1
|
Mousavi N, Zhou E, Razavi A, Ebrahimi E, Varela-Castillo P, Yang XJ. P3 site-directed mutagenesis: An efficient method based on primer pairs with 3'-overhangs. J Biol Chem 2025:108219. [PMID: 39863101 DOI: 10.1016/j.jbc.2025.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Site-directed mutagenesis is a fundamental tool indispensable for protein and plasmid engineering. An important technological question is how to achieve the efficiency at the ideal level of 100%. Based on complementary primer pairs, the QuickChange method has been widely used, but it requires significant improvements due to its low efficiency and frequent unwanted mutations. An alternative and innovative strategy is to utilize primer pairs with 3'-overhangs, but this approach has not been fully developed. As the first step towards reaching the efficiency of 100%, we have optimized this approach systematically (such as use of newly designed short primers, test of different Pfu DNA polymerases and modification of PCR parameters) and evaluated the resulting method extensively with >100 mutations on 12 mammalian expression vectors, ranging from 7.0-13.4 kb in size and encoding ten epigenetic regulators with links to cancer and neurodevelopmental disorders. We have also tested the new method with two expression vectors for the SARS-COV-2 spike protein. Compared to the QuickChange method, the success rate has increased substantially, with an average efficiency of ∼50%, with some at or close to 100%, and requiring much less time for engineering various mutations. Therefore, we have developed a new site-directed mutagenesis method for efficient and economical generation of various mutations. Notably, the method failed with a human KAT2B expression plasmid that possesses extremely GC-rich sequences. Thus, this study also sheds light on how to improve the method for developing ideal mutagenesis methods with the efficiency at ∼100% for a wide spectrum of plasmids.
Collapse
Affiliation(s)
- Negar Mousavi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Ethan Zhou
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Arezousadat Razavi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Elham Ebrahimi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Paulina Varela-Castillo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|
2
|
Davie JR, Sattarifard H, Sudhakar SRN, Roberts CT, Beacon TH, Muker I, Shahib AK, Rastegar M. Basic Epigenetic Mechanisms. Subcell Biochem 2025; 108:1-49. [PMID: 39820859 DOI: 10.1007/978-3-031-75980-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The human genome consists of 23 chromosome pairs (22 autosomes and one pair of sex chromosomes), with 46 chromosomes in a normal cell. In the interphase nucleus, the 2 m long nuclear DNA is assembled with proteins forming chromatin. The typical mammalian cell nucleus has a diameter between 5 and 15 μm in which the DNA is packaged into an assortment of chromatin assemblies. The human brain has over 3000 cell types, including neurons, glial cells, oligodendrocytes, microglial, and many others. Epigenetic processes are involved in directing the organization and function of the genome of each one of the 3000 brain cell types. We refer to epigenetics as the study of changes in gene function that do not involve changes in DNA sequence. These epigenetic processes include histone modifications, DNA modifications, nuclear RNA, and transcription factors. In the interphase nucleus, the nuclear DNA is organized into different structures that are permissive or a hindrance to gene expression. In this chapter, we will review the epigenetic mechanisms that give rise to cell type-specific gene expression patterns.
Collapse
Affiliation(s)
- James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Hedieh Sattarifard
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sadhana R N Sudhakar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chris-Tiann Roberts
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ishdeep Muker
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ashraf K Shahib
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Keller MA, Nakamura M. Acetyltransferase in cardiovascular disease and aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:10.20517/jca.2024.21. [PMID: 39958699 PMCID: PMC11827898 DOI: 10.20517/jca.2024.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Acetyltransferases are enzymes that catalyze the transfer of an acetyl group to a substrate, a modification referred to as acetylation. Loss-of-function variants in genes encoding acetyltransferases can lead to congenital disorders, often characterized by intellectual disability and heart and muscle defects. Their activity is influenced by dietary nutrients that alter acetyl coenzyme A levels, a key cofactor. Cardiovascular diseases, including ischemic, hypertensive, and diabetic heart diseases - leading causes of mortality in the elderly - are largely attributed to prolonged lifespan and the growing prevalence of metabolic syndrome. Acetyltransferases thus serve as a crucial link between lifestyle modifications, cardiometabolic disease, and aging through both epigenomic and non-epigenomic mechanisms. In this review, we discuss the roles and relevance of acetyltransferases. While the sirtuin family of deacetylases has been extensively studied in longevity, particularly through fasting-mediated NAD+ metabolism, recent research has brought attention to the essential roles of acetyltransferases in health and aging-related pathways, including cell proliferation, DNA damage response, mitochondrial function, inflammation, and senescence. We begin with an overview of acetyltransferases, classifying them by domain structure, including canonical and non-canonical lysine acetyltransferases, N-terminal acetyltransferases, and sialic acid O-acetyltransferases. We then discuss recent advances in understanding acetyltransferase-related pathologies, particularly focusing on cardiovascular disease and aging, and explore their potential therapeutic applications for promoting health in older individuals.
Collapse
Affiliation(s)
- Mariko Aoyagi Keller
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Talaei M, Waters S, Portas L, Jacobs BM, Dodd JW, Marshall CR, Minelli C, Shaheen SO. Lung development genes, adult lung function and cognitive traits. Brain Commun 2024; 6:fcae380. [PMID: 39544701 PMCID: PMC11562126 DOI: 10.1093/braincomms/fcae380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/18/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Lower lung function is associated with lower cognitive function and an increased risk of dementia. This has not been adequately explained and may partly reflect shared developmental pathways. In UK Biobank participants of European ancestry, we tested the association between lung function measures (forced vital capacity and forced expiratory volume in 1 s to forced vital capacity ratio; n = 306 476) and cognitive traits including nine cognitive function test scores (n = 32 321-428 609), all-cause dementia, Alzheimer's disease and vascular dementia (6805, 2859 and 1544 cases, respectively, and ∼421 241 controls). In the same population, we derived summary statistics for associations between common genetic variants in 55 lung development genes and lung function measures and cognitive traits using adjusted linear/logistic regression models. Using a hypothesis-driven Bayesian co-localization analysis, we finally investigated the presence of shared genetic signals between lung function measures and cognitive traits at each of these 55 genes. Higher lung function measures were generally associated with higher scores of cognitive function tests as well as lower risk of dementia. The strongest association was between forced vital capacity and vascular dementia (adjusted hazard ratio 0.74 per standard deviation increase, 95% confidence interval 0.67-0.83). Of the 55 genes of interest, we found shared variants in four genes, namely: CSNK2B rs9267531 (forced vital capacity and forced expiratory volume in 1 s to forced vital capacity ratio with fluid intelligence and pairs matching), NFATC3 rs548092276 & rs11275011 (forced expiratory volume in 1 s to forced vital capacity ratio with fluid intelligence), PTCH1 rs2297086 & rs539078574 (forced expiratory volume in 1 s to forced vital capacity ratio with reaction time) and KAT8 rs138259061 (forced vital capacity with pairs matching). However, the direction of effects was not in keeping with our hypothesis, i.e. variants associated with lower lung function were associated with better cognitive function or vice versa. We also found distinct variants associated with lung function and cognitive function in KAT8 (forced vital capacity and Alzheimer's disease) and PTCH1 (forced vital capacity and forced expiratory volume in 1 s to forced vital capacity ratio with fluid intelligence and reaction time). The links between CSNK2B and NFATC3 and cognitive traits have not been previously reported by genome-wide association studies. Despite shared genes and variants, our findings do not support the hypothesis that shared developmental signalling pathways explain the association of lower adult lung function with poorer cognitive function.
Collapse
Affiliation(s)
- Mohammad Talaei
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sheena Waters
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - Laura Portas
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Benjamin M Jacobs
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - James W Dodd
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol BS8 2BN, UK
- Academic Respiratory Unit, Southmead Hospital, University of Bristol, Bristol BS10 5NB, UK
| | - Charles R Marshall
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Seif O Shaheen
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
5
|
Karayol R, Borroto MC, Haghshenas S, Namasivayam A, Reilly J, Levy MA, Relator R, Kerkhof J, McConkey H, Shvedunova M, Petersen AK, Magnussen K, Zweier C, Vasileiou G, Reis A, Savatt JM, Mulligan MR, Bicknell LS, Poke G, Abu-El-Haija A, Duis J, Hannig V, Srivastava S, Barkoudah E, Hauser NS, van den Born M, Hamiel U, Henig N, Baris Feldman H, McKee S, Krapels IPC, Lei Y, Todorova A, Yordanova R, Atemin S, Rogac M, McConnell V, Chassevent A, Barañano KW, Shashi V, Sullivan JA, Peron A, Iascone M, Canevini MP, Friedman J, Reyes IA, Kierstein J, Shen JJ, Ahmed FN, Mao X, Almoguera B, Blanco-Kelly F, Platzer K, Treu AB, Quilichini J, Bourgois A, Chatron N, Januel L, Rougeot C, Carere DA, Monaghan KG, Rousseau J, Myers KA, Sadikovic B, Akhtar A, Campeau PM. MSL2 variants lead to a neurodevelopmental syndrome with lack of coordination, epilepsy, specific dysmorphisms, and a distinct episignature. Am J Hum Genet 2024; 111:1330-1351. [PMID: 38815585 PMCID: PMC11267526 DOI: 10.1016/j.ajhg.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.
Collapse
Affiliation(s)
- Remzi Karayol
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Carla Borroto
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Anoja Namasivayam
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jack Reilly
- Department of Pediatrics, Clinical Neurological Sciences and Epidemiology, Western University, London, ON N6A 3K7, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Maria Shvedunova
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Andrea K Petersen
- Department of Genetics and Metabolism, Randall Children's and Legacy Emanuel Hospitals, Portland, OR 97227, USA
| | - Kari Magnussen
- Department of Genetics and Metabolism, Randall Children's and Legacy Emanuel Hospitals, Portland, OR 97227, USA
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Georgia Vasileiou
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Juliann M Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Meghan R Mulligan
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gemma Poke
- Genetic Health Service New Zealand, Wellington, New Zealand
| | - Aya Abu-El-Haija
- Division of Genetics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Jessica Duis
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, CO, USA
| | - Vickie Hannig
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Siddharth Srivastava
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Natalie S Hauser
- Medical Genetics, Inova Fairfax Hospital, Falls Church, VA 22042, USA
| | - Myrthe van den Born
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Uri Hamiel
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center & Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Noa Henig
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Hagit Baris Feldman
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center & Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast BT9 7AB, UK
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Ralitsa Yordanova
- Department of pediatrics "Prof. Ivan Andreev", Medical university - Plovdiv, Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Slavena Atemin
- Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Mihael Rogac
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vivienne McConnell
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast BT9 7AB, UK
| | - Anna Chassevent
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jennifer A Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Angela Peron
- SOC Genetica Medica, Meyer Children's Hospital IRCCS, Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Maria Iascone
- Department of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria P Canevini
- Epilepsy Center - Sleep Medicine Center, Childhood and Adolescence Neuropsychiatry Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California, San Diego, La Jolla, CA, USA; Rady Children's Institute for Genomic Medicine and Rady Children's Hospital, San Diego, CA, USA
| | - Iris A Reyes
- Rady Children's Institute for Genomic Medicine and Rady Children's Hospital, San Diego, CA, USA
| | - Janell Kierstein
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, CO, USA
| | - Joseph J Shen
- Division of Genomic Medicine, Department of Pediatrics, MIND Institute, UC Davis, Sacramento, CA 95817, USA
| | - Faria N Ahmed
- Division of Genomic Medicine, Department of Pediatrics, UC Davis, Sacramento, CA 95817, USA
| | - Xiao Mao
- National Health Commission Key Laboratory of Birth Defects Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Hunan, China; Nanhua University, Chiayi County, Taiwan
| | - Berta Almoguera
- Department of Genetics and Genomics, Fundacion Jimenez Diaz University Hospital, Health Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics and Genomics, Fundacion Jimenez Diaz University Hospital, Health Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, German
| | | | - Juliette Quilichini
- Service de Médecine Génomique des maladies de système et d'organe, APHP, Centre Université Paris Cité, Paris, France
| | - Alexia Bourgois
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, UR 7450 BioTARGen, FHU G4 Genomics, Caen, France
| | - Nicolas Chatron
- Department of Genetics, Lyon University Hospital, Lyon, France; Pathophysiology and Genetics of Neuron and Muscle (PGNM, UCBL - CNRS UMR5261 - INSERM U1315), Université Claude Bernard Lyon 1, Lyon, France
| | - Louis Januel
- Department of Genetics, Lyon University Hospital, Lyon, France
| | | | | | | | - Justine Rousseau
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Kenneth A Myers
- Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada.
| | - Asifa Akhtar
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Philippe M Campeau
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, University of Montreal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
6
|
Zhang J, Li H, Niswander LA. m 5C methylated lncRncr3-MeCP2 interaction restricts miR124a-initiated neurogenesis. Nat Commun 2024; 15:5136. [PMID: 38879605 PMCID: PMC11180186 DOI: 10.1038/s41467-024-49368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/03/2024] [Indexed: 06/19/2024] Open
Abstract
Coordination of neuronal differentiation with expansion of the neuroepithelial/neural progenitor cell (NEPC/NPC) pool is essential in early brain development. Our in vitro and in vivo studies identify independent and opposing roles for two neural-specific and differentially expressed non-coding RNAs derived from the same locus: the evolutionarily conserved lncRNA Rncr3 and the embedded microRNA miR124a-1. Rncr3 regulates NEPC/NPC proliferation and controls the biogenesis of miR124a, which determines neuronal differentiation. Rncr3 conserved exons 2/3 are cytosine methylated and bound by methyl-CpG binding protein MeCP2, which restricts expression of miR124a embedded in exon 4 to prevent premature neuronal differentiation, and to orchestrate proper brain growth. MeCP2 directly binds cytosine-methylated Rncr3 through previously unrecognized lysine residues and suppresses miR124a processing by recruiting PTBP1 to block access of DROSHA-DGCR8. Thus, miRNA processing is controlled by lncRNA m5C methylation along with the defined m5C epitranscriptomic RNA reader protein MeCP2 to coordinate brain development.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Huili Li
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
7
|
de Talhouët C, Esteras N, Soutar MPM, O'Callaghan B, Plun-Favreau H. KAT8 compound inhibition inhibits the initial steps of PINK1-dependant mitophagy. Sci Rep 2024; 14:11721. [PMID: 38777823 PMCID: PMC11111795 DOI: 10.1038/s41598-024-60602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
It has recently been shown that KAT8, a genome-wide association study candidate risk gene for Parkinson's Disease, is involved in PINK1/Parkin-dependant mitophagy. The KAT8 gene encodes a lysine acetyltransferase and represents the catalytically active subunit of the non-specific lethal epigenetic remodelling complex. In the current study, we show that contrary to KAT5 inhibition, dual inhibition of KAT5 and KAT8 via the MG149 compound inhibits the initial steps of the PINK1-dependant mitophagy process. More specifically, our study shows that following mitochondrial depolarisation induced by mitochondrial toxins, MG149 treatment inhibits PINK1-dependant mitophagy initiation by impairing PINK1 activation, and subsequent phosphorylation of Parkin and ubiquitin. While this inhibitory effect of MG149 on PINK1-activation is potent, MG149 treatment in the absence of mitochondrial toxins is sufficient to depolarise the mitochondrial membrane, recruit PINK1 and promote partial downstream recruitment of the autophagy receptor p62, leading to an increase in mitochondrial delivery to the lysosomes. Altogether, our study provides additional support for KAT8 as a regulator of mitophagy and autophagy processes.
Collapse
Affiliation(s)
- Capucine de Talhouët
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Noemi Esteras
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Marc P M Soutar
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Benjamin O'Callaghan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Helene Plun-Favreau
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
8
|
Yoo L, Mendoza D, Richard AJ, Stephens JM. KAT8 beyond Acetylation: A Survey of Its Epigenetic Regulation, Genetic Variability, and Implications for Human Health. Genes (Basel) 2024; 15:639. [PMID: 38790268 PMCID: PMC11121512 DOI: 10.3390/genes15050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Lysine acetyltransferase 8, also known as KAT8, is an enzyme involved in epigenetic regulation, primarily recognized for its ability to modulate histone acetylation. This review presents an overview of KAT8, emphasizing its biological functions, which impact many cellular processes and range from chromatin remodeling to genetic and epigenetic regulation. In many model systems, KAT8's acetylation of histone H4 lysine 16 (H4K16) is critical for chromatin structure modification, which influences gene expression, cell proliferation, differentiation, and apoptosis. Furthermore, this review summarizes the observed genetic variability within the KAT8 gene, underscoring the implications of various single nucleotide polymorphisms (SNPs) that affect its functional efficacy and are linked to diverse phenotypic outcomes, ranging from metabolic traits to neurological disorders. Advanced insights into the structural biology of KAT8 reveal its interaction with multiprotein assemblies, such as the male-specific lethal (MSL) and non-specific lethal (NSL) complexes, which regulate a wide range of transcriptional activities and developmental functions. Additionally, this review focuses on KAT8's roles in cellular homeostasis, stem cell identity, DNA damage repair, and immune response, highlighting its potential as a therapeutic target. The implications of KAT8 in health and disease, as evidenced by recent studies, affirm its importance in cellular physiology and human pathology.
Collapse
Affiliation(s)
- Lindsey Yoo
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David Mendoza
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
9
|
Liu Y, Fan M, Yang J, Mihaljević L, Chen KH, Ye Y, Sun S, Qiu Z. KAT6A deficiency impairs cognitive functions through suppressing RSPO2/Wnt signaling in hippocampal CA3. SCIENCE ADVANCES 2024; 10:eadm9326. [PMID: 38758792 PMCID: PMC11100567 DOI: 10.1126/sciadv.adm9326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Intellectual disability (ID) affects ~2% of the population and ID-associated genes are enriched for epigenetic factors, including those encoding the largest family of histone lysine acetyltransferases (KAT5-KAT8). Among them is KAT6A, whose mutations cause KAT6A syndrome, with ID as a common clinical feature. However, the underlying molecular mechanism remains unknown. Here, we find that KAT6A deficiency impairs synaptic structure and plasticity in hippocampal CA3, but not in CA1 region, resulting in memory deficits in mice. We further identify a CA3-enriched gene Rspo2, encoding Wnt activator R-spondin 2, as a key transcriptional target of KAT6A. Deletion of Rspo2 in excitatory neurons impairs memory formation, and restoring RSPO2 expression in CA3 neurons rescues the deficits in Wnt signaling and learning-associated behaviors in Kat6a mutant mice. Collectively, our results demonstrate that KAT6A-RSPO2-Wnt signaling plays a critical role in regulating hippocampal CA3 synaptic plasticity and cognitive function, providing potential therapeutic targets for KAT6A syndrome and related neurodevelopmental diseases.
Collapse
Affiliation(s)
- Yongqing Liu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Minghua Fan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ljubica Mihaljević
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kevin Hong Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Wang Y, Sarnowski C, Lin H, Pitsillides AN, Heard‐Costa NL, Choi SH, Wang D, Bis JC, Blue EE, Boerwinkle E, De Jager PL, Fornage M, Wijsman EM, Seshadri S, Dupuis J, Peloso GM, DeStefano AL. Key variants via the Alzheimer's Disease Sequencing Project whole genome sequence data. Alzheimers Dement 2024; 20:3290-3304. [PMID: 38511601 PMCID: PMC11095439 DOI: 10.1002/alz.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383) and targeted analyses in subpopulations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.
Collapse
Affiliation(s)
- Yanbing Wang
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
| | - Chloé Sarnowski
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
- Human Genetics CenterDepartment of EpidemiologySchool of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Honghuang Lin
- Department of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Nancy L. Heard‐Costa
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Seung Hoan Choi
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
| | - Dongyu Wang
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
| | - Joshua C. Bis
- Cardiovascular Health Research UnitDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Elizabeth E. Blue
- Department of MedicineDivision of Medical GeneticsUniversity of WashingtonSeattleWashingtonUSA
- Brotman Baty InstituteSeattleWashingtonUSA
| | | | - Eric Boerwinkle
- Human Genetics CenterDepartment of EpidemiologySchool of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Philip L. De Jager
- Center for Translational & Computational NeuroimmunologyDepartment of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Myriam Fornage
- Human Genetics CenterDepartment of EpidemiologySchool of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- Brown Foundation Institute of Molecular MedicineMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Ellen M. Wijsman
- Division of Medical Genetics and Department Biostatistics Statistical Genetics LabUniversity of WashingtonHans Rosling Center for Population HealthSeattleWashingtonUSA
| | - Sudha Seshadri
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Josée Dupuis
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
- Department of Epidemiology, Biostatistics and Occupational HealthSchool of Population and Global HealthMcGill UniversityMontrealQuebecCanada
| | - Gina M. Peloso
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
| | - Anita L. DeStefano
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | | |
Collapse
|
11
|
Bhore N, Bogacki EC, O'Callaghan B, Plun-Favreau H, Lewis PA, Herbst S. Common genetic risk for Parkinson's disease and dysfunction of the endo-lysosomal system. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220517. [PMID: 38368938 PMCID: PMC10874702 DOI: 10.1098/rstb.2022.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/18/2023] [Indexed: 02/20/2024] Open
Abstract
Parkinson's disease is a progressive neurological disorder, characterized by prominent movement dysfunction. The past two decades have seen a rapid expansion of our understanding of the genetic basis of Parkinson's, initially through the identification of monogenic forms and, more recently, through genome-wide association studies identifying common risk variants. Intriguingly, a number of cellular pathways have emerged from these analysis as playing central roles in the aetiopathogenesis of Parkinson's. In this review, the impact of data deriving from genome-wide analyses for Parkinson's upon our functional understanding of the disease will be examined, with a particular focus on examples of endo-lysosomal and mitochondrial dysfunction. The challenges of moving from a genetic to a functional understanding of common risk variants for Parkinson's will be discussed, with a final consideration of the current state of the genetic architecture of the disorder. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Noopur Bhore
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
| | - Erin C. Bogacki
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Benjamin O'Callaghan
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Helene Plun-Favreau
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Patrick A. Lewis
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Susanne Herbst
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
12
|
Qian P, Wang S, Zhang T, Wu J. Transcriptional Expression of Histone Acetyltransferases and Deacetylases During the Recovery of Acute Exercise in Mouse Hippocampus. J Mol Neurosci 2024; 74:34. [PMID: 38565829 DOI: 10.1007/s12031-024-02215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Protein acetylation, which is dynamically maintained by histone acetyltransferases (HATs) and deacetylases (HDACs), might play essential roles in hippocampal exercise physiology. However, whether HATs/HDACs are imbalanced during the recovery phase following acute exercise has not been determined. Groups of exercised mice with different recovery periods after acute exercise (0 h, 0.5 h, 1 h, 4 h, 7 h, and 24 h) were constructed, and a group of sham-exercised mice was used as the control. The mRNA levels of HATs and HDACs were detected via real-time quantitative polymerase chain reaction. Lysine acetylation on the total proteins and some specific locations on histones were detected via western blotting, as were various acylation modifications on the total proteins. Except for four unaffected genes (Hdac4, Ncoa1, Ncoa2, and Sirt1), the mRNA expression trajectories of 21 other HATs or HDACs affected by exercise could be categorized into three clusters. The genes in Cluster 1 increased quickly following exercise, with a peak at 0.5 h and/or 1 h, and remained at high levels until 24 h. Cluster 2 genes presented a gradual increase with a delayed peak at 4 h or 7 h postexercise before returning to baseline. The expression of Cluster 3 genes decreased at 0.5 h and/or 1 h, with some returning to overexpression (Hdac1 and Sirt3). Although most HATs were upregulated and half of the affected HDACs were downregulated at 0.5 h postexercise, the global or residue-specific histone acetylation levels were unchanged. In contrast, the levels of several metabolism-related acylation products of total proteins, including acetylation, succinylation, 2-hydroxyisobutyryllysine, β-hydroxybutyryllysine, and lactylation, decreased and mainly occurred on nonhistones immediately after exercise. During the 24-h recovery phase after acute exercise, the transcriptional trajectory of HATs or the same class of HDACs in the hippocampus exhibited heterogeneity. Although acute exercise did not affect the selected sites on histone lysine residues, it possibly incurred changes in acetylation and other acylation on nonhistone proteins.
Collapse
Affiliation(s)
- Ping Qian
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
- Department of Internal Medicine, Affiliated Children Hospital of Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
- Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
13
|
Xuan H, Xu L, Li K, Xuan F, Xu T, Wen H, Shi X. Hotspot Cancer Mutation Impairs KAT8-mediated Nucleosomal Histone Acetylation. J Mol Biol 2024; 436:168413. [PMID: 38135180 PMCID: PMC10957314 DOI: 10.1016/j.jmb.2023.168413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
KAT8 is an evolutionarily conserved lysine acetyltransferase that catalyzes histone acetylation at H4K16 or H4K5 and H4K8 through distinct protein complexes. It plays a pivotal role in male X chromosome dosage compensation in Drosophila and is implicated in the regulation of diverse cellular processes in mammals. Mutations and dysregulation of KAT8 have been reported in human neurodevelopmental disorders and various cancers. However, the precise mechanisms by which these mutations disrupt KAT8's normal function, leading to disease pathogenesis, remain largely unknown. In this study, we focus on a hotspot missense cancer mutation, the R98W point mutation within the Tudor-knot domain. Our study reveals that the R98W mutation leads to a reduction in global H4K16ac levels in cells and downregulates the expression of target genes. Mechanistically, we demonstrate that R98 is essential for KAT8-mediated acetylation of nucleosomal histones by modulating substrate accessibility.
Collapse
Affiliation(s)
- Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Longxia Xu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kuai Li
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Fan Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Tinghai Xu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hong Wen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
14
|
Lewerissa EI, Nadif Kasri N, Linda K. Epigenetic regulation of autophagy-related genes: Implications for neurodevelopmental disorders. Autophagy 2024; 20:15-28. [PMID: 37674294 PMCID: PMC10761153 DOI: 10.1080/15548627.2023.2250217] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily highly conserved catabolic process that is important for the clearance of cytosolic contents to maintain cellular homeostasis and survival. Recent findings point toward a critical role for autophagy in brain function, not only by preserving neuronal health, but especially by controlling different aspects of neuronal development and functioning. In line with this, mutations in autophagy-related genes are linked to various key characteristics and symptoms of neurodevelopmental disorders (NDDs), including autism, micro-/macrocephaly, and epilepsy. However, the group of NDDs caused by mutations in autophagy-related genes is relatively small. A significant proportion of NDDs are associated with mutations in genes encoding epigenetic regulatory proteins that modulate gene expression, so-called chromatinopathies. Intriguingly, several of the NDD-linked chromatinopathy genes have been shown to regulate autophagy-related genes, albeit in non-neuronal contexts. From these studies it becomes evident that tight transcriptional regulation of autophagy-related genes is crucial to control autophagic activity. This opens the exciting possibility that aberrant autophagic regulation might underly nervous system impairments in NDDs with disturbed epigenetic regulation. We here summarize NDD-related chromatinopathy genes that are known to regulate transcriptional regulation of autophagy-related genes. Thereby, we want to highlight autophagy as a candidate key hub mechanism in NDD-related chromatinopathies.Abbreviations: ADNP: activity dependent neuroprotector homeobox; ASD: autism spectrum disorder; ATG: AutTophaGy related; CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; EHMT: euchromatic histone lysine methyltransferase; EP300: E1A binding protein p300; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; H3K4me3: histone 3 lysine 4 trimethylation; H3K9me1/2/3: histone 3 lysine 9 mono-, di-, or trimethylation; H3K27me2/3: histone 3 lysine 27 di-, or trimethylation; hiPSCs: human induced pluripotent stem cells; HSP: hereditary spastic paraplegia; ID: intellectual disability; KANSL1: KAT8 regulatory NSL complex subunit 1; KAT8: lysine acetyltransferase 8; KDM1A/LSD1: lysine demethylase 1A; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NDD: neurodevelopmental disorder; PHF8: PHD finger protein 8; PHF8-XLID: PHF8-X linked intellectual disability syndrome; PTM: post-translational modification; SESN2: sestrin 2; YY1: YY1 transcription factor; YY1AP1: YY1 associated protein 1.
Collapse
Affiliation(s)
- Elly I. Lewerissa
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Gelderland, The Netherlands
| | - Katrin Linda
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Flemish Brabant, Belgium
- Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Flemish Brabant, Belgium
| |
Collapse
|
15
|
Niemi N. MOF moves into mitochondria. Nat Metab 2023; 5:1846-1847. [PMID: 37813993 DOI: 10.1038/s42255-023-00892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Affiliation(s)
- Natalie Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
16
|
Guhathakurta S, Erdogdu NU, Hoffmann JJ, Grzadzielewska I, Schendzielorz A, Seyfferth J, Mårtensson CU, Corrado M, Karoutas A, Warscheid B, Pfanner N, Becker T, Akhtar A. COX17 acetylation via MOF-KANSL complex promotes mitochondrial integrity and function. Nat Metab 2023; 5:1931-1952. [PMID: 37813994 PMCID: PMC10663164 DOI: 10.1038/s42255-023-00904-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Reversible acetylation of mitochondrial proteins is a regulatory mechanism central to adaptive metabolic responses. Yet, how such functionally relevant protein acetylation is achieved remains unexplored. Here we reveal an unprecedented role of the MYST family lysine acetyltransferase MOF in energy metabolism via mitochondrial protein acetylation. Loss of MOF-KANSL complex members leads to mitochondrial defects including fragmentation, reduced cristae density and impaired mitochondrial electron transport chain complex IV integrity in primary mouse embryonic fibroblasts. We demonstrate COX17, a complex IV assembly factor, as a bona fide acetylation target of MOF. Loss of COX17 or expression of its non-acetylatable mutant phenocopies the mitochondrial defects observed upon MOF depletion. The acetylation-mimetic COX17 rescues these defects and maintains complex IV activity even in the absence of MOF, suggesting an activatory role of mitochondrial electron transport chain protein acetylation. Fibroblasts from patients with MOF syndrome who have intellectual disability also revealed respiratory defects that could be restored by alternative oxidase, acetylation-mimetic COX17 or mitochondrially targeted MOF. Overall, our findings highlight the critical role of MOF-KANSL complex in mitochondrial physiology and provide new insights into MOF syndrome.
Collapse
Affiliation(s)
- Sukanya Guhathakurta
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Niyazi Umut Erdogdu
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliane J Hoffmann
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Iga Grzadzielewska
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Janine Seyfferth
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Christoph U Mårtensson
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mauro Corrado
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Adam Karoutas
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Wang Y, Sarnowski C, Lin H, Pitsillides AN, Heard-Costa NL, Choi SH, Wang D, Bis JC, Blue EE, Boerwinkle E, De Jager PL, Fornage M, Wijsman EM, Seshadri S, Dupuis J, Peloso GM, DeStefano AL. Key variants via Alzheimer's Disease Sequencing Project whole genome sequence data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.28.23294631. [PMID: 37693453 PMCID: PMC10491364 DOI: 10.1101/2023.08.28.23294631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases=2,184, N controls=2,383) and targeted analyses in sub-populations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.
Collapse
Affiliation(s)
- Yanbing Wang
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Chloé Sarnowski
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Nancy L Heard-Costa
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Seung Hoan Choi
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Dongyu Wang
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth E Blue
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
- Brotman Baty Institute, Seattle, WA, USA
| | | | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ellen M Wijsman
- Div. of Medical Genetics and Dept. Biostatistics Statistical Genetics Lab, University of Washington, Seattle, WA, USA
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, MA, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Boston University School of Medicine, Department of Neurology, Boston, MA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montreal, Canada
| | - Gina M Peloso
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Anita L DeStefano
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | | |
Collapse
|
18
|
Tsang TH, Wiese M, Helmstädter M, Stehle T, Seyfferth J, Shvedunova M, Holz H, Walz G, Akhtar A. Transcriptional regulation by the NSL complex enables diversification of IFT functions in ciliated versus nonciliated cells. SCIENCE ADVANCES 2023; 9:eadh5598. [PMID: 37624894 PMCID: PMC10456878 DOI: 10.1126/sciadv.adh5598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Members of the NSL histone acetyltransferase complex are involved in multiorgan developmental syndromes. While the NSL complex is known for its importance in early development, its role in fully differentiated cells remains enigmatic. Using a kidney-specific model, we discovered that deletion of NSL complex members KANSL2 or KANSL3 in postmitotic podocytes led to catastrophic kidney dysfunction. Systematic comparison of two primary differentiated cell types reveals the NSL complex as a master regulator of intraciliary transport genes in both dividing and nondividing cells. NSL complex ablation led to loss of cilia and impaired sonic hedgehog pathway in ciliated fibroblasts. By contrast, nonciliated podocytes responded with altered microtubule dynamics and obliterated podocyte functions. Finally, overexpression of wild-type but not a double zinc finger (ZF-ZF) domain mutant of KANSL2 rescued the transcriptional defects, revealing a critical function of this domain in NSL complex assembly and function. Thus, the NSL complex exhibits bifurcation of functions to enable diversity of specialized outcomes in differentiated cells.
Collapse
Affiliation(s)
- Tsz Hong Tsang
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), 79108 Freiburg, Germany
| | - Meike Wiese
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Thomas Stehle
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Janine Seyfferth
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Maria Shvedunova
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Herbert Holz
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| |
Collapse
|
19
|
Pal D, Patel M, Boulet F, Sundarraj J, Grant OA, Branco MR, Basu S, Santos SDM, Zabet NR, Scaffidi P, Pradeepa MM. H4K16ac activates the transcription of transposable elements and contributes to their cis-regulatory function. Nat Struct Mol Biol 2023; 30:935-947. [PMID: 37308596 PMCID: PMC10352135 DOI: 10.1038/s41594-023-01016-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 05/05/2023] [Indexed: 06/14/2023]
Abstract
Mammalian genomes harbor abundant transposable elements (TEs) and their remnants, with numerous epigenetic repression mechanisms enacted to silence TE transcription. However, TEs are upregulated during early development, neuronal lineage, and cancers, although the epigenetic factors contributing to the transcription of TEs have yet to be fully elucidated. Here, we demonstrate that the male-specific lethal (MSL)-complex-mediated histone H4 acetylation at lysine 16 (H4K16ac) is enriched at TEs in human embryonic stem cells (hESCs) and cancer cells. This in turn activates transcription of subsets of full-length long interspersed nuclear elements (LINE1s, L1s) and endogenous retrovirus (ERV) long terminal repeats (LTRs). Furthermore, we show that the H4K16ac-marked L1 and LTR subfamilies display enhancer-like functions and are enriched in genomic locations with chromatin features associated with active enhancers. Importantly, such regions often reside at boundaries of topologically associated domains and loop with genes. CRISPR-based epigenetic perturbation and genetic deletion of L1s reveal that H4K16ac-marked L1s and LTRs regulate the expression of genes in cis. Overall, TEs enriched with H4K16ac contribute to the cis-regulatory landscape at specific genomic locations by maintaining an active chromatin landscape at TEs.
Collapse
Affiliation(s)
- Debosree Pal
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Manthan Patel
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fanny Boulet
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jayakumar Sundarraj
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Bhabha Atomic Research Centre, Mumbai, India
| | - Olivia A Grant
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- School of Life Sciences, University of Essex, Colchester, UK
| | - Miguel R Branco
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Srinjan Basu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Nicolae Radu Zabet
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Paola Scaffidi
- Francis Crick Institute, London, UK
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Madapura M Pradeepa
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
20
|
Wainberg M, Andrews SJ, Tripathy SJ. Shared genetic risk loci between Alzheimer's disease and related dementias, Parkinson's disease, and amyotrophic lateral sclerosis. Alzheimers Res Ther 2023; 15:113. [PMID: 37328865 PMCID: PMC10273745 DOI: 10.1186/s13195-023-01244-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have indicated moderate genetic overlap between Alzheimer's disease (AD) and related dementias (ADRD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), neurodegenerative disorders traditionally considered etiologically distinct. However, the specific genetic variants and loci underlying this overlap remain almost entirely unknown. METHODS We leveraged state-of-the-art GWAS for ADRD, PD, and ALS. For each pair of disorders, we examined each of the GWAS hits for one disorder and tested whether they were also significant for the other disorder, applying Bonferroni correction for the number of variants tested. This approach rigorously controls the family-wise error rate for both disorders, analogously to genome-wide significance. RESULTS Eleven loci with GWAS hits for one disorder were also associated with one or both of the other disorders: one with all three disorders (the MAPT/KANSL1 locus), five with ADRD and PD (near LCORL, CLU, SETD1A/KAT8, WWOX, and GRN), three with ADRD and ALS (near GPX3, HS3ST5/HDAC2/MARCKS, and TSPOAP1), and two with PD and ALS (near GAK/TMEM175 and NEK1). Two of these loci (LCORL and NEK1) were associated with an increased risk of one disorder but decreased risk of another. Colocalization analysis supported a shared causal variant between ADRD and PD at the CLU, WWOX, and LCORL loci, between ADRD and ALS at the TSPOAP1 locus, and between PD and ALS at the NEK1 and GAK/TMEM175 loci. To address the concern that ADRD is an imperfect proxy for AD and that the ADRD and PD GWAS have overlapping participants (nearly all of which are from the UK Biobank), we confirmed that all our ADRD associations had nearly identical odds ratios in an AD GWAS that excluded the UK Biobank, and all but one remained nominally significant (p < 0.05) for AD. CONCLUSIONS In one of the most comprehensive investigations to date of pleiotropy between neurodegenerative disorders, we identify eleven genetic risk loci shared among ADRD, PD, and ALS. These loci support lysosomal/autophagic dysfunction (GAK/TMEM175, GRN, KANSL1), neuroinflammation/immunity (TSPOAP1), oxidative stress (GPX3, KANSL1), and the DNA damage response (NEK1) as transdiagnostic processes underlying multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Michael Wainberg
- Centre for Addiction and Mental Health, 250 College Street, Toronto, M5T 1R8, Canada
| | - Shea J Andrews
- Department of Psychiatry & Behavioral Sciences, University of California San Francisco, San Francisco, 94143, USA
| | - Shreejoy J Tripathy
- Centre for Addiction and Mental Health, 250 College Street, Toronto, M5T 1R8, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada.
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada.
| |
Collapse
|
21
|
Tominaga K, Sakashita E, Kasashima K, Kuroiwa K, Nagao Y, Iwamori N, Endo H. Tip60/KAT5 Histone Acetyltransferase Is Required for Maintenance and Neurogenesis of Embryonic Neural Stem Cells. Int J Mol Sci 2023; 24:ijms24032113. [PMID: 36768434 PMCID: PMC9916716 DOI: 10.3390/ijms24032113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Epigenetic regulation via epigenetic factors in collaboration with tissue-specific transcription factors is curtail for establishing functional organ systems during development. Brain development is tightly regulated by epigenetic factors, which are coordinately activated or inactivated during processes, and their dysregulation is linked to brain abnormalities and intellectual disability. However, the precise mechanism of epigenetic regulation in brain development and neurogenesis remains largely unknown. Here, we show that Tip60/KAT5 deletion in neural stem/progenitor cells (NSCs) in mice results in multiple abnormalities of brain development. Tip60-deficient embryonic brain led to microcephaly, and proliferating cells in the developing brain were reduced by Tip60 deficiency. In addition, neural differentiation and neuronal migration were severely affected in Tip60-deficient brains. Following neurogenesis in developing brains, gliogenesis started from the earlier stage of development in Tip60-deficient brains, indicating that Tip60 is involved in switching from neurogenesis to gliogenesis during brain development. It was also confirmed in vitro that poor neurosphere formation, proliferation defects, neural differentiation defects, and accelerated astrocytic differentiation in mutant NSCs are derived from Tip60-deficient embryonic brains. This study uncovers the critical role of Tip60 in brain development and NSC maintenance and function in vivo and in vitro.
Collapse
Affiliation(s)
- Kaoru Tominaga
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
- Correspondence: (K.T.); (N.I.)
| | - Eiji Sakashita
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Katsumi Kasashima
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Kenji Kuroiwa
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Yasumitsu Nagao
- Center for Experimental Medicine, Jichi Medical University, Tochigi 321-0498, Japan
| | - Naoki Iwamori
- Department of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (K.T.); (N.I.)
| | - Hitoshi Endo
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| |
Collapse
|
22
|
Ford TJL, Jeon BT, Lee H, Kim WY. Dendritic spine and synapse pathology in chromatin modifier-associated autism spectrum disorders and intellectual disability. Front Mol Neurosci 2023; 15:1048713. [PMID: 36743289 PMCID: PMC9892461 DOI: 10.3389/fnmol.2022.1048713] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Formation of dendritic spine and synapse is an essential final step of brain wiring to establish functional communication in the developing brain. Recent findings have displayed altered dendritic spine and synapse morphogenesis, plasticity, and related molecular mechanisms in animal models and post-mortem human brains of autism spectrum disorders (ASD) and intellectual disability (ID). Many genes and proteins are shown to be associated with spines and synapse development, and therefore neurodevelopmental disorders. In this review, however, particular attention will be given to chromatin modifiers such as AT-Rich Interactive Domain 1B (ARID1B), KAT8 regulatory non-specific lethal (NSL) complex subunit 1 (KANSL1), and WD Repeat Domain 5 (WDR5) which are among strong susceptibility factors for ASD and ID. Emerging evidence highlights the critical status of these chromatin remodeling molecules in dendritic spine morphogenesis and synaptic functions. Molecular and cellular insights of ARID1B, KANSL1, and WDR5 will integrate into our current knowledge in understanding and interpreting the pathogenesis of ASD and ID. Modulation of their activities or levels may be an option for potential therapeutic treatment strategies for these neurodevelopmental conditions.
Collapse
|
23
|
Soutar MPM, Melandri D, O’Callaghan B, Annuario E, Monaghan AE, Welsh NJ, D’Sa K, Guelfi S, Zhang D, Pittman A, Trabzuni D, Verboven AHA, Pan KS, Kia DA, Bictash M, Gandhi S, Houlden H, Cookson MR, Kasri NN, Wood NW, Singleton AB, Hardy J, Whiting PJ, Blauwendraat C, Whitworth AJ, Manzoni C, Ryten M, Lewis PA, Plun-Favreau H. Regulation of mitophagy by the NSL complex underlies genetic risk for Parkinson's disease at 16q11.2 and MAPT H1 loci. Brain 2022; 145:4349-4367. [PMID: 36074904 PMCID: PMC9762952 DOI: 10.1093/brain/awac325] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 02/02/2023] Open
Abstract
Parkinson's disease is a common incurable neurodegenerative disease. The identification of genetic variants via genome-wide association studies has considerably advanced our understanding of the Parkinson's disease genetic risk. Understanding the functional significance of the risk loci is now a critical step towards translating these genetic advances into an enhanced biological understanding of the disease. Impaired mitophagy is a key causative pathway in familial Parkinson's disease, but its relevance to idiopathic Parkinson's disease is unclear. We used a mitophagy screening assay to evaluate the functional significance of risk genes identified through genome-wide association studies. We identified two new regulators of PINK1-dependent mitophagy initiation, KAT8 and KANSL1, previously shown to modulate lysine acetylation. These findings suggest PINK1-mitophagy is a contributing factor to idiopathic Parkinson's disease. KANSL1 is located on chromosome 17q21 where the risk associated gene has long been considered to be MAPT. While our data do not exclude a possible association between the MAPT gene and Parkinson's disease, they provide strong evidence that KANSL1 plays a crucial role in the disease. Finally, these results enrich our understanding of physiological events regulating mitophagy and establish a novel pathway for drug targeting in neurodegeneration.
Collapse
Affiliation(s)
- Marc P M Soutar
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Daniela Melandri
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Benjamin O’Callaghan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Emily Annuario
- Department of Basic and Clinical Neuroscience, King’s College, London, UK
| | - Amy E Monaghan
- UCL Alzheimer’s Research UK, Drug Discovery Institute, London, UK
- UCL Dementia Research Institute, London, UK
| | - Natalie J Welsh
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Karishma D’Sa
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Francis Crick Institute, London, UK
| | - Sebastian Guelfi
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - David Zhang
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alan Pittman
- Genetics Research Centre, Molecular and Clinical Sciences, St Georges University, London, UK
| | - Daniah Trabzuni
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Anouk H A Verboven
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Kylie S Pan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Demis A Kia
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Magda Bictash
- UCL Alzheimer’s Research UK, Drug Discovery Institute, London, UK
- UCL Dementia Research Institute, London, UK
| | - Sonia Gandhi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Francis Crick Institute, London, UK
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Nicholas W Wood
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- UCL Dementia Research Institute, London, UK
| | - Paul J Whiting
- UCL Alzheimer’s Research UK, Drug Discovery Institute, London, UK
- UCL Dementia Research Institute, London, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Claudia Manzoni
- Department of Pharmacology, UCL School of Pharmacy, London, UK
| | - Mina Ryten
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Patrick A Lewis
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Comparative Biomedical Sciences, Royal Veterinary College, LondonUK
| | - Hélène Plun-Favreau
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
24
|
Janas JA, Zhang L, Luu JH, Demeter J, Meng L, Marro SG, Mall M, Mooney NA, Schaukowitch K, Ng YH, Yang N, Huang Y, Neumayer G, Gozani O, Elias JE, Jackson PK, Wernig M. Tip60-mediated H2A.Z acetylation promotes neuronal fate specification and bivalent gene activation. Mol Cell 2022; 82:4627-4646.e14. [PMID: 36417913 PMCID: PMC9779922 DOI: 10.1016/j.molcel.2022.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
Cell lineage specification is accomplished by a concerted action of chromatin remodeling and tissue-specific transcription factors. However, the mechanisms that induce and maintain appropriate lineage-specific gene expression remain elusive. Here, we used an unbiased proteomics approach to characterize chromatin regulators that mediate the induction of neuronal cell fate. We found that Tip60 acetyltransferase is essential to establish neuronal cell identity partly via acetylation of the histone variant H2A.Z. Despite its tight correlation with gene expression and active chromatin, loss of H2A.Z acetylation had little effect on chromatin accessibility or transcription. Instead, loss of Tip60 and acetyl-H2A.Z interfered with H3K4me3 deposition and activation of a unique subset of silent, lineage-restricted genes characterized by a bivalent chromatin configuration at their promoters. Altogether, our results illuminate the mechanisms underlying bivalent chromatin activation and reveal that H2A.Z acetylation regulates neuronal fate specification by establishing epigenetic competence for bivalent gene activation and cell lineage transition.
Collapse
Affiliation(s)
- Justyna A Janas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lichao Zhang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacklyn H Luu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lingjun Meng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samuele G Marro
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Moritz Mall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nancie A Mooney
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katie Schaukowitch
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Han Ng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nan Yang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuhao Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gernot Neumayer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter K Jackson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Wu YY, Yang C, Yan HJ, Lu P, Zhang L, Feng WC, Long YS. Lysine acetylome profiling in mouse hippocampus and its alterations upon FMRP deficiency linked to abnormal energy metabolism. J Proteomics 2022; 269:104720. [PMID: 36089189 DOI: 10.1016/j.jprot.2022.104720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/07/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Loss of fragile X retardation protein (FMRP) leads to fragile X syndrome (FXS), a common cause of inherited intellectual disability. Protein lysine acetylation (K-ac), a reversible post-translational modification of proteins, is associated with the regulation of brain development and neuropathies. However, a comprehensive hippocampal K-ac protein profile in response to FMRP deficiency has not been reported until now. Using LC-MS/MS to analyze the enriched K-ac peptides, this study identified 1629 K-ac hits across 717 proteins in the mouse hippocampus, and these proteins were enriched in several metabolic processes. Of them, 51 K-ac hits across 45 proteins were significantly changed upon loss of FMRP. These altered K-ac proteins were enriched in energy metabolic processes including carboxylic acid metabolism process, aerobic respiration and citrate cycle, linking with several neurological disorders such as lactic acidosis, Lewy body disease, Leigh disease and encephalopathies. In the mouse hippocampus and the hippocampal HT-22 cells, FMRP deficiency could induce altered K-ac modification of several key enzymes, decrease in ATP and increase in lactate. Thus, this study identified a global hippocampal lysine acetylome and an altered K-ac protein profile upon loss of FMRP linked to abnormal energy metabolism, implicating in the pathogenesis of FXS. SIGNIFICANCE: Fragile X syndrome (FXS) is a common inherited neurodevelopment disorder characterized by intellectual disability and an increased risk for autism spectrum disorder. FXS is resulted from silencing of the FMR1 gene, which induces loss of its encoding protein FMRP. Molecular and metabolic changes of Fmr1-null animal models of FXS have been identified to potentially contribute to the pathogenesis of FXS. Here, we used a TMT-labeled quantitative proteomic analysis of the peptides enriched by anti-K-ac antibodies and identified a global K-ac protein profile in the mouse hippocampus with a total of 1629 K-ac peptides on 717 proteins. Of them, 51 K-ac peptides regarding 45 proteins altered in response to loss of FMRP, which were enriched in energy metabolic processes and were implicated in several neurological disorders. Thus this study for the first time provides a global hippocampal lysine acetylome upon FMRP deficiency linked to abnormal metabolic pathways, which may contribute to pathogenic mechanism of FXS.
Collapse
Affiliation(s)
- Yue-Ying Wu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Cui Yang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Hua-Juan Yan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ping Lu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Li Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Weng-Cai Feng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yue-Sheng Long
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
26
|
Tissink E, de Lange SC, Savage JE, Wightman DP, de Leeuw CA, Kelly KM, Nagel M, van den Heuvel MP, Posthuma D. Genome-wide association study of cerebellar volume provides insights into heritable mechanisms underlying brain development and mental health. Commun Biol 2022; 5:710. [PMID: 35842455 PMCID: PMC9288439 DOI: 10.1038/s42003-022-03672-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cerebellar volume is highly heritable and associated with neurodevelopmental and neurodegenerative disorders. Understanding the genetic architecture of cerebellar volume may improve our insight into these disorders. This study aims to investigate the convergence of cerebellar volume genetic associations in close detail. A genome-wide associations study for cerebellar volume was performed in a discovery sample of 27,486 individuals from UK Biobank, resulting in 30 genome-wide significant loci and a SNP heritability of 39.82%. We pinpoint the likely causal variants and those that have effects on amino acid sequence or cerebellar gene-expression. Additionally, 85 genome-wide significant genes were detected and tested for convergence onto biological pathways, cerebellar cell types, human evolutionary genes or developmental stages. Local genetic correlations between cerebellar volume and neurodevelopmental and neurodegenerative disorders reveal shared loci with Parkinson's disease, Alzheimer's disease and schizophrenia. These results provide insights into the heritable mechanisms that contribute to developing a brain structure important for cognitive functioning and mental health.
Collapse
Affiliation(s)
- Elleke Tissink
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Siemon C de Lange
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Douglas P Wightman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Christiaan A de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Kristen M Kelly
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Mats Nagel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands.
- Department of Child and Adolescent Psychiatry, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Park J, Lee K, Kim K, Yi SJ. The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduct Target Ther 2022; 7:217. [PMID: 35794091 PMCID: PMC9259618 DOI: 10.1038/s41392-022-01078-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulatory mechanisms, including DNA methylation, histone modification, chromatin remodeling, and microRNA expression, play critical roles in cell differentiation and organ development through spatial and temporal gene regulation. Neurogenesis is a sophisticated and complex process by which neural stem cells differentiate into specialized brain cell types at specific times and regions of the brain. A growing body of evidence suggests that epigenetic mechanisms, such as histone modifications, allow the fine-tuning and coordination of spatiotemporal gene expressions during neurogenesis. Aberrant histone modifications contribute to the development of neurodegenerative and neuropsychiatric diseases. Herein, recent progress in understanding histone modifications in regulating embryonic and adult neurogenesis is comprehensively reviewed. The histone modifications implicated in neurodegenerative and neuropsychiatric diseases are also covered, and future directions in this area are provided.
Collapse
Affiliation(s)
- Jisu Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
28
|
Schobers G, Schieving JH, Yntema HG, Pennings M, Pfundt R, Derks R, Hofste T, de Wijs I, Wieskamp N, van den Heuvel S, Galbany JC, Gilissen C, Nelen M, Brunner HG, Kleefstra T, Kamsteeg EJ, Willemsen MAAP, Vissers LELM. Reanalysis of exome negative patients with rare disease: a pragmatic workflow for diagnostic applications. Genome Med 2022; 14:66. [PMID: 35710456 PMCID: PMC9204949 DOI: 10.1186/s13073-022-01069-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Approximately two third of patients with a rare genetic disease remain undiagnosed after exome sequencing (ES). As part of our post-test counseling procedures, patients without a conclusive diagnosis are advised to recontact their referring clinician to discuss new diagnostic opportunities in due time. We performed a systematic study of genetically undiagnosed patients 5 years after their initial negative ES report to determine the efficiency of diverse reanalysis strategies. Methods We revisited a cohort of 150 pediatric neurology patients originally enrolled at Radboud University Medical Center, of whom 103 initially remained genetically undiagnosed. We monitored uptake of physician-initiated routine clinical and/or genetic re-evaluation (ad hoc re-evaluation) and performed systematic reanalysis, including ES-based resequencing, of all genetically undiagnosed patients (systematic re-evaluation). Results Ad hoc re-evaluation was initiated for 45 of 103 patients and yielded 18 diagnoses (including 1 non-genetic). Subsequent systematic re-evaluation identified another 14 diagnoses, increasing the diagnostic yield in our cohort from 31% (47/150) to 53% (79/150). New genetic diagnoses were established by reclassification of previously identified variants (10%, 3/31), reanalysis with enhanced bioinformatic pipelines (19%, 6/31), improved coverage after resequencing (29%, 9/31), and new disease-gene associations (42%, 13/31). Crucially, our systematic study also showed that 11 of the 14 further conclusive genetic diagnoses were made in patients without a genetic diagnosis that did not recontact their referring clinician. Conclusions We find that upon re-evaluation of undiagnosed patients, both reanalysis of existing ES data as well as resequencing strategies are needed to identify additional genetic diagnoses. Importantly, not all patients are routinely re-evaluated in clinical care, prolonging their diagnostic trajectory, unless systematic reanalysis is facilitated. We have translated our observations into considerations for systematic and ad hoc reanalysis in routine genetic care. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01069-z.
Collapse
Affiliation(s)
- Gaby Schobers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Jolanda H Schieving
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Pediatric Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje Pennings
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronny Derks
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom Hofste
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilse de Wijs
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nienke Wieskamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simone van den Heuvel
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jordi Corominas Galbany
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Marcel Nelen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michèl A A P Willemsen
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Pediatric Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands. .,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
29
|
Chen D, Wang X, Huang T, Jia J. Sleep and Late-Onset Alzheimer's Disease: Shared Genetic Risk Factors, Drug Targets, Molecular Mechanisms, and Causal Effects. Front Genet 2022; 13:794202. [PMID: 35656316 PMCID: PMC9152224 DOI: 10.3389/fgene.2022.794202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/23/2022] [Indexed: 12/30/2022] Open
Abstract
Late-onset Alzheimer's disease (AD) is associated with sleep-related phenotypes (SRPs). The fact that whether they share a common genetic etiology remains largely unknown. We explored the shared genetics and causality between AD and SRPs by using high-definition likelihood (HDL), cross-phenotype association study (CPASSOC), transcriptome-wide association study (TWAS), and bidirectional Mendelian randomization (MR) in summary-level data for AD (N = 455,258) and summary-level data for seven SRPs (sample size ranges from 359,916 to 1,331,010). AD shared a strong genetic basis with insomnia (r g = 0.20; p = 9.70 × 10-5), snoring (r g = 0.13; p = 2.45 × 10-3), and sleep duration (r g = -0.11; p = 1.18 × 10-3). The CPASSOC identifies 31 independent loci shared between AD and SRPs, including four novel shared loci. Functional analysis and the TWAS showed shared genes were enriched in liver, brain, breast, and heart tissues and highlighted the regulatory roles of immunological disorders, very-low-density lipoprotein particle clearance, triglyceride-rich lipoprotein particle clearance, chylomicron remnant clearance, and positive regulation of T-cell-mediated cytotoxicity pathways. Protein-protein interaction analysis identified three potential drug target genes (APOE, MARK4, and HLA-DRA) that interacted with known FDA-approved drug target genes. The CPASSOC and TWAS demonstrated three regions 11p11.2, 6p22.3, and 16p11.2 may account for the shared basis between AD and sleep duration or snoring. MR showed insomnia had a causal effect on AD (ORIVW = 1.02, P IVW = 6.7 × 10-6), and multivariate MR suggested a potential role of sleep duration and major depression in this association. Our findings provide strong evidence of shared genetics and causation between AD and sleep abnormalities and advance our understanding of the genetic overlap between them. Identifying shared drug targets and molecular pathways can be beneficial for treating AD and sleep disorders more efficiently.
Collapse
Affiliation(s)
- Dongze Chen
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xinpei Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China.,Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China.,Center for Statistical Science, Peking University, Beijing, China
| |
Collapse
|
30
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D. Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth G. Porter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
31
|
Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 2022; 23:329-349. [PMID: 35042977 DOI: 10.1038/s41580-021-00441-y] [Citation(s) in RCA: 376] [Impact Index Per Article: 125.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a widespread and versatile protein post-translational modification. Lysine acetyltransferases and lysine deacetylases catalyse the addition or removal, respectively, of acetyl groups at both histone and non-histone targets. In this Review, we discuss several features of acetylation and deacetylation, including their diversity of targets, rapid turnover, exquisite sensitivity to the concentrations of the cofactors acetyl-CoA, acyl-CoA and NAD+, and tight interplay with metabolism. Histone acetylation and non-histone protein acetylation influence a myriad of cellular and physiological processes, including transcription, phase separation, autophagy, mitosis, differentiation and neural function. The activity of lysine acetyltransferases and lysine deacetylases can, in turn, be regulated by metabolic states, diet and specific small molecules. Histone acetylation has also recently been shown to mediate cellular memory. These features enable acetylation to integrate the cellular state with transcriptional output and cell-fate decisions.
Collapse
Affiliation(s)
- Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
32
|
Zhang X, Liu H, Zhou JQ, Krick S, Barnes JW, Thannickal VJ, Sanders YY. Modulation of H4K16Ac levels reduces pro-fibrotic gene expression and mitigates lung fibrosis in aged mice. Theranostics 2022; 12:530-541. [PMID: 34976199 PMCID: PMC8692895 DOI: 10.7150/thno.62760] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/01/2021] [Indexed: 11/05/2022] Open
Abstract
Histone H4 lysine16 acetylation (H4K16Ac) modulates chromatin structure by serving as a switch from a repressive to a transcriptionally active state. This euchromatin mark is associated with active transcription. In this study, we investigated the effects of H4K16Ac on the expression of pro-fibrotic genes in lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) and in an aging murine model of lung fibrosis. Methods: The lung tissues and fibroblasts from human IPF/non-IPF donors and from aged mice with/without bleomycin induced lung fibrosis were used in this study. The H4K16Ac levels were examined by immunohistochemistry or western blots. RNA silencing of H4K16Ac acetyltransferase Mof was used to reduce H4K16Ac levels in IPF fibroblasts. The effects of reduced H4K16Ac on pro-fibrotic gene expression were examined by western blots and real-time PCR. The association of H4K16Ac with these genes' promoter region were evaluated by ChIP assays. The gene expression profile in siRNA Mof transfected IPF cells were determined by RNA-Seq. The impact of H4K16Ac levels on lung fibrosis was evaluated in an aging murine model. Results: Aged mice with bleomycin induced lung fibrosis showed increased H4K16Ac levels. Human lung fibroblasts with siRNA Mof silencing demonstrated reduced H4K16Ac, and significantly down-regulated profibrotic genes, such as α-smooth muscle actin (α-SMA), collagen I, Nox4, and survivin. ChIP assays confirmed the associations of these pro-fibrotic genes' promoter region with H4K16Ac, while in siRNA Mof transfected cells the promoter/H4K16Ac associations were depleted. RNA-seq data demonstrated that Mof knockdown altered gene expression and cellular pathways, including cell damage and repair. In the aging mice model of persistent lung fibrosis, 18-month old mice given intra-nasal siRNA Mof from week 3 to 6 following bleomycin injury showed improved lung architecture, decreased total hydroxyproline content and lower levels of H4K16Ac. Conclusions: These results indicate a critical epigenetic regulatory role for histone H4K16Ac in the pathogenesis of pulmonary fibrosis, which will aid in the development of novel therapeutic strategies for age-related diseases such as IPF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
33
|
Vriend I, Oegema R. Genetic causes underlying grey matter heterotopia. Eur J Paediatr Neurol 2021; 35:82-92. [PMID: 34666232 DOI: 10.1016/j.ejpn.2021.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Grey matter heterotopia (GMH) can cause of seizures and are associated with a wide range of neurodevelopmental disorders and syndromes. They are caused by a failure of neuronal migration during fetal development, leading to clusters of neurons that have not reached their final destination in the cerebral cortex. We have performed an extensive literature search in Pubmed, OMIM, and Google scholar and provide an overview of known genetic associations with periventricular nodular heterotopia (PNVH), subcortical band heterotopia (SBH) and other subcortical heterotopia (SUBH). We classified the heterotopias as PVNH, SBH, SUBH or other and collected the genetic information, frequency, imaging features and salient features in tables for every subtype of heterotopia. This resulted in 105 PVNH, 16 SBH and 25 SUBH gene/locus associations, making a total of 146 genes and chromosomal loci. Our study emphasizes the extreme genetic heterogeneity underlying GMH. It will aid the clinician in establishing an differential diagnosis and eventually a molecular diagnosis in GMH patients. A diagnosis enables proper counseling of prognosis and recurrence risks, and enables individualized patient management.
Collapse
Affiliation(s)
- Ilona Vriend
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
34
|
Pessoa Rodrigues C, Chatterjee A, Wiese M, Stehle T, Szymanski W, Shvedunova M, Akhtar A. Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice. Nat Commun 2021; 12:6212. [PMID: 34707105 PMCID: PMC8551339 DOI: 10.1038/s41467-021-26277-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Noncommunicable diseases (NCDs) account for over 70% of deaths world-wide. Previous work has linked NCDs such as type 2 diabetes (T2D) to disruption of chromatin regulators. However, the exact molecular origins of these chronic conditions remain elusive. Here, we identify the H4 lysine 16 acetyltransferase MOF as a critical regulator of central carbon metabolism. High-throughput metabolomics unveil a systemic amino acid and carbohydrate imbalance in Mof deficient mice, manifesting in T2D predisposition. Oral glucose tolerance testing (OGTT) reveals defects in glucose assimilation and insulin secretion in these animals. Furthermore, Mof deficient mice are resistant to diet-induced fat gain due to defects in glucose uptake in adipose tissue. MOF-mediated H4K16ac deposition controls expression of the master regulator of glucose metabolism, Pparg and the entire downstream transcriptional network. Glucose uptake and lipid storage can be reconstituted in MOF-depleted adipocytes in vitro by ectopic Glut4 expression, PPARγ agonist thiazolidinedione (TZD) treatment or SIRT1 inhibition. Hence, chronic imbalance in H4K16ac promotes a destabilisation of metabolism triggering the development of a metabolic disorder, and its maintenance provides an unprecedented regulatory epigenetic mechanism controlling diet-induced obesity.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Aindrila Chatterjee
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Meike Wiese
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Thomas Stehle
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Witold Szymanski
- Proteomics Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany.
| |
Collapse
|
35
|
Xu YW, Lin P, Zheng SF, Huang W, Lin ZY, Shang-Guan HC, Lin YX, Yao PS, Kang DZ. Acetylation Profiles in the Metabolic Process of Glioma-Associated Seizures. Front Neurol 2021; 12:713293. [PMID: 34664012 PMCID: PMC8519730 DOI: 10.3389/fneur.2021.713293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: We test the hypothesis that lysine acetylation is involved in the metabolic process of glioma-associated seizures (GAS). Methods: We used label-free mass spectrometry-based quantitative proteomics to quantify dynamic changes of protein acetylation between gliomas with seizure (CA1 group) and gliomas without seizure (CA2 group). Furthermore, differences of acetyltransferase and deacetylase expression between CA1 and CA2 groups were performed by a quantitative proteomic study. We further classified acetylated proteins into groups according to cell component, molecular function, and biological process. In addition, metabolic pathways and protein interaction networks were analyzed. Regulated acetyltransferases and acetylated profiles were validated by PRM and Western blot. Results: We detected 169 downregulated lysine acetylation sites of 134 proteins and 39 upregulated lysine acetylation sites of 35 proteins in glioma with seizures based on acetylome. We detected 407 regulated proteins by proteomics, from which ACAT2 and ACAA2 were the differentially regulated enzymes in the acetylation of GAS. According to the KEGG analysis, the upregulated acetylated proteins within the PPIs were mapped to pathways involved in the TCA cycle, oxidative phosphorylation, biosynthesis of amino acids, and carbon metabolism. The downregulated acetylated proteins within the PPIs were mapped to pathways involved in fatty acid metabolism, oxidative phosphorylation, TCA cycle, and necroptosis. Regulated ACAT2 expression and acetylated profiles were validated by PRM and Western blot. Conclusions: The data support the hypothesis that regulated protein acetylation is involved in the metabolic process of GAS, which may be induced by acetyl-CoA acetyltransferases.
Collapse
Affiliation(s)
- Ya-Wen Xu
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Peng Lin
- Department of Pain, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shu-Fa Zheng
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wen Huang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhang-Ya Lin
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huang-Cheng Shang-Guan
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuan-Xiang Lin
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Pei-Sen Yao
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - De-Zhi Kang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
36
|
Wang M, Liu H, Zhang X, Zhao W, Li D, Xu C, Wu Z, Xie F, Li X. Lack of Mof reduces acute liver injury by enhancing transcriptional activation of Igf1. J Cell Physiol 2021; 236:6559-6570. [PMID: 33634483 DOI: 10.1002/jcp.30332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
Acute liver injury (ALI) is a rapid pathological process that may cause severe liver disease and may even be life-threatening. During ALI, the function of males absent on the first (MOF) has not yet been elucidated. In this study, we unveiled the expression pattern of MOF during carbon tetrachloride (CCl4 )-induced ALI and role of MOF in the regulation of liver regeneration. In the process of ALI, MOF is significantly overexpressed in the liver injury area. Knockdown of Mof attenuated CCl4 -induced ALI, and promoted liver cell proliferation, hepatic stellate cell activation and aggregation to the injured area, and liver fibrosis. Simultaneously, overexpression of Mof aggravated liver dysfunction caused by ALI. By directly binding to the promoter, MOF suppressed the transcriptional activation of Igf1. Knockdown of Mof promotes the expression of Igf1 and activates the Insulin-like growth factor 1 signaling pathway in the liver. Through this pathway, Knockdown of Mof reduces CCl4 -induced ALI and promotes liver regeneration. Our results provide the first demonstration for MOF contributing to ALI. Further understanding of the role of MOF in ALI may lead to new therapeutic strategies for ALI.
Collapse
Affiliation(s)
- Meng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
- Department of Cell and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Haoyu Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Xu Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Wenbo Zhao
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Danyang Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
- Department of Rehabilitation, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chengpeng Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Zhen Wu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Fei Xie
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
37
|
Pham T, Liao R, Labaer J, Guo J. Multiplexed In Situ Protein Profiling with High-Performance Cleavable Fluorescent Tyramide. Molecules 2021; 26:molecules26082206. [PMID: 33921211 PMCID: PMC8070642 DOI: 10.3390/molecules26082206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding the composition, function and regulation of complex cellular systems requires tools that quantify the expression of multiple proteins at their native cellular context. Here, we report a highly sensitive and accurate protein in situ profiling approach using off-the-shelf antibodies and cleavable fluorescent tyramide (CFT). In each cycle of this method, protein targets are stained with horseradish peroxidase (HRP) conjugated antibodies and CFT. Subsequently, the fluorophores are efficiently cleaved by mild chemical reagents, which simultaneously deactivate HRP. Through reiterative cycles of protein staining, fluorescence imaging, fluorophore cleavage, and HRP deactivation, multiplexed protein quantification in single cells in situ can be achieved. We designed and synthesized the high-performance CFT, and demonstrated that over 95% of the staining signals can be erased by mild chemical reagents while preserving the integrity of the epitopes on protein targets. Applying this method, we explored the protein expression heterogeneity and correlation in a group of genetically identical cells. With the high signal removal efficiency, this approach also enables us to accurately profile proteins in formalin-fixed paraffin-embedded (FFPE) tissues in the order of low to high and also high to low expression levels.
Collapse
Affiliation(s)
| | | | | | - Jia Guo
- Correspondence: ; Tel.: +1-480-727-2096
| |
Collapse
|
38
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
39
|
Liao R, Mondal M, Nazaroff CD, Mastroeni D, Coleman PD, Labaer J, Guo J. Highly Sensitive and Multiplexed Protein Imaging With Cleavable Fluorescent Tyramide Reveals Human Neuronal Heterogeneity. Front Cell Dev Biol 2021; 8:614624. [PMID: 33585449 PMCID: PMC7874177 DOI: 10.3389/fcell.2020.614624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
The ability to comprehensively profile proteins in intact tissues in situ is crucial for our understanding of health and disease. However, the existing methods suffer from low sensitivity and limited sample throughput. To address these issues, here we present a highly sensitive and multiplexed in situ protein analysis approach using cleavable fluorescent tyramide and off-the-shelf antibodies. Compared with the current methods, this approach enhances the detection sensitivity and reduces the imaging time by 1-2 orders of magnitude, and can potentially detect hundreds of proteins in intact tissues at the optical resolution. Applying this approach, we studied protein expression heterogeneity in a population of genetically identical cells, and performed protein expression correlation analysis to identify co-regulated proteins. We also profiled >6,000 neurons in a human formalin-fixed paraffin-embedded (FFPE) hippocampus tissue. By partitioning these neurons into varied cell clusters based on their multiplexed protein expression profiles, we observed different sub-regions of the hippocampus consist of neurons from distinct clusters.
Collapse
Affiliation(s)
- Renjie Liao
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Manas Mondal
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Christopher D. Nazaroff
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Diego Mastroeni
- Arizona State University-Banner Neurodegenerative Disease Research Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States
- L.J. Roberts Center for Alzheimer's Research, Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Paul D. Coleman
- Arizona State University-Banner Neurodegenerative Disease Research Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States
- L.J. Roberts Center for Alzheimer's Research, Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Joshua Labaer
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Jia Guo
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
40
|
Zhang M, Zhao J, Lv Y, Wang W, Feng C, Zou W, Su L, Jiao J. Histone Variants and Histone Modifications in Neurogenesis. Trends Cell Biol 2020; 30:869-880. [PMID: 33011018 DOI: 10.1016/j.tcb.2020.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
During embryonic brain development, neurogenesis requires the orchestration of gene expression to regulate neural stem cell (NSC) fate specification. Epigenetic regulation with specific emphasis on the modes of histone variants and histone post-translational modifications are involved in interactive gene regulation of central nervous system (CNS) development. Here, we provide a broad overview of the regulatory system of histone variants and histone modifications that have been linked to neurogenesis and diseases. We also review the crosstalk between different histone modifications and discuss how the 3D genome affects cell fate dynamics during brain development. Understanding the mechanisms of epigenetic regulation in neurogenesis has shifted the paradigm from single gene regulation to synergistic interactions to ensure healthy embryonic neurogenesis.
Collapse
Affiliation(s)
- Mengtian Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyue Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqing Lv
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenwen Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Science and Technology of China, Hefei 230000, China
| | - Chao Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzheng Zou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libo Su
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
When phenotype does not match genotype: importance of "real-time" refining of phenotypic information for exome data interpretation. Genet Med 2020; 23:215-221. [PMID: 32801363 DOI: 10.1038/s41436-020-00938-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Clinical data provided to genetic testing laboratories are frequently scarce. Our purpose was to evaluate clinical scenarios where phenotypic refinement in proband's family members might impact exome data interpretation. METHODS Of 614 exomes, 209 were diagnostic and included in this study. Phenotypic information was gathered by the variant interpretation team from genetic counseling letters and images. If a discrepancy between reported clinical findings and presumably disease-causing variant segregation was observed, referring clinicians were contacted for phenotypic clarification. RESULTS In 16/209 (7.7%) cases, phenotypic refinement was important due to (1) lack of cosegregation of disease-causing variant with the reported phenotype; (2) identification of different disorders with overlapping symptoms in the same family; (3) similar features in proband and family members, but molecular cause identified in proband only; and (4) previously unrecognized maternal condition causative of child's phenotype. As a result of phenotypic clarification, in 12/16 (75%) cases definition of affected versus unaffected status in one of the family members has changed, and in one case variant classification has changed. CONCLUSION Detailed description of phenotypes in family members including differences in clinical presentations, even if subtle, are important in exome interpretation and should be communicated to the variant interpretation team.
Collapse
|
42
|
Gaub A, Sheikh BN, Basilicata MF, Vincent M, Nizon M, Colson C, Bird MJ, Bradner JE, Thevenon J, Boutros M, Akhtar A. Evolutionary conserved NSL complex/BRD4 axis controls transcription activation via histone acetylation. Nat Commun 2020; 11:2243. [PMID: 32382029 PMCID: PMC7206058 DOI: 10.1038/s41467-020-16103-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Cells rely on a diverse repertoire of genes for maintaining homeostasis, but the transcriptional networks underlying their expression remain poorly understood. The MOF acetyltransferase-containing Non-Specific Lethal (NSL) complex is a broad transcription regulator. It is essential in Drosophila, and haploinsufficiency of the human KANSL1 subunit results in the Koolen-de Vries syndrome. Here, we perform a genome-wide RNAi screen and identify the BET protein BRD4 as an evolutionary conserved co-factor of the NSL complex. Using Drosophila and mouse embryonic stem cells, we characterise a recruitment hierarchy, where NSL-deposited histone acetylation enables BRD4 recruitment for transcription of constitutively active genes. Transcriptome analyses in Koolen-de Vries patient-derived fibroblasts reveals perturbations with a cellular homeostasis signature that are evoked by the NSL complex/BRD4 axis. We propose that BRD4 represents a conserved bridge between the NSL complex and transcription activation, and provide a new perspective in the understanding of their functions in healthy and diseased states.
Collapse
Affiliation(s)
- Aline Gaub
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany
| | - Bilal N Sheikh
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany
| | - M Felicia Basilicata
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany
| | - Marie Vincent
- CHU Nantes, Service de Génétique Médicale, 38 Boulevard Jean Monnet, 44000, Nantes, France
| | - Mathilde Nizon
- CHU Nantes, Service de Génétique Médicale, 38 Boulevard Jean Monnet, 44000, Nantes, France
| | - Cindy Colson
- Service Génétique, Génétique Clinique, CHU, Avenue Georges Clemenceau CS 30001, 14033, Caen, France.,Normandy University, UNICAEN, BIOTARGEN, Esplanade de la Paix CS 14032, 14032, Caen, France
| | - Matthew J Bird
- Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - James E Bradner
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Julien Thevenon
- CNRS UMR 5309, INSERM, U1209, Institute of Advanced Biosciences, Université Grenoble-Alpes CHU Grenoble, Allée des Alpes, 38700, La Tronche Grenoble, France
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany.
| |
Collapse
|