1
|
Di Carlo S, Longhitano E, Spinella C, Maressa V, Casuscelli C, Peritore L, Santoro D. Traditional, alternative, and emerging therapeutics for focal segmental glomerulosclerosis. Expert Opin Pharmacother 2025:1-8. [PMID: 39743782 DOI: 10.1080/14656566.2024.2446621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Segmental focal glomerulosclerosis is a histological lesion characterized by podocyte damage. It may be a primary disease linked to an unknown circulating factor, secondary to viral infections, drug toxicity, or a disadaptive response to the loss of nephrons, or it may depend on gene mutations or have an indeterminate cause. The treatment of the primary form involves immunosuppressors. Additional pharmacotherapies for residual proteinuria are used, and emerging therapies are being studied to target other pathological pathways. AREAS COVERED This paper covers the treatment of FSGS, focusing on traditional and emerging therapeutic strategies. It is based on the KDIGO 2021 guidelines and supplemented by a literature search conducted on PubMed. EXPERT OPINION Treating FSGS is challenging due to its heterogeneity. Immunosuppression is adequate for primary FSGS but harmful in genetic or secondary forms. Key strategies include targeting the underlying cause and using agents that affect renal hemodynamics. Antifibrotic drugs can help slow kidney damage by addressing chronic inflammation and fibrosis. Alongside pharmacological treatments, managing blood pressure and restricting dietary salt are crucial. Finally, personalized treatment requires stratifying patients based on clinical, genetic, and histological data to improve clinical trial design and outcomes.
Collapse
Affiliation(s)
- Silvia Di Carlo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy
| | - Elisa Longhitano
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy
| | - Claudia Spinella
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy
| | - Veronica Maressa
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy
| | - Chiara Casuscelli
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy
| | - Luigi Peritore
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy
| |
Collapse
|
2
|
Miguel V, Shaw IW, Kramann R. Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease. Nat Rev Nephrol 2025; 21:39-56. [PMID: 39289568 DOI: 10.1038/s41581-024-00889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
Chronic kidney disease (CKD), defined as persistent (>3 months) kidney functional loss, has a growing prevalence (>10% worldwide population) and limited treatment options. Fibrosis driven by the aberrant accumulation of extracellular matrix is the final common pathway of nearly all types of chronic repetitive injury in the kidney and is considered a hallmark of CKD. Myofibroblasts are key extracellular matrix-producing cells that are activated by crosstalk between damaged tubules and immune cells. Emerging evidence indicates that metabolic alterations are crucial contributors to the pathogenesis of kidney fibrosis by affecting cellular bioenergetics and metabolite signalling. Immune cell functions are intricately connected to their metabolic characteristics, and kidney cells seem to undergo cell-type-specific metabolic shifts in response to damage, all of which can determine injury and repair responses in CKD. A detailed understanding of the heterogeneity in metabolic reprogramming of different kidney cellular subsets is essential to elucidating communication processes between cell types and to enabling the development of metabolism-based innovative therapeutic strategies against CKD.
Collapse
Affiliation(s)
- Verónica Miguel
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Isaac W Shaw
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Xu W, Zhu Y, Wang S, Liu J, Li H. From Adipose to Ailing Kidneys: The Role of Lipid Metabolism in Obesity-Related Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:1540. [DOI: 10.3390/antiox13121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Obesity has emerged as a significant public health crisis, closely linked to the pathogenesis and progression of chronic kidney disease (CKD). This review explores the intricate relationship between obesity-induced lipid metabolism disorders and renal health. We discuss how excessive free fatty acids (FFAs) lead to lipid accumulation in renal tissues, resulting in cellular lipotoxicity, oxidative stress, and inflammation, ultimately contributing to renal injury. Key molecular mechanisms, including the roles of transcriptional regulators like PPARs and SREBP-1, are examined for their implications in lipid metabolism dysregulation. The review also highlights the impact of glomerular and tubular lipid overload on kidney pathology, emphasizing the roles of podocytes and tubular cells in maintaining kidney function. Various therapeutic strategies targeting lipid metabolism, including pharmacological agents such as statins and SGLT2 inhibitors, as well as lifestyle modifications, are discussed for their potential to mitigate CKD progression in obese individuals. Future research directions are suggested to better understand the mechanisms linking lipid metabolism to kidney disease and to develop personalized therapeutic approaches. Ultimately, addressing obesity-related lipid metabolism disorders may enhance kidney health and improve outcomes for individuals suffering from CKD.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuting Zhu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siyuan Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Kim JJ, Yang EJ, Molina David J, Cho S, Ficarella M, Pape N, Schiffer JE, Njeim R, Kim SS, Lo Re C, Fontanella A, Kaber M, Sloan A, Merscher S, Fornoni A. Ezetimibe Enhances Lipid Droplet and Mitochondria Contact Formation, Improving Fatty Acid Transfer and Reducing Lipotoxicity in Alport Syndrome Podocytes. Int J Mol Sci 2024; 25:13134. [PMID: 39684843 DOI: 10.3390/ijms252313134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Mitochondrial dysfunction is a critical factor in the pathogenesis of Alport syndrome (AS), contributing to podocyte injury and disease progression. Ezetimibe, a lipid-lowering drug, is known to inhibit cholesterol and fatty acid uptake and to reduce triglyceride content in the kidney cortex of mice with AS. However, its effects on lipid droplet (LD) utilization by mitochondria have not been explored. Transmission electron microscopy (TEM) and mitochondrial functional assays (ATP production, mitochondrial membrane potential, and citrate synthase activity) were used to investigate the impact of ezetimibe on LD-mitochondria contact formation and mitochondrial function in Col4a3KO (AS) and wildtype (WT) podocytes. TEM analysis revealed significant mitochondrial abnormalities in AS podocytes, including swollen mitochondria and reduced cristae density, while mitochondrial function assays showed decreased ATP production and lowered mitochondrial membrane potential. AS podocytes also demonstrated a higher content of LD but with reduced LD-mitochondria contact sites. Ezetimibe treatment significantly increased the number of LD-mitochondria contact sites, enhanced fatty acid transfer efficiency, and reduced intracellular lipid accumulation. These changes were associated with a marked reduction in the markers of lipotoxicity, such as apoptosis and oxidative stress. Mitochondrial function was significantly improved, evidenced by increased basal respiration, ATP production, maximal respiration capacity, and the restoration of mitochondrial membrane potential. Additionally, mitochondrial swelling was significantly reduced in ezetimibe-treated AS podocytes. Our findings reveal a novel role for ezetimibe in enhancing LD-mitochondria contact formation, leading to more efficient fatty acid transfer, reduced lipotoxicity, and improved mitochondrial function in AS podocytes. These results suggest that ezetimibe could be a promising therapeutic agent for treating mitochondrial dysfunction and lipid metabolism abnormalities in AS.
Collapse
Affiliation(s)
- Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eun-Jeong Yang
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Judith Molina David
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sunjoo Cho
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maria Ficarella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nils Pape
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Josephin Elizabeth Schiffer
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephanie S Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Claudia Lo Re
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U "G. Martino", University of Messina, 98122 Messina, Italy
| | - Antonio Fontanella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maria Kaber
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alexis Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Heinrich NS, Pedersen RP, Vestergaard MB, Lindberg U, Andersen UB, Haddock B, Fornoni A, Larsson HBW, Rossing P, Hansen TW. Kidney fat by magnetic resonance spectroscopy in type 2 diabetes with chronic kidney disease. J Diabetes Complications 2024; 39:108923. [PMID: 39647261 DOI: 10.1016/j.jdiacomp.2024.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND AND HYPOTHESIS The kidneys may be susceptible to ectopic fat and its lipotoxic effects, disposing them to chronic kidney disease (CKD) in type 2 diabetes (T2D). We investigated whether the kidney parenchyma fat content and kidney sinus fat volume would be higher in persons with T2D and CKD. METHODS Cross-sectional study including 29 controls, 27 persons with T2D and no CKD, and 48 persons with T2D and early CKD (urine albumin creatinine ratio (UACR) ≥ 30 mg/g). Kidney parenchyma fat content and kidney sinus fat volume were assessed using magnetic resonance spectroscopy and Dixon scans respectively. RESULTS In the control, T2D without CKD and T2D with CKD groups, respectively, median [1st - 3rd quartile] UACR was 5 [4 - 6], 6 [5 - 10] and 95 [43 - 278] mg/g. and mean ± standard deviation estimated glomerular filtration rate was 89 ± 11, 94 ± 11 and 77 ± 22 ml/min/1.73m2. Kidney parenchyma fat content was, respectively, 1.0 [0.5-2.4], 0.7 [0.2-1.2], 1.0 [0.3-2.0] % (p = 0.26). Kidney sinus fat volume was 2.8 [1.6-7.6], 8.0 [4.7-11.3], 10.3 [5.7-14.0] ml (p < 0.01). Around 90 % of T2D participants received a sodium-glucose cotransporter-2 inhibitor or glucagon-like peptide-1 receptor agonist. CONCLUSIONS In a setting of modern, multifactorial T2D management, kidney parenchyma fat content, evaluated with magnetic resonance spectroscopy, was similar among healthy controls and persons with T2D irrespective of CKD status. Still, kidney sinus fat volume was higher in the presence of T2D and higher still with CKD.
Collapse
Affiliation(s)
| | - Rune Ploegstra Pedersen
- Department of Clinical Physiology and Nuclear Medicine at Rigshospitalet Glostrup, Glostrup, Denmark
| | - Mark Bitsch Vestergaard
- Department of Clinical Physiology and Nuclear Medicine at Rigshospitalet Glostrup, Glostrup, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology and Nuclear Medicine at Rigshospitalet Glostrup, Glostrup, Denmark
| | - Ulrik Bjørn Andersen
- Department of Clinical Physiology and Nuclear Medicine at Rigshospitalet Glostrup, Glostrup, Denmark
| | - Bryan Haddock
- Department of Clinical Physiology and Nuclear Medicine at Rigshospitalet Glostrup, Glostrup, Denmark
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension and Peggy and Harold Katz Drug Discovery Center, Miami, USA
| | - Henrik Bo Wiberg Larsson
- Department of Clinical Physiology and Nuclear Medicine at Rigshospitalet Glostrup, Glostrup, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
6
|
Yuan Y, Hu X, Zhang S, Wang W, Yu B, Zhou Y, Ou Y, Dong H. Remnant cholesterol, preinflammatory state and chronic kidney disease: association and mediation analyses. Ren Fail 2024; 46:2361094. [PMID: 38856016 PMCID: PMC11168229 DOI: 10.1080/0886022x.2024.2361094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Blood lipid management is a key approach in the prevention of chronic kidney disease (CKD). Remnant cholesterol (RC) plays an important role in the development of multiple diseases via chronic inflammation. The aim of our study was to determine the relationship between RC and CKD and explore the role of inflammation in this relationship. The 7696 subjects from the Chinese Health and Nutrition Survey were divided into four subgroups according to the quartile of RC. The estimated glomerular filtration rate was calculated using the CKD Epidemiology Collaboration equation. Fasting RC was calculated as total cholesterol minus low-density lipoprotein cholesterol and high-density lipoprotein cholesterol. Logistic regression analysis was employed to evaluate the relationships between RC and CKD. Mediation analysis was undertaken to identify potential mediators of high-sensitivity C-reactive protein (hs-CRP) and white blood cells (WBCs). Of all participants, the mean age was 51 years, and the male accounted for 47.8%. The multivariable-adjusted odds ratios (95% CIs) for the highest versus lowest quartile of remnant cholesterol were 1.40 (1.10-1.78, p for trend = 0.006) for CKD. RC and preinflammatory markers have combined effect on CKD. The preinflammatory state, presented by increased hs-CRP or WBCs, partially mediated the association between RC and CKD with proportion of 10.14% (p = 0.002) and 11.65% (p = 0.012), respectively. In conclusion, this study suggested a positive relationship between RC and CKD, which was partially mediated by preinflammatory state. These findings highlight the importance of RC and inflammation in renal dysfunction.IMPACT STATEMENTWhat is already known on this subject?: Dyslipidemia plays an important role in the development of chronic kidney disease (CKD). Remnant cholesterol (RC), as a triglyceride-rich particle, can contribute to target organ damage, primarily through inflammatory pathways. However, the relationship between RC and CKD in the community-dwelling population, particularly the role of inflammation, is not yet fully understood.What do the results of this study add?: This study shows that RC was significantly associated with CKD. RC and preinflammatory status exhibit a combined effect on CKD. Preinflammatory state, presented by increased high-sensitivity C-reactive protein or white blood cells, partially mediated the association between RC and CKD.What are the implications of these findings for clinical practice and/or further research?: The study provides us with a better understanding of the role of RC and inflammation in kidney dysfunction and raises the awareness of RC in the management of CKD.
Collapse
Affiliation(s)
- Yougen Yuan
- Department of Geriatric Medicine, Nanchang First Hospital, Jiangxi, Nanchang, China
| | - Xiangming Hu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, Guangzhou, China
| | - Shanghong Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, Guangzhou, China
| | - Weimian Wang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, Guangzhou, China
| | - Bingyan Yu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, Guangzhou, China
| | - Yingling Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, Guangzhou, China
| | - Yanqiu Ou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, Guangzhou, China
| | - Haojian Dong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, Guangzhou, China
| |
Collapse
|
7
|
Nüsken E, Voggel J, Saschin L, Weber LT, Dötsch J, Alcazar MAA, Nüsken KD. Kidney lipid metabolism: impact on pediatric kidney diseases and modulation by early-life nutrition. Pediatr Nephrol 2024:10.1007/s00467-024-06595-z. [PMID: 39601825 DOI: 10.1007/s00467-024-06595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Our review summarizes and evaluates the current state of knowledge on lipid metabolism in relation to the pathomechanisms of kidney disease with a focus on common pediatric kidney diseases. In addition, we discuss how nutrition in early childhood can alter kidney development and permanently shape kidney lipid and protein metabolism, which in turn affects kidney health and disease throughout life. Comprehensive integrated lipidomics and proteomics network analyses are becoming increasingly available and offer exciting new insights into metabolic signatures. Lipid accumulation, lipid peroxidation, oxidative stress, and dysregulated pro-inflammatory lipid mediator signaling have been identified as important mechanisms influencing the progression of minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, diabetic kidney disease, and acute kidney injury. We outline key features of metabolic homeostasis and lipid metabolic physiology in renal cells and discuss pathophysiological aspects in the pediatric context. On the one hand, special vulnerabilities such as reduced antioxidant capacity in neonates must be considered. On the other hand, there is a unique window of opportunity during kidney development, as nutrition in early life influences the composition of cellular phospholipid membranes in the growing kidney and thus affects local signaling pathways far beyond the growth phase.
Collapse
Affiliation(s)
- Eva Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jenny Voggel
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Leon Saschin
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Lutz T Weber
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jörg Dötsch
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Lung Health, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Kai-Dietrich Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
8
|
Meliambro K, He JC, Campbell KN. Podocyte-targeted therapies - progress and future directions. Nat Rev Nephrol 2024; 20:643-658. [PMID: 38724717 DOI: 10.1038/s41581-024-00843-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 09/14/2024]
Abstract
Podocytes are the key target cells for injury across the spectrum of primary and secondary proteinuric kidney disorders, which account for up to 90% of cases of kidney failure worldwide. Seminal experimental and clinical studies have established a causative link between podocyte depletion and the magnitude of proteinuria in progressive glomerular disease. However, no substantial advances have been made in glomerular disease therapies, and the standard of care for podocytopathies relies on repurposed immunosuppressive drugs. The past two decades have seen a remarkable expansion in understanding of the mechanistic basis of podocyte injury, with prospects increasing for precision-based treatment approaches. Dozens of disease-causing genes with roles in the pathogenesis of clinical podocytopathies have been identified, as well as a number of putative glomerular permeability factors. These achievements, together with the identification of novel targets of podocyte injury, the development of potential approaches to harness the endogenous podocyte regenerative potential of progenitor cell populations, ongoing clinical trials of podocyte-specific pharmacological agents and the development of podocyte-directed drug delivery systems, contribute to an optimistic outlook for the future of glomerular disease therapy.
Collapse
Affiliation(s)
- Kristin Meliambro
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk N Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Kang JS, Cho NJ, Lee SW, Lee JG, Lee JH, Yi J, Choi MS, Park S, Gil HW, Oh JC, Son SS, Park MJ, Moon JS, Lee D, Kim SY, Yang SH, Kim SS, Lee ES, Chung CH, Park J, Lee EY. RIPK3 causes mitochondrial dysfunction and albuminuria in diabetic podocytopathy through PGAM5-Drp1 signaling. Metabolism 2024; 159:155982. [PMID: 39089491 DOI: 10.1016/j.metabol.2024.155982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Receptor-interacting protein kinase (RIPK)3 is an essential molecule for necroptosis and its role in kidney fibrosis has been investigated using various kidney injury models. However, the relevance and the underlying mechanisms of RIPK3 to podocyte injury in albuminuric diabetic kidney disease (DKD) remain unclear. Here, we investigated the role of RIPK3 in glomerular injury of DKD. METHODS We analyzed RIPK3 expression levels in the kidneys of patients with biopsy-proven DKD and animal models of DKD. Additionally, to confirm the clinical significance of circulating RIPK3, RIPK3 was measured by ELISA in plasma obtained from a prospective observational cohort of patients with type 2 diabetes, and estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio (UACR), which are indicators of renal function, were followed up during the observation period. To investigate the role of RIPK3 in glomerular damage in DKD, we induced a DKD model using a high-fat diet in Ripk3 knockout and wild-type mice. To assess whether mitochondrial dysfunction and albuminuria in DKD take a Ripk3-dependent pathway, we used single-cell RNA sequencing of kidney cortex and immortalized podocytes treated with high glucose or overexpressing RIPK3. RESULTS RIPK3 expression was increased in podocytes of diabetic glomeruli with increased albuminuria and decreased podocyte numbers. Plasma RIPK3 levels were significantly elevated in albuminuric diabetic patients than in non-diabetic controls (p = 0.002) and non-albuminuric diabetic patients (p = 0.046). The participants in the highest tertile of plasma RIPK3 had a higher incidence of renal progression (hazard ratio [HR] 2.29 [1.05-4.98]) and incident chronic kidney disease (HR 4.08 [1.10-15.13]). Ripk3 knockout improved albuminuria, podocyte loss, and renal ultrastructure in DKD mice. Increased mitochondrial fragmentation, upregulated mitochondrial fission-related proteins such as phosphoglycerate mutase family member 5 (PGAM5) and dynamin-related protein 1 (Drp1), and mitochondrial ROS were decreased in podocytes of Ripk3 knockout DKD mice. In cultured podocytes, RIPK3 inhibition attenuated mitochondrial fission and mitochondrial dysfunction by decreasing p-mixed lineage kinase domain-like protein (MLKL), PGAM5, and p-Drp1 S616 and mitochondrial translocation of Drp1. CONCLUSIONS The study demonstrates that RIPK3 reflects deterioration of renal function of DKD. In addition, RIPK3 induces diabetic podocytopathy by regulating mitochondrial fission via PGAM5-Drp1 signaling through MLKL. Inhibition of RIPK3 might be a promising therapeutic option for treating DKD.
Collapse
Affiliation(s)
- Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Nam-Jun Cho
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea; Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Seong Woo Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea; BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jeong Geon Lee
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Ji-Hye Lee
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea; Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Min Sun Choi
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea; BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea; Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea; Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Joon Cheol Oh
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Seung Seob Son
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea; BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Mi Ju Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea; BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Donghyeong Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea; BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - So-Young Kim
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul, Republic of Korea
| | - Sang Soo Kim
- Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea; Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea; Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea; Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea; BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.
| |
Collapse
|
10
|
Wang XL, Li L, Meng X. Interplay between the Redox System and Renal Tubular Transport. Antioxidants (Basel) 2024; 13:1156. [PMID: 39456410 PMCID: PMC11505102 DOI: 10.3390/antiox13101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The kidney plays a critical role in maintaining the homeostasis of body fluid by filtration of metabolic wastes and reabsorption of nutrients. Due to the overload, a vast of energy is required through aerobic metabolism, which inevitably leads to the generation of reactive oxygen species (ROS) in the kidney. Under unstressed conditions, ROS are counteracted by antioxidant systems and maintained at low levels, which are involved in signal transduction and physiological processes. Accumulating evidence indicates that the reduction-oxidation (redox) system interacts with renal tubular transport. Redox imbalance or dysfunction of tubular transport leads to renal disease. Here, we discuss the ROS and antioxidant systems in the kidney and outline the metabolic dysfunction that is a common feature of renal disease. Importantly, we describe the key molecules involved in renal tubular transport and their relationship to the redox system and, finally, summarize the impact of their dysregulation on the pathogenesis and progression of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Lianjian Li
- Department of Vascular Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Hubei Academy of Chinese Medicine, Wuhan 430061, China;
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Qiu X, Lan X, Li L, Chen H, Zhang N, Zheng X, Xie X. The role of perirenal adipose tissue deposition in chronic kidney disease progression: Mechanisms and therapeutic implications. Life Sci 2024; 352:122866. [PMID: 38936605 DOI: 10.1016/j.lfs.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Chronic kidney disease (CKD) represents a significant and escalating global health challenge, with morbidity and mortality rates rising steadily. Evidence increasingly implicates perirenal adipose tissue (PRAT) deposition as a contributing factor in the pathogenesis of CKD. This review explores how PRAT deposition may exert deleterious effects on renal structure and function. The anatomical proximity of PRAT to the kidneys not only potentially causes mechanical compression but also leads to the dysregulated secretion of adipokines and inflammatory mediators, such as adiponectin, leptin, visfatin, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and exosomes. Additionally, PRAT deposition may contribute to renal lipotoxicity through elevated levels of free fatty acids (FFA), triglycerides (TAG), diacylglycerol (DAG), and ceramides (Cer). PRAT deposition is also linked to the hyperactivation of the renin-angiotensin-aldosterone system (RAAS), which further exacerbates CKD progression. Recognizing PRAT deposition as an independent risk factor for CKD underscores the potential of targeting PRAT as a novel strategy for the prevention and management of CKD. This review further discusses interventions that could include measuring PRAT thickness to establish a baseline, managing metabolic risk factors that promote its deposition, and inhibiting key PRAT-induced signaling pathways.
Collapse
Affiliation(s)
- Xiang Qiu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Xin Lan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Langhui Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Ningjuan Zhang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoli Zheng
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
12
|
Wu M, Yoon CY, Park J, Kim G, Nam BY, Kim S, Park JT, Han SH, Kang SW, Yoo TH. The role of PCSK9 in glomerular lipid accumulation and renal injury in diabetic kidney disease. Diabetologia 2024; 67:1980-1997. [PMID: 38879617 DOI: 10.1007/s00125-024-06191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/25/2024] [Indexed: 09/19/2024]
Abstract
AIMS/HYPOTHESIS Glomerular lipid accumulation is a defining feature of diabetic kidney disease (DKD); however, the precise underlying mechanism requires further elucidation. Recent evidence suggests a role for proprotein convertase subtilisin/kexin type 9 (PCSK9) in intracellular lipid homeostasis. Although PCSK9 is present in kidneys, its role within kidney cells and relevance to renal diseases remain largely unexplored. Therefore, we investigated the role of intracellular PCSK9 in regulating lipid accumulation and homeostasis in the glomeruli and podocytes under diabetic conditions. Furthermore, we aimed to identify the pathophysiological mechanisms responsible for the podocyte injury that is associated with intracellular PCSK9-induced lipid accumulation in DKD. METHODS In this study, glomeruli were isolated from human kidney biopsy tissues, and glomerular gene-expression analysis was performed. Also, db/db and db/m mice were used to perform glomerular gene-expression profiling. We generated DKD models using a high-fat diet and low-dose intraperitoneal streptozocin injection in C57BL/6 and Pcsk9 knockout (KO) mice. We analysed cholesterol and triacylglycerol levels within the kidney cortex. Lipid droplets were evaluated using BODIPY staining. We induced upregulation and downregulation of PCSK9 expression in conditionally immortalised mouse podocytes using lentivirus and siRNA transfection techniques, respectively, under diabetic conditions. RESULTS A significant reduction in transcription level of PCSK9 was observed in glomeruli of individuals with DKD. PCSK9 expression was also reduced in podocytes of animals under diabetic conditions. We observed significantly higher lipid accumulation in kidney tissues of Pcsk9 KO DKD mice compared with wild-type (WT) DKD mice. Additionally, Pcsk9 KO mouse models of DKD exhibited a significant reduction in mitochondria number vs WT models, coupled with a significant increase in mitochondrial size. Moreover, albuminuria and podocyte foot process effacement were observed in WT and Pcsk9 KO DKD mice, with KO DKD mice displaying more pronounced manifestations. Immortalised mouse podocytes exposed to diabetic stimuli exhibited heightened intracellular lipid accumulation, mitochondrial injury and apoptosis, which were ameliorated by Pcsk9 overexpression and aggravated by Pcsk9 knockdown in mouse podocytes. CONCLUSIONS/INTERPRETATION The downregulation of PCSK9 in podocytes is associated with lipid accumulation, which leads to mitochondrial dysfunction, cell apoptosis and renal injury. This study sheds new light on the potential involvement of PCSK9 in the pathophysiology of glomerular lipid accumulation and podocyte injury in DKD.
Collapse
Affiliation(s)
- Meiyan Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Chang-Yun Yoon
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Jimin Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Gyuri Kim
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Seonghun Kim
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea.
| |
Collapse
|
13
|
Hasegawa S, Nangaku M, Takenaka Y, Kitayama C, Li Q, Saipidin M, Hong YA, Shang J, Hirabayashi Y, Kubota N, Kadowaki T, Inagi R. Organelle communication maintains mitochondrial and endosomal homeostasis during podocyte lipotoxicity. JCI Insight 2024; 9:e182534. [PMID: 39115943 PMCID: PMC11457848 DOI: 10.1172/jci.insight.182534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Organelle stress exacerbates podocyte injury, contributing to perturbed lipid metabolism. Simultaneous organelle stresses can occur in the kidney in the diseased state; therefore, a thorough analysis of organelle communication is crucial for understanding the progression of kidney diseases. Although organelles closely interact with one another at membrane contact sites, limited studies have explored their involvement in kidney homeostasis. The endoplasmic reticulum (ER) protein, PDZ domain-containing 8 (PDZD8), is implicated in multiple-organelle-tethering processes and cellular lipid homeostasis. In this study, we aimed to elucidate the role of organelle communication in podocyte injury using podocyte-specific Pdzd8-knockout mice. Our findings demonstrated that Pdzd8 deletion exacerbated podocyte injury in an accelerated obesity-related kidney disease model. Proteomic analysis of isolated glomeruli revealed that Pdzd8 deletion exacerbated mitochondrial and endosomal dysfunction during podocyte lipotoxicity. Additionally, electron microscopy revealed the accumulation of abnormal, fatty endosomes in Pdzd8-deficient podocytes during obesity-related kidney diseases. Lipidomic analysis indicated that glucosylceramide accumulated in Pdzd8-deficient podocytes, owing to accelerated production and decelerated degradation. Thus, the organelle-tethering factor, PDZD8, plays a crucial role in maintaining mitochondrial and endosomal homeostasis during podocyte lipotoxicity. Collectively, our findings highlight the importance of organelle communication at the 3-way junction among the ER, mitochondria, and endosomes in preserving podocyte homeostasis.
Collapse
Affiliation(s)
- Sho Hasegawa
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuto Takenaka
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chigusa Kitayama
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Qi Li
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Madina Saipidin
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yu Ah Hong
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jin Shang
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
- Department of Diabetes and Metabolic Diseases, and
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, and
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology and
| |
Collapse
|
14
|
Yang H, Sun J, Sun A, Wei Y, Xie W, Xie P, Zhang L, Zhao L, Huang Y. Podocyte programmed cell death in diabetic kidney disease: Molecular mechanisms and therapeutic prospects. Biomed Pharmacother 2024; 177:117140. [PMID: 39018872 DOI: 10.1016/j.biopha.2024.117140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney and end-stage renal disease. Glomerular podocyte loss and death are pathological hallmarks of DKD, and programmed cell death (PCD) in podocytes is crucial in DKD progression. PCD involves apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. During DKD, PCD in podocytes is severely impacted and primarily characterized by accelerated podocyte apoptosis and suppressed autophagy. These changes lead to a gradual decrease in podocyte numbers, impairing the glomerular filtration barrier function and accelerating DKD progression. However, research on the interactions between the different types of PCD in podocytes is lacking. This review focuses on the novel roles and mechanisms of PCD in the podocytes of patients with DKD. Additionally, we summarize clinical drugs capable of regulating podocyte PCD, present challenges and prospects faced in developing drugs related to podocyte PCD and suggest that future research should further explore the detailed mechanisms of podocyte PCD and interactions among different types of PCD.
Collapse
Affiliation(s)
- Haoyu Yang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jun Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Aru Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Wei
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Pengfei Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yishan Huang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
15
|
Wang Y, Liu T, Wu Y, Wang L, Ding S, Hou B, Zhao H, Liu W, Li P. Lipid homeostasis in diabetic kidney disease. Int J Biol Sci 2024; 20:3710-3724. [PMID: 39113692 PMCID: PMC11302873 DOI: 10.7150/ijbs.95216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Lipid homeostasis is crucial for proper cellular and systemic functions. A growing number of studies confirm the importance of lipid homeostasis in diabetic kidney disease (DKD). Lipotoxicity caused by imbalance in renal lipid homeostasis can further exasperate renal injury. Large lipid deposits and lipid droplet accumulation are present in the kidneys of DKD patients. Autophagy plays a critical role in DKD lipid homeostasis and is involved in the regulation of lipid content. Inhibition or reduction of autophagy can lead to lipid accumulation, which in turn further affects autophagy. Lipophagy selectively recognizes and degrades lipids and helps to regulate cellular lipid metabolism and maintain intracellular lipid homeostasis. Therefore, we provide a systematic review of fatty acid, cholesterol, and sphingolipid metabolism, and discuss the responses of different renal intrinsic cells to imbalances in lipid homeostasis. Finally, we discuss the mechanism by which autophagy, especially lipophagy, maintains lipid homeostasis to support the development of new DKD drugs targeting lipid homeostasis.
Collapse
Affiliation(s)
- Ying Wang
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Shaowei Ding
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Baoluo Hou
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hailing Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Weijing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| |
Collapse
|
16
|
Xing Y, Xie SY, Deng W, Tang QZ. Cardiolipin in myocardial ischaemia-reperfusion injury: From molecular mechanisms to clinical strategies. Biomed Pharmacother 2024; 176:116936. [PMID: 38878685 DOI: 10.1016/j.biopha.2024.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.
Collapse
Affiliation(s)
- Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
17
|
Fang Z, Liu R, Xie J, He JC. Molecular mechanism of renal lipid accumulation in diabetic kidney disease. J Cell Mol Med 2024; 28:e18364. [PMID: 38837668 PMCID: PMC11151220 DOI: 10.1111/jcmm.18364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of end stage renal disease with unmet clinical demands for treatment. Lipids are essential for cell survival; however, renal cells have limited capability to metabolize overloaded lipids. Dyslipidaemia is common in DKD patients and renal ectopic lipid accumulation is associated with disease progression. Unveiling the molecular mechanism involved in renal lipid regulation is crucial for exploring potential therapeutic targets. In this review, we focused on the mechanism underlying cholesterol, oxysterol and fatty acid metabolism disorder in the context of DKD. Specific regulators of lipid accumulation in different kidney compartment and TREM2 macrophages, a lipid-related macrophages in DKD, were discussed. The role of sodium-glucose transporter 2 inhibitors in improving renal lipid accumulation was summarized.
Collapse
Affiliation(s)
- Zhengying Fang
- Department of Nephrology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ruijie Liu
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jingyuan Xie
- Department of Nephrology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - John Cijiang He
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Renal SectionJames J Peters Veterans Affair Medical CenterBronxNew YorkUSA
| |
Collapse
|
18
|
Xie Y, Yuan Q, Tang B, Xie Y, Cao Y, Qiu Y, Zeng J, Wang Z, Su H, Zhang C. CPT1A Protects Podocytes From Lipotoxicity and Apoptosis In Vitro and Alleviates Diabetic Nephropathy In Vivo. Diabetes 2024; 73:879-895. [PMID: 38506804 DOI: 10.2337/db23-0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Defective fatty acid oxidation (FAO) has been implicated in diabetic kidney disease (DKD), yet little is known about the role of carnitine palmitoyltransferase-1A (CPT1A), a pivotal rate-limiting enzyme of FAO, in the progression of DKD. Here, we investigate whether CPT1A is a reliable therapeutic target for DKD. We first confirmed the downregulation expression of CPT1A in glomeruli from patients with diabetes. We further evaluated the function of CPT1A in diabetic models. Overexpression of CPT1A exhibited protective effects in diabetic conditions, improving albuminuria and glomerular sclerosis as well as mitigating glomerular lipid deposits and podocyte injury in streptozotocin-induced diabetic mice. Mechanistically, CPT1A not only fostered lipid consumption via fatty acid metabolism pathways, thereby reducing lipotoxicity, but also anchored Bcl2 to the mitochondrial membrane, thence preventing cytochrome C release and inhibiting the mitochondrial apoptotic process. Furthermore, a novel transcription factor of CPT1A, FOXA1, was identified. We elucidate the crucial role of CPT1A in mitigating podocyte injury and the progression of DKD, indicating that targeting CPT1A may be a promising avenue for DKD treatment. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yajuan Xie
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaru Xie
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Qiu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieyu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Silvaroli JA, Bisunke B, Kim JY, Stayton A, Jayne LA, Martinez SA, Nguyen C, Patel PS, Vanichapol T, Verma V, Akhter J, Bolisetty S, Madhavan SM, Kuscu C, Coss CC, Zepeda-Orozco D, Parikh SV, Satoskar AA, Davidson AJ, Eason JD, Szeto HH, Pabla NS, Bajwa A. Genome-Wide CRISPR Screen Identifies Phospholipid Scramblase 3 as the Biological Target of Mitoprotective Drug SS-31. J Am Soc Nephrol 2024; 35:681-695. [PMID: 38530359 PMCID: PMC11164119 DOI: 10.1681/asn.0000000000000338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Key Points Szeto–Schiller-31–mediated mitoprotection is phospholipid scramblase 3–dependent. Phospholipid scramblase 3 is required for recovery after AKI. Background The synthetic tetrapeptide Szeto–Schiller (SS)-31 shows promise in alleviating mitochondrial dysfunction associated with common diseases. However, the precise pharmacological basis of its mitoprotective effects remains unknown. Methods To uncover the biological targets of SS-31, we performed a genome-scale clustered regularly interspaced short palindromic repeats screen in human kidney-2, a cell culture model where SS-31 mitigates cisplatin-associated cell death and mitochondrial dysfunction. The identified hit candidate gene was functionally validated using knockout cell lines, small interfering RNA-mediated downregulation, and tubular epithelial–specific conditional knockout mice. Biochemical interaction studies were also performed to examine the interaction of SS-31 with the identified target protein. Results Our primary screen and validation studies in hexokinase 2 and primary murine tubular epithelial cells showed that phospholipid scramblase 3 (PLSCR3), an understudied inner mitochondrial membrane protein, was essential for the protective effects of SS-31. For in vivo validation, we generated tubular epithelial–specific knockout mice and found that Plscr3 gene ablation did not influence kidney function under normal conditions or affect the severity of cisplatin and rhabdomyolysis-associated AKI. However, Plscr3 gene deletion completely abrogated the protective effects of SS-31 during cisplatin and rhabdomyolysis-associated AKI. Biochemical studies showed that SS-31 directly binds to a previously uncharacterized N -terminal domain and stimulates PLSCR3 scramblase activity. Finally, PLSCR3 protein expression was found to be increased in the kidneys of patients with AKI. Conclusions PLSCR3 was identified as the essential biological target that facilitated the mitoprotective effects of SS-31 in vitro and in vivo .
Collapse
Affiliation(s)
- Josie A. Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Bijay Bisunke
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Amanda Stayton
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Laura A. Jayne
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Shirely A. Martinez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Christopher Nguyen
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Prisha S. Patel
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Vivek Verma
- Department of Medicine, University of Alabama, Birmingham, Alabama
| | - Juheb Akhter
- Department of Medicine, University of Alabama, Birmingham, Alabama
| | | | - Sethu M. Madhavan
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Cem Kuscu
- Department of Surgery, College of Medicine, Transplant Research Institute, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Christopher C. Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Diana Zepeda-Orozco
- Department of Pediatrics, The Ohio State University College of Medicine and Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Samir V. Parikh
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Anjali A. Satoskar
- Division of Renal and Transplant Pathology, Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - James D. Eason
- Department of Surgery, College of Medicine, Transplant Research Institute, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hazel H. Szeto
- Social Profit Network Research Lab, Menlo Park, California
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Amandeep Bajwa
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Surgery, College of Medicine, Transplant Research Institute, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Microbiology, Immunology, and Biochemistry; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
20
|
Cervantes J, Koska J, Kramer F, Akilesh S, Alpers CE, Mullick AE, Reaven P, Kanter JE. Elevated apolipoprotein C3 augments diabetic kidney disease and associated atherosclerosis in type 2 diabetes. JCI Insight 2024; 9:e177268. [PMID: 38743496 PMCID: PMC11383354 DOI: 10.1172/jci.insight.177268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetes increases the risk of both cardiovascular disease and kidney disease. Notably, most of the excess cardiovascular risk in people with diabetes is in those with kidney disease. Apolipoprotein C3 (APOC3) is a key regulator of plasma triglycerides, and it has recently been suggested to play a role in both type 1 diabetes-accelerated atherosclerosis and kidney disease progression. To investigate if APOC3 plays a role in kidney disease in people with type 2 diabetes, we analyzed plasma levels of APOC3 from the Veterans Affairs Diabetes Trial. Elevated baseline APOC3 levels predicted a greater loss of renal function. To mechanistically test if APOC3 plays a role in diabetic kidney disease and associated atherosclerosis, we treated black and tan, brachyury, WT and leptin-deficient (OB; diabetic) mice, a model of type 2 diabetes, with an antisense oligonucleotide (ASO) to APOC3 or a control ASO, all in the setting of human-like dyslipidemia. Silencing APOC3 prevented diabetes-augmented albuminuria, renal glomerular hypertrophy, monocyte recruitment, and macrophage accumulation, partly driven by reduced ICAM1 expression. Furthermore, reduced levels of APOC3 suppressed atherosclerosis associated with diabetes. This suggests that targeting APOC3 might benefit both diabetes-accelerated atherosclerosis and kidney disease.
Collapse
Affiliation(s)
- Jocelyn Cervantes
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Juraj Koska
- VA Phoenix Health Care System, Phoenix, Arizona, USA
| | - Farah Kramer
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Charles E Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | | | - Peter Reaven
- VA Phoenix Health Care System, Phoenix, Arizona, USA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Zuo FW, Liu ZY, Wang MW, Du JY, Ding PZ, Zhang HR, Tang W, Sun Y, Wang XJ, Zhang Y, Xie YS, Wu JC, Liu M, Wang ZY, Yi F. CCDC92 promotes podocyte injury by regulating PA28α/ABCA1/cholesterol efflux axis in type 2 diabetic mice. Acta Pharmacol Sin 2024; 45:1019-1031. [PMID: 38228909 PMCID: PMC11053164 DOI: 10.1038/s41401-023-01213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024] Open
Abstract
Podocyte lipotoxicity mediated by impaired cellular cholesterol efflux plays a crucial role in the development of diabetic kidney disease (DKD), and the identification of potential therapeutic targets that regulate podocyte cholesterol homeostasis has clinical significance. Coiled-coil domain containing 92 (CCDC92) is a novel molecule related to metabolic disorders and insulin resistance. However, whether the expression level of CCDC92 is changed in kidney parenchymal cells and the role of CCDC92 in podocytes remain unclear. In this study, we found that Ccdc92 was significantly induced in glomeruli from type 2 diabetic mice, especially in podocytes. Importantly, upregulation of Ccdc92 in glomeruli was positively correlated with an increased urine albumin-to-creatinine ratio (UACR) and podocyte loss. Functionally, podocyte-specific deletion of Ccdc92 attenuated proteinuria, glomerular expansion and podocyte injury in mice with DKD. We further demonstrated that Ccdc92 contributed to lipid accumulation by inhibiting cholesterol efflux, finally promoting podocyte injury. Mechanistically, Ccdc92 promoted the degradation of ABCA1 by regulating PA28α-mediated proteasome activity and then reduced cholesterol efflux. Thus, our studies indicate that Ccdc92 contributes to podocyte injury by regulating the PA28α/ABCA1/cholesterol efflux axis in DKD.
Collapse
Affiliation(s)
- Fu-Wen Zuo
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Zhi-Yong Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Jun-Yao Du
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Peng-Zhong Ding
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hao-Ran Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yu Sun
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xiao-Jie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yu-Sheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Ji-Chao Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Zi-Ying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
22
|
Koehler S, Hengel FE, Dumoulin B, Damashek L, Holzman LB, Susztak K, Huber TB. The 14th International Podocyte Conference 2023: from podocyte biology to glomerular medicine. Kidney Int 2024; 105:935-952. [PMID: 38447880 DOI: 10.1016/j.kint.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024]
Abstract
The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felicitas E Hengel
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bernhard Dumoulin
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurel Damashek
- International Society of Glomerular Disease, Florence, Massachusetts, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tobias B Huber
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; International Society of Glomerular Disease, Florence, Massachusetts, USA.
| |
Collapse
|
23
|
Han YZ, Du BX, Zhu XY, Wang YZY, Zheng HJ, Liu WJ. Lipid metabolism disorder in diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1336402. [PMID: 38742197 PMCID: PMC11089115 DOI: 10.3389/fendo.2024.1336402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.
Collapse
Affiliation(s)
- Yi-Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing-Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang-Zhi-Yuan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hui-Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Zhong D, Chen J, Qiao R, Song C, Hao C, Zou Y, Bai M, Su W, Yang B, Sun D, Jia Z, Sun Y. Genetic or pharmacologic blockade of mPGES-2 attenuates renal lipotoxicity and diabetic kidney disease by targeting Rev-Erbα/FABP5 signaling. Cell Rep 2024; 43:114075. [PMID: 38583151 DOI: 10.1016/j.celrep.2024.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and no specific drugs are clinically available. We have previously demonstrated that inhibiting microsomal prostaglandin E synthase-2 (mPGES-2) alleviated type 2 diabetes by enhancing β cell function and promoting insulin production. However, the involvement of mPGES-2 in DKD remains unclear. Here, we aimed to analyze the association of enhanced mPGES-2 expression with impaired metabolic homeostasis of renal lipids and subsequent renal damage. Notably, global knockout or pharmacological blockage of mPGES-2 attenuated diabetic podocyte injury and tubulointerstitial fibrosis, thereby ameliorating lipid accumulation and lipotoxicity. These findings were further confirmed in podocyte- or tubule-specific mPGES-2-deficient mice. Mechanistically, mPGES-2 and Rev-Erbα competed for heme binding to regulate fatty acid binding protein 5 expression and lipid metabolism in the diabetic kidney. Our findings suggest a potential strategy for treating DKD via mPGES-2 inhibition.
Collapse
Affiliation(s)
- Dandan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jingshuo Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Ranran Qiao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chang Song
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yingying Zou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Mi Bai
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Wen Su
- Department of Pathophysiology, Shenzhen University, Shenzhen 518060, China; Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, China.
| | - Zhanjun Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China.
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China.
| |
Collapse
|
25
|
Elwakiel A, Mathew A, Isermann B. The role of endoplasmic reticulum-mitochondria-associated membranes in diabetic kidney disease. Cardiovasc Res 2024; 119:2875-2883. [PMID: 38367274 DOI: 10.1093/cvr/cvad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 02/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. The pathomechanisms of DKD are multifactorial, yet haemodynamic and metabolic changes in the early stages of the disease appear to predispose towards irreversible functional loss and histopathological changes. Recent studies highlight the importance of endoplasmic reticulum-mitochondria-associated membranes (ER-MAMs), structures conveying important cellular homeostatic and metabolic effects, in the pathology of DKD. Disruption of ER-MAM integrity in diabetic kidneys is associated with DKD progression, but the regulation of ER-MAMs and their pathogenic contribution remain largely unknown. Exploring the cell-specific components and dynamic changes of ER-MAMs in diabetic kidneys may lead to the identification of new approaches to detect and stratify diabetic patients with DKD. In addition, these insights may lead to novel therapeutic approaches to target and/or reverse disease progression. In this review, we discuss the association of ER-MAMs with key pathomechanisms driving DKD such as insulin resistance, dyslipidaemia, ER stress, and inflammasome activation and the importance of further exploration of ER-MAMs as diagnostic and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| |
Collapse
|
26
|
Sun J, Zhang X, Wang S, Chen D, Shu J, Chong N, Wang Q, Xu Y. Dapagliflozin improves podocytes injury in diabetic nephropathy via regulating cholesterol balance through KLF5 targeting the ABCA1 signalling pathway. Diabetol Metab Syndr 2024; 16:38. [PMID: 38326870 PMCID: PMC10851504 DOI: 10.1186/s13098-024-01271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Diabetic nephropathy (DN), one of the more prevalent microvascular complications in patients diagnosed with diabetes mellitus, is attributed as the main cause of end-stage renal disease (ESRD). Lipotoxicity in podocytes caused by hyperglycemia has been recognised as a significant pathology change, resulting in the deterioration of the glomerular filtration barrier. Research has demonstrated how dapagliflozin, a kind of SGLT2i, exhibits a multifaceted and powerful protective effect in DN, entirely independent of the hypoglycemic effect, with the specific mechanism verified. In this present study, we found that dapagliflozin has the potential to alleviate apoptosis and restore cytoskeleton triggered by high glucose (HG) in vivo and in vitro. We also discovered that dapagliflozin could mitigate podocyte cholesterol accumulation by restoring the expression of ABCA1, which is the key pathway for cholesterol outflows. This research also mechanistically demonstrates that the protective effect of dapagliflozin can be mediated by KLF-5, which is the upstream transcription factor of ABCA1. Taken together, our data suggest that dapagliflozin offers significant potential in alleviating podocyte injury and cholesterol accumulation triggered by high glucose. In terms of the mechanism, we herein reveal that dapagliflozin could accelerate cholesterol efflux by restoring the expression of ABCA1, which is directly regulated by KLF-5.
Collapse
Affiliation(s)
- Jingshu Sun
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong, China
| | - Xinyu Zhang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Simeng Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Dandan Chen
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jianqiang Shu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Nannan Chong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qinglian Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Ying Xu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
27
|
Carneiro de Oliveira K, Wei Y, Repetti RL, Meth J, Majumder N, Sapkota A, Gusella GL, Rohatgi R. Tubular deficiency of ABCA1 augments cholesterol- and Na +-dependent effects on systemic blood pressure in male mice. Am J Physiol Renal Physiol 2024; 326:F265-F277. [PMID: 38153852 PMCID: PMC11207546 DOI: 10.1152/ajprenal.00154.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Dyslipidemia, with changes in plasma membrane (PM) composition, is associated with hypertension, while rising PM cholesterol induces Na+ channel activity. We hypothesize that ablation of renal tubular ABCA1, a cholesterol efflux protein, leads to cholesterol- and Na+-dependent changes in blood pressure (BP). Transgenic mice (TgPAX8rtTA;tetO-Cre/+) expressing a doxycycline (dox)-inducible CRE recombinase were bred with mice expressing floxed ABCA1 to generate renal tubules deficient in ABCA1 (ABCA1FF). Tail-cuff systolic BP (SBP) was measured in mice on specific diets. Immunoblotting was performed on whole and PM protein lysates of kidney from mice completing experimental diets. Cortical PM of ABCA1FF showed reduced ABCA1 (60 ± 28%; n = 10, P < 0.05) compared with wild-type littermates (WT; n = 9). Tail-cuff SBP of ABCA1FF (n = 11) was not only greater post dox, but also during cholesterol or high Na+ feeding (P < 0.05) compared with WT mice (n = 15). A Na+-deficient diet abolished the difference, while 6 wk of cholesterol diet raised SBP in ABCA1FF compared with mice before cholesterol feeding (P < 0.05). No difference in α-ENaC protein abundance was noted in kidney lysate; however, γ-ENaC increased in ABCA1FF mice versus WT mice. In kidney membranes, NKCC2 abundance was greater in ABCA1FF versus WT mice. Cortical lysates of ABCA1FF mouse kidneys expressed less renin and angiotensin I receptor than WT mouse kidneys. Furosemide injection induced a greater diuretic effect in ABCA1FF (n = 7; 45.2 ± 8.7 µL/g body wt) versus WT (n = 7; 33.1 ± 6.9 µL/g body wt; P < 0.05) but amiloride did not. Tubular ABCA1 deficiency induces cholesterol-dependent rise in SBP and modest Na+ sensitivity of SBP, which we speculate is partly related to Na+ transporters and channels.NEW & NOTEWORTHY Cholesterol has been linked to greater Na+ channel activity in kidney cells, which may predispose to systemic hypertension. We showed that when ABCA1, a protein that removes cholesterol from tissues, is ablated from mouse kidneys, systemic blood pressure is greater than normal mice. Dietary cholesterol further increases blood pressure in transgenic mice, whereas low dietary salt intake reduced blood pressure to that of normal mice. Thus, we speculate that diseases and pharmaceuticals that reduce renal ABCA1 expression, like diabetes and calcineurin inhibitors, respectively, contribute to the prominence of hypertension in their clinical presentation.
Collapse
Affiliation(s)
- Karin Carneiro de Oliveira
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Yuan Wei
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Robert L Repetti
- Renal Section, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Jennifer Meth
- Renal Section, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
| | - Nomrota Majumder
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Ananda Sapkota
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - G Luca Gusella
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Rajeev Rohatgi
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
28
|
Hao Y, Fan Y, Feng J, Zhu Z, Luo Z, Hu H, Li W, Yang H, Ding G. ALCAT1-mediated abnormal cardiolipin remodelling promotes mitochondrial injury in podocytes in diabetic kidney disease. Cell Commun Signal 2024; 22:26. [PMID: 38200543 PMCID: PMC10777643 DOI: 10.1186/s12964-023-01399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Cardiolipin (CL) plays a critical role in maintaining mitochondrial membrane integrity and overall mitochondrial homeostasis. Recent studies have suggested that mitochondrial damage resulting from abnormal cardiolipin remodelling is associated with the pathogenesis of diabetic kidney disease (DKD). Acyl-coenzyme A:lyso-cardiolipin acyltransferase-1 (ALCAT1) was confirmed to be involved in the progression of Parkinson's disease, diet-induced obesity and other ageing-related diseases by regulating pathological cardiolipin remodelling. Thus, the purpose of this investigation was to determine the role of ALCAT1-mediated CL remodelling in DKD and to explore the potential underlying mechanism. METHODS In vivo study, the mitochondrial structure was examined by transmission electron microscopy (TEM). The colocalization of ALCAT1 and synaptopodin was evaluated by double immunolabelling. Western blotting (WB) was performed to assess ALCAT1 expression in glomeruli. Lipidomics analysis was conducted to evaluate the composition of reconstructed cardiolipins. In vitro study, the lipidomics, TEM and WB analyses were similar to those in vivo. Mitochondrial function was evaluated by measuring the mitochondrial membrane potential (MMP) and the production of ATP and ROS. RESULTS Here, we showed that increased oxidized cardiolipin (ox-CL) and significant mitochondrial damage were accompanied by increased ALCAT1 expression in the glomeruli of patients with DKD. Similar results were found in db/db mouse kidneys and in cultured podocytes stimulated with high glucose (HG). ALCAT1 deficiency effectively prevented HG-induced ox-CL production and mitochondrial damage in podocytes. In contrast, ALCAT1 upregulation enhanced ox-CL levels and podocyte mitochondrial dysfunction. Moreover, treatment with the cardiolipin antioxidant SS-31 markedly inhibited mitochondrial dysfunction and cell injury, and SS-31 treatment partly reversed the damage mediated by ALCAT1 overexpression. We further found that ALCAT1 could mediate the key regulators of mitochondrial dynamics and mitophagy through the AMPK pathway. CONCLUSIONS Collectively, our studies demonstrated that ALCAT1-mediated cardiolipin remodelling played a crucial role in DKD, which might provide new insights for DKD treatment. Video Abstract.
Collapse
Affiliation(s)
- Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Yanqin Fan
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China.
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Weiwei Li
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Hongxia Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, 430060, China.
| |
Collapse
|
29
|
Luo Z, Chen Z, Hu J, Ding G. Interplay of lipid metabolism and inflammation in podocyte injury. Metabolism 2024; 150:155718. [PMID: 37925142 DOI: 10.1016/j.metabol.2023.155718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Podocytes are critical for maintaining permselectivity of the glomerular filtration barrier, and podocyte injury is a major cause of proteinuria in various primary and secondary glomerulopathies. Lipid dysmetabolism and inflammatory activation are the distinctive hallmarks of podocyte injury. Lipid accumulation and lipotoxicity trigger cytoskeletal rearrangement, insulin resistance, mitochondrial oxidative stress, and inflammation. Subsequently, inflammation promotes the progression of glomerulosclerosis and renal fibrosis via multiple pathways. These data suggest that lipid dysmetabolism positively or negatively regulates inflammation during podocyte injury. In this review, we summarize recent advances in the understanding of lipid metabolism and inflammation, and highlight the potential association between lipid metabolism and podocyte inflammation.
Collapse
Affiliation(s)
- Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
30
|
Sourris KC, Ding Y, Maxwell SS, Al-Sharea A, Kantharidis P, Mohan M, Rosado CJ, Penfold SA, Haase C, Xu Y, Forbes JM, Crawford S, Ramm G, Harcourt BE, Jandeleit-Dahm K, Advani A, Murphy AJ, Timmermann DB, Karihaloo A, Knudsen LB, El-Osta A, Drucker DJ, Cooper ME, Coughlan MT. Glucagon-like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation. Kidney Int 2024; 105:132-149. [PMID: 38069998 DOI: 10.1016/j.kint.2023.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 01/07/2024]
Abstract
Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.
Collapse
Affiliation(s)
- Karly C Sourris
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.
| | - Yi Ding
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Scott S Maxwell
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Annas Al-Sharea
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Phillip Kantharidis
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Carlos J Rosado
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Sally A Penfold
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Claus Haase
- Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Yangsong Xu
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Josephine M Forbes
- Mater Research Institute, the University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Simon Crawford
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Brooke E Harcourt
- Murdoch Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michaels Hospital, Toronto, Ontario, Canada
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Anil Karihaloo
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington, USA
| | | | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia.
| |
Collapse
|
31
|
Zuo F, Wang Y, Xu X, Ding R, Tang W, Sun Y, Wang X, Zhang Y, Wu J, Xie Y, Liu M, Wang Z, Yi F. CCDC92 deficiency ameliorates podocyte lipotoxicity in diabetic kidney disease. Metabolism 2024; 150:155724. [PMID: 37952690 DOI: 10.1016/j.metabol.2023.155724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND AND AIMS Podocyte injury is considered as the most important early event contributing to diabetic kidney disease (DKD). Recent findings provide new insights into the roles of lipids and lipid-modulating proteins as key determinants of podocyte function in health and kidney disease. CCDC92, a novel member of coiled-coil domain-containing protein family, was indicated relevant to lipid metabolism, coronary heart disease and type 2 diabetes. However, the expression pattern and role of CCDC92 in the kidney is not clear. This study was designed to elucidate the contribution of CCDC92 in the pathogenesis of DKD. METHODS Sections with a pathological diagnosis of different classes of DKD, including subjects with mild DKD (class II, n = 6), subjects with moderate DKD (class III, n = 6) or subjects with severe DKD (class IV, n = 6), and control samples (n = 12) were detected for the expression level of CCDC92 and lipid accumulation. Two types of diabetic mice model (db/db and HFD/STZ) in podocyte-specific Ccdc92 knockout background were generated to clarify the role of CCDC92 in podocyte lipotoxicity. RESULTS The level of CCDC92 was increased in renal biopsies sections from patients with DKD, which was correlated with eGFR and lipid accumulation in glomeruli. In animal studies, CCDC92 were also induced in the kidney from two independent diabetic models, especially in podocytes. Podocyte-specific deletion of Ccdc92 ameliorated podocyte injury and ectopic lipid deposition under diabetic condition. Mechanically, CCDC92 promoted podocyte lipotoxicity, at least in part through ABCA1 signaling-mediated lipid homeostasis. CONCLUSION Our studies demonstrates that CCDC92 acts as a novel regulator of lipid homeostasis to promote podocyte injury in DKD, suggesting that CCDC92 might be a potential biomarker of podocyte injury in DKD, and targeting CCDC92 may be an effective innovative therapeutic strategy for patients with DKD.
Collapse
Affiliation(s)
- Fuwen Zuo
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Youzhao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xinlei Xu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Ruihao Ding
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yu Sun
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jichao Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Ziying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China; National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
32
|
Chae SY, Kim Y, Park CW. Oxidative Stress Induced by Lipotoxicity and Renal Hypoxia in Diabetic Kidney Disease and Possible Therapeutic Interventions: Targeting the Lipid Metabolism and Hypoxia. Antioxidants (Basel) 2023; 12:2083. [PMID: 38136203 PMCID: PMC10740440 DOI: 10.3390/antiox12122083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Oxidative stress, a hallmark pathophysiological feature in diabetic kidney disease (DKD), arises from the intricate interplay between pro-oxidants and anti-oxidants. While hyperglycemia has been well established as a key contributor, lipotoxicity emerges as a significant instigator of oxidative stress. Lipotoxicity encompasses the accumulation of lipid intermediates, culminating in cellular dysfunction and cell death. However, the mechanisms underlying lipotoxic kidney injury in DKD still require further investigation. The key role of cell metabolism in the maintenance of cell viability and integrity in the kidney is of paramount importance to maintain proper renal function. Recently, dysfunction in energy metabolism, resulting from an imbalance in oxygen levels in the diabetic condition, may be the primary pathophysiologic pathway driving DKD. Therefore, we aim to shed light on the pivotal role of oxidative stress related to lipotoxicity and renal hypoxia in the initiation and progression of DKD. Multifaceted mechanisms underlying lipotoxicity, including oxidative stress with mitochondrial dysfunction, endoplasmic reticulum stress activated by the unfolded protein response pathway, pro-inflammation, and impaired autophagy, are delineated here. Also, we explore potential therapeutic interventions for DKD, targeting lipotoxicity- and hypoxia-induced oxidative stress. These interventions focus on ameliorating the molecular pathways of lipid accumulation within the kidney and enhancing renal metabolism in the face of lipid overload or ameliorating subsequent oxidative stress. This review highlights the significance of lipotoxicity, renal hypoxia-induced oxidative stress, and its potential for therapeutic intervention in DKD.
Collapse
Affiliation(s)
- Seung Yun Chae
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
- Institute for Aging and Metabolic Disease, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
33
|
Li X, Zhang Y, Xing X, Li M, Liu Y, Xu A, Zhang J. Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects. Biomed Pharmacother 2023; 168:115670. [PMID: 37837883 DOI: 10.1016/j.biopha.2023.115670] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus, posing significant challenges in terms of early prevention, clinical diagnosis, and treatment. Consequently, it has emerged as a major contributor to end-stage renal disease. The glomerular filtration barrier, composed of podocytes, endothelial cells, and the glomerular basement membrane, plays a vital role in maintaining renal function. Disruptions in podocyte function, including hypertrophy, shedding, reduced density, and apoptosis, can impair the integrity of the glomerular filtration barrier, resulting in elevated proteinuria, abnormal glomerular filtration rate, and increased creatinine levels. Hence, recent research has increasingly focused on the role of podocyte injury in DN, with a growing emphasis on exploring therapeutic interventions targeting podocyte injury. Studies have revealed that factors such as lipotoxicity, hemodynamic abnormalities, oxidative stress, mitochondrial dysfunction, and impaired autophagy can contribute to podocyte injury. This review aims to summarize the underlying mechanisms of podocyte injury in DN and provide an overview of the current research status regarding experimental drugs targeting podocyte injury in DN. The findings presented herein may offer potential therapeutic targets and strategies for the management of DN associated with podocyte injury.
Collapse
Affiliation(s)
- Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ying Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
34
|
Saxena S, Dagar N, Shelke V, Lech M, Khare P, Gaikwad AB. Metabolic reprogramming: Unveiling the therapeutic potential of targeted therapies against kidney disease. Drug Discov Today 2023; 28:103765. [PMID: 37690600 DOI: 10.1016/j.drudis.2023.103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
As a high-metabolic-rate organ, the kidney exhibits metabolic reprogramming (MR) in various disease states. Given the >800 million cases of kidney disease worldwide in 2022, understanding the specific bioenergetic pathways involved and developing targeted interventions are vital needs. The reprogramming of metabolic pathways (glucose metabolism, amino acid metabolism, etc.) has been observed in kidney disease. Therapies targeting these specific pathways have proven to be an efficient approach for retarding kidney disease progression. In this review, we focus on potential pharmacological interventions targeting MR that have advanced through Phase III/IV clinical trials for the management of kidney disease and promising preclinical studies laying the groundwork for future clinical investigations.
Collapse
Affiliation(s)
- Shubhangi Saxena
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Maciej Lech
- Division of Nephrology, Department of Medicine IV, LMU University Hospital, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Pragyanshu Khare
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
35
|
Hu J, Zhang Z, Hu H, Yang K, Zhu Z, Yang Q, Liang W. LRH-1 activation alleviates diabetes-induced podocyte injury by promoting GLS2-mediated glutaminolysis. Cell Prolif 2023; 56:e13479. [PMID: 37057309 PMCID: PMC10623971 DOI: 10.1111/cpr.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Alteration of metabolic phenotype in podocytes directly contributes to the development of albuminuria and renal injury in conditions of diabetic kidney disease (DKD). This study aimed to identify and evaluate liver receptor homologue-1 (LRH-1) as a possible therapeutic target that alleviates glutamine (Gln) metabolism disorders and mitigates podocyte injury in DKD. Metabolomic and transcriptomic analyses were performed to characterize amino acid metabolism changes in the glomeruli of diabetic mice. Next, Western blotting, immunohistochemistry assays, and immunofluorescence staining were used to detect the expression of different genes in vitro and in vivo. Furthermore, Gln and glutamate (Glu) content as well as ATP generation were examined. A decrease in LRH-1 and glutaminase 2 (GLS2) expression was detected in diabetic podocytes. Conversely, the administration of LRH-1 agonist (DLPC) upregulated the expression of GLS2 and promoted glutaminolysis, with an improvement in mitochondrial dysfunction and less apoptosis in podocytes compared to those in vehicle-treated db/db mice. Our study indicates the essential role of LRH-1 in governing the Gln metabolism of podocytes, targeting LRH-1 could restore podocytes from diabetes-induced disturbed glutaminolysis in mitochondria.
Collapse
Affiliation(s)
- Jijia Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Zongwei Zhang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Hongtu Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Keju Yang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- The First College of Clinical Medical Science, China Three Gorges UniversityYichangHubeiChina
| | - Zijing Zhu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Qian Yang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Wei Liang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
36
|
Hirano SI, Ichikawa Y, Sato B, Takefuji Y, Satoh F. Clinical Use and Treatment Mechanism of Molecular Hydrogen in the Treatment of Various Kidney Diseases including Diabetic Kidney Disease. Biomedicines 2023; 11:2817. [PMID: 37893190 PMCID: PMC10603947 DOI: 10.3390/biomedicines11102817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
As diabetes rates surge globally, there is a corresponding rise in the number of patients suffering from diabetic kidney disease (DKD), a common complication of diabetes. DKD is a significant contributor to chronic kidney disease, often leading to end-stage renal failure. However, the effectiveness of current medical treatments for DKD leaves much to be desired. Molecular hydrogen (H2) is an antioxidant that selectively reduces hydroxyl radicals, a reactive oxygen species with a very potent oxidative capacity. Recent studies have demonstrated that H2 not only possesses antioxidant properties but also exhibits anti-inflammatory effects, regulates cell lethality, and modulates signal transduction. Consequently, it is now being utilized in clinical applications. Many factors contribute to the onset and progression of DKD, with mitochondrial dysfunction, oxidative stress, and inflammation being strongly implicated. Recent preclinical and clinical trials reported that substances with antioxidant properties may slow the progression of DKD. Hence, we undertook a comprehensive review of the literature focusing on animal models and human clinical trials where H2 demonstrated effectiveness against a variety of renal diseases. The collective evidence from this literature review, along with our previous findings, suggests that H2 may have therapeutic benefits for patients with DKD by enhancing mitochondrial function. To substantiate these findings, future large-scale clinical studies are needed.
Collapse
Affiliation(s)
- Shin-ichi Hirano
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Yusuke Ichikawa
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Bunpei Sato
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Yoshiyasu Takefuji
- Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan;
- Faculty of Data Science, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo 135-8181, Japan
| | - Fumitake Satoh
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| |
Collapse
|
37
|
Ye W, Miao Q, Xu G, Jin K, Li X, Wu W, Yu L, Yan M. CircRNA itchy E3 ubiquitin protein ligase improves mitochondrial dysfunction in sepsis-induced acute kidney injury by targeting microRNA-214-3p/ATP-binding cassette A1 axis. Ren Fail 2023; 45:2261552. [PMID: 37782276 PMCID: PMC10547449 DOI: 10.1080/0886022x.2023.2261552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are promising biomarkers and therapeutic targets for acute kidney injury (AKI). In this study, we investigated the mechanism by which circRNA itchy E3 ubiquitin protein ligase (circ-ITCH) regulates sepsis-induced AKI. METHODS A sepsis-induced AKI mouse model was created using LPS induction and circ-ITCH overexpression. Circ-ITCH levels were confirmed via RT-qPCR. Kidney tissue changes were examined through various stains and TUNEL. Enzyme-linked immunosorbent assay (ELISA) gauged oxidative stress and inflammation. Mitochondrial features were studied with electron microscopy. RT-qPCR and western blotting assessed mitochondrial function parameters. Using starBase, binding sites between circ-ITCH and miR-214-3p, as well as miR-214-3p and ABCA1, were predicted. Regulatory connections were proven by dual-luciferase assay, RT-qPCR, and western blotting. RESULTS Circ-ITCH expression was downregulated in LPS-induced sepsis mice. Overexpression of circ-ITCH ameliorates indicators of renal function (serum creatinine [SCr], blood urea nitrogen [BUN], neutrophil gelatinase-associated lipocalin [NGAL], and kidney injury molecule-1 [Kim-1]), reduces renal cell apoptosis, mitigates oxidative stress markers (reactive oxygen species [ROS] and malondialdehyde [MDA]), and diminishes inflammatory markers (interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF-α]). Moreover, circ-ITCH overexpression alleviated mitochondrial damage and dysfunction. Furthermore, circ-ITCH acts as a sponge for miR-214-3p, thereby upregulating ABCA1 expression. In addition, the miR-214-3p inhibitor repressed oxidative stress, inflammation, and mitochondrial dysfunction, which was reversed by circ-ITCH knockdown. Further cellular analysis in HK-2 cells supported these findings, highlighting the protective role of circ-ITCH against sepsis-induced AKI, particularly through the miR-214-3p/ABCA1 axis. CONCLUSION The novel circ-ITCH/miR-214-3p/ABCA1 pathway plays an essential role in the regulation of oxidative stress and mitochondrial dysfunction in sepsis-induced AKI.
Collapse
Affiliation(s)
- Weidi Ye
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Qi Miao
- Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Eye Center Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Guangxin Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Kai Jin
- Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Eye Center Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xue Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Weidong Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
38
|
Hejazian SM, Ardalan M, Hosseiniyan Khatibi SM, Rahbar Saadat Y, Barzegari A, Gueguen V, Meddahi-Pellé A, Anagnostou F, Zununi Vahed S, Pavon-Djavid G. Biofactors regulating mitochondrial function and dynamics in podocytes and podocytopathies. J Cell Physiol 2023; 238:2206-2227. [PMID: 37659096 DOI: 10.1002/jcp.31110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/25/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Podocytes are terminally differentiated kidney cells acting as the main gatekeepers of the glomerular filtration barrier; hence, inhibiting proteinuria. Podocytopathies are classified as kidney diseases caused by podocyte damage. Different genetic and environmental risk factors can cause podocyte damage and death. Recent evidence shows that mitochondrial dysfunction also contributes to podocyte damage. Understanding alterations in mitochondrial metabolism and function in podocytopathies and whether altered mitochondrial homeostasis/dynamics is a cause or effect of podocyte damage are issues that need in-depth studies. This review highlights the roles of mitochondria and their bioenergetics in podocytes. Then, factors/signalings that regulate mitochondria in podocytes are discussed. After that, the role of mitochondrial dysfunction is reviewed in podocyte injury and the development of different podocytopathies. Finally, the mitochondrial therapeutic targets are considered.
Collapse
Affiliation(s)
| | | | | | | | - Abolfazl Barzegari
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Fani Anagnostou
- Université de Paris, CNRS UMR 7052 INSERM U1271, B3OA, Paris, France
| | | | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| |
Collapse
|
39
|
Mitrofanova A, Merscher S, Fornoni A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat Rev Nephrol 2023; 19:629-645. [PMID: 37500941 DOI: 10.1038/s41581-023-00741-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Chronic kidney disease (CKD) is a global health problem with rising incidence and prevalence. Among several pathogenetic mechanisms responsible for disease progression, lipid accumulation in the kidney parenchyma might drive inflammation and fibrosis, as has been described in fatty liver diseases. Lipids and their metabolites have several important structural and functional roles, as they are constituents of cell and organelle membranes, serve as signalling molecules and are used for energy production. However, although lipids can be stored in lipid droplets to maintain lipid homeostasis, lipid accumulation can become pathogenic. Understanding the mechanisms linking kidney parenchymal lipid accumulation to CKD of metabolic or non-metabolic origin is challenging, owing to the tremendous variety of lipid species and their functional diversity across different parenchymal cells. Nonetheless, multiple research reports have begun to emphasize the effect of dysregulated kidney lipid metabolism in CKD progression. For example, altered cholesterol and fatty acid metabolism contribute to glomerular and tubular cell injury. Newly developed lipid-targeting agents are being tested in clinical trials in CKD, raising expectations for further therapeutic development in this field.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
40
|
Li L, Long J, Mise K, Poungavrin N, Lorenzi PL, Mahmud I, Tan L, Saha PK, Kanwar YS, Chang BH, Danesh FR. The transcription factor ChREBP links mitochondrial lipidomes to mitochondrial morphology and progression of diabetic kidney disease. J Biol Chem 2023; 299:105185. [PMID: 37611830 PMCID: PMC10506103 DOI: 10.1016/j.jbc.2023.105185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
A substantial body of evidence has established the contributions of both mitochondrial dynamics and lipid metabolism to the pathogenesis of diabetic kidney disease (DKD). However, the precise interplay between these two key metabolic regulators of DKD is not fully understood. Here, we uncover a link between mitochondrial dynamics and lipid metabolism by investigating the role of carbohydrate-response element-binding protein (ChREBP), a glucose-responsive transcription factor and a master regulator of lipogenesis, in kidney podocytes. We find that inducible podocyte-specific knockdown of ChREBP in diabetic db/db mice improves key biochemical and histological features of DKD in addition to significantly reducing mitochondrial fragmentation. Because of the critical role of ChREBP in lipid metabolism, we interrogated whether and how mitochondrial lipidomes play a role in ChREBP-mediated mitochondrial fission. Our findings suggest a key role for a family of ether phospholipids in ChREBP-induced mitochondrial remodeling. We find that overexpression of glyceronephosphate O-acyltransferase, a critical enzyme in the biosynthesis of plasmalogens, reverses the protective phenotype of ChREBP deficiency on mitochondrial fragmentation. Finally, our data also points to Gnpat as a direct transcriptional target of ChREBP. Taken together, our results uncover a distinct mitochondrial lipid signature as the link between ChREBP-induced mitochondrial dynamics and progression of DKD.
Collapse
Affiliation(s)
- Li Li
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianyin Long
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koki Mise
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naravat Poungavrin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pradip K Saha
- Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Diabetes Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yashpal S Kanwar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Benny H Chang
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad R Danesh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
41
|
Jiang Y, Cui W, Zhang Y, Wang T, Zheng X, Li H, Shang J. FG-4592 relieves diabetic kidney disease severity by influencing metabolic profiles via gut microbiota reconstruction in both human and mouse models. Front Physiol 2023; 14:1195441. [PMID: 37654676 PMCID: PMC10465800 DOI: 10.3389/fphys.2023.1195441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
Objective: Diabetic kidney disease (DKD) is one of the most prevalent complications of diabetes mellitus (DM) and is highly associated with devastating outcomes. Hypoxia-inducible factor (HIF), the main transcription factor that regulates cellular responses to hypoxia, plays an important role in regulating erythropoietin (EPO) synthesis. FG-4592 is the HIF stabilizer that is widely used in patients with renal anemia. We investigated the effect of FG-4592 on DKD phenotypes and the pharmacologic mechanism from the perspective of gut microbiota and systemic metabolism. Design: We collected the clinical data of 73 participants, including 40 DKD patients with combined renal anemia treated with FG-4592, and 33 clinical index-matched DKD patients without FG-4592 treatment from The First Affiliated Hospital of Zhengzhou University at the beginning and after a 3-6-month follow-up period. We established DKD mouse models treated by FG-4592 and performed fecal microbiota transplantation from FG-4592-treated DKD mice to investigate the effects of FG-4592 on DKD and to understand this mechanism from a microbial perspective. Untargeted metabolome-microbiome combined analysis was implemented to globally delineate the mechanism of FG-4592 from both microbial and metabolomic aspects. Result: DKD phenotypes significantly improved after 3-6 months of FG-4592 treatment in DKD patients combined with renal anemia, including a decreased level of systolic blood pressure, serum creatinine, and increased estimated glomerular infiltration rate. Such effects were also achieved in the DKD mouse model treated with FG-4592 and can be also induced by FG-4592-influenced gut microbiota. Untargeted plasma metabolomics-gut microbiota analysis showed that FG-4592 dramatically altered both the microbial and metabolic profiles of DKD mice and relieved DKD phenotypes via upregulating beneficial gut microbiota-associated metabolites. Conclusion: FG-4592 can globally relieve the symptoms of DKD patients combined with renal anemia. In the animal experiment, FG-4592 can reconstruct the intestinal microbial profiles of DKD to further upregulate the production of gut-associated beneficial metabolites, subsequently improving DKD phenotypes.
Collapse
Affiliation(s)
- Yumin Jiang
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wen Cui
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Yiding Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Xuejun Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Huangmin Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
42
|
Daehn IS, Ekperikpe US, Stadler K. Redox regulation in diabetic kidney disease. Am J Physiol Renal Physiol 2023; 325:F135-F149. [PMID: 37262088 PMCID: PMC10393330 DOI: 10.1152/ajprenal.00047.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most devastating complications of diabetes mellitus, where currently there is no cure available. Several important mechanisms contribute to the pathogenesis of this complication, with oxidative stress being one of the key factors. The past decades have seen a large number of publications with various aspects of this topic; however, the specific details of redox regulation in DKD are still unclear. This is partly because redox biology is very complex, coupled with a complex and heterogeneous organ with numerous cell types. Furthermore, often times terms such as "oxidative stress" or reactive oxygen species are used as a general term to cover a wide and rich variety of reactive species and their differing reactions. However, no reactive species are the same, and not all of them are capable of biologically relevant reactions or "redox signaling." The goal of this review is to provide a biochemical background for an array of specific reactive oxygen species types with varying reactivity and specificity in the kidney as well as highlight some of the advances in redox biology that are paving the way to a better understanding of DKD development and risk.
Collapse
Affiliation(s)
- Ilse S Daehn
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Ubong S Ekperikpe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
43
|
Bai Y, Hei N, Gao M, Dong X, Li M, Jiang S, Zhang L. LDLR heterozygous deletion reduces hamster testicular cholesterol toxicity via AMPK/Sirt1/PGC-1α pathway. Toxicol Lett 2023; 384:30-43. [PMID: 37459939 DOI: 10.1016/j.toxlet.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Cholesterol is an important part of the human diet. The relationship and molecular mechanisms between intracellular cholesterol and male infertility are unclear. The purpose of this study was to evaluate the role of low-density lipoprotein receptor (LDLR) in male infertility. Both wild-type (WT) and LDLR heterozygous deletion (LDLR+/-) male Golden Syrian hamsters were fed either a high-fat diet (HFD) or a normal diet (ND). Plasma biochemistry, serum hormone, testicular histopathology, mRNA and protein expression of AMPK/Sirt1/PGC-1α in both testicular tissue and isolated Leydig cells (LCs) were measured. Compared with the ND animals, the WT HFD hamsters developed dyslipidemia at three weeks with lipid droplets deposited in LCs, testosterone decreased at four weeks (0.440 ± 0.264 ng/ml vs. 2.367 ± 1.236 ng/ml), the number of the Sertoli cells decreased (21.578 ± 2.934/one tubule vs. 25.733 ± 3.424/one tubule), the seminiferous epithelium became thinner (0.0813 ± 0.01729 mm vs. 0.0944 ± 0.0138 mm), testicular atrophy and AMPK/Sirt1/PGC-1α pathway downregulated at five weeks. All these changes persisted until the end of the study. LDLR+/- alleviated all of the above changes by downregulating the cellular influx of cholesterol induced by HFD except for higher hyperlipidemia. In summary, excessive intracellular cholesterol inactivates AMPK/Sirt1/PGC-1α pathway firstly in LCs and then in both Sertoli and spermatids. Cholesterol toxicity was LDLR dependent.
Collapse
Affiliation(s)
- Yun Bai
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Naiheng Hei
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohui Dong
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mingzhao Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaohao Jiang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lianshan Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
44
|
Ito M, Ducasa GM, Molina JD, Santos JV, Mallela SK, Kim JJ, Ge M, Mitrofanova A, Sloan A, Merscher S, Mimura I, Fornoni A. ABCA1 deficiency contributes to podocyte pyroptosis priming via the APE1/IRF1 axis in diabetic kidney disease. Sci Rep 2023; 13:9616. [PMID: 37316538 PMCID: PMC10267156 DOI: 10.1038/s41598-023-35499-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Decreased ATP Binding Cassette Transporter A1 (ABCA1) expression and caspase-4-mediated noncanonical inflammasome contribution have been described in podocytes in diabetic kidney disease (DKD). To investigate a link between these pathways, we evaluated pyroptosis-related mediators in human podocytes with stable knockdown of ABCA1 (siABCA1) and found that mRNA levels of IRF1, caspase-4, GSDMD, caspase-1 and IL1β were significantly increased in siABCA1 compared to control podocytes and that protein levels of caspase-4, GSDMD and IL1β were equally increased. IRF1 knockdown in siABCA1 podocytes prevented increases in caspase-4, GSDMD and IL1β. Whereas TLR4 inhibition did not decrease mRNA levels of IRF1 and caspase-4, APE1 protein expression increased in siABCA1 podocytes and an APE1 redox inhibitor abrogated siABCA1-induced expression of IRF1 and caspase-4. RELA knockdown also offset the pyroptosis priming, but ChIP did not demonstrate increased binding of NFκB to IRF1 promoter in siABCA1 podocytes. Finally, the APE1/IRF1/Casp1 axis was investigated in vivo. APE1 IF staining and mRNA levels of IRF1 and caspase 11 were increased in glomeruli of BTBR ob/ob compared to wildtype. In conclusion, ABCA1 deficiency in podocytes caused APE1 accumulation, which reduces transcription factors to increase the expression of IRF1 and IRF1 target inflammasome-related genes, leading to pyroptosispriming.
Collapse
Affiliation(s)
- Marie Ito
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Gloria Michelle Ducasa
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Judith David Molina
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Javier Varona Santos
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Shamroop Kumar Mallela
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jin Ju Kim
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Mengyuan Ge
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Alla Mitrofanova
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Alexis Sloan
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Sandra Merscher
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Imari Mimura
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Alessia Fornoni
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
45
|
Ge M, Molina J, Kim JJ, Mallela SK, Ahmad A, Varona Santos J, Al-Ali H, Mitrofanova A, Sharma K, Fontanesi F, Merscher S, Fornoni A. Empagliflozin reduces podocyte lipotoxicity in experimental Alport syndrome. eLife 2023; 12:e83353. [PMID: 37129368 PMCID: PMC10185338 DOI: 10.7554/elife.83353] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/26/2023] [Indexed: 05/03/2023] Open
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are anti-hyperglycemic agents that prevent glucose reabsorption in proximal tubular cells. SGLT2i improves renal outcomes in both diabetic and non-diabetic patients, indicating it may have beneficial effects beyond glycemic control. Here, we demonstrate that SGLT2i affects energy metabolism and podocyte lipotoxicity in experimental Alport syndrome (AS). In vitro, we found that the SGLT2 protein was expressed in human and mouse podocytes to a similar extent in tubular cells. Newly established immortalized podocytes from Col4a3 knockout mice (AS podocytes) accumulate lipid droplets along with increased apoptosis when compared to wild-type podocytes. Treatment with SGLT2i empagliflozin reduces lipid droplet accumulation and apoptosis in AS podocytes. Empagliflozin inhibits the utilization of glucose/pyruvate as a metabolic substrate in AS podocytes but not in AS tubular cells. In vivo, we demonstrate that empagliflozin reduces albuminuria and prolongs the survival of AS mice. Empagliflozin-treated AS mice show decreased serum blood urea nitrogen and creatinine levels in association with reduced triglyceride and cholesterol ester content in kidney cortices when compared to AS mice. Lipid accumulation in kidney cortices correlates with a decline in renal function. In summary, empagliflozin reduces podocyte lipotoxicity and improves kidney function in experimental AS in association with the energy substrates switch from glucose to fatty acids in podocytes.
Collapse
Affiliation(s)
- Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Judith Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Shamroop K Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Anis Ahmad
- Department of Radiation Oncology, University of Miami Miller School of MedicineMiamiUnited States
| | - Javier Varona Santos
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Hassan Al-Ali
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Kumar Sharma
- Center for Precision Medicine, School of Medicine, University of Texas Health San AntonioSan AntonioUnited States
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of MiamiMiamiUnited States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| |
Collapse
|
46
|
Njeim R, Alkhansa S, Fornoni A. Unraveling the Crosstalk between Lipids and NADPH Oxidases in Diabetic Kidney Disease. Pharmaceutics 2023; 15:pharmaceutics15051360. [PMID: 37242602 DOI: 10.3390/pharmaceutics15051360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of end-stage renal disease. Abnormal lipid metabolism and intrarenal accumulation of lipids have been shown to be strongly correlated with the development and progression of diabetic kidney disease (DKD). Cholesterol, phospholipids, triglycerides, fatty acids, and sphingolipids are among the lipids that are altered in DKD, and their renal accumulation has been linked to the pathogenesis of the disease. In addition, NADPH oxidase-induced production of reactive oxygen species (ROS) plays a critical role in the development of DKD. Several types of lipids have been found to be tightly linked to NADPH oxidase-induced ROS production. This review aims to explore the interplay between lipids and NADPH oxidases in order to provide new insights into the pathogenesis of DKD and identify more effective targeted therapies for the disease.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
47
|
Drexler Y, Molina J, Elfassy T, Ma R, Christoffersen C, Kurano M, Yatomi Y, Mariani LH, Contreras G, Merscher S, Fornoni A. Identification of Glomerular and Plasma Apolipoprotein M as Novel Biomarkers in Glomerular Disease. Kidney Int Rep 2023; 8:884-897. [PMID: 37069998 PMCID: PMC10105063 DOI: 10.1016/j.ekir.2023.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Dysregulation of sphingolipid and cholesterol metabolism contributes to the pathogenesis of glomerular diseases (GDs). Apolipoprotein M (ApoM) promotes cholesterol efflux and modulates the bioactive sphingolipid sphingosine-1-phosphate (S1P). Glomerular ApoM expression is decreased in patients with focal segmental glomerulosclerosis (FSGS). We hypothesized that glomerular ApoM deficiency occurs in GD and that ApoM expression and plasma ApoM correlate with outcomes. Methods Patients with GD from the Nephrotic Syndrome Study Network (NEPTUNE) were studied. We compared glomerular mRNA expression of ApoM (gApoM), sphingosine kinase 1 (SPHK1), and S1P receptors 1 to 5 (S1PR1-5) in patients (n = 84) and controls (n = 6). We used correlation analyses to determine associations between gApoM, baseline plasma ApoM (pApoM), and urine ApoM (uApoM/Cr). We used linear regression to determine whether gApoM, pApoM, and uApoM/Cr were associated with baseline estimated glomerular filtration rate (eGFR) and proteinuria. Using Cox models, we determined whether gApoM, pApoM, and uApoM/Cr were associated with complete remission (CR) and the composite of end-stage kidney disease (ESKD) or ≥40% eGFR decline. Results gApoM was reduced (P < 0.01) and SPHK1 and S1PR1 to 5 expression was increased (P < 0.05) in patients versus controls, consistent with ApoM/S1P pathway modulation. gApoM positively correlated with pApoM in the overall cohort (r = 0.34, P < 0.01) and in the FSGS (r = 0.48, P < 0.05) and minimal change disease (MCD) (r = 0.75, P < 0.05) subgroups. Every unit decrease in gApoM and pApoM (log2) was associated with a 9.77 ml/min per 1.73 m2 (95% confidence interval [CI]: 3.96-15.57) and 13.26 ml/min per 1.73 m2 (95% CI: 3.57-22.96) lower baseline eGFR, respectively (P < 0.01). From Cox models adjusted for age, sex, or race, pApoM was a significant predictor of CR (hazard ratio [HR]: 1.85; 95% CI: 1.06-3.23). Conclusions pApoM is a potential noninvasive biomarker of gApoM deficiency and strongly associates with clinical outcomes in GD.
Collapse
Affiliation(s)
- Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Judith Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tali Elfassy
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ruixuan Ma
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Christina Christoffersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Laura H. Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gabriel Contreras
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
48
|
Mohandes S, Doke T, Hu H, Mukhi D, Dhillon P, Susztak K. Molecular pathways that drive diabetic kidney disease. J Clin Invest 2023; 133:165654. [PMID: 36787250 PMCID: PMC9927939 DOI: 10.1172/jci165654] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Kidney disease is a major driver of mortality among patients with diabetes and diabetic kidney disease (DKD) is responsible for close to half of all chronic kidney disease cases. DKD usually develops in a genetically susceptible individual as a result of poor metabolic (glycemic) control. Molecular and genetic studies indicate the key role of podocytes and endothelial cells in driving albuminuria and early kidney disease in diabetes. Proximal tubule changes show a strong association with the glomerular filtration rate. Hyperglycemia represents a key cellular stress in the kidney by altering cellular metabolism in endothelial cells and podocytes and by imposing an excess workload requiring energy and oxygen for proximal tubule cells. Changes in metabolism induce early adaptive cellular hypertrophy and reorganization of the actin cytoskeleton. Later, mitochondrial defects contribute to increased oxidative stress and activation of inflammatory pathways, causing progressive kidney function decline and fibrosis. Blockade of the renin-angiotensin system or the sodium-glucose cotransporter is associated with cellular protection and slowing kidney function decline. Newly identified molecular pathways could provide the basis for the development of much-needed novel therapeutics.
Collapse
Affiliation(s)
- Samer Mohandes
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Zhang J, Wu Y, Zhang J, Zhang R, Wang Y, Liu F. ABCA1 deficiency-mediated glomerular cholesterol accumulation exacerbates glomerular endothelial injury and dysfunction in diabetic kidney disease. Metabolism 2023; 139:155377. [PMID: 36521550 DOI: 10.1016/j.metabol.2022.155377] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hyperglycemia and dyslipidemia are two major characteristics of diabetes. In this study, the effects of glomerular cholesterol accumulation primarily due to ABCA1 deficiency on glomerular endothelial injury in diabetic kidney disease (DKD) and the possible mechanisms were investigated. METHODS The effects of ABCA1 deficiency on glomerular lipid deposition and kidney injury were examined in a type 2 diabetic mouse model with ABCA1 deficiency in glomerular endothelial cells (DM-ABCA1-/- mice) and human renal glomerular endothelial cells (HRGECs) cultured in high glucose and high cholesterol conditions, which simulated type 2 diabetes in vitro. RESULTS ABCA1 deficiency in glomerular endothelial cells exacerbated renal lipid deposition and kidney injuries in type 2 diabetic mice and manifested as increased creatinine levels, more severe proteinuria, mesangial matrix expansion and fusion of foot processes, and more pronounced renal inflammatory injury and cell death. In HRGECs cultured under high glucose and high cholesterol conditions, ABCA1 deficiency increased the deposition of cellular cholesterol, contributed to inflammation and apoptosis, damaged the endothelial glycocalyx barrier, and induced endoplasmic reticulum stress (ERS). Conversely, ABCA1 overexpression enhancing cholesterol efflux or inhibition of ERS in vitro, significantly protected against glomerular endothelial injury stimulated by high glucose and high cholesterol. CONCLUSIONS These findings establish a pathogenic role of ABCA1 deficiency in glomerular endothelium injury and dysfunction and imply that ABCA1 may represent a potential effective therapeutic target for early diabetic kidney disease.
Collapse
Affiliation(s)
- Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yucheng Wu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yiting Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
50
|
Futamata R, Kinoshita M, Ogiwara K, Kioka N, Ueda K. Cholesterol accumulation in ovarian follicles causes ovulation defects in Abca1a -/- Japanese medaka ( Oryzias latipes). Heliyon 2023; 9:e13291. [PMID: 36816300 PMCID: PMC9932449 DOI: 10.1016/j.heliyon.2023.e13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
ATP-binding cassette A1 (ABCA1) is a membrane protein, which exports excess cellular cholesterol to generate HDL to reduce the risk of the onset of cardiovascular diseases (CVD). In addition, ABCA1 exerts pleiotropic effects on such as inflammation, tissue repair, and cell proliferation and migration. In this study, we explored the novel physiological roles of ABCA1 using Japanese medaka (Oryzias latipes), a small teleost fish. Three Abca1 genes were found in the medaka genome. ABCA1A and ABCA1C exported cholesterol to generate nascent HDL as human ABCA1 when expressed in HEK293 cells. To investigate their physiological roles, each Abca1-deficient fish was generated using the CRISPR-Cas9 system. Abca1a -/- female medaka was found to be infertile, while Abca1b -/- and Abca1c -/- female medaka were fertile. In vitro ovarian follicle culture suggested that Abca1a deficiency causes ovulation defects. In the ovary, ABCA1A was expressed in theca cells, an outermost layer of the ovarian follicle. Total cholesterol content of Abca1a -/- ovary was significantly higher than that of the wild-type, while estrogen and progestin contents were compatible with those of the wild-type. Furthermore, cholesterol loading to the wild-type follicles caused ovulation defects. These results suggest that ABCA1A in theca cells regulates cholesterol content in the ovarian follicles and its deficiency inhibits successful ovulation through cholesterol accumulation in the ovarian follicle.
Collapse
Affiliation(s)
- Ryota Futamata
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masato Kinoshita
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Noriyuki Kioka
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazumitsu Ueda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), KUIAS, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|