1
|
Sun L. Associations between waist-to-height ratio and abdominal aortic calcification: A cross-sectional study. Medicine (Baltimore) 2024; 103:e38608. [PMID: 38875360 PMCID: PMC11175898 DOI: 10.1097/md.0000000000038608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
Waist-to-height ratio (WtHR) is a validated biomarker of central obesity that appears to be preferable to other body composition measurements in the evaluation of cardiovascular disease. The goal of this research was to explore the connection between WtHR and abdominal aortic calcification (AAC) among adults. On the basis of data from the 2013 to 2014 National Health and Nutrition Examination Survey, multivariate logistic regression, sensitivity analysis, as well as smoothed curve fitting were used to evaluate the connection between WtHR and AAC. Subgroup analyses along with interaction tests were done to see if this link was consistent across populations. Among 3079 participants aged >40 years, there was a negative association between WtHR and ACC. Each 1-unit emergence of WtHR was related to a 2% reduction in the probability of severe AAC in the entirely adjusted model (odds ratio = 0.02, 95% confidence interval: [0.00-0.12]). Participants in the highest WtHR quartile were 39% less likely to acquire severe AAC compared with those in the lowest quartile. (odds ratio = 0.61, 95% confidence interval: [0.37-1.00]). This negative association was more pronounced in the diabetes subgroup. We discovered a reversed U-shaped association between WtHR as well as AAC score utilizing a 2-stage linear regression model, with an intersection point of 0.56. WtHR was negatively associated with AAC among US adults.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
Kentistou KA, Lim BEM, Kaisinger LR, Steinthorsdottir V, Sharp LN, Patel KA, Tragante V, Hawkes G, Gardner EJ, Olafsdottir T, Wood AR, Zhao Y, Thorleifsson G, Day FR, Ozanne SE, Hattersley AT, O'Rahilly S, Stefansson K, Ong KK, Beaumont RN, Perry JRB, Freathy RM. Rare variant associations with birth weight identify genes involved in adipose tissue regulation, placental function and insulin-like growth factor signalling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.03.24305248. [PMID: 38633783 PMCID: PMC11023655 DOI: 10.1101/2024.04.03.24305248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. Genome-wide association studies of birth weight have highlighted associated variants in more than 200 regions of the genome, but the causal genes are mostly unknown. Rare genetic variants with robust evidence of association are more likely to point to causal genes, but to date, only a few rare variants are known to influence birth weight. We aimed to identify genes that harbour rare variants that impact birth weight when carried by either the fetus or the mother, by analysing whole exome sequence data in UK Biobank participants. We annotated rare (minor allele frequency <0.1%) protein-truncating or high impact missense variants on whole exome sequence data in up to 234,675 participants with data on their own birth weight (fetal variants), and up to 181,883 mothers who reported the birth weight of their first child (maternal variants). Variants within each gene were collapsed to perform gene burden tests and for each associated gene, we compared the observed fetal and maternal effects. We identified 8 genes with evidence of rare fetal variant effects on birth weight, of which 2 also showed maternal effects. One additional gene showed evidence of maternal effects only. We observed 10/11 directionally concordant associations in an independent sample of up to 45,622 individuals (sign test P=0.01). Of the genes identified, IGF1R and PAPPA2 (fetal and maternal-acting) have known roles in insulin-like growth factor bioavailability and signalling. PPARG, INHBE and ACVR1C (all fetal-acting) have known roles in adipose tissue regulation and rare variants in the latter two also showed associations with favourable adiposity patterns in adults. We highlight the dual role of PPARG in both adipocyte differentiation and placental angiogenesis. NOS3, NRK, and ADAMTS8 (fetal and maternal-acting) have been implicated in both placental function and hypertension. Analysis of rare coding variants has identified regulators of fetal adipose tissue and fetoplacental angiogenesis as determinants of birth weight, as well as further evidence for the role of insulin-like growth factors.
Collapse
Affiliation(s)
- Katherine A Kentistou
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Brandon E M Lim
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lena R Kaisinger
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | | | - Luke N Sharp
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Kashyap A Patel
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | | | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | | | - Andrew R Wood
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | | | - Felix R Day
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., 102 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Ken K Ong
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Robin N Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - John R B Perry
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Rachel M Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
3
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
4
|
Adeva-Andany MM, Domínguez-Montero A, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, González-Lucán M. Body Fat Distribution Contributes to Defining the Relationship between Insulin Resistance and Obesity in Human Diseases. Curr Diabetes Rev 2024; 20:e160823219824. [PMID: 37587805 DOI: 10.2174/1573399820666230816111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 08/18/2023]
Abstract
The risk for metabolic and cardiovascular complications of obesity is defined by body fat distribution rather than global adiposity. Unlike subcutaneous fat, visceral fat (including hepatic steatosis) reflects insulin resistance and predicts type 2 diabetes and cardiovascular disease. In humans, available evidence indicates that the ability to store triglycerides in the subcutaneous adipose tissue reflects enhanced insulin sensitivity. Prospective studies document an association between larger subcutaneous fat mass at baseline and reduced incidence of impaired glucose tolerance. Case-control studies reveal an association between genetic predisposition to insulin resistance and a lower amount of subcutaneous adipose tissue. Human peroxisome proliferator-activated receptorgamma (PPAR-γ) promotes subcutaneous adipocyte differentiation and subcutaneous fat deposition, improving insulin resistance and reducing visceral fat. Thiazolidinediones reproduce the effects of PPAR-γ activation and therefore increase the amount of subcutaneous fat while enhancing insulin sensitivity and reducing visceral fat. Partial or virtually complete lack of adipose tissue (lipodystrophy) is associated with insulin resistance and its clinical manifestations, including essential hypertension, hypertriglyceridemia, reduced HDL-c, type 2 diabetes, cardiovascular disease, and kidney disease. Patients with Prader Willi syndrome manifest severe subcutaneous obesity without insulin resistance. The impaired ability to accumulate fat in the subcutaneous adipose tissue may be due to deficient triglyceride synthesis, inadequate formation of lipid droplets, or defective adipocyte differentiation. Lean and obese humans develop insulin resistance when the capacity to store fat in the subcutaneous adipose tissue is exhausted and deposition of triglycerides is no longer attainable at that location. Existing adipocytes become large and reflect the presence of insulin resistance.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | - Carlos Fernández-Fernández
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Manuel González-Lucán
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
5
|
Kudo T, Zhao ML, Jeknić S, Kovary KM, LaGory EL, Covert MW, Teruel MN. Context-dependent regulation of lipid accumulation in adipocytes by a HIF1α-PPARγ feedback network. Cell Syst 2023; 14:1074-1086.e7. [PMID: 37995680 PMCID: PMC11251692 DOI: 10.1016/j.cels.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 12/03/2022] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Hypoxia-induced upregulation of HIF1α triggers adipose tissue dysfunction and insulin resistance in obese patients. HIF1α closely interacts with PPARγ, the master regulator of adipocyte differentiation and lipid accumulation, but there are conflicting results regarding how this interaction controls the excessive lipid accumulation that drives adipocyte dysfunction. To directly address these conflicts, we established a differentiation system that recapitulated prior seemingly opposing observations made across different experimental settings. Using single-cell imaging and coarse-grained mathematical modeling, we show how HIF1α can both promote and repress lipid accumulation during adipogenesis. Our model predicted and our experiments confirmed that the opposing roles of HIF1α are isolated from each other by the positive-feedback-mediated upregulation of PPARγ that drives adipocyte differentiation. Finally, we identify three factors: strength of the differentiation cue, timing of hypoxic perturbation, and strength of HIF1α expression changes that, when considered together, provide an explanation for many of the previous conflicting reports.
Collapse
Affiliation(s)
- Takamasa Kudo
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael L Zhao
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Stevan Jeknić
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kyle M Kovary
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Edward L LaGory
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Mary N Teruel
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry and the Drukier Institute of Children's Health, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
6
|
Tremblay EJ, Tchernof A, Pelletier M, Chabot N, Joanisse DR, Mauriège P. Contribution of markers of adiposopathy and adipose cell size in predicting insulin resistance in women of varying age and adiposity. Adipocyte 2022; 11:175-189. [PMID: 35436409 PMCID: PMC9037496 DOI: 10.1080/21623945.2022.2059902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/07/2022] [Accepted: 03/27/2022] [Indexed: 12/30/2022] Open
Abstract
Adipose tissue (AT) dysfunctions, such as adipocyte hypertrophy, macrophage infiltration and secretory adiposopathy (low plasma adiponectin/leptin, A/L, ratio), associate with metabolic disorders. However, no study has compared the relative contribution of these markers to cardiometabolic risk in women of varying age and adiposity. Body composition, regional AT distribution, lipid-lipoprotein profile, glucose homeostasis and plasma A and L levels were determined in 67 women (age: 40-62 years; BMI: 17-41 kg/m2). Expression of macrophage infiltration marker CD68 and adipocyte size were measured from subcutaneous abdominal (SCABD) and omental (OME) fat. AT dysfunction markers correlated with most lipid-lipoprotein levels. The A/L ratio was negatively associated with fasting insulinemia and HOMA-IR, while SCABD or OME adipocyte size and SCABD CD68 expression were positively related to these variables. Combination of tertiles of largest adipocyte size and lowest A/L ratio showed the highest HOMA-IR. Multiple regression analyses including these markers and TAG levels revealed that the A/L ratio was the only predictor of fasting insulinemia and HOMA-IR. The contribution of the A/L ratio was superseded by adipose cell size in the model where the latter replaced TAGs. Finally, leptinemia was a better predictor of IR than adipocyte size and the A/L ratio in our participants sample.
Collapse
Affiliation(s)
- Eve-Julie Tremblay
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, Canada
- Centre de recherche de l’institut Universitaire de cardiologie et pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Canada
| | - André Tchernof
- Centre de recherche de l’institut Universitaire de cardiologie et pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Canada
- École de Nutrition, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec, Canada
| | - Mélissa Pelletier
- Centre de recherche de l’institut Universitaire de cardiologie et pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Canada
| | - Nicolas Chabot
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, Canada
- Centre de recherche de l’institut Universitaire de cardiologie et pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Canada
| | - Denis R. Joanisse
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, Canada
- Centre de recherche de l’institut Universitaire de cardiologie et pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Canada
| | - Pascale Mauriège
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, Canada
- Centre de recherche de l’institut Universitaire de cardiologie et pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Canada
| |
Collapse
|
7
|
Patel V, Patel J. Cellular cross talk between epicardial fat and cardiovascular risk. J Basic Clin Physiol Pharmacol 2022; 33:683-694. [PMID: 36220013 DOI: 10.1515/jbcpp-2022-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
A variety of fat compartments have several local and systemic effect and play a crucial role in the maintenance of health and development of disease. For the past few years, special attention has been paid to epicardial fat. It is the visceral fat compartment of the heart and has several local and systemic effects. It can perform a role in the development of cardiometabolic risk. The epicardial adipose tissue (EAT) is a unique and multifunctional fat compartment of the heart. It is located between the myocardium and the visceral pericardium. During normal physiological conditions, the EAT has metabolic, thermogenic, and mechanical (cardioprotective) characteristics. The EAT can produce several adipocytokines and chemokines depending on microenvironments. It can influence through paracrine and vasocrine mechanism and participate in the development and progression of cardiovascular (CVS) diseases. In addition, metabolic disease leads to changes in both thickness and volume of the EAT, and it can modify the structure and the function of heart. It has been associated with various CVS diseases such as, cardiomyopathy, atrial fibrillation, and coronary artery disease. Therefore, EAT is a potential therapeutic target for CVS risk.
Collapse
Affiliation(s)
- Vishwa Patel
- University of Texas at Austin, Austin 78712, Texas, USA
| | - Jimik Patel
- Thomas Jefferson University, 4201 Henry Ave, Philadelphia, PA 19144, USA
| |
Collapse
|
8
|
Przybycień P, Gąsior-Perczak D, Placha W. Cannabinoids and PPAR Ligands: The Future in Treatment of Polycystic Ovary Syndrome Women with Obesity and Reduced Fertility. Cells 2022; 11:cells11162569. [PMID: 36010645 PMCID: PMC9406585 DOI: 10.3390/cells11162569] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Cannabinoids (CBs) are used to treat chronic pain, chemotherapy-induced nausea and vomiting, and multiple sclerosis spasticity. Recently, the medicinal use of CBs has attracted increasing interest as a new therapeutic in many diseases. Data indicate a correlation between CBs and PPARs via diverse mechanisms. Both the endocannabinoid system (ECS) and peroxisome proliferator-activated receptors (PPARs) may play a significant role in PCOS and PCOS related disorders, especially in disturbances of glucose-lipid metabolism as well as in obesity and fertility. Taking into consideration the ubiquity of PCOS in the human population, it seems indispensable to search for new potential therapeutic targets for this condition. The aim of this review is to examine the relationship between metabolic disturbances and obesity in PCOS pathology. We discuss current and future therapeutic interventions for PCOS and related disorders, with emphasis on the metabolic pathways related to PCOS pathophysiology. The link between the ECS and PPARs is a promising new target for PCOS, and we examine this relationship in depth.
Collapse
Affiliation(s)
- Piotr Przybycień
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-034 Krakow, Poland
- Endocrinology Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Danuta Gąsior-Perczak
- Endocrinology Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Wojciech Placha
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-034 Krakow, Poland
- Correspondence: ; Tel.: +48-12-422-74-00
| |
Collapse
|
9
|
Müller C, Zidek LM, Eichwald S, Kortman G, Koster MH, Calkhoven CF. Enhanced C/EBPβ function promotes hypertrophic versus hyperplastic fat tissue growth and prevents steatosis in response to high-fat diet feeding. eLife 2022; 11:e62625. [PMID: 35451956 PMCID: PMC9071262 DOI: 10.7554/elife.62625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic obesity is correlated with severe metabolic and cardiovascular diseases as well as with an increased risk for developing cancers. Obesity is usually characterized by fat accumulation in enlarged - hypertrophic - adipocytes that are a source of inflammatory mediators, which promote the development and progression of metabolic disorders. Yet, in certain healthy obese individuals, fat is stored in metabolically more favorable hyperplastic fat tissue that contains an increased number of smaller adipocytes that are less inflamed. In a previous study, we demonstrated that loss of the inhibitory protein-isoform C/EBPβ-LIP and the resulting augmented function of the transactivating isoform C/EBPβ-LAP promotes fat metabolism under normal feeding conditions and expands health- and lifespan in mice. Here, we show that in mice on a high-fat diet, LIP-deficiency results in adipocyte hyperplasia associated with reduced inflammation and metabolic improvements. Furthermore, fat storage in subcutaneous depots is significantly enhanced specifically in LIP-deficient male mice. Our data identify C/EBPβ as a regulator of adipocyte fate in response to increased fat intake, which has major implications for metabolic health and aging.
Collapse
Affiliation(s)
- Christine Müller
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Laura M Zidek
- Leibniz Institute on Aging - Fritz Lipmann InstituteJenaGermany
| | | | - Gertrud Kortman
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Mirjam H Koster
- Division Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of GroningenGroningenNetherlands
- Leibniz Institute on Aging - Fritz Lipmann InstituteJenaGermany
| |
Collapse
|
10
|
Neohesperidin Dihydrochalcone and Neohesperidin Dihydrochalcone-O-Glycoside Attenuate Subcutaneous Fat and Lipid Accumulation by Regulating PI3K/AKT/mTOR Pathway In Vivo and In Vitro. Nutrients 2022; 14:nu14051087. [PMID: 35268062 PMCID: PMC8912486 DOI: 10.3390/nu14051087] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Neohesperidin dihydrochalcone (NHDC), a semi-natural compound from bitter orange, is an intense sweetener. The anti-obesity effects of NHDC and its glycosidic compound, NHDC-O-glycoside (GNHDC), were investigated. C57BLKS/J db/db mice were supplemented with NHDC or GNHDC (100 mg/kg b.w.) for 4 weeks. Body weight gain, subcutaneous tissues, and total adipose tissues (sum of perirenal, visceral, epididymal, and subcutaneous adipose tissue) were decreased in the NHDC and GNHDC groups. Fatty acid uptake, lipogenesis, and adipogenesis-related genes were decreased, whereas β-oxidation and fat browning-related genes were up-regulated in the sweetener groups. Furthermore, both sweeteners suppressed the level of triacylglycerol accumulation, lipogenesis, adipogenesis, and proinflammatory cytokines in the 3T3-L1 cells. The PI3K/AKT/mTOR pathway was also down-regulated, and AMP-acttvated protein kinase (AMPK) was phosphorylated in the treatment groups. These results suggest that NHDC and GNHDC inhibited subcutaneous fat and lipid accumulation by regulating the PI3K/AKT/mTOR pathway and AMPK-related lipogenesis and fat browning.
Collapse
|
11
|
Dixit G, Prabhu A. The pleiotropic peroxisome proliferator activated receptors: Regulation and therapeutics. Exp Mol Pathol 2021; 124:104723. [PMID: 34822814 DOI: 10.1016/j.yexmp.2021.104723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The Peroxisome proliferator-activated receptors (PPARs) are key regulators of metabolic events in our body. Owing to their implication in maintenance of homeostasis, both PPAR agonists and antagonists assume therapeutic significance. Understanding the molecular mechanisms of each of the PPAR isotypes in the healthy body and during disease is crucial to exploiting their full therapeutic potential. This article is an attempt to present a rational analysis of the multifaceted therapeutic effects and underlying mechanisms of isotype-specific PPAR agonists, dual PPAR agonists, pan PPAR agonists as well as PPAR antagonists. A holistic understanding of the mechanistic dimensions of these key metabolic regulators will guide future efforts to identify novel molecules in the realm of metabolic, inflammatory and immunotherapeutic diseases.
Collapse
Affiliation(s)
- Gargi Dixit
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
12
|
Teklu M, Zhou W, Kapoor P, Patel N, Playford MP, Sorokin AV, Dey AK, Teague HL, Manyak GA, Rodante JA, Keel A, Chen MY, Bluemke DA, Khera AV, Mehta NN. Abdominal subcutaneous adipose tissue negatively associates with subclinical coronary artery disease in men with psoriasis. Am J Prev Cardiol 2021; 8:100231. [PMID: 34553185 PMCID: PMC8441148 DOI: 10.1016/j.ajpc.2021.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022] Open
Abstract
Objective Understand the relationship between abdominal subcutaneous adipose tissue (ASAT) and coronary atherosclerosis defined as noncalcified and lipid-rich necrotic core burden in psoriasis. Methods We performed a cross-sectional study of 232 participants (92 women) with psoriasis and without known cardiovascular disease. Participants underwent coronary computed tomography angiography to characterize coronary atherosclerosis burden and low dose abdominal computed tomography to quantify subcutaneous and visceral adipose tissue. Fat depot volumes were first adjusted for each participant's BMI (ASATadjBMI). Results In women, there was a positive correlation between ASATadjBMI and systemic inflammation as assessed by hs-C-reactive protein (r=0.30; p=.004) and GlycA (r=0.29; p=.007) as well as total cholesterol (r=0.24; p=.02) and low-density lipoprotein cholesterol (r=0.22; p=.04). In men, ASATadjBMI correlated with hs-C-reactive protein (r=0.18; p=.04) and insulin resistance (r=0.17; p=.04). In models fully adjusted for traditional cardiovascular risk factors, ASATadjBMI negatively associated with noncalcified and lipid-rich necrotic core burden in men (β= -0.17; p=.03, β= -0.20; p=.03, respectively), but not women (β= -0.06; p=.57, β= 0.09; p=.49, respectively) with psoriasis. Conclusions For a given BMI, ASAT negatively associated with coronary atherosclerosis burden in male participants with psoriasis. The observed sex-specific effects warrant further study of ASAT in states of chronic inflammation.
Collapse
Affiliation(s)
- Meron Teklu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wunan Zhou
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Promita Kapoor
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nidhi Patel
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin P Playford
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander V Sorokin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amit K Dey
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heather L Teague
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grigory A Manyak
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin A Rodante
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Keel
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marcus Y Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - David A Bluemke
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Amit V Khera
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nehal N Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Martin S, Cule M, Basty N, Tyrrell J, Beaumont RN, Wood AR, Frayling TM, Sorokin E, Whitcher B, Liu Y, Bell JD, Thomas EL, Yaghootkar H. Genetic Evidence for Different Adiposity Phenotypes and Their Opposing Influences on Ectopic Fat and Risk of Cardiometabolic Disease. Diabetes 2021; 70:1843-1856. [PMID: 33980691 DOI: 10.2337/db21-0129] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022]
Abstract
To understand the causal role of adiposity and ectopic fat in type 2 diabetes and cardiometabolic diseases, we aimed to identify two clusters of adiposity genetic variants: one with "adverse" metabolic effects (UFA) and the other with, paradoxically, "favorable" metabolic effects (FA). We performed a multivariate genome-wide association study using body fat percentage and metabolic biomarkers from UK Biobank and identified 38 UFA and 36 FA variants. Adiposity-increasing alleles were associated with an adverse metabolic profile, higher risk of disease, higher CRP, and higher fat in subcutaneous and visceral adipose tissue, liver, and pancreas for UFA and a favorable metabolic profile, lower risk of disease, higher CRP and higher subcutaneous adipose tissue but lower liver fat for FA. We detected no sexual dimorphism. The Mendelian randomization studies provided evidence for a risk-increasing effect of UFA and protective effect of FA for type 2 diabetes, heart disease, hypertension, stroke, nonalcoholic fatty liver disease, and polycystic ovary syndrome. FA is distinct from UFA by its association with lower liver fat and protection from cardiometabolic diseases; it was not associated with visceral or pancreatic fat. Understanding the difference in FA and UFA may lead to new insights in preventing, predicting, and treating cardiometabolic diseases.
Collapse
Affiliation(s)
- Susan Martin
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | | | - Nicolas Basty
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Jessica Tyrrell
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | - Robin N Beaumont
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | | | - Brandon Whitcher
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Yi Liu
- Calico Life Sciences LLC, South San Francisco, CA
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K.
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| |
Collapse
|
14
|
Long N, Le Gresley A, Wren SP. Thiazolidinediones: An In-Depth Study of Their Synthesis and Application to Medicinal Chemistry in the Treatment of Diabetes Mellitus. ChemMedChem 2021; 16:1716-1735. [PMID: 33844475 PMCID: PMC8251912 DOI: 10.1002/cmdc.202100177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 12/25/2022]
Abstract
2,4-Thiazolidinedione (TZD) is a privileged and highly utilised scaffold for the development of pharmaceutically active compounds. This sulfur-containing heterocycle is a versatile pharmacophore that confers a diverse range of pharmacological activities. TZD has been shown to exhibit biological action towards a vast range of targets interesting to medicinal chemists. In this review, we attempt to provide insight into both the historical conventional and the use of novel methodologies to synthesise the TZD core framework. Further to this, synthetic procedures utilised to substitute the TZD molecule at the activated methylene C5 and N3 position are reviewed. Finally, research into developing clinical agents, which act as modulators of peroxisome proliferator-activated receptors gamma (PPARγ), protein tyrosine phosphatase 1B (PTP1B) and aldose reductase 2 (ALR2), are discussed. These are the three most targeted receptors for the treatment of diabetes mellitus (DM).
Collapse
Affiliation(s)
- Nathan Long
- Department of Chemical & Pharmaceutical SciencesFaculty of ScienceEngineering & ComputingKingston University LondonPenrhyn RoadSurreyKT1 2EEUK
| | - Adam Le Gresley
- Department of Chemical & Pharmaceutical SciencesFaculty of ScienceEngineering & ComputingKingston University LondonPenrhyn RoadSurreyKT1 2EEUK
| | - Stephen P. Wren
- Department of Chemical & Pharmaceutical SciencesFaculty of ScienceEngineering & ComputingKingston University LondonPenrhyn RoadSurreyKT1 2EEUK
| |
Collapse
|
15
|
Novel PPARG mutation in multiple family members with chylomicronemia. J Clin Lipidol 2021; 15:431-434. [PMID: 33832869 DOI: 10.1016/j.jacl.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022]
Abstract
Chylomicronemia is characterized by severe hypertriglyceridemia when chylomicrons persist in plasma despite a fasting state. The recessive monogenic form is due to homozygous or compound heterozygous loss-of-function mutations in the LPL gene or genes involved in the assembly, transport, or function of LPL, including APOC2, APOA5, GP1HBP1, and LMF1. The multifactorial form of chylomicronemia is due to both common small-effect variants and rare heterozygous large-effect variants in genes in which mutations are associated secondarily with hypertriglyceridemia. The combined inheritance of these variants increases susceptibility to chylomicronemia, and the number of hypertriglyceridemia-associated alleles carried by an individual represents a genetic or polygenic triglyceride risk score. Among these genes associated with hypertriglyceridemia is PPARG. PPARγ is a nuclear transcription factor encoded by the PPARG gene expressed predominantly in adipocytes that is involved in glucose, lipid, and adipose tissue metabolism. Known rare mutations and common polymorphisms in the PPARG genes are associated with a broad range of clinical phenotypes, including hypertriglyceridemia. Here, we present multiple family members with a novel heterozygous PPARG mutation that has not been previously reported.
Collapse
|
16
|
Osawa S, Kato H, Maeda Y, Takakura H, Ogasawara J, Izawa T. Metabolomic Profiles in Adipocytes Differentiated from Adipose-Derived Stem Cells Following Exercise Training or High-Fat Diet. Int J Mol Sci 2021; 22:ijms22020966. [PMID: 33478060 PMCID: PMC7835847 DOI: 10.3390/ijms22020966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/10/2021] [Indexed: 11/16/2022] Open
Abstract
Controlling the differentiation potential of adipose-derived stem cells (ADSCs) is attracting attention as a new strategy for the prevention and treatment of obesity. Here, we aimed to observe the effect of exercise training (TR) and high-fat diet (HFD) on the metabolic profiles of ADSCs-derived adipocytes. The rats were divided into four groups: normal diet (ND)-fed control (ND-SED), ND-fed TR (ND-TR), HFD-fed control (HFD-SED), and HFD-fed TR (HFD-TR). After 9 weeks of intervention, ADSCs of epididymal and inguinal adipose tissues were differentiated into adipocytes. In the metabolome analysis of adipocytes after isoproterenol stimulation, 116 metabolites were detected. The principal component analysis demonstrated that ADSCs-derived adipocytes segregated into four clusters in each fat pad. Amino acid accumulation was greater in epididymal ADSCs-derived adipocytes of ND-TR and HFD-TR, but lower in inguinal ADSCs-derived adipocytes of ND-TR, than in the respective controls. HFD accumulated several metabolites including amino acids in inguinal ADSCs-derived adipocytes and more other metabolites in epididymal ones. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that TR mainly affected the pathways related to amino acid metabolism, except in inguinal ADSCs-derived adipocytes of HFD-TR rats. These findings provide a new way to understand the mechanisms underlying possible changes in the differentiation of ADSCs due to TR or HFD.
Collapse
Affiliation(s)
- Seita Osawa
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| | - Hisashi Kato
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
- Organisation for Research Initiatives and Development, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| | - Yuki Maeda
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| | - Hisashi Takakura
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| | - Junetsu Ogasawara
- Division of Health Science, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Hokkaido 078-8510, Japan
| | - Tetsuya Izawa
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| |
Collapse
|
17
|
Strieder-Barboza C, Baker NA, Flesher CG, Karmakar M, Patel A, Lumeng CN, O’Rourke RW. Depot-specific adipocyte-extracellular matrix metabolic crosstalk in murine obesity. Adipocyte 2020; 9:189-196. [PMID: 32272860 PMCID: PMC7153651 DOI: 10.1080/21623945.2020.1749500] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Subcutaneous (SAT) and visceral (VAT) adipose tissues have distinct metabolic phenotypes. We hypothesized that the extracellular matrix (ECM) regulates depot-specific differences in adipocyte metabolic function in murine obesity. VAT and SAT preadipocytes from lean or obese mice were subject to adipogenic differentiation in standard 2D culture on plastic tissue culture plates or in 3D culture in ECM, followed by metabolic profiling. Adipocytes from VAT relative to SAT manifested impaired insulin-stimulated glucose uptake and decreased adipogenic capacity. In 3D-ECM-adipocyte culture, ECM regulated adipocyte metabolism in a depot-specific manner, with SAT ECM rescuing defects in glucose uptake and adipogenic gene expression in VAT adipocytes, while VAT ECM impaired adipogenic gene expression in SAT adipocytes. These findings demonstrate that ECM-adipocyte crosstalk regulates depot-specific differences in adipocyte metabolic dysfunction in murine obesity.
Collapse
Affiliation(s)
- Clarissa Strieder-Barboza
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicki A. Baker
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carmen G. Flesher
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Monita Karmakar
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ayush Patel
- Undergraduate Research Opportunity Program, University of Michigan, Ann Arbor, MI, USA
| | - Carey N. Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Robert W. O’Rourke
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Hunt SC, Davidson LE, Adams TD, Ranson L, McKinlay RD, Simper SC, Litwin SE. Associations of Visceral, Subcutaneous, Epicardial, and Liver Fat with Metabolic Disorders up to 14 Years After Weight Loss Surgery. Metab Syndr Relat Disord 2020; 19:83-92. [PMID: 33136533 DOI: 10.1089/met.2020.0008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Bariatric surgery leads to long-term remission and reduced incidence of diabetes, hypertension, and dyslipidemia. Short-term studies suggest reduction in specific fat depots may be more predictive of health improvement than reduced body mass index (BMI). Visceral, subcutaneous, epicardial, and liver fat, measured 11 years after bariatric surgery, were associated with long-term remission and incidence of diabetes, dyslipidemia, and hypertension. Methods: Fat depots an average of 11 (maximum 14) years after surgery were quantified by noncontrast computed tomography in subjects who did (N = 261; 86% gastric bypass) or did not (N = 243) have bariatric surgery. Multiple regression related fat depots to disease endpoints with and without adjustment for change in BMI and surgical status. Results: Visceral fat was 42% lower, subcutaneous fat 20% lower, epicardial fat 30% lower, and liver-to-spleen density ratio 9% higher at follow-up in the bariatric surgery group compared with the nonsurgery group (all P < 0.01). Higher visceral fat at follow-up exam was significantly associated with reduced remission and increased incidence of diabetes, hypertension, and dyslipidemia. Subcutaneous fat was not associated with disease. The liver-to-spleen ratio was associated with the remission and incidence of hypertriglyceridemia and not with other fat depots. Epicardial fat was related to incidence of elevated low-density lipoprotein cholesterol and low high-density lipoprotein cholesterol. Conclusions: Whether or not a patient shows greater long-term diabetes, dyslipidemia, or hypertension remission or incidence after bariatric surgery appears dependent on the amount of fat within specific fat depots measured at follow-up. Furthermore, associations of the three disease endpoints with different fat depots suggest varied fat depot pathology.
Collapse
Affiliation(s)
- Steven C Hunt
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Lance E Davidson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA
| | - Ted D Adams
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Intermountain Live Well Center, Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Lauren Ranson
- Division of Cardiology, Department of Internal Medicine, Georgia Regents University, Augusta, Georgia, USA
| | | | - Steven C Simper
- Rocky Mountain Associated Physicians, Salt Lake City, Utah, USA
| | - Sheldon E Litwin
- Department of Cardiology, The Medical University of South Carolina, Charleston, South Carolina, USA.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
19
|
Hypolipidemic effects and mechanisms of Val-Phe-Val-Arg-Asn in C57BL/6J mice and 3T3-L1 cell models. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
20
|
Stefan N. Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet Diabetes Endocrinol 2020; 8:616-627. [PMID: 32559477 DOI: 10.1016/s2213-8587(20)30110-8] [Citation(s) in RCA: 307] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/02/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
An increase in fat mass is considered to be an important risk factor for the worldwide increase in type 2 diabetes and cardiovascular disease. However, for a given fat mass, there is a large variability in the risk prediction of these cardiometabolic diseases. For example, some lean people unexpectedly have a risk of type 2 diabetes and cardiovascular disease that is similar to the increased risk that is observed in most people who have obesity. What both of these phenotypes have in common is a very characteristic fat distribution. As a result, much focus has been given on the strong predictive power of increased visceral fat mass. However, an analysis of the causes of type 2 diabetes and cardiovascular disease, as well as comparisons to rare diseases such as lipodystrophy and studying genetically determined fat distribution in the general population, suggest that an impaired ability to expand subcutaneous fat in the lower part of the body is also important for predicting the incidence of these cardiometabolic diseases. This Review, first, addresses the identification of distinct fat distribution phenotypes and their risk of cardiometabolic diseases by discussing findings from published studies that have applied precise quantification of different fat depots. Second, this Review provides support for the theory that a lower amount of lower-body fat mass is equally important to a high amount of visceral fat mass as a determinant of cardiometabolic diseases. Third, this Review discusses the genetic and lifestyle-related causes of metabolically healthy and unhealthy fat distribution. Finally, this Review summarises and appraises the effectiveness of lifestyle-related interventions and pharmacological interventions for reducing visceral adiposity and maintaining lower-body fat mass to prevent and treat cardiometabolic diseases.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany; Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med 2020; 7:22. [PMID: 32158768 PMCID: PMC7052117 DOI: 10.3389/fcvm.2020.00022] [Citation(s) in RCA: 633] [Impact Index Per Article: 158.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue plays essential roles in maintaining lipid and glucose homeostasis. To date several types of adipose tissue have been identified, namely white, brown, and beige, that reside in various specific anatomical locations throughout the body. The cellular composition, secretome, and location of these adipose depots define their function in health and metabolic disease. In obesity, adipose tissue becomes dysfunctional, promoting a pro-inflammatory, hyperlipidemic and insulin resistant environment that contributes to type 2 diabetes mellitus (T2DM). Concurrently, similar features that result from adipose tissue dysfunction also promote cardiovascular disease (CVD) by mechanisms that can be augmented by T2DM. The mechanisms by which dysfunctional adipose tissue simultaneously promote T2DM and CVD, focusing on adipose tissue depot-specific adipokines, inflammatory profiles, and metabolism, will be the focus of this review. The impact that various T2DM and CVD treatment strategies have on adipose tissue function and body weight also will be discussed.
Collapse
Affiliation(s)
- Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Laura J den Hartigh
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
22
|
Impact of discontinuation of fish oil after pioglitazone–fish oil combination therapy in diabetic KK mice. J Nutr Biochem 2020; 76:108265. [DOI: 10.1016/j.jnutbio.2019.108265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/05/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
|
23
|
Abstract
Accumulating knowledge on the biology and function of the adipose tissue has led to a major shift in our understanding of its role in health and disease. The adipose tissue is now recognized as a crucial regulator of cardiovascular health, mediated by the secretion of several bioactive products, including adipocytokines, microvesicles and gaseous messengers, with a wide range of endocrine and paracrine effects on the cardiovascular system. The adipose tissue function and secretome are tightly controlled by complex homeostatic mechanisms and local cell-cell interactions, which can become dysregulated in obesity. Systemic or local inflammation and insulin resistance lead to a shift in the adipose tissue secretome from anti-inflammatory and anti-atherogenic towards a pro-inflammatory and pro-atherogenic profile. Moreover, the interplay between the adipose tissue and the cardiovascular system is bidirectional, with vascular-derived and heart-derived signals directly affecting adipose tissue biology. In this Review, we summarize the current knowledge of the biology and regional variability of adipose tissue in humans, deciphering the complex molecular mechanisms controlling the crosstalk between the adipose tissue and the cardiovascular system, and their possible clinical translation. In addition, we highlight the latest developments in adipose tissue imaging for cardiovascular risk stratification and discuss how therapeutic targeting of the adipose tissue can improve prevention and treatment of cardiovascular disease.
Collapse
|
24
|
Crawford KA, Clark BW, Heiger-Bernays WJ, Karchner SI, Hahn ME, Nacci DE, Schlezinger JJ. Tributyltin disrupts fin development in Fundulus heteroclitus from both PCB-sensitive and resistant populations: Investigations of potential interactions between AHR and PPARγ. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105334. [PMID: 31743820 PMCID: PMC6935467 DOI: 10.1016/j.aquatox.2019.105334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 05/09/2023]
Abstract
Tributyltin (TBT) and dioxin-like polychlorinated biphenyls (PCBs) are environmental contaminants that are highly toxic to fish and co-occur in New Bedford Harbor (NBH), an estuarine Superfund site located in Massachusetts, USA. Atlantic killifish (Fundulus heteroclitus) that reside in NBH (and other highly contaminated sites along the east coast of the United States) have developed resistance to activation of the aryl hydrocarbon receptor (AHR) pathway and the toxicity of dioxin-like chemicals, such as 3,3',4,4',5-pentachlorobiphenyl, PCB126. In many biological systems, TBT disregulates adipose and bone development via the PPARγ-RXR pathway; AHR activation also disrupts adipose and bone homeostasis, potentially through molecular crosstalk between AHR and PPARγ. However, little is known about how co-exposure and the interaction of these pathways modulate the toxicological effects of these contaminants. Here, we tested the hypotheses that TBT would induce teratogenesis in killifish via activation of PPARγ and that PCB126 co-exposure would suppress PPARγ pathway activation in PCB-sensitive killifish from a reference site (Scorton Creek, SC, PCB-sensitive) but not in PCB-tolerant NBH killifish. Killifish embryos from both populations exposed to TBT (50 and 100 nM) displayed caudal fin deformities. TBT did not change the expression of pparg or its target genes related to adipogenesis (fabp11a and fabp1b) in either population. However, expression of osx/sp7, an osteoblast marker gene, and col2a1b, a chondroblast marker gene, was significantly suppressed by TBT only in SC killifish. An RXR-specific agonist, but not a PPARγ-specific agonist, induced caudal fin deformities like those observed in TBT-treated embryos. PCB126 did not induce caudal fin deformities and did not exacerbate TBT-induced fin deformities. Further, PCB126 increased expression of pparg in SC embryos and not NBH embryos, but did not change the expression of fabp1b. Taken together, these results suggest that in killifish embryos the PPARγ pathway is regulated in part by AHR, but is minimally active at least in this early life stage. In killifish, RXR activation, rather than PPARγ activation, appears to be the mechanism by which TBT induces caudal fin teratogenicity, which is not modulated by AHR responsiveness.
Collapse
Affiliation(s)
- K A Crawford
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Boston University Superfund Research Program, Boston, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - B W Clark
- Boston University Superfund Research Program, Boston, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - W J Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Boston University Superfund Research Program, Boston, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - S I Karchner
- Boston University Superfund Research Program, Boston, MA, USA; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - M E Hahn
- Boston University Superfund Research Program, Boston, MA, USA; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - D E Nacci
- Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - J J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Boston University Superfund Research Program, Boston, MA, USA; Oak Ridge Institute for Science and Education at Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA.
| |
Collapse
|
25
|
Muñoz MF, Argüelles S, Marotta F, Barbagallo M, Cano M, Ayala A. Effect of Age and Lipoperoxidation in Rat and Human Adipose Tissue-Derived Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6473279. [PMID: 33425211 PMCID: PMC7775166 DOI: 10.1155/2020/6473279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
A wide range of clinical applications in regenerative medicine were opened decades ago with the discovery of adult stem cells. Highly promising adult stem cells are mesenchymal stem/stromal cells derived from adipose tissue (ADSCs), primarily because of their abundance and accessibility. These cells have multipotent properties and have been used extensively to carry out autologous transplants. However, the biology of these cells is not entirely understood. Among other factors, the regeneration capacity of these cells will depend on both their capacity of proliferation/differentiation and the robustness of the biochemical pathways that allow them to survive under adverse conditions like those found in damaged tissues. The transcription factors, such as Nanog and Sox2, have been described as playing an important role in stem cell proliferation and differentiation. Also, the so-called longevity pathways, in which AMPK and SIRT1 proteins play a crucial role, are essential for cell homeostasis under stressful situations. These pathways act by inhibiting the translation through downregulation of elongation factor-2 (eEF2). In order to deepen knowledge of mesenchymal stem cell biology and which factors are determinant in the final therapeutic output, we evaluate in the present study the levels of all of these proteins in the ADSCs from humans and rats and how these levels are affected by aging and the oxidative environment. Due to the effect of aging and oxidative stress, our results suggest that before performing a cell therapy with ADSCs, several aspects reported in this study such as oxidative stress status and proliferation and differentiation capacity should be assessed on these cells. This would allow us to know the robustness of the transplanted cells and to predict the therapeutic result, especially in elder patients, where probably ADSCs do not carry out their biological functions in an optimal way.
Collapse
Affiliation(s)
- Mario F. Muñoz
- 1Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Sandro Argüelles
- 2Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Francesco Marotta
- 3ReGenera R&D International for Aging Intervention & Vitality Therapeutics, San Babila Clinic, Milan, Italy
| | - Mario Barbagallo
- 4Department of Geriatrics and Internal Medicine, University of Palermo, Italy
| | - Mercedes Cano
- 2Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Antonio Ayala
- 1Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| |
Collapse
|
26
|
Chernis N, Masschelin P, Cox AR, Hartig SM. Bisphenol AF promotes inflammation in human white adipocytes. Am J Physiol Cell Physiol 2020; 318:C63-C72. [PMID: 31596606 PMCID: PMC6985838 DOI: 10.1152/ajpcell.00175.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/08/2023]
Abstract
Endocrine-disrupting chemicals interact with transcription factors essential for adipocyte differentiation. Exposure to endocrine-disrupting chemicals corresponds with elevated risks of obesity, but the effects of these compounds on human cells remain largely undefined. Widespread use of bisphenol AF (BPAF) as a bisphenol A (BPA) alternative in the plastics industry presents unknown health risks. To this end, we discovered that BPAF interferes with the metabolic function of mature human adipocytes. Although 4-day exposures to BPAF accelerated adipocyte differentiation, we observed no effect on mature fat cell marker genes. Additional gene and protein expression analysis showed that BPAF treatment during human adipocyte differentiation failed to suppress the proinflammatory transcription factor STAT1. Microscopy and respirometry experiments demonstrated that BPAF impaired mitochondrial function and structure. To test the hypothesis that BPAF fosters vulnerabilities to STAT1 activation, we treated mature adipocytes previously exposed to BPAF with interferon-γ (IFNγ). BPAF increased IFNγ activation of STAT1 and exposed mitochondrial vulnerabilities that disrupt adipocyte lipid and carbohydrate metabolism. Collectively, our data establish that BPAF activates inflammatory signaling pathways that degrade metabolic activity in human adipocytes. These findings suggest how the BPA alternative BPAF contributes to metabolic changes that correspond with obesity.
Collapse
Affiliation(s)
- Natasha Chernis
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Peter Masschelin
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
27
|
Abstract
Obesity is characterized by increased adipose tissue mass and has been associated with a strong predisposition towards metabolic diseases and cancer. Thus, it constitutes a public health issue of major proportion. The expansion of adipose depots can be driven either by the increase in adipocyte size (hypertrophy) or by the formation of new adipocytes from precursor differentiation in the process of adipogenesis (hyperplasia). Notably, adipocyte expansion through adipogenesis can offset the negative metabolic effects of obesity, and the mechanisms and regulators of this adaptive process are now emerging. Over the past several years, we have learned a considerable amount about how adipocyte fate is determined and how adipogenesis is regulated by signalling and systemic factors. We have also gained appreciation that the adipogenic niche can influence tissue adipogenic capability. Approaches aimed at increasing adipogenesis over adipocyte hypertrophy can now be explored as a means to treat metabolic diseases.
Collapse
|
28
|
Bastien M, Poirier P, Brassard P, Arsenault BJ, Bertrand OF, Després JP, Costerousse O, Piché ME. Effect of PPARγ agonist on aerobic exercise capacity in relation to body fat distribution in men with type 2 diabetes mellitus and coronary artery disease: a 1-yr randomized study. Am J Physiol Endocrinol Metab 2019; 317:E65-E73. [PMID: 30964707 DOI: 10.1152/ajpendo.00505.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Targeting metabolic determinants of exercise performance with pharmacological agents that would mimic/potentiate the effects of exercise represents an attractive clinical alternative to counterbalance the poor exercise capacity in patients with type 2 diabetes mellitus (T2DM). We examined the effect of 1-yr treatment with the insulin sensitizer peroxisome proliferator-activated receptor (PPAR)γ agonist rosiglitazone on aerobic exercise capacity and body fat composition/distribution in men with T2DM and stable coronary artery disease (CAD). One-hundred four men (age: 64 ± 7 yr; body mass index: 30.0 ± 4.4 kg/m2) with T2DM and CAD were randomized to receive rosiglitazone or placebo for 1 yr. Aerobic exercise capacity (exercise duration) was assessed with a maximal treadmill test, and body composition/distribution were assessed by dual-energy X-ray absorptiometry/computed tomography scans. At 1 yr, patients with T2DM under PPARγ agonist treatment showed a reduction in aerobic exercise capacity compared with the control group (exercise duration change, -31 ± 8 versus 7 ± 11 s, P = 0.009). Significant increases in body fat mass (3.1 ± 0.4 kg, 12%), abdominal and mid-thigh subcutaneous adipose tissue (AT) levels, and mid-thigh skeletal muscle fat were found (all P < 0.01), whereas no effect on visceral AT levels was observed (P > 0.05) under treatment. Subcutaneous fat mass gained under PPARγ agonist was the strongest predictor of the worsening in aerobic exercise capacity (P > 0.0001); no association was found with skeletal muscle fat infiltration nor visceral AT. Treatment with the insulin sensitizer PPARγ agonist rosiglitazone in patients with T2DM and CAD is associated with a worsening in aerobic exercise capacity, which seems to be mainly attributable to weight gain and subcutaneous fat mass expansion.
Collapse
Affiliation(s)
- Marjorie Bastien
- Quebec Heart and Lung Institute, Laval University , Quebec , Canada
| | - Paul Poirier
- Quebec Heart and Lung Institute, Laval University , Quebec , Canada
- Faculty of Pharmacy, Laval University , Quebec , Canada
| | - Patrice Brassard
- Quebec Heart and Lung Institute, Laval University , Quebec , Canada
- Faculty of Medicine, Department of Kinesiology, Laval University , Quebec , Canada
| | - Benoit J Arsenault
- Quebec Heart and Lung Institute, Laval University , Quebec , Canada
- Faculty of Medicine, Department of Medicine, Laval University , Quebec , Canada
| | | | - Jean-Pierre Després
- Quebec Heart and Lung Institute, Laval University , Quebec , Canada
- Faculty of Medicine, Department of Kinesiology, Laval University , Quebec , Canada
| | | | - Marie-Eve Piché
- Quebec Heart and Lung Institute, Laval University , Quebec , Canada
- Faculty of Medicine, Department of Medicine, Laval University , Quebec , Canada
| |
Collapse
|
29
|
Seleit I, Bakry OA, Abd El Gayed E, Ghanem M. Peroxisome Proliferator-Activated Receptor-γ Gene Polymorphism in Psoriasis and Its Relation to Obesity, Metabolic Syndrome, and Narrowband Ultraviolet B Response: A Case-Control Study in Egyptian Patients. Indian J Dermatol 2019; 64:192-200. [PMID: 31148857 PMCID: PMC6537676 DOI: 10.4103/ijd.ijd_114_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Psoriasis is a common dermatologic disease with multifactorial etiology in which genetic factors play a major role. Peroxisome proliferator-activated receptor (PPAR)-γ is expressed in keratinocytes and is known to affect cell maturation and differentiation in addition to its role in inflammation. Aim: To study the association between PPAR-γ gene polymorphism and psoriasis vulgaris in Egyptian patients to explore if this polymorphism influenced disease risk or clinical presentation. Methods: Forty-five patients with psoriasis vulgaris and 45 age, sex and body mass index matched healthy volunteers who have no present, past or family history of psoriasis as a control group were enrolled. Selected cases included obese and nonobese participants. Detection of PPAR-γ gene polymorphism was done with restriction fragment length polymorphism polymerase chain reaction. Narrow-band ultraviolet B (NBUVB) was given for every case three times/week for 12 weeks. Results: Homopolymorphism, heteropolymorphism, and Ala allele were significantly associated with cases (P = 0.01, P = 0.01, and P = 0.004, respectively) and increased risk of occurrence of psoriasis by 5.25, 3.65, and 3.37 folds, respectively. Heteropolymorphism was significantly associated with nonobese cases compared to obese ones (P = 0.01). Ala allele was significantly associated with obese cases (P = 0.001) and increased risk of occurrence of psoriasis in obese participants by 1.14 folds. Homopolymorphism, heteropolymorphism, and Ala allele were more prevalent among obese cases without metabolic syndrome (MS) than obese cases with MS but without statistical significance. Percentage of decrease of mean Psoriasis Area and Severity Index score before and after 3 months of treatment with NBUVB was higher in cases with heteropolymorphism with no significant difference between homo- and heteropolymorphism. Conclusion: PPAR-γ gene polymorphism is associated with and increased the risk of psoriasis and its associated obesity in Egyptian patients. It has no role in NBUVB response in those patients. Future large-scale studies on different populations are recommended.
Collapse
Affiliation(s)
- Iman Seleit
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shibeen El Koom, Egypt
| | - Ola Ahmed Bakry
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shibeen El Koom, Egypt
| | - Eman Abd El Gayed
- Department of Medical Biochemistry, Faculty of Medicine, Menoufiya University, Shibeen El Koom, Egypt
| | - Mai Ghanem
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shibeen El Koom, Egypt
| |
Collapse
|
30
|
Metabolic Phenotyping of Adipose-Derived Stem Cells Reveals a Unique Signature and Intrinsic Differences between Fat Pads. Stem Cells Int 2019; 2019:9323864. [PMID: 31223312 PMCID: PMC6541987 DOI: 10.1155/2019/9323864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/11/2019] [Accepted: 02/03/2019] [Indexed: 12/20/2022] Open
Abstract
White adipose tissues are functionally heterogeneous and differently manage the excess of energy supply. While the expansion of subcutaneous adipose tissues (SAT) is protective in obesity, that of visceral adipose tissues (VAT) correlates with the emergence of metabolic diseases. Maintained in fat pads throughout life, adipose stem cells (ASC) are mesenchymal-like stem cells with adipogenesis and multipotent differentiation potential. ASC from distinct fat pads have long been reported to present distinct proliferation and differentiation potentials that are maintained in culture, yet the origins of these intrinsic differences are still unknown. Metabolism is central to stem cell fate decision in line with environmental changes. In this study, we performed high-resolution nuclear magnetic resonance (NMR) metabolomic analyses of ASC culture supernatants in order to characterize their metabolic phenotype in culture. We identified and quantified 29 ASC exometabolites and evaluated their consumption or secretion over 72 h of cell culture. Both ASC used glycolysis and mitochondrial metabolism, as evidenced by the high secretions of lactate and citrate, respectively, but V-ASC mostly used glycolysis. By varying the composition of the cell culture medium, we showed that glutaminolysis, rather than glycolysis, supported the secretion of pyruvate, alanine, and citrate, evidencing a peculiar metabolism in ASC cells. The comparison of the two types of ASC in glutamine-free culture conditions also revealed the role of glutaminolysis in the limitation of pyruvate routing towards the lactate synthesis, in S-ASC but not in V-ASC. Altogether, our results suggest a difference between depots in the capacity of ASC mitochondria to assimilate pyruvate, with probable consequences on their differentiation potential in pathways requiring an increased mitochondrial activity. These results highlight a pivotal role of metabolic mechanisms in the discrimination between ASC and provide new perspectives in the understanding of their functional differences.
Collapse
|
31
|
Silva KR, Baptista LS. Adipose-derived stromal/stem cells from different adipose depots in obesity development. World J Stem Cells 2019; 11:147-166. [PMID: 30949294 PMCID: PMC6441940 DOI: 10.4252/wjsc.v11.i3.147] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/27/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
The increasing prevalence of obesity is alarming because it is a risk factor for cardiovascular and metabolic diseases (such as type 2 diabetes). The occurrence of these comorbidities in obese patients can arise from white adipose tissue (WAT) dysfunctions, which affect metabolism, insulin sensitivity and promote local and systemic inflammation. In mammals, WAT depots at different anatomical locations (subcutaneous, preperitoneal and visceral) are highly heterogeneous in their morpho-phenotypic profiles and contribute differently to homeostasis and obesity development, depending on their ability to trigger and modulate WAT inflammation. This heterogeneity is likely due to the differential behavior of cells from each depot. Numerous studies suggest that adipose-derived stem/stromal cells (ASC; referred to as adipose progenitor cells, in vivo) with depot-specific gene expression profiles and adipogenic and immunomodulatory potentials are keys for the establishment of the morpho-functional heterogeneity between WAT depots, as well as for the development of depot-specific responses to metabolic challenges. In this review, we discuss depot-specific ASC properties and how they can contribute to the pathophysiology of obesity and metabolic disorders, to provide guidance for researchers and clinicians in the development of ASC-based therapeutic approaches.
Collapse
Affiliation(s)
- Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Post-Graduation Program of Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
| | - Leandra Santos Baptista
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Post-Graduation Program of Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Multidisciplinary Center for Biological Research (Numpex-Bio), Federal University of Rio de Janeiro Campus Duque de Caxias, Duque de Caxias, RJ 25245-390, Brazil
| |
Collapse
|
32
|
Jiao Y, Ahmed U, Sim MFM, Bejar A, Zhang X, Talukder MMU, Rice R, Flannick J, Podgornaia AI, Reilly DF, Engreitz JM, Kost-Alimova M, Hartland K, Mercader JM, Georges S, Wagh V, Tadin-Strapps M, Doench JG, Edwardson JM, Rochford JJ, Rosen ED, Majithia AR. Discovering metabolic disease gene interactions by correlated effects on cellular morphology. Mol Metab 2019; 24:108-119. [PMID: 30940487 PMCID: PMC6531784 DOI: 10.1016/j.molmet.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022] Open
Abstract
Objective Impaired expansion of peripheral fat contributes to the pathogenesis of insulin resistance and Type 2 Diabetes (T2D). We aimed to identify novel disease–gene interactions during adipocyte differentiation. Methods Genes in disease-associated loci for T2D, adiposity and insulin resistance were ranked according to expression in human adipocytes. The top 125 genes were ablated in human pre-adipocytes via CRISPR/CAS9 and the resulting cellular phenotypes quantified during adipocyte differentiation with high-content microscopy and automated image analysis. Morphometric measurements were extracted from all images and used to construct morphologic profiles for each gene. Results Over 107 morphometric measurements were obtained. Clustering of the morphologic profiles accross all genes revealed a group of 14 genes characterized by decreased lipid accumulation, and enriched for known lipodystrophy genes. For two lipodystrophy genes, BSCL2 and AGPAT2, sub-clusters with PLIN1 and CEBPA identifed by morphological similarity were validated by independent experiments as novel protein–protein and gene regulatory interactions. Conclusions A morphometric approach in adipocytes can resolve multiple cellular mechanisms for metabolic disease loci; this approach enables mechanistic interrogation of the hundreds of metabolic disease loci whose function still remains unknown. Loss-of-function genetic screen in human adipocytes for 125 genes selected from metabolic disease-associated loci. Genetic screen read out by cellular morphometry— 77,000 images taken with 400 morphological features extracted per image. Pairwise mechanistic interactions between genes identified by correlations of cellular morphometry—two interactions validated. Novel interaction between BSCL2 and PLIN1 from biophysical association of proteins at lipid droplet surface. Novel interaction between CEBPA and AGPAT2 from CEBPA dependent transcription of AGPAT2.
Collapse
Affiliation(s)
- Yang Jiao
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Umer Ahmed
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - M F Michelle Sim
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Andrea Bejar
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xiaolan Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Robert Rice
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jason Flannick
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anna I Podgornaia
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA 02115, USA
| | - Dermot F Reilly
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA 02115, USA
| | | | | | - Kate Hartland
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Sara Georges
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA 02115, USA
| | - Vilas Wagh
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA 02115, USA
| | | | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Justin J Rochford
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK; Rowett Institute and the Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Evan D Rosen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Harvard Medical School, Department of Genetics, Boston, MA 02215, USA
| | - Amit R Majithia
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Stenkula KG, Erlanson-Albertsson C. Adipose cell size: importance in health and disease. Am J Physiol Regul Integr Comp Physiol 2018; 315:R284-R295. [DOI: 10.1152/ajpregu.00257.2017] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adipose tissue is necessary to harbor energy. To handle excess energy, adipose tissue expands by increasing adipocyte size (hypertrophy) and number (hyperplasia). Here, we have summarized the different experimental techniques used to study adipocyte cell size and describe adipocyte size in relation to insulin resistance, type 2 diabetes, and diet interventions. Hypertrophic adipocytes have an impaired cellular function, and inherent mechanisms restrict their expansion to protect against cell breakage and subsequent inflammation. Reduction of large fat cells by diet restriction, physical activity, or bariatric surgery therefore is necessary to improve cellular function and health. Small fat cells may also be dysfunctional and unable to expand. The distribution and function of the entire cell size range of fat cells, from small to very large fat cells, are an important but understudied aspect of adipose tissue biology. To prevent dysmetabolism, therapeutic strategies to expand small fat cells, recruit new fat cells, and reduce large fat cells are needed.
Collapse
Affiliation(s)
- Karin G. Stenkula
- Glucose Transport and Protein Trafficking, Biomedical Center, Lund University, Lund, Sweden
| | | |
Collapse
|
34
|
Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension. Curr Hypertens Rep 2018; 20:62. [PMID: 29884931 DOI: 10.1007/s11906-018-0860-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Heterogeneous causes can determinate hypertension. RECENT FINDINGS The renin-angiotensin system (RAS) has a major role in the pathophysiology of blood pressure. Angiotensin II and aldosterone are overexpressed during hypertension and lead to hypertension development and its cardiovascular complications. In several tissues, the overactivation of the canonical WNT/β-catenin pathway leads to inactivation of peroxisome proliferator-activated receptor gamma (PPARγ), while PPARγ stimulation induces a decrease of the canonical WNT/β-catenin pathway. In hypertension, the WNT/β-catenin pathway is upregulated, whereas PPARγ is decreased. The WNT/β-catenin pathway and RAS regulate positively each other during hypertension, whereas PPARγ agonists can decrease the expression of both the WNT/β-catenin pathway and RAS. We focus this review on the hypothesis of an opposite interplay between PPARγ and both the canonical WNT/β-catenin pathway and RAS in regulating the molecular mechanism underlying hypertension. The interactions between PPARγ and the canonical WNT/β-catenin pathway through the regulation of the renin-angiotensin system in hypertension may be an interesting way to better understand the actions and the effects of PPARγ agonists as antihypertensive drugs.
Collapse
|
35
|
Ruhl T, Storti G, Pallua N. Proliferation, Metabolic Activity, and Adipogenic Differentiation of Human Preadipocytes Exposed to 2 Surfactants In Vitro. J Pharm Sci 2018; 107:1408-1415. [DOI: 10.1016/j.xphs.2017.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/24/2017] [Accepted: 12/14/2017] [Indexed: 01/09/2023]
|
36
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches. Int J Mol Sci 2018; 19:ijms19041212. [PMID: 29659554 PMCID: PMC5979570 DOI: 10.3390/ijms19041212] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
| | - Rémy Guillevin
- Data Analysis and Computations Through Imaging Modeling-Mathématiques (DACTIM), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348 (Laboratoire de Mathématiques et Application), University of Poitiers, Centre Hospitalier Universitaire (CHU) de Poitiers, 86000 Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France.
- LMA (Laboratoire de Mathématiques et Applications), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, Université de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
37
|
Wang X, Yu C, Feng J, Chen J, Jiang Q, Kuang S, Wang Y. Depot-specific differences in fat mass expansion in WT and ob/ob mice. Oncotarget 2018; 8:46326-46336. [PMID: 28564636 PMCID: PMC5542270 DOI: 10.18632/oncotarget.17938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/13/2017] [Indexed: 12/19/2022] Open
Abstract
The study was designed to investigate the cellular mechanisms underlying the differential fat expansion in different fat depots in wild type (WT) and ob/ob (OB) mice. At 6 weeks old, no differences in fat mass were found between SAT and VAT in WT mice, while O-SAT showed significantly higher weight than that of O-VAT. The average adipocyte size of SAT (~ 4133.47 μm2) was smaller than that of VAT (~ 7438.91 μm2) in OB mice. O-SAT preadipocytes gained higher triglyceride contents and higher levels of PPARγ and C/EBPα than did O-VAT preadipocytes upon in vitro differentiation. W-SAT and W-VAT displayed no significant differences in fatty acid uptake, while 1.36 fold significantly higher fatty acid uptake was found in O-SAT compared to O-VAT. Approximately 52% of the radioactivity recovered in cellular lipids was found in TAG in O-SAT, which was significantly higher than the other three adipocyte types. Significantly more radiolabelled oleic acid was β-oxidized to CO2 in adipocytes from O-VAT than that from O-SAT. ATP production was significantly lower in W-SAT compared with W-VAT, whereas no significantly ATP level was observed between O-SAT and O-VAT. Expression of UCP-1 in SAT from either WT or OB mice was significantly higher than the counterpart of VAT, which demonstrated higher uncoupled respiration and lower oxidative phosphorylation in SAT. Together, a combined increase in adipogenesis and FA uptake, and decreases in β-oxidation and ATP production, contributed to greater expansion of SAT compared to VAT in obese mice.
Collapse
Affiliation(s)
- Xinxia Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, Zhejiang 310058, P. R. China
| | - Caihua Yu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, Zhejiang 310058, P. R. China
| | - Jie Feng
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, Zhejiang 310058, P. R. China
| | - Jin Chen
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, Zhejiang 310058, P. R. China
| | - Qin Jiang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, Zhejiang 310058, P. R. China
| | - Shihuan Kuang
- Department of Animal Sciences and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
38
|
De novo adipocyte differentiation from Pdgfrβ + preadipocytes protects against pathologic visceral adipose expansion in obesity. Nat Commun 2018; 9:890. [PMID: 29497032 PMCID: PMC5832777 DOI: 10.1038/s41467-018-03196-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
Pathologic expansion of white adipose tissue (WAT) in obesity is characterized by adipocyte hypertrophy, inflammation, and fibrosis; however, factors triggering this maladaptive remodeling are largely unknown. Here, we test the hypothesis that the potential to recruit new adipocytes from Pdgfrβ+ preadipocytes determines visceral WAT health in obesity. We manipulate levels of Pparg, the master regulator of adipogenesis, in Pdgfrβ+ precursors of adult mice. Increasing the adipogenic capacity of Pdgfrβ+ precursors through Pparg overexpression results in healthy visceral WAT expansion in obesity and adiponectin-dependent improvements in glucose homeostasis. Loss of mural cell Pparg triggers pathologic visceral WAT expansion upon high-fat diet feeding. Moreover, the ability of the TZD class of anti-diabetic drugs to promote healthy visceral WAT remodeling is dependent on mural cell Pparg. These data highlight the protective effects of de novo visceral adipocyte differentiation in these settings, and suggest Pdgfrβ+ adipocyte precursors as targets for therapeutic intervention in diabetes. Adipocyte hyperplasia is thought to have beneficial metabolic effects in obesity, but definitive evidence is lacking. Here, Shao et al. promote de novo formation of adipocytes in visceral white adipose tissue (WAT) of adult mice through inducible overexpression of Pparg in Pdgfrβ+ preadipocytes and show that this protects from pathological WAT remodeling.
Collapse
|
39
|
Adipose Tissue Function and Expandability as Determinants of Lipotoxicity and the Metabolic Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:161-196. [PMID: 28585199 DOI: 10.1007/978-3-319-48382-5_7] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis and it is constituted of three different types of adipocytes : white, beige and brown which are integrated with vascular, immune, neural and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concert action of the three type of adipocytes/tissues has been reported to ensure an optimal metabolic status in rodents. However, when one or multiple of these adipose depots become dysfunctional as a consequence of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity counteracts obesity and its associated lipotoxic metabolic effects. The development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition and expandability capacity as well as molecular and metabolic signatures in both physiological and pathophysiological conditions.
Collapse
|
40
|
|
41
|
Caputo T, Gilardi F, Desvergne B. From chronic overnutrition to metaflammation and insulin resistance: adipose tissue and liver contributions. FEBS Lett 2017; 591:3061-3088. [DOI: 10.1002/1873-3468.12742] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Tiziana Caputo
- Center for Integrative Genomics; Lausanne Faculty of Biology and Medicine; University of Lausanne; Switzerland
| | - Federica Gilardi
- Center for Integrative Genomics; Lausanne Faculty of Biology and Medicine; University of Lausanne; Switzerland
| | - Béatrice Desvergne
- Center for Integrative Genomics; Lausanne Faculty of Biology and Medicine; University of Lausanne; Switzerland
| |
Collapse
|
42
|
Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev Camb Philos Soc 2017; 92:2046-2069. [PMID: 28220655 DOI: 10.1111/brv.12320] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Over 25 years have passed since peroxisome proliferators-activated receptors (PPARs), were first described. Like other members of the nuclear receptors superfamily, PPARs have been defined as critical sensors and master regulators of cellular metabolism. Recognized as ligand-activated transcription factors, they are involved in lipid, glucose and amino acid metabolism, taking part in different cellular processes, including cellular differentiation and apoptosis, inflammatory modulation and attenuation of acute and chronic neurological damage in vivo and in vitro. Interestingly, PPAR activation can simultaneously reprogram the immune response, stimulate metabolic and mitochondrial functions, promote axonal growth, induce progenitor cells to differentiate into myelinating oligodendrocytes, and improve brain clearance of toxic molecules such as β-amyloid peptide. Although the molecular mechanisms and cross-talk with different molecular pathways are still the focus of intense research, PPARs are considered potential therapeutic targets for several neuropathological conditions, including degenerative disorders such as Alzheimer's, Parkinson's and Huntington's disease. This review considers recent advances regarding PPARs, as well as new PPAR agonists. We focus on the mechanisms behind the neuroprotective effects exerted by PPARs and summarise the roles of PPARs in different pathologies of the central nervous system, especially those associated with degenerative and inflammatory mechanisms.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Manuel J Santos
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Sussy Bastías-Candia
- Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Gral. Velásquez 1775, 1000007, Arica, Chile
| | - Claudio Pinto
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.,Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Avoca Street Randwick NSW 2031, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, PO Box 113-D, Avenida Bulnes 01855, 6210427, Punta Arenas, Chile
| |
Collapse
|
43
|
Liu LF, Craig CM, Tolentino LL, Choi O, Morton J, Rivas H, Cushman SW, Engleman EG, McLaughlin T. Adipose tissue macrophages impair preadipocyte differentiation in humans. PLoS One 2017; 12:e0170728. [PMID: 28151993 PMCID: PMC5289462 DOI: 10.1371/journal.pone.0170728] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
Abstract
AIM The physiologic mechanisms underlying the relationship between obesity and insulin resistance are not fully understood. Impaired adipocyte differentiation and localized inflammation characterize adipose tissue from obese, insulin-resistant humans. The directionality of this relationship is not known, however. The aim of the current study was to investigate whether adipose tissue inflammation is causally-related to impaired adipocyte differentiation. METHODS Abdominal subcutaneous(SAT) and visceral(VAT) adipose tissue was obtained from 20 human participants undergoing bariatric surgery. Preadipocytes were isolated, and cultured in the presence or absence of CD14+ macrophages obtained from the same adipose tissue sample. Adipocyte differentiation was quantified after 14 days via immunofluorescence, Oil-Red O, and adipogenic gene expression. Cytokine secretion by mature adipocytes cultured with or without CD14+macrophages was quantified. RESULTS Adipocyte differentiation was significantly lower in VAT than SAT by all measures (p<0.001). With macrophage removal, SAT preadipocyte differentiation increased significantly as measured by immunofluorescence and gene expression, whereas VAT preadipocyte differentiation was unchanged. Adipocyte-secreted proinflammatory cytokines were higher and adiponectin lower in media from VAT vs SAT: macrophage removal reduced inflammatory cytokine and increased adiponectin secretion from both SAT and VAT adipocytes. Differentiation of preadipocytes from SAT but not VAT correlated inversely with systemic insulin resistance. CONCLUSIONS The current results reveal that proinflammatory immune cells in human SAT are causally-related to impaired preadipocyte differentiation, which in turn is associated with systemic insulin resistance. In VAT, preadipocyte differentiation is poor even in the absence of tissue macrophages, pointing to inherent differences in fat storage potential between the two depots.
Collapse
Affiliation(s)
- Li Fen Liu
- Division of Endocrinology, Department of Medicine, Stanford University, Palo Alto, California, United States of America
| | - Colleen M. Craig
- Division of Endocrinology, Department of Medicine, Stanford University, Palo Alto, California, United States of America
| | | | - Okmi Choi
- Stanford Blood Center, Palo Alto, California, United States of America
| | - John Morton
- Department of Surgery, School of Medicine, Stanford University, Palo Alto, California, United States of America
| | - Homero Rivas
- Department of Surgery, School of Medicine, Stanford University, Palo Alto, California, United States of America
| | - Samuel W. Cushman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Edgar G. Engleman
- Stanford Blood Center, Palo Alto, California, United States of America
- Department of Pathology, School of Medicine Stanford University, Palo Alto, California, United States of America
| | - Tracey McLaughlin
- Division of Endocrinology, Department of Medicine, Stanford University, Palo Alto, California, United States of America
| |
Collapse
|
44
|
PPAR γ and Its Role in Cardiovascular Diseases. PPAR Res 2017; 2017:6404638. [PMID: 28243251 PMCID: PMC5294387 DOI: 10.1155/2017/6404638] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/28/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022] Open
Abstract
Peroxisome proliferator-activated receptor Gamma (PPARγ), a ligand-activated transcription factor, has a role in various cellular functions as well as glucose homeostasis, lipid metabolism, and prevention of oxidative stress. The activators of PPARγ are already widely used in the treatment of diabetes mellitus. The cardioprotective effect of PPARγ activation has been studied extensively over the years making them potential therapeutic targets in diseases associated with cardiovascular disorders. However, they are also associated with adverse cardiovascular events such as congestive heart failure and myocardial infarction. This review aims to discuss the role of PPARγ in the various cardiovascular diseases and summarize the current knowledge on PPARγ agonists from multiple clinical trials. Finally, we also review the new PPARγ agonists under development as potential therapeutics with reduced or no adverse effects.
Collapse
|
45
|
Miyazaki Y, De Filippis E, Bajaj M, Wajcberg E, Glass L, Triplitt C, Cersosimo E, Mandarino LJ, Defronzo RA. Predictors of improved glycaemic control with rosiglitazone therapy in type 2 diabetic patients: a practical approach for the primary care physician. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/14746514050050010601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective — To determine predictors of improved glycaemic control in patients with type 2 diabetes mellitus during rosiglitazone therapy using basic clinical parameters that are readily available in daily clinical practice. Research design and methods — Thirty-seven type 2 diabetic patients (men/women = 18/19; age = 54±2years; diabetes duration = 6±1 years; diet-/sulphonylurea-treated = 24/13) received a 75 g oral glucose tolerance test (OGTT) and determination of body fat before and after rosiglitazone (8 mg/day) for 12 weeks. Results — After rosiglitazone therapy, there were decreases in HbA1C (8.6±0.2 to 7.2±0.2%, p<0.0001), fasting plasma glucose (FPG) (10.6±0.3 to 8.0±0.3 mmol/L [191±6 to 145±6 mg/dL], p<0.0001), fasting plasma insulin (FPI) (108±6 to 84±6 pmol/L [18±1 to 14±µU/ml], p<0.05), fasting free fatty acids (FFA) (760±39 to 611±33 µEq/l, p<0.05), mean plasma glucose (PG) — OGTT (16.2±0.39 to 12.7±0.33 mmol/L [291±7 to 230±6 mg/dL], p<0.001), and mean FFA-OGTT (604±27 to 445±23 µEq/l, p<0.01) despite increases in body weight (85±2 to 88±2 kg, p<0.01) and % fat mass (37.9±2.0 to 39.5±1.9%, p<0.01). The insulinogenic index (IGI) during 0—120 minutes OGTT (IGI0-120) increased following rosiglitazone (0.19±0.03 to 0.30±0.05, p<0.01). Two different insulin sensitivity indices, calculated from PG and plasma insulin (PI) during OGTT, increased significantly: composite index of whole body insulin sensitivity (ISIcomposite): 2.3±0.3 to 3.4±0.4, p<0.05; oral glucose insulin sensitivity (OGIS): 248±5 to 294±6 ml/m2.min, p<0.001. Using clinical and laboratory variables obtained in daily clinical practice (age, gender, diabetes duration, sulphonylurea treatment, body mass index (BMI), % fat mass, fasting plasma insulin/C-peptide/FFA/lipids, IGI0-30, IGI0-120, and ISIcomposite or OGIS), stepwise regression analysis demonstrated that % fat mass (standard coefficient (S.C.) = —0.49, p=0.001) and OGIS (S.C. = 0.31, p=0.02) or ISIcomp (S.C. = 0.31, p=0.03) are significant predictors of the decrease in HbA1C after rosiglitazone (adjusted R2 =0.33, p=0.0004). Conclusions — Rosiglitazone improves insulin resistance and glycaemic control in type 2 diabetes. Obesity (more body fat mass) and reduced insulin sensitivity prior to treatment are the best predictors of glycaemic response to thiazolidinedione therapy in type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ralph A Defronzo
- University of Texas Health Science Center, Diabetes Division, Room 3.380S, 7703 Floyd Curl Drive, San Antonio, Texas, 78229-3900, USA,
| |
Collapse
|
46
|
Negro R, Hassan H. The effects of telmisartan and amlodipine on metabolic parameters and blood pressure in type 2 diabetic, hypertensive patients. J Renin Angiotensin Aldosterone Syst 2016; 7:243-6. [PMID: 17318795 DOI: 10.3317/jraas.2006.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction. Hypertension in type 2 diabetes represents a strong risk factor for cardiovascular events. Either calcium channel blockers or angiotensin receptor blockers (ARBs) may reduce insulin resistance. One of the ARBs, telmisartan (Telm) acting as a PPARγ agonist, significantly reduces HbA1C levels.The aim of this study was the comparison of the effects on glycaemic control of amlodipine (Aml) and Telm in hypertensive type 2 diabetic patients. Materials and methods. Forty diabetic hypertensive subjects were assigned to two groups. Group A: rosiglitazone (RSG) 4 mg + Telm 80 mg; Group B: RSG 4 mg + Aml 10 mg. All the patients were already treated with metformin, but not with antihypertensive drugs. Results. After four months treatment, both groups showed a significant reduction of mean blood pressure (Group A: - 13.5%; Group B: - 13.3%) and a positive influence on glycaemic control and insulin resistance. Lower values of glucose, HbA1C, HOMA index and higher adiponectin levels were observed in Group A compared to Group B. Conclusions. In type 2 diabetic hypertensive patients, the association of Telm 80 mg and RSG 4 mg seems to display a metabolic advantage compared to Aml 10 mg.The simultaneous beneficial effects on blood pressure and insulin sensitivity may confer make Telm particularly suitable in the treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Roberto Negro
- Department of Endocrinology, AUSL LE/1 V.Fazzi, Piazza F. Muratore, Lecce 73100, Italy.
| | | |
Collapse
|
47
|
Wang S, Dougherty EJ, Danner RL. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol Res 2016; 111:76-85. [PMID: 27268145 DOI: 10.1016/j.phrs.2016.02.028] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 01/23/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor that regulates glucose and lipid metabolism, endothelial function and inflammation. Rosiglitazone (RGZ) and other thiazolidinedione (TZD) synthetic ligands of PPARγ are insulin sensitizers that have been used for the treatment of type 2 diabetes. However, undesirable side effects including weight gain, fluid retention, bone loss, congestive heart failure, and a possible increased risk of myocardial infarction and bladder cancer, have limited the use of TZDs. Therefore, there is a need to better understand PPARγ signaling and to develop safer and more effective PPARγ-directed therapeutics. In addition to PPARγ itself, many PPARγ ligands including TZDs bind to and activate G protein-coupled receptor 40 (GPR40), also known as free fatty acid receptor 1. GPR40 signaling activates stress kinase pathways that ultimately regulate downstream PPARγ responses. Recent studies in human endothelial cells have demonstrated that RGZ activation of GPR40 is essential to the optimal propagation of PPARγ genomic signaling. RGZ/GPR40/p38 MAPK signaling induces and activates PPARγ co-activator-1α, and recruits E1A binding protein p300 to the promoters of target genes, markedly enhancing PPARγ-dependent transcription. Therefore in endothelium, GPR40 and PPARγ function as an integrated signaling pathway. However, GPR40 can also activate ERK1/2, a proinflammatory kinase that directly phosphorylates and inactivates PPARγ. Thus the role of GPR40 in PPARγ signaling may have important implications for drug development. Ligands that strongly activate PPARγ, but do not bind to or activate GPR40 may be safer than currently approved PPARγ agonists. Alternatively, biased GPR40 agonists might be sought that activate both p38 MAPK and PPARγ, but not ERK1/2, avoiding its harmful effects on PPARγ signaling, insulin resistance and inflammation. Such next generation drugs might be useful in treating not only type 2 diabetes, but also diverse chronic and acute forms of vascular inflammation such as atherosclerosis and septic shock.
Collapse
Affiliation(s)
- Shuibang Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Edward J Dougherty
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert L Danner
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Choi JW, Jo A, Kim M, Park HS, Chung SS, Kang S, Park KS. BNIP3 is essential for mitochondrial bioenergetics during adipocyte remodelling in mice. Diabetologia 2016; 59:571-81. [PMID: 26693709 DOI: 10.1007/s00125-015-3836-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/13/2015] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Adipose tissue is a highly versatile system in which mitochondria in adipocytes undergo significant changes during active tissue remodelling. BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) is a mitochondrial protein and a known mitochondrial quality regulator. In this study, we investigated the role of BNIP3 in adipocytes, specifically under conditions of peroxisome proliferator-activated receptor-γ (PPARγ)-induced adipose tissue remodelling. METHODS The expression of BNIP3 was evaluated in 3T3-L1 adipocytes in vitro, C57BL/6 mice fed a high-fat diet and db/db mice in vivo. Mitochondrial bioenergetics was investigated in BNIP3-knockdown adipocytes after rosiglitazone treatment. A putative peroxisome proliferator hormone responsive element (PPRE) was characterised by promoter assay and electrophoretic mobility shift assay (EMSA). RESULTS The protein BNIP3 was more abundant in brown adipose tissue than white adipose tissue. Furthermore, BNIP3 expression was upregulated by 3T3-L1 pre-adipocyte differentiation, starvation and rosiglitazone treatment. Conversely, BNIP3 expression in adipocytes decreased under various conditions associated with insulin resistance. This downregulation of BNIP3 was restored by rosiglitazone treatment. Knockdown of BNIP3 in adipocytes inhibited rosiglitazone-induced mitochondrial biogenesis and function, partially mediated by the 5' AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor γ, co-activator 1 α (PGC1α) signalling pathway. Rosiglitazone treatment increased the transcription level of Bnip3 in the reporter assay and the presence of the PPRE site in the Bnip3 promoter was demonstrated by EMSA. CONCLUSIONS/INTERPRETATION The protein BNIP3 contributes to the improvement of mitochondrial bioenergetics that occurs on exposure to rosiglitazone. It may be a novel therapeutic target for restoring mitochondrial dysfunction under insulin-resistant conditions.
Collapse
Affiliation(s)
- Jin Woo Choi
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Anna Jo
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Min Kim
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Ho Seon Park
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro (146-92 Dogok-dong), Gangnam-gu, Seoul, 135-710, South Korea
| | - Sung Soo Chung
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Shinae Kang
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro (146-92 Dogok-dong), Gangnam-gu, Seoul, 135-710, South Korea.
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, South Korea.
| | - Kyong Soo Park
- Department of Internal Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
49
|
Karbiener M, Glantschnig C, Pisani DF, Laurencikiene J, Dahlman I, Herzig S, Amri EZ, Scheideler M. Mesoderm-specific transcript (MEST) is a negative regulator of human adipocyte differentiation. Int J Obes (Lond) 2015; 39:1733-41. [PMID: 26119994 PMCID: PMC4625608 DOI: 10.1038/ijo.2015.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/09/2015] [Accepted: 06/22/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND A growing body of evidence suggests that many downstream pathologies of obesity are amplified or even initiated by molecular changes within the white adipose tissue (WAT). Such changes are the result of an excessive expansion of individual white adipocytes and could potentially be ameliorated via an increase in de novo adipocyte recruitment (adipogenesis). Mesoderm-specific transcript (MEST) is a protein with a putative yet unidentified enzymatic function and has previously been shown to correlate with adiposity and adipocyte size in mouse. OBJECTIVES This study analysed WAT samples and employed a cell model of adipogenesis to characterise MEST expression and function in human. METHODS AND RESULTS MEST mRNA and protein levels increased during adipocyte differentiation of human multipotent adipose-derived stem cells. Further, obese individuals displayed significantly higher MEST levels in WAT compared with normal-weight subjects, and MEST was significantly correlated with adipocyte volume. In striking contrast to previous mouse studies, knockdown of MEST enhanced human adipocyte differentiation, most likely via a significant promotion of peroxisome proliferator-activated receptor signalling, glycolysis and fatty acid biosynthesis pathways at early stages. Correspondingly, overexpression of MEST impaired adipogenesis. We further found that silencing of MEST fully substitutes for the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) as an inducer of adipogenesis. Accordingly, phosphorylation of the pro-adipogenic transcription factors cyclic AMP responsive element binding protein (CREB) and activating transcription factor 1 (ATF1) were highly increased on MEST knockdown. CONCLUSIONS Although we found a similar association between MEST and adiposity as previously described for mouse, our functional analyses suggest that MEST acts as an inhibitor of human adipogenesis, contrary to previous murine studies. We have further established a novel link between MEST and CREB/ATF1 that could be of general relevance in regulation of metabolism, in particular obesity-associated diseases.
Collapse
Affiliation(s)
- M Karbiener
- Department of Phoniatrics, ENT University Hospital, Medical University Graz, Graz, Austria
| | - C Glantschnig
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - D F Pisani
- Université Nice Sophia Antipolis, iBV, UMR, Nice, France
- CNRS, iBV, UMR, Nice, France
- Inserm, iBV, Nice, France
| | - J Laurencikiene
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - I Dahlman
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - S Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - E-Z Amri
- Université Nice Sophia Antipolis, iBV, UMR, Nice, France
- CNRS, iBV, UMR, Nice, France
- Inserm, iBV, Nice, France
| | - M Scheideler
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
50
|
Ding F, Qiu J, Li Q, Hu J, Song C, Han C, He H, Wang J. Effects of rosiglitazone on proliferation and differentiation of duck preadipocytes. In Vitro Cell Dev Biol Anim 2015; 52:174-81. [PMID: 26487429 DOI: 10.1007/s11626-015-9958-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/10/2015] [Indexed: 12/23/2022]
Abstract
Rosiglitazone (RSG), one member of the thiazolidinediones (TZDs), is a type of anti-diabetic drug in diabetic humans and animal models, whose function remains unknown in waterfowl. In this study, effects of RSG on duck preadipocyte differentiation were investigated. We detected cell viability using CCK method and measured the mRNA expression of key genes and protein contents involved in preadipocyte differentiation via qRT-PCR and ELISA kits, respectively. Lipid accumulation was determined via Oil Red O staining extraction, and lipolysis was measured by free fatty acid release in the culture medium. Results showed that high concentrations of RSG (50, 100 μM) significantly decreased cell viability. RSG (0-10 μM) enhanced preadipocyte differentiation in a dose-dependent manner and thus promoted lipid accumulation. With increasing RSG concentrations, cellular lipid content gradually decreased and preadipocyte differentiation was suppressed. mRNA expression of key genes involved in preadipocyte differentiation including FAS, ACC, SCD1, LPL, PLIN, SREBP1c, and ATGL were significantly upregulated by RSG, and the protein content of FAS, ACC, and ATGL were also increased in response to RSG. Meanwhile, RSG exposure increased free fatty acid release in the culture medium. Similar results were obtained in response to RSG plus oleate that was used to induce cell differentiation. These findings suggest that RSG does not promote duck preadipocyte viability, but it does induce duck preadipocyte differentiation, which might influence both lipogenesis and lipolysis pathways.
Collapse
Affiliation(s)
- Fang Ding
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
- Suzhou Institute of Systems Medicine, Center of System Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, 215123, China
| | - Jiamin Qiu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Qingqing Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Chenling Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China.
| |
Collapse
|