletal proteins determine cell shape and integrity and membrane-bound structures connected to extracellular components allow tissue integrity. These structural elements have an active role in the interaction of blood vessels with their environment. Shear stress due to blood flow is the most important force stimulating the endothelium. The role of cytoskeletal proteins in endothelial responses to flow has been studied in resistance arteries using pharmacological tools and transgenic models. Shear stress activates extracellular "flow sensing" elements associated with a thick glycocalyx communicating the signal to membrane-bound complexes (integrins and/or dystrophin-dystroglycans) and to eNOS through a pathway involving the intermediate filament vimentin, the microtubule network and actin. When blood flow increases chronically the endothelium triggers diameter enlargement and medial hypertrophy. This is facilitated by the genetic absence of the intermediate filaments, vimentin and desmin suggesting that these elements oppose the process.
Collapse
Affiliation(s)
- Laurent Loufrani
- Department of Integrated Neurovascular Biology, INSERM, CNRS, CHU d'Angers, France
| | | |
Collapse
|
47
|
Fu Q, Wang J, Boerma M, Berbée M, Qiu X, Fink LM, Hauer-Jensen M. Involvement of heat shock factor 1 in statin-induced transcriptional upregulation of endothelial thrombomodulin. Circ Res 2008; 103:369-77. [PMID: 18599869 PMCID: PMC2562544 DOI: 10.1161/circresaha.108.174607] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Statins upregulate endothelial thrombomodulin (TM) by mechanisms that involve members of the Kruppel-like factor family. Although Kruppel-like factors are unequivocally implicated in this process, experimental evidence points to additional mechanisms. Deletion/mutation analysis of reporter constructs was used to demonstrate that mutation of the SP1/Kruppel-like factor element in the TM promoter only partially abolishes statin-induced TM upregulation, whereas simultaneous mutation of relevant heat shock elements and SP1/Kruppel-like factor element completely prevents statin-induced TM upregulation, thus demonstrating a role for heat shock factors (HSFs). We further identified the pathway by which statins increase binding of HSF1 to heat shock elements in the TM promoter. Specifically, statins caused NO-dependent dissociation of HSF1 from heat shock protein 90, nuclear translocation of HSF1, and binding to heat shock elements in the TM promoter. Statins also decreased nuclear content of the HSF1 chaperone 14-3-3beta. In addition to reducing TM upregulation, inhibition of HSF1 reduced statin-induced upregulation of tissue plasminogen activator, whereas downregulation of thrombomospondin, plasminogen activator inhibitor 1, or connective tissue growth factor was unaffected. Knockdown of 14-3-3beta or inhibition of HSF1 phosphorylation enhanced the effect of statins on TM and tissue plasminogen activator, but did not influence thrombomospondin, plasminogen activator inhibitor 1, or connective tissue growth factor. These data demonstrate that HSF1 is involved in statin-induced regulation of TM. They also suggest that analogous mechanisms may apply to genes that are upregulated by statins, but not to downregulated genes. These results may have broad implications and suggest the use of heat shock protein modulators to selectively regulate pleiotropic statin effects.
Collapse
Affiliation(s)
- Qiang Fu
- Departments of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Junru Wang
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Maaike Berbée
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Xiaohua Qiu
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | - Martin Hauer-Jensen
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR
- Nevada Cancer Institute, Las Vegas, NV
- Surgery Service, Central Arkansas Veterans Healthcare System, Little Rock, AR
| |
Collapse
|
48
|
Chen YJ, Ku WC, Feng LT, Tsai ML, Hsieh CH, Hsu WH, Liaw WF, Hung CH, Chen YJ. Nitric Oxide Physiological Responses and Delivery Mechanisms Probed by Water-Soluble Roussin’s Red Ester and {Fe(NO)2}10 DNIC. J Am Chem Soc 2008; 130:10929-38. [DOI: 10.1021/ja711494m] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi-Ju Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan, Department of Chemistry, National Changhua University of Education, Changhua, 50058 Taiwan, and Department of Chemistry,
| | - Wei-Chi Ku
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan, Department of Chemistry, National Changhua University of Education, Changhua, 50058 Taiwan, and Department of Chemistry,
| | - Li-Ting Feng
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan, Department of Chemistry, National Changhua University of Education, Changhua, 50058 Taiwan, and Department of Chemistry,
| | - Ming-Li Tsai
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan, Department of Chemistry, National Changhua University of Education, Changhua, 50058 Taiwan, and Department of Chemistry,
| | - Chung-Hung Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan, Department of Chemistry, National Changhua University of Education, Changhua, 50058 Taiwan, and Department of Chemistry,
| | - Wen-Hwei Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan, Department of Chemistry, National Changhua University of Education, Changhua, 50058 Taiwan, and Department of Chemistry,
| | - Wen-Feng Liaw
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan, Department of Chemistry, National Changhua University of Education, Changhua, 50058 Taiwan, and Department of Chemistry,
| | - Chen-Hsiung Hung
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan, Department of Chemistry, National Changhua University of Education, Changhua, 50058 Taiwan, and Department of Chemistry,
| | - Yu-Ju Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan, Department of Chemistry, National Changhua University of Education, Changhua, 50058 Taiwan, and Department of Chemistry,
| |
Collapse
|
49
|
Kai S, Ohta M, Tominaga M, Matsumoto T, Bandoh T, Kitano S. Reduction of ethanol-induced injury in portal hypertensive gastric mucosa of rats by induction of heat shock protein 72 by geranylgeranylacetone. Wound Repair Regen 2008; 15:875-80. [PMID: 18028136 DOI: 10.1111/j.1524-475x.2007.00302.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Portal hypertensive (PHT) gastropathy has an increased susceptibility to damage due to noxious factors. Heat shock protein (HSP) 72 has a protective effect against gastric mucosal injury and geranylgeranylacetone (GGA) is an inducer of HSP 72. However, it remains unclear how HSP 72 influences the PHT gastric mucosa. The aim of the present study was to investigate HSP 72 induction by GGA and the protective effect to gastric mucosa in PHT rats. PHT rats were produced by staged portal vein occlusion, and GGA 200 mg/kg was orally administered. Expression of HSP 72 protein in the gastric mucosa was evaluated by enzyme-linked immunosorbent assay, and gastric mucosal damage against 70% ethanol (10 mL/kg) following GGA or vehicle treatment was also estimated. Expression of mucosal HSP 72 after vehicle administration was significantly higher in the PHT rats compared with the sham-operated rats. After GGA treatment, portal pressure did not change but HSP 72 was significantly increased in the gastric mucosa of both groups. Ethanol-induced gastric mucosal damage was significantly decreased due to GGA treatment in the PHT rats, but not in the sham-operated rats. These findings suggest that HSP 72 expression is enhanced in PHT gastric mucosa and plays an important role in gastric mucosal protection. The induction of HSP 72 by GGA may therefore effectively prevent mucosal injury in the PHT stomach.
Collapse
Affiliation(s)
- Seiichiro Kai
- Department of Surgery I, Oita University Faculty of Medicine, Yufu, Oita, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Esposito E, Iacono A, Muià C, Crisafulli C, Mattace Raso G, Bramanti P, Meli R, Cuzzocrea S. Signal transduction pathways involved in protective effects of melatonin in C6 glioma cells. J Pineal Res 2008; 44:78-87. [PMID: 18078452 DOI: 10.1111/j.1600-079x.2007.00492.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), an indole hormone, is the chief secretory product of the pineal gland and is an efficient free radical scavenger and antioxidant, both in vitro and in vivo. The role of melatonin as an immunomodulator is, in some cases, contradictory. Although melatonin is reported to influence a variety of inflammatory and immune responses, evidence supporting its effects on important glioma cells-derived mediators is incomplete. We studied, in rat glioma cell line (C6), the role of melatonin (100 microm-1 mm) in the regulation of the expression of nitric oxide synthase (NOS) caused by incubation with lipopolysaccharide (LPS)/interferon (IFN)-gamma (1 microg/mL and 100 U/mL, respectively) and defined the mode of melatonin's action. Treatment with LPS/IFN-gamma for 24 hr elicited the induction of inducible (iNOS) activity as determined by nitrite and nitrate (NO(x)) accumulation in the culture medium. Preincubation with melatonin abrogated the mixed cytokines-mediated induction of iNOS. The effect of melatonin was concentration-dependent. Moreover, Western blot analysis showed that melatonin inhibited LPS/IFN-gamma-induced expression of COX-2 protein, but not that of constitutive cyclooxygenase. Inhibition of iNOS and COX-2 expression was associated with inhibition of activation of the transcription factor nuclear factor kappa B (NF-kappaB). The ability of melatonin to inhibit NF-kappaB activation was further confirmed by studies on the degradation of the inhibitor of NF-kappaB, IkappaB-alpha. Increased production of lipid peroxidation products using thiobarbituric acid assay were found in cellular contents from activated cultures. Lipid peroxidation was decreased by melatonin treatment in a concentration-dependent manner. Moreover, several genes having roles in heat-shock response were downregulated in melatonin-treated cells, such as 70 proteins, reflecting the reduced oxidative stress in these cells. The mechanisms underlying in vitro the neuroprotective properties of melatonin involve modulation of transcription factors and consequent altered gene expression, resulting in downregulation of inflammation.
Collapse
|