1
|
Roy S, Pokharel P, Piganelli JD. Decoding the immune dance: Unraveling the interplay between beta cells and type 1 diabetes. Mol Metab 2024; 88:101998. [PMID: 39069156 PMCID: PMC11342121 DOI: 10.1016/j.molmet.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by the specific destruction of insulin-producing beta cells in the pancreas by the immune system, including CD4 cells which orchestrate the attack and CD8 cells which directly destroy the beta cells, resulting in the loss of glucose homeostasis. SCOPE OF REVIEW This comprehensive document delves into the complex interplay between the immune system and beta cells, aiming to shed light on the mechanisms driving their destruction in T1D. Insights into the genetic predisposition, environmental triggers, and autoimmune responses provide a foundation for understanding the autoimmune attack on beta cells. From the role of viral infections as potential triggers to the inflammatory response of beta cells, an intricate puzzle starts to unfold. This exploration highlights the importance of beta cells in breaking immune tolerance and the factors contributing to their targeted destruction. Furthermore, it examines the potential role of autophagy and the impact of cytokine signaling on beta cell function and survival. MAJOR CONCLUSIONS This review collectively represents current research findings on T1D which offers valuable perspectives on novel therapeutic approaches for preserving beta cell mass, restoring immune tolerance, and ultimately preventing or halting the progression of T1D. By unraveling the complex dynamics between the immune system and beta cells, we inch closer to a comprehensive understanding of T1D pathogenesis, paving the way for more effective treatments and ultimately a cure.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Pravil Pokharel
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jon D Piganelli
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
2
|
Buzzao D, Castresana-Aguirre M, Guala D, Sonnhammer ELL. Benchmarking enrichment analysis methods with the disease pathway network. Brief Bioinform 2024; 25:bbae069. [PMID: 38436561 PMCID: PMC10939300 DOI: 10.1093/bib/bbae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024] Open
Abstract
Enrichment analysis (EA) is a common approach to gain functional insights from genome-scale experiments. As a consequence, a large number of EA methods have been developed, yet it is unclear from previous studies which method is the best for a given dataset. The main issues with previous benchmarks include the complexity of correctly assigning true pathways to a test dataset, and lack of generality of the evaluation metrics, for which the rank of a single target pathway is commonly used. We here provide a generalized EA benchmark and apply it to the most widely used EA methods, representing all four categories of current approaches. The benchmark employs a new set of 82 curated gene expression datasets from DNA microarray and RNA-Seq experiments for 26 diseases, of which only 13 are cancers. In order to address the shortcomings of the single target pathway approach and to enhance the sensitivity evaluation, we present the Disease Pathway Network, in which related Kyoto Encyclopedia of Genes and Genomes pathways are linked. We introduce a novel approach to evaluate pathway EA by combining sensitivity and specificity to provide a balanced evaluation of EA methods. This approach identifies Network Enrichment Analysis methods as the overall top performers compared with overlap-based methods. By using randomized gene expression datasets, we explore the null hypothesis bias of each method, revealing that most of them produce skewed P-values.
Collapse
Affiliation(s)
- Davide Buzzao
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 171 21 Solna, Sweden
| | | | - Dimitri Guala
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 171 21 Solna, Sweden
| | - Erik L L Sonnhammer
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 171 21 Solna, Sweden
| |
Collapse
|
3
|
Pantea Stoian A, Bica IC, Salmen T, Al Mahmeed W, Al-Rasadi K, Al-Alawi K, Banach M, Banerjee Y, Ceriello A, Cesur M, Cosentino F, Firenze A, Galia M, Goh SY, Janez A, Kalra S, Kapoor N, Kempler P, Lessan N, Lotufo P, Mikhailidis DP, Nibali L, Papanas N, Powell-Wiley T, Rizvi AA, Sahebkar A, Santos RD, Toth PP, Viswanathan V, Rizzo M. New-Onset Diabetes Mellitus in COVID-19: A Scoping Review. Diabetes Ther 2024; 15:33-60. [PMID: 37751143 PMCID: PMC10786767 DOI: 10.1007/s13300-023-01465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/27/2023] Open
Abstract
INTRODUCTION The coronavirus disease 2019 (COVID-19) pandemic became superimposed on the pre-existing obesity and diabetes mellitus (DM) pandemics. Since COVID-19 infection alters the metabolic equilibrium, it may induce pathophysiologic mechanisms that potentiate new-onset DM, and we evaluated this issue. METHOD A systematic review of the literature published from the 1 January 2020 until the 20 July 2023 was performed (PROSPERO registration number CRD42022341638). We included only full-text articles of both human clinical and randomized controlled trials published in English and enrolling adults (age > 18 years old) with ongoing or preceding COVID-19 in whom hyperglycemia was detected. The search was based on the following criteria: "(new-onset diabetes mellitus OR new-onset DM) AND (COVID-19) AND adults". RESULTS Articles on MEDLINE (n = 70) and the Web of Science database (n = 16) were included and analyzed by two researchers who selected 20 relevant articles. We found evidence of a bidirectional relationship between COVID-19 and DM. CONCLUSIONS This link operates as a pathophysiological mechanism supported by epidemiological data and also by the clinical and biological findings obtained from the affected individuals. The COVID-19 pandemic raised the incidence of DM through different pathophysiological and psychosocial factors.
Collapse
Affiliation(s)
- Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 020021, Bucharest, Romania
| | - Ioana-Cristina Bica
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 020021, Bucharest, Romania.
| | - Teodor Salmen
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 020021, Bucharest, Romania
| | - Wael Al Mahmeed
- Heart and Vascular Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | | | - Kamila Al-Alawi
- Department of Training and Studies, Royal Hospital, Ministry of Health, Muscat, Oman
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Yajnavalka Banerjee
- Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates
| | | | - Mustafa Cesur
- Clinic of Endocrinology, Ankara Güven Hospital, Ankara, Turkey
| | - Francesco Cosentino
- Unit of Cardiology, Karolinska Institute and Karolinska University Hospital, University of Stockholm, Stockholm, Sweden
| | - Alberto Firenze
- Unit of Research and International Cooperation, University Hospital of Palermo, Palermo, Italy
| | - Massimo Galia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bind), University of Palermo, Palermo, Italy
| | - Su-Yen Goh
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital and Bride, Karnal, India
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Peter Kempler
- Department of Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Nader Lessan
- The Research Institute, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates
| | - Paulo Lotufo
- Center for Clinical and Epidemiological Research, University Hospital, University of São Paulo, Sao Paulo, Brazil
| | - Dimitri P Mikhailidis
- Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK
| | - Luigi Nibali
- Dental Institute, Periodontology Unit, Centre for Host-Microbiome Interactions, King's College London, London, UK
| | - Nikolaos Papanas
- Diabetes Center, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Tiffany Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ali A Rizvi
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sci-Ences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Peter P Toth
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medi-Cine, Baltimore, MD, USA
| | | | - Manfredi Rizzo
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMise), School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
Cignarella A, Vegeto E, Bolego C, Trabace L, Conti L, Ortona E. Sex-oriented perspectives in immunopharmacology. Pharmacol Res 2023; 197:106956. [PMID: 37820857 DOI: 10.1016/j.phrs.2023.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Several immunopharmacological agents are effective in the treatment of cancer and immune-mediated conditions, with a favorable impact on life expectancy and clinical outcomes for a large number of patients. Nevertheless, response variation and undesirable effects of these drugs represent major issues, and overall efficacy remains unpredictable. Males and females show a distinct difference in immune system responses, with females generally mounting stronger responses to a variety of stimuli. Therefore, exploring sex differences in the efficacy and safety of immunopharmacological agents would strengthen the practice of precision medicine. As a pharmacological target highlight, programmed cell death 1 ligand 1 (PD-L1) is the first functionally characterized ligand of the coinhibitory programmed death receptor 1 (PD-1). The PD-L1/PD-1 crosstalk plays an important role in the immune response and is relevant in cancer, infectious and autoimmune disease. Sex differences in the response to immune checkpoint inhibitors are well documented, with male patients responding better than female patients. Similarly, higher efficacy of and adherence to tumor necrosis factor inhibitors in chronic inflammatory conditions including rheumatoid arthritis and Crohn's disease have been reported in male patients. The pharmacological basis of sex-specific responses to immune system modulating drugs is actively investigated in other settings such as stroke and type 1 diabetes. Advances in therapeutics targeting the endothelium could soon be wielded against autoimmunity and metabolic disorders. Based on the established sexual dimorphism in immune-related pathophysiology and disease presentation, sex-specific immunopharmacological protocols should be integrated into clinical guidelines.
Collapse
Affiliation(s)
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Lucia Conti
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Ortona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
5
|
Wang Y, Li MH, Wen XH, Liu MY, Lu YW, Gu Y, Zeng G, Zhao XF, Liu BH, Ji XM, Lu HL. Study of an Ultrasensitive Label-Free Electrochemiluminescent Immunosensor Fabricated with a Composite Electrode for Detecting the Glutamate Decarboxylase Antibody. ACS Sens 2023. [PMID: 37364058 DOI: 10.1021/acssensors.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Antibody testing for the glutamic acid decarboxylase 65 antibody (GADA) is widely used as a golden standard for autoimmune diabetes diagnosis, while current methods for antibody testing are not sensitive enough for clinical usage. Here, a label-free electrochemiluminescent (ECL) immunosensor for detecting GADA in autoimmune diabetes is fabricated and investigated. In the designed immunosensor, a composite film including the multiwalled carbon nanotubes (MWCNTs), zinc oxide (ZnO), and Au nanoparticles (AuNPs) was prepared through nanofabrication processes to improve the performance of sensor. The MWCNTs, which can provide a larger specific surface area, ZnO as a good photocatalytic material, and AuNPs that can enhance the ECL signal of luminol and immobilize the GAD65 antigen were applied to prefunctionalize indium tin oxide (ITO) glass based on a nanofabrication process. The GADA concentration was detected using the ECL immunosensor after incubating with GAD65 antigen-coated prefunctionalized ITO glass. After a direct immunoreaction, it is found that the degree of decreased ECL intensity has a good linear regression toward the logarithm of the GADA concentration in the range of 0.01 to 50 ng mL-1 with a detection limit down to 10 pg mL-1. Human serum samples positive or negative for GADA all nicely fell in the expected area. The fabricated immunosensor with excellent sensitivity, specificity, and stability has potential capability for clinical usage in GADA detection.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Mei-Hang Li
- Department of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xiao-Hong Wen
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Meng-Yang Liu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Yan-Wei Lu
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yang Gu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Guang Zeng
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Xue-Feng Zhao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Bao-Hong Liu
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xin-Ming Ji
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Thomas NJ, Walkey HC, Kaur A, Misra S, Oliver NS, Colclough K, Weedon MN, Johnston DG, Hattersley AT, Patel KA. The relationship between islet autoantibody status and the genetic risk of type 1 diabetes in adult-onset type 1 diabetes. Diabetologia 2023; 66:310-320. [PMID: 36355183 PMCID: PMC9807542 DOI: 10.1007/s00125-022-05823-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
AIMS/HYPOTHESIS The reason for the observed lower rate of islet autoantibody positivity in clinician-diagnosed adult-onset vs childhood-onset type 1 diabetes is not known. We aimed to explore this by assessing the genetic risk of type 1 diabetes in autoantibody-negative and -positive children and adults. METHODS We analysed GAD autoantibodies, insulinoma-2 antigen autoantibodies and zinc transporter-8 autoantibodies (ZnT8A) and measured type 1 diabetes genetic risk by genotyping 30 type 1 diabetes-associated variants at diagnosis in 1814 individuals with clinician-diagnosed type 1 diabetes (1112 adult-onset, 702 childhood-onset). We compared the overall type 1 diabetes genetic risk score (T1DGRS) and non-HLA and HLA (DR3-DQ2, DR4-DQ8 and DR15-DQ6) components with autoantibody status in those with adult-onset and childhood-onset diabetes. We also measured the T1DGRS in 1924 individuals with type 2 diabetes from the Wellcome Trust Case Control Consortium to represent non-autoimmune diabetes control participants. RESULTS The T1DGRS was similar in autoantibody-negative and autoantibody-positive clinician-diagnosed childhood-onset type 1 diabetes (mean [SD] 0.274 [0.034] vs 0.277 [0.026], p=0.4). In contrast, the T1DGRS in autoantibody-negative adult-onset type 1 diabetes was lower than that in autoantibody-positive adult-onset type 1 diabetes (mean [SD] 0.243 [0.036] vs 0.271 [0.026], p<0.0001) but higher than that in type 2 diabetes (mean [SD] 0.229 [0.034], p<0.0001). Autoantibody-negative adults were more likely to have the more protective HLA DR15-DQ6 genotype (15% vs 3%, p<0.0001), were less likely to have the high-risk HLA DR3-DQ2/DR4-DQ8 genotype (6% vs 19%, p<0.0001) and had a lower non-HLA T1DGRS (p<0.0001) than autoantibody-positive adults. In contrast to children, autoantibody-negative adults were more likely to be male (75% vs 59%), had a higher BMI (27 vs 24 kg/m2) and were less likely to have other autoimmune conditions (2% vs 10%) than autoantibody-positive adults (all p<0.0001). In both adults and children, type 1 diabetes genetic risk was unaffected by the number of autoantibodies (p>0.3). These findings, along with the identification of seven misclassified adults with monogenic diabetes among autoantibody-negative adults and the results of a sensitivity analysis with and without measurement of ZnT8A, suggest that the intermediate type 1 diabetes genetic risk in autoantibody-negative adults is more likely to be explained by the inclusion of misclassified non-autoimmune diabetes (estimated to represent 67% of all antibody-negative adults, 95% CI 61%, 73%) than by the presence of unmeasured autoantibodies or by a discrete form of diabetes. When these estimated individuals with non-autoimmune diabetes were adjusted for, the prevalence of autoantibody positivity in adult-onset type 1 diabetes was similar to that in children (93% vs 91%, p=0.4). CONCLUSIONS/INTERPRETATION The inclusion of non-autoimmune diabetes is the most likely explanation for the observed lower rate of autoantibody positivity in clinician-diagnosed adult-onset type 1 diabetes. Our data support the utility of islet autoantibody measurement in clinician-suspected adult-onset type 1 diabetes in routine clinical practice.
Collapse
Affiliation(s)
- Nicholas J Thomas
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Helen C Walkey
- Faculty of Medicine, Imperial College London, London, UK
| | - Akaal Kaur
- Faculty of Medicine, Imperial College London, London, UK
| | - Shivani Misra
- Faculty of Medicine, Imperial College London, London, UK
| | - Nick S Oliver
- Faculty of Medicine, Imperial College London, London, UK
| | - Kevin Colclough
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Kashyap A Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.
| |
Collapse
|
7
|
A randomized trial of oral gamma aminobutyric acid (GABA) or the combination of GABA with glutamic acid decarboxylase (GAD) on pancreatic islet endocrine function in children with newly diagnosed type 1 diabetes. Nat Commun 2022; 13:7928. [PMID: 36566274 PMCID: PMC9790014 DOI: 10.1038/s41467-022-35544-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2022] [Indexed: 12/25/2022] Open
Abstract
Gamma aminobutyric acid(GABA) is synthesized by glutamate decarboxylase(GAD) in β-cells. Regarding Type 1 diabetes(T1D), animal/islet-cell studies found that GABA promotes insulin secretion, inhibits α-cell glucagon and dampens immune inflammation, while GAD immunization may also preserve β-cells. We evaluated the safety and efficacy of oral GABA alone, or combination GABA with GAD, on the preservation of residual insulin secretion in recent-onset T1D. Herein we report a single-center, double-blind, one-year, randomized trial in 97 children conducted March 2015 to June 2019(NCT02002130). Using a 2:1 treatment:placebo ratio, interventions included oral GABA twice-daily(n = 41), or oral GABA plus two-doses GAD-alum(n = 25), versus placebo(n = 31). The primary outcome, preservation of fasting/meal-stimulated c-peptide, was not attained. Of the secondary outcomes, the combination GABA/GAD reduced fasting and meal-stimulated serum glucagon, while the safety/tolerability of GABA was confirmed. There were no clinically significant differences in glycemic control or diabetes antibody titers. Given the low GABA dose for this pediatric trial, future investigations using higher-dose or long-acting GABA formulations, either alone or with GAD-alum, could be considered, although GABA alone or in combination with GAD-alum did nor preserve beta-cell function in this trial.
Collapse
|
8
|
Han C, Geng Q, Qin J, Li Y, Yu H. Activation of 5-Hydroxytryptamine 4 Receptor Improves Colonic Barrier Function by Triggering Mucin 2 Production in a Mouse Model of Type 1 Diabetes. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:876-886. [PMID: 35337837 DOI: 10.1016/j.ajpath.2022.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Diabetes leads to intestinal barrier dysfunction. 5-Hydroxytryptamine 4 receptor (5-HT4R) is distributed in the colonic mucosa, but little is known about the role of its activation in diabetes-evoked colonic barrier dysfunction. This study investigates whether activation of 5-HT4Rs on goblet cells (GCs) protects the colon from commensal bacterial translocation in diabetic mice. Expression of 5-HT4R detected inside the colonic epithelium by RNAscope in situ hybridization was further observed within the mucin 2 (MUC2)-immunoreactive GCs. In diabetic mice, neither 5-HT4R transcription nor protein levels were altered compared with those in nondiabetic mice. Bacterial translocation was characterized by 16S rRNA RNAscope in situ hybridization and manifested in both crypts and lamina propria of the colon in diabetic mice. Mucin production and MUC2 expression were significantly decreased in diabetic mice. Furthermore, the loss of mitochondrial cristae of GCs and the down-regulation of mitofilin, the core protein maintaining mitochondrial homeostasis, were observed in diabetic mice. Long-term treatment with 5-HT4R agonist in diabetic mice not only prevented bacterial penetration of the whole colonic mucosa but also promoted mucin production and MUC2 expression. Markedly, 5-HT4R agonist also restored the mitochondrial cristae of GCs and up-regulated mitofilin. However, co-administration of 5-HT4R antagonist abolished the effects of 5-HT4R agonist on diabetic mice. These findings indicate that 5-HT4R in colonic mucosa is an effective target for the treatment of diabetes-induced colonic mucous barrier dysfunction.
Collapse
Affiliation(s)
- Changhao Han
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Qinghua Geng
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Jingjing Qin
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Yulin Li
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Huarong Yu
- Department of Physiology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
D'Addio F, Maestroni A, Assi E, Ben Nasr M, Amabile G, Usuelli V, Loretelli C, Bertuzzi F, Antonioli B, Cardarelli F, El Essawy B, Solini A, Gerling IC, Bianchi C, Becchi G, Mazzucchelli S, Corradi D, Fadini GP, Foschi D, Markmann JF, Orsi E, Škrha J, Camboni MG, Abdi R, James Shapiro AM, Folli F, Ludvigsson J, Del Prato S, Zuccotti G, Fiorina P. The IGFBP3/TMEM219 pathway regulates beta cell homeostasis. Nat Commun 2022; 13:684. [PMID: 35115561 PMCID: PMC8813914 DOI: 10.1038/s41467-022-28360-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Loss of pancreatic beta cells is a central feature of type 1 (T1D) and type 2 (T2D) diabetes, but a therapeutic strategy to preserve beta cell mass remains to be established. Here we show that the death receptor TMEM219 is expressed on pancreatic beta cells and that signaling through its ligand insulin-like growth factor binding protein 3 (IGFBP3) leads to beta cell loss and dysfunction. Increased peripheral IGFBP3 was observed in established and at-risk T1D/T2D patients and was confirmed in T1D/T2D preclinical models, suggesting that dysfunctional IGFBP3/TMEM219 signaling is associated with abnormalities in beta cells homeostasis. In vitro and in vivo short-term IGFBP3/TMEM219 inhibition and TMEM219 genetic ablation preserved beta cells and prevented/delayed diabetes onset, while long-term IGFBP3/TMEM219 blockade allowed for beta cell expansion. Interestingly, in several patients' cohorts restoration of appropriate IGFBP3 levels was associated with improved beta cell function. The IGFBP3/TMEM219 pathway is thus shown to be a physiological regulator of beta cell homeostasis and is also demonstrated to be disrupted in T1D/T2D. IGFBP3/TMEM219 targeting may therefore serve as a therapeutic option in diabetes.
Collapse
MESH Headings
- Adult
- Animals
- Cells, Cultured
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Female
- Gene Expression Regulation
- Homeostasis/genetics
- Humans
- Immunoblotting
- Insulin-Like Growth Factor Binding Protein 3/genetics
- Insulin-Like Growth Factor Binding Protein 3/metabolism
- Insulin-Secreting Cells/metabolism
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Middle Aged
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Mice
Collapse
Affiliation(s)
- Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Anna Maestroni
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Federico Bertuzzi
- Diabetology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Barbara Antonioli
- Diabetology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Basset El Essawy
- Transplantation Research Center, Nephrology Division, Brigham and Women's Hospital, Boston, MA, USA
- Medicine, Al-Azhar University, Cairo, Egypt
| | - Anna Solini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ivan C Gerling
- Department of Medicine, University of Tennessee, Memphis, TN, USA
| | - Cristina Bianchi
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Gabriella Becchi
- Department of Medicine and Surgery, Unit of Pathology, University of Parma, Parma, Italy
| | - Serena Mazzucchelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Domenico Corradi
- Department of Medicine and Surgery, Unit of Pathology, University of Parma, Parma, Italy
| | | | - Diego Foschi
- General Surgery, DIBIC, L. Sacco Hospital, Università di Milano, Milan, Italy
| | - James F Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emanuela Orsi
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS Cà Granda - Ospedale Maggiore Policlinico Foundation, Milan, Italy
| | - Jan Škrha
- 3rd Department of Internal Medicine, Charles University, First Faculty of Medicine, Prague, Czech Republic
| | | | - Reza Abdi
- Transplantation Research Center, Nephrology Division, Brigham and Women's Hospital, Boston, MA, USA
| | - A M James Shapiro
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Franco Folli
- Endocrinology and Metabolism, Department of Health Science, Università di Milano, ASST Santi Paolo e Carlo, Milan, Italy
| | - Johnny Ludvigsson
- Crown Princess Victoria Children´s Hospital and Div of Pediatrics, Dept of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Stefano Del Prato
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano and Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.
| |
Collapse
|
10
|
Martinez MM, Spiliopoulos L, Salami F, Agardh D, Toppari J, Lernmark Å, Kero J, Veijola R, Tossavainen P, Palmu S, Lundgren M, Borg H, Katsarou A, Larsson HE, Knip M, Maziarz M, Törn C. Heterogeneity of beta-cell function in subjects with multiple islet autoantibodies in the TEDDY family prevention study - TEFA. Clin Diabetes Endocrinol 2022; 7:23. [PMID: 34983671 PMCID: PMC8728995 DOI: 10.1186/s40842-021-00135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Individuals with multiple islet autoantibodies are at increased risk for clinical type 1 diabetes and may proceed gradually from stage to stage complicating the recruitment to secondary prevention studies. We evaluated multiple islet autoantibody positive subjects before randomisation for a clinical trial 1 month apart for beta-cell function, glucose metabolism and continuous glucose monitoring (CGM). We hypothesized that the number and type of islet autoantibodies in combination with different measures of glucose metabolism including fasting glucose, HbA1c, oral glucose tolerance test (OGTT), intra venous glucose tolerance test (IvGTT) and CGM allows for more precise staging of autoimmune type 1 diabetes than the number of islet autoantibodies alone. METHODS Subjects (n = 57) at 2-50 years of age, positive for two or more islet autoantibodies were assessed by fasting plasma insulin, glucose, HbA1c as well as First Phase Insulin Response (FPIR) in IvGTT, followed 1 month later by OGTT, and 1 week of CGM (n = 24). RESULTS Autoantibodies against GAD65 (GADA; n = 52), ZnT8 (ZnT8A; n = 40), IA-2 (IA-2A; n = 38) and insulin (IAA; n = 28) were present in 9 different combinations of 2-4 autoantibodies. Fasting glucose and HbA1c did not differ between the two visits. The estimate of the linear relationship between log2-transformed FPIR as the outcome and log2-transformed area under the OGTT glucose curve (AUC) as the predictor, adjusting for age and sex was - 1.88 (- 2.71, - 1.05) p = 3.49 × 10-5. The direction of the estimates for all glucose metabolism measures was positive except for FPIR, which was negative. FPIR was associated with higher blood glucose. Both the median and the spread of the CGM glucose data were significantly associated with higher glucose values based on OGTT, higher HbA1c, and lower FPIR. There was no association between glucose metabolism, autoantibody number and type except that there was an indication that the presence of at least one of ZnT8(Q/R/W) A was associated with a lower log2-transformed FPIR (- 0.80 (- 1.58, - 0.02), p = 0.046). CONCLUSIONS The sole use of two or more islet autoantibodies as inclusion criterion for Stage 1 diabetes in prevention trials is unsatisfactory. Staging type 1 diabetes needs to take the heterogeneity in beta-cell function and glucose metabolism into account. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02605148 , November 16, 2015.
Collapse
Affiliation(s)
- Maria Månsson Martinez
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden.
| | - Lampros Spiliopoulos
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Falastin Salami
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Jukka Kero
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Päivi Tossavainen
- Department of Pediatrics, PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Sauli Palmu
- Department of Pediatrics, Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University Hospital, Tampere, Finland
| | - Markus Lundgren
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Henrik Borg
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Anastasia Katsarou
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marlena Maziarz
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Carina Törn
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| |
Collapse
|
11
|
Ricci S, Cacialli P. Stem Cell Research Tools in Human Metabolic Disorders: An Overview. Cells 2021; 10:cells10102681. [PMID: 34685661 PMCID: PMC8534517 DOI: 10.3390/cells10102681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolic disorders are very common in the population worldwide and are among the diseases with the highest health utilization and costs per person. Despite the ongoing efforts to develop new treatments, currently, for many of these disorders, there are no approved therapies, resulting in a huge economic hit and tension for society. In this review, we recapitulate the recent advancements in stem cell (gene) therapy as potential tools for the long-term treatment of both inherited (lysosomal storage diseases) and acquired (diabetes mellitus, obesity) metabolic disorders, focusing on the main promising results observed in human patients and discussing the critical hurdles preventing the definitive jump of this approach from the bench to the clinic.
Collapse
Affiliation(s)
- Serena Ricci
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Rue Michel Servet 1, 1206 Geneva, Switzerland;
| | - Pietro Cacialli
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Rue Michel Servet 1, 1206 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
12
|
Thomas NJ, Dennis JM, Sharp SA, Kaur A, Misra S, Walkey HC, Johnston DG, Oliver NS, Hagopian WA, Weedon MN, Patel KA, Oram RA. DR15-DQ6 remains dominantly protective against type 1 diabetes throughout the first five decades of life. Diabetologia 2021; 64:2258-2265. [PMID: 34272580 PMCID: PMC8423681 DOI: 10.1007/s00125-021-05513-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 12/05/2022]
Abstract
AIMS/HYPOTHESIS Among white European children developing type 1 diabetes, the otherwise common HLA haplotype DR15-DQ6 is rare, and highly protective. Adult-onset type 1 diabetes is now known to represent more overall cases than childhood onset, but it is not known whether DR15-DQ6 is protective in older-adult-onset type 1 diabetes. We sought to quantify DR15-DQ6 protection against type 1 diabetes as age of onset increased. METHODS In two independent cohorts we assessed the proportion of type 1 diabetes cases presenting through the first 50 years of life with DR15-DQ6, compared with population controls. In the After Diabetes Diagnosis Research Support System-2 (ADDRESS-2) cohort (n = 1458) clinician-diagnosed type 1 diabetes was confirmed by positivity for one or more islet-specific autoantibodies. In UK Biobank (n = 2502), we estimated type 1 diabetes incidence rates relative to baseline HLA risk for each HLA group using Poisson regression. Analyses were restricted to white Europeans and were performed in three groups according to age at type 1 diabetes onset: 0-18 years, 19-30 years and 31-50 years. RESULTS DR15-DQ6 was protective against type 1 diabetes through to age 50 years (OR < 1 for each age group, all p < 0.001). The following ORs for type 1 diabetes, relative to a neutral HLA genotype, were observed in ADDRESS-2: age 5-18 years OR 0.16 (95% CI 0.08, 0.31); age 19-30 years OR 0.10 (0.04, 0.23); and age 31-50 years OR 0.37 (0.21, 0.68). DR15-DQ6 also remained highly protective at all ages in UK Biobank. Without DR15-DQ6, the presence of major type 1 diabetes high-risk haplotype (either DR3-DQ2 or DR4-DQ8) was associated with increased risk of type 1 diabetes. CONCLUSIONS/INTERPRETATION HLA DR15-DQ6 confers dominant protection from type 1 diabetes across the first five decades of life.
Collapse
Affiliation(s)
- Nicholas J Thomas
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.
| | - John M Dennis
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Seth A Sharp
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Akaal Kaur
- Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | - Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Kashyap A Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
- Renal Department, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.
| |
Collapse
|
13
|
Nawaz A, Zhang P, Li E, Gilbert RG, Sullivan MA. The importance of glycogen molecular structure for blood glucose control. iScience 2021; 24:101953. [PMID: 33458612 PMCID: PMC7797522 DOI: 10.1016/j.isci.2020.101953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes incidence continues to increase rapidly. This disease is characterized by a breakdown in blood glucose homeostasis. The impairment of glycemic control is linked to the structure of glycogen, a highly branched glucose polymer. Liver glycogen, a major controller of blood sugar, comprises small β particles which can link together to form larger α particles. These degrade to glucose more slowly than β particles, enabling a controlled release of blood glucose. The α particles in diabetic mice are however easily broken down into β particles, which degrade more quickly. Because this may lead to higher blood glucose, understanding this diabetes-associated breakdown of α-particle molecular structure may help in the development of diabetes therapeutics. We review the extraction of liver glycogen, its molecular structure, and how this structure is affected by diabetes and then use this knowledge to make postulates to guide the development of strategies to help mitigate type 2 diabetes.
Collapse
Affiliation(s)
- Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, P.R. China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Peng Zhang
- School of Electronic Information Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Enpeng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, P.R. China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Robert G. Gilbert
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, P.R. China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane 4072, QLD, Australia
| | - Mitchell A. Sullivan
- Glycation and Diabetes, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
14
|
Frommer L, Kahaly GJ. Type 1 diabetes and associated autoimmune diseases. World J Diabetes 2020; 11:527-539. [PMID: 33269064 PMCID: PMC7672792 DOI: 10.4239/wjd.v11.i11.527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/27/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Common autoimmune diseases (AID) tend to occur together in the same individual and families. Type 1 diabetes (T1D) is caused by an autoimmune-induced inflammatory destruction of the pancreatic tissue and clusters with several other AID. AIM To compare the demographic, clinical, and serological features of patients with single T1D vs those with T1D and associated AID. METHODS From October 1999 to February 2020, a total of 665 patients with T1D and their first-degree relatives were evaluated. RESULTS Compared to patients with isolated T1D, those with T1D + AID were older and had a higher female: male ratio. Average patient age and age at disease onset were higher in T1D + AID vs T1D only. The average time interval between T1D onset and the onset of a second glandular AID was markedly shorter than the time interval between T1D and the occurrence of a non-endocrine AID. T1D-specific autoantibodies were more frequent in patients with T1D + AID and relatives vs those with T1D only. However, the prevalence of AID and autoantibodies against various tissues were found to be higher in relatives of patients with T1D only compared to relatives of patients with T1D + AID. CONCLUSION Annual serological and subsequent functional screening for AID in patients with T1D and their first-degree relatives is recommended.
Collapse
Affiliation(s)
- Lara Frommer
- Department of Medicine I, Johannes Gutenberg Medical Center, Mainz 55131, Germany
| | - George J Kahaly
- Department of Medicine I, Johannes Gutenberg Medical Center, Mainz 55131, Germany
| |
Collapse
|
15
|
Hampe CS, Sahabandu D, Kaiser V, Telieps T, Smeeth L, Agyemang C, Spranger J, Schulze MB, Mockenhaupt FP, Danquah I, Rolandsson O. Geographic location determines beta-cell autoimmunity among adult Ghanaians: Findings from the RODAM study. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:299-309. [PMID: 32378803 PMCID: PMC7416037 DOI: 10.1002/iid3.306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/11/2020] [Indexed: 01/29/2023]
Abstract
Introduction Beta‐cell autoantibodies are established markers of autoimmunity, which we compared between Ghanaian adults with or without diabetes, living in rural and urban Ghana and in three European cities. Methods In the multicenter cross‐sectional Research on Obesity and Diabetes among African Migrants (RODAM) study (N = 5898), we quantified autoantibodies against glutamic acid decarboxylase (GAD65Ab) by radioligand binding assay (RBA) and established cut‐offs for positivity by displacement analysis. In a subsample, we performed RBA for zinc transporter‐8 autoantibodies (ZnT8Ab). Associations of environmental, sociodemographic, and clinical factors with GAD65Ab were calculated. Results In this study population (age: 46.1 ± 11.9 years; female: 62%; Ghana‐rural: 1111; Ghana‐urban: 1455; Europe: 3332), 9.2% had diabetes with adult‐onset. GAD65Ab concentrations were the highest in Ghana‐rural (32.4; 10.8‐71.3 U/mL), followed by Ghana‐urban (26.0; 12.3‐49.1 U/mL) and Europe (11.9; 3.0‐22.8 U/mL) with no differences between European cities. These distributions were similar for ZnT8Ab. Current fever, history of fever, and higher concentrations of liver enzymes marginally explained site‐specific GAD65Ab concentrations. GAD65Ab positivity was as frequent in diabetes as in nondiabetes (5.4% vs 6.1%; P = .25). This was also true for ZnT8Ab positivity. Conclusion Geographic location determines the occurrence of GAD65Ab and ZnT8Ab more than the diabetes status. Beta‐cell autoimmunity may not be feasible to differentiate diabetes subgroups in this population.
Collapse
Affiliation(s)
| | - Diomira Sahabandu
- Institute of Tropical Medicine and International Health, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vivien Kaiser
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Tanja Telieps
- Helmholtz Center Munich, Institute for Diabetes and Obesity Research, Garching, Germany
| | - Liam Smeeth
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Charles Agyemang
- Department of Public Health, Academic Medical Center, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin; Center for Cardiovascular Research (CCR), Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ina Danquah
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,Heidelberg Institute of Global Health, Universitaetsklinikum Heidelberg, Heidelberg, Germany
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Section of Family Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int J Mol Sci 2020; 21:ijms21051835. [PMID: 32155866 PMCID: PMC7084712 DOI: 10.3390/ijms21051835] [Citation(s) in RCA: 482] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus comprises a group of carbohydrate metabolism disorders that share a common main feature of chronic hyperglycemia that results from defects of insulin secretion, insulin action, or both. Insulin is an important anabolic hormone, and its deficiency leads to various metabolic abnormalities in proteins, lipids, and carbohydrates. Atherosclerosis develops as a result of a multistep process ultimately leading to cardiovascular disease associated with high morbidity and mortality. Alteration of lipid metabolism is a risk factor and characteristic feature of atherosclerosis. Possible links between the two chronic disorders depending on altered metabolic pathways have been investigated in numerous studies. It was shown that both types of diabetes mellitus can actually induce atherosclerosis development or further accelerate its progression. Elevated glucose level, dyslipidemia, and other metabolic alterations that accompany the disease development are tightly involved in the pathogenesis of atherosclerosis at almost every step of the atherogenic process. Chronic inflammation is currently considered as one of the key factors in atherosclerosis development and is present starting from the earliest stages of the pathology initiation. It may also be regarded as one of the possible links between atherosclerosis and diabetes mellitus. However, the data available so far do not allow for developing effective anti-inflammatory therapeutic strategies that would stop atherosclerotic lesion progression or induce lesion reduction. In this review, we summarize the main aspects of diabetes mellitus that possibly affect the atherogenic process and its relationship with chronic inflammation. We also discuss the established pathophysiological features that link atherosclerosis and diabetes mellitus, such as oxidative stress, altered protein kinase signaling, and the role of certain miRNA and epigenetic modifications.
Collapse
|
17
|
Xie Z, Chang C, Huang G, Zhou Z. The Role of Epigenetics in Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:223-257. [PMID: 32445098 DOI: 10.1007/978-981-15-3449-2_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the interaction between genetic alterations and environmental factors. More than 60 susceptible genes or loci of T1D have been identified. Among them, HLA regions are reported to contribute about 50% of genetic susceptibility in Caucasians. There are many environmental factors involved in the pathogenesis of T1D. Environmental factors may change the expression of genes through epigenetic mechanisms, thus inducing individuals with susceptible genes to develop T1D; however, the underlying mechanisms remain poorly understood. The major epigenetic modifications include DNA methylation, histone modification, and non-coding RNA. There has been extensive research on the role of epigenetic mechanisms including aberrant DNA methylation, histone modification, and microRNA in the pathogenesis of T1D. DNA methylation and microRNA have been proposed as biomarkers to predict islet β cell death, which needs further confirmation before any clinical application can be developed. Small molecule inhibitors of histone deacetylases, histone methylation, and DNA methylation are potentially important for preventing T1D or in the reprogramming of insulin-producing cells. This chapter mainly focuses on T1D-related DNA methylation, histone modification, and non-coding RNA, as well as their possible translational potential in the early diagnosis and treatment of T1D.
Collapse
Affiliation(s)
- Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China.
| |
Collapse
|
18
|
Jamshidi P, Hasanzadeh S, Tahvildari A, Farsi Y, Arbabi M, Mota JF, Sechi LA, Nasiri MJ. Is there any association between gut microbiota and type 1 diabetes? A systematic review. Gut Pathog 2019; 11:49. [PMID: 31636716 PMCID: PMC6791003 DOI: 10.1186/s13099-019-0332-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction Type 1 diabetes (T1D) is the second most common autoimmune disease among children. There is evidence suggesting that dysbiosis of some gut colonizing bacteria are associated with the pathogenesis of T1D. However, these studies are still controversial and a systematic review was conducted to evaluate the association between gut microbiota and T1D. Methods A systematic search was carried out in Medline (Via Pubmed) and Embase from January 2000 to January 2019 for all original cross-sectional, cohort, case–control or nested case–control studies investigating the association between gut microbiota and T1D. Results Of 568 articles identified, 26 studies met the inclusion criteria. The total population study of these articles consists of 2600 children (under 18 years old) and 189 adults. Among the included studies, 24 articles confirmed the association between gut microbiota dysbiosis and T1D. The most common bacterial alterations in T1D patients included Bacteroides spp., Streptococcus spp., Clostridium spp., Bifidobacterium spp., Prevotella spp., Staphylococcus spp., Blautia spp., Faecalibacterium spp., Roseburia spp., and Lactobacillus spp. Conclusion Our study showed a significant association between alterations in intestinal microbial composition and T1D; however, in some articles, it is not clear which one happens first. Investigation of altered gut microbiota can help in the early detection of T1D before seropositivity. Targeted microbiome modulation can be a novel potential therapeutic strategy.
Collapse
Affiliation(s)
- Parnian Jamshidi
- 1Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Hasanzadeh
- 1Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azin Tahvildari
- 1Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Farsi
- 1Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahta Arbabi
- 1Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - João Felipe Mota
- 2Clinical and Sports Nutrition Research Laboratory (LABINCE), Faculty of Nutrition, Federal University of Goiás, Goiânia, Brazil
| | - Leonardo A Sechi
- 3Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Mohammad Javad Nasiri
- 4Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Effect of gamma aminobutyric acid (GABA) or GABA with glutamic acid decarboxylase (GAD) on the progression of type 1 diabetes mellitus in children: Trial design and methodology. Contemp Clin Trials 2019; 82:93-100. [DOI: 10.1016/j.cct.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022]
|
20
|
Ju UH, Liu FC, Lin CS, Huang WY, Lin TY, Shen CH, Chou YC, Lin CL, Lin KT, Kao CH, Chen CH, Yang TY. Risk of Parkinson disease in Sjögren syndrome administered ineffective immunosuppressant therapies: A nationwide population-based study. Medicine (Baltimore) 2019; 98:e14984. [PMID: 30946325 PMCID: PMC6455855 DOI: 10.1097/md.0000000000014984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
To determine the incidence and risk of Parkinson disease (PD) in patients with Sjögren syndrome (SS) according to a nationwide population-based database.In total, 12,640 patients in the SS cohort and 50,560 in the non-SS cohort were enrolled from Taiwan's National Health Insurance Research Database from 2000 to 2010. We used the Cox multivariable proportional hazards model to determine the risk factors for PD in the SS cohort.We observed an increased incidence of PD in patients with SS, with a crude hazard ratio (HR) of 1.40 and an adjusted HR (aHR) of 1.23. The cumulative incidence of PD was 1.95% higher in the SS cohort than in the non-SS cohort. The SS cohort had an elevated HR under medication use, namely cevimeline and pilocarpine (crude HR, 1.28), hydroxychloroquine (crude HR, 1.43; aHR, 1.46), and methylprednisolone (crude HR, 2.21; aHR, 1.49). Patients receiving other non-hydroxychloroquine immunosuppressant therapies had a lower risk (aHR, 0.86) of PD. Furthermore, patients with SS aged 20 to 49 years had a 1.93-fold higher risk of PD than did those without SS (aHR, 1.93). The risk of PD was higher (aHR, 2.20) in patients with SS without comorbidities than in those with comorbidities. The aHR of PD significantly increased when the follow-up period exceeded 9 years (aHR, 1.93).We determined an increased risk of PD in patients with SS. Further investigation is warranted to determine the possible underlying mechanisms and the potential role of non-hydroxychloroquine immunosuppressants in ameliorating PD.
Collapse
Affiliation(s)
- Uei-Han Ju
- Division of Rheumatology/Immunology and Allergy
| | | | | | | | - Te-Yu Lin
- Department of Radiation Oncology
- Division of Infectious disease, Department of Internal Medicine
| | - Chih-Hao Shen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei
| | - Cheng-Li Lin
- College of Medicine, China Medical University
- Management Office for Health Data, China Medical University Hospital
| | | | - Chia-Hung Kao
- Department of Nuclear Medicine and PET Center, China Medical University Hospital
- Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University
- Department of Bioinformatics and Medical Engineering, Asia University
| | - Chao-Hsien Chen
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung
| | - Tse-Yen Yang
- Department of Medical Research, China Medical University HsinChu Hospital, HsinChu County, China Medical University
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung
- Molecular and Genomic Epidemiology Center, China Medical University Hospital, Taichung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
21
|
Rutman AK, Negi S, Gasparrini M, Hasilo CP, Tchervenkov J, Paraskevas S. Immune Response to Extracellular Vesicles From Human Islets of Langerhans in Patients With Type 1 Diabetes. Endocrinology 2018; 159:3834-3847. [PMID: 30307543 DOI: 10.1210/en.2018-00649] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
The autoimmune response that characterizes type 1 diabetes (T1D) has no clear cause. Extracellular vesicles (EVs) play an important role in triggering the immune response in other contexts. Here, we propose a model by which EVs isolated from human islets stimulate proinflammatory immune responses and lead to peripheral blood mononuclear cell (PBMC) activation. We show that human islet EVs are internalized by monocytes and B cells and lead to an increase in T-helper 1, 2, and 17 cytokine expression, as well as T and B cell proliferation. Importantly, we demonstrate memory T and B cell activation by EVs selectively in PBMCs of patients with T1D. Additionally, human islet EVs induce an increase in antibodies against glutamic acid decarboxylase 65 (GAD65) in T1D PBMCs. Furthermore, pretreatment of T1D PBMCs with ibrutinib, an inhibitor of Bruton tyrosine kinase, dampens EV-induced memory B cell activation and GAD65 antibody production. Collectively, our findings indicate a role for human islet EVs in mediating activation of B and T cells and GAD65 autoantibody production.
Collapse
Affiliation(s)
- Alissa K Rutman
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Sarita Negi
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Marco Gasparrini
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Craig P Hasilo
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Jean Tchervenkov
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Steven Paraskevas
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Islet transplantation, an important approach to achieve insulin independence for individuals with type 1 diabetes, is limited by the lack of accurate biomarkers to track beta-cell death post islet infusion. In this review, we will discuss existing and recently described biomarkers. RECENT FINDINGS As beta cells are killed by the immune system, fragments of beta cell-specific cell-free DNA and proteins are released into the periphery. Several different strategies to identify these fragments have been described. Some circulating, non-coding microRNAs, particularly miRNA-375 are also showing potential to reflect the rate of beta cell loss post-clinical islet transplantation. Recent advances in identifying accurate beta cell-specific biomarkers such as differentially methylated insulin cell-free DNA and circulating miRNA-375 may help predict clinical outcomes. More studies are required to examine the robustness of these biomarkers to detect chronic beta-cell loss in islet transplantation recipients.
Collapse
Affiliation(s)
- Fatimah T. AlRashidi
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Level 2, Learning and Research, Southmead Hospital, Bristol, BS10 5NB UK
| | - Kathleen M. Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Level 2, Learning and Research, Southmead Hospital, Bristol, BS10 5NB UK
| |
Collapse
|
23
|
Nivolumab-Induced Autoimmune Encephalitis in Two Patients with Lung Adenocarcinoma. Case Rep Neurol Med 2018; 2018:2548528. [PMID: 30073101 PMCID: PMC6057278 DOI: 10.1155/2018/2548528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors have improved patient survival outcomes in a variety of advanced malignancies. However, they can cause a number of immune-related adverse effects (irAEs) through lymphocyte dysregulation. Central nervous system (CNS) irAEs are rare, but as the number of indications for checkpoint inhibitors increases, there has been emergence of CNS immune-mediated disease among cancer patients. Given the relatively recent recognition of checkpoint inhibitor CNS irAEs, there is no standard treatment, and prognosis is variable. Therefore, there is a great need for further study of checkpoint inhibitor-induced CNS irAEs. Here, we present two unique cases of nivolumab-induced autoimmune encephalitis in patients with non-small cell lung cancer and review the available literature.
Collapse
|
24
|
Niechciał E, Rogowicz-Frontczak A, Piłaciński S, Fichna M, Skowrońska B, Fichna P, Zozulińska-Ziółkiewicz D. Autoantibodies against zinc transporter 8 are related to age and metabolic state in patients with newly diagnosed autoimmune diabetes. Acta Diabetol 2018; 55:287-294. [PMID: 29327148 PMCID: PMC5829102 DOI: 10.1007/s00592-017-1091-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Abstract
AIMS To assess the prevalence of ZnT8-ab and its correlation to other autoimmune markers and diabetic ketoacidosis occurrence in children and adults with T1DM onset. METHODS The study included 367 patients (218 children; 149 adults) at the T1DM onset. Selected diabetes-related autoantibodies such as GAD-ab, IA2-ab, ZnT8-ab were tested before the initiation of insulin therapy. Diabetic ketoacidosis was defined as glucose concentration > 13.9 mmol/l, pH < 7.30, concentration of HCO3 < 15 mmol/l, presence of ketone bodies in the blood and urine. RESULTS The autoantibodies pattern differs in both study groups. Children were mostly positive for two (37.8%) and three (49.5%) autoantibodies, whereas adults for one (32.2%) and two (30.7%). The most frequently detected autoantibodies in youth were ZnT8-ab (81.1%) and IA2-ab (80.7%), while in adults GAD-ab (74.8%). ZnT8-ab (p < 0.0001) titers were significantly higher in children, but adults had higher titer of GAD-ab (p < 0.0001) and IA2-ab (p < 0.0001). Children developed more frequently diabetic ketoacidosis (28.4 vs. 10.7%, p = 0.0002). ZnT8-ab (p = 0.002) and IA2-ab (p = 0.008) were reported mostly in individuals with ketoacidosis. A correlation between the number of positive antibodies and the severity of ketoacidosis was observed (Rs - 0.129 p = 0.014). ZnT8-ab were associated with a greater risk of ketoacidosis independent of gender, age group and the autoantibodies number [OR = 2.44 (95% CI 1.0-5.94), p = 0.04]. CONCLUSIONS Children are at greater risk of ketoacidosis at the diagnosis of diabetes. ZnT8-ab and IA2-ab are commonly detected in children, while adults have frequently higher titer of GAD-ab. ZnT8-ab are associated with more acute diabetes onset.
Collapse
Affiliation(s)
- Elżbieta Niechciał
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572, Poznan, Poland.
| | - Anita Rogowicz-Frontczak
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Mickiewicza Street 2, 60-101, Poznan, Poland
| | - Stanisław Piłaciński
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Mickiewicza Street 2, 60-101, Poznan, Poland
| | - Marta Fichna
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego Street 49, 60-101, Poznan, Poland
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska Street 32, 60-479, Poznan, Poland
| | - Bogda Skowrońska
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572, Poznan, Poland
| | - Piotr Fichna
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572, Poznan, Poland
| | - Dorota Zozulińska-Ziółkiewicz
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Mickiewicza Street 2, 60-101, Poznan, Poland
| |
Collapse
|
25
|
Chan DC, Chiu CY, Lan KC, Weng TI, Yang RS, Liu SH. Transplantation of human skeletal muscle-derived progenitor cells ameliorates knee osteoarthritis in streptozotocin-induced diabetic mice. J Orthop Res 2017; 35:1886-1893. [PMID: 27935109 DOI: 10.1002/jor.23503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/05/2016] [Indexed: 02/04/2023]
Abstract
The epidemiological and experimental evidence suggests that diabetes can be an independent risk factor for osteoarthritis. The osteoarthritis-like cartilage damage has been shown in streptozotocin-induced diabetic mice. The therapeutic effects of human skeletal muscle-derived progenitor cells (HSMPCs) on diabetic osteoarthritis still remain unclear. Here, we investigated the therapeutic potential of HSMPCs on diabetic knee osteoarthritis. The in vitro chondrogenic ability of HSMPCs was determined by pellet culture assay. Male mice were used to develop the model of streptozotocin-induced type 1 diabetes and its related osteoarthritis. HSMPCs were injected intra-articularly to rescue osteoarthritis. Protein expressions of advanced glycation end-products, cyclooxygenase-2, and type-2 collagen in tissues were determined by immunohistochemistry. The pellet culture assay showed that HSMPCs cultured in differentiation medium for chondrogenesis significantly produced larger pellets with an overproduction of extracellular matrix than in growth medium. In in vivo experiments, intra-articular injection of HSMPCs for 4 weeks significantly prevented the progression of degenerative changes in the cartilage of streptozotocin-induced diabetic mice, including an obvious increase of total articular cartilage thickness and a decrease of fibrous cartilage thickness. HSMPCs transplantation also exerted the decline in advanced glycation end-products and cyclooxygenase-2 protein expression, but increased the type-2 collagen protein expression in streptozotocin-induced osteoarthritic cartilages. Moreover, HSMPCs transplantation also inhibited the increased serum interleukin-6 and matrix metalloproteinase-3 levels in diabetic mice. These results demonstrated for the first time that HSMPCs transplantation ameliorates cartilage degeneration in diabetes-related osteoarthritis mice. These findings suggest that HSMPCs transplantation may apply as a potential therapeutic use of diabetes-related osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1886-1893, 2017.
Collapse
Affiliation(s)
- Ding-Cheng Chan
- Department of Geriatrics and Gerontology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yuan Chiu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Te-I Weng
- Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rong-Sen Yang
- Departments of Orthopaedics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
26
|
Lee KC, Chen WJ, Chen YC. Using Dextran-encapsulated gold nanoparticles as insulin carriers to prolong insulin activity. Nanomedicine (Lond) 2017; 12:1823-1834. [PMID: 28703075 DOI: 10.2217/nnm-2017-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Diabetes mellitus is commonly treated with painful insulin injections. We aim to explore drug carriers that can prolong insulin activity. MATERIALS & METHODS Dextran-encapsulated gold NPs (AuNPs@Dextran) that can bind with insulin are used as insulin carriers. The affinity (K d = ∼42 pM) between insulin and insulin receptors on the cells is much higher than that (K d = ∼4.02 μM) of insulin and AuNPs@Dextran. Thus, insulin released from the AuNP@Dextran-insulin conjugates to maintain kinetic equilibrium and prefers to bind to the insulin receptor. The slow release of insulin from the AuNP@Dextran-insulin conjugates facilitates the lasting of insulin activity. RESULTS & DISCUSSION AuNP@Dextran-insulin conjugates can prolong insulin activity to 12 h, whereas free form insulin loses activity after 4 h in adipocyte cells. CONCLUSION AuNPs@Dextran are suitable carriers that can prolong insulin activity.
Collapse
Affiliation(s)
- Kai-Chieh Lee
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Jie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
27
|
Hasilo CP, Negi S, Allaeys I, Cloutier N, Rutman AK, Gasparrini M, Bonneil É, Thibault P, Boilard É, Paraskevas S. Presence of diabetes autoantigens in extracellular vesicles derived from human islets. Sci Rep 2017; 7:5000. [PMID: 28694505 PMCID: PMC5504025 DOI: 10.1038/s41598-017-04977-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/23/2017] [Indexed: 12/29/2022] Open
Abstract
Beta-cell (β-cell) injury is the hallmark of autoimmune diabetes. However, the mechanisms by which autoreactive responses are generated in susceptible individuals are not well understood. Extracellular vesicles (EV) are produced by mammalian cells under normal and stressed physiological states. They are an important part of cellular communication, and may serve a role in antigen processing and presentation. We hypothesized that isolated human islets in culture produce EV that contain diabetes autoantigens (DAA) from these otherwise normal, non-diabetic donors. Here we report the caspase-independent production of EV by human islets in culture, and the characterization of DAA glutamic acid decarboxylase 65 (GAD65) and zinc transporter 8 (ZnT8), as well as the β-cell resident glucose transporter 2 (Glut2), present within the EV.
Collapse
Affiliation(s)
- Craig P Hasilo
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada.,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Sarita Negi
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada.,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Isabelle Allaeys
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Québec, Québec, Canada
| | - Nathalie Cloutier
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Québec, Québec, Canada
| | - Alissa K Rutman
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada.,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Marco Gasparrini
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada.,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Éric Bonneil
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Thibault
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Éric Boilard
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Québec, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Steven Paraskevas
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada. .,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada. .,Canadian National Transplant Research Program, Edmonton, Alberta, Canada.
| |
Collapse
|
28
|
Cinquanta L, Fontana DE, Bizzaro N. Chemiluminescent immunoassay technology: what does it change in autoantibody detection? AUTOIMMUNITY HIGHLIGHTS 2017. [PMID: 28647912 PMCID: PMC5483212 DOI: 10.1007/s13317-017-0097-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diagnostic technology is rapidly evolving, and over the last decade, substantial progress has been made even for the identification of antibodies, increasingly approaching this type of diagnostic to that of automated clinical chemistry laboratory. In this review, we describe the analytical and diagnostic characteristics of chemiluminescence technology in its strength and in its applicability for a more rapid and accurate diagnosis of autoimmune diseases. The wide dynamic range, greater than that of immunoenzymatic methods, the high sensitivity and specificity of the results expressed in quantitative form, the high degree of automation and the clinical implications related to the reduction in the turnaround time, and the ability to run a large number of antibody tests (even of different isotypes), directed towards large antigenic panels in random access mode, make this technology the most advanced in the clinical laboratory, with enormous repercussions on the workflow and on the autoimmunology laboratory organisation. Further improvements are expected in the coming years with the development of new analytical platforms such as the flow-injection chemiluminescent immunoassay, the two-dimensional resolution for chemiluminescence multiplex immunoassay and the magnetic nanoparticles chemiluminescence immunoassay, which will likely result in additional increases in the clinical efficacy of antibody tests.
Collapse
Affiliation(s)
- Luigi Cinquanta
- Autoimmunologia e Allergologia Diagnostica di Laboratorio, UOC di Patologia Clinica, Azienda Ospedaliera Universitaria "Scuola Medica Salernitana", OORR San Giovanni di Dio e Ruggi d'Aragona, Salerno, Italy.
| | - Desré Ethel Fontana
- Dipartimento di Medicina di Laboratorio e Istituto di Patologia Clinica, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Nicola Bizzaro
- Laboratorio di Patologia Clinica, Ospedale San Antonio, Azienda Sanitaria Universitaria Integrata di Udine, Tolmezzo, Italy
| |
Collapse
|
29
|
Rolim I, Duarte N, Barata G, Costa J, Gardete-Correia L, Boavida J, Duarte R, Raposo J, Peerally Z, Catarino M, Penha-Gonçalves C. Immunoglobulin M gene association with autoantibody reactivity and type 1 diabetes. Immunogenetics 2017; 69:429-437. [PMID: 28534223 PMCID: PMC5486809 DOI: 10.1007/s00251-017-0999-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/04/2017] [Indexed: 01/07/2023]
Abstract
Several lines of evidence show that autoimmune responses evolving in type 1 diabetes (T1D) patients include the generation of multi-reactive autoantibody (AutoAb) repertoires, but their role in T1D pathogenesis remains elusive. We tested the hypothesis that variants at the immunoglobulin heavy chain (IGH) locus are genetic determinants of AutoAbs against pancreatic antigens and contribute to T1D susceptibility. With this aim, two independent study designs were used: a case-control study and a family-based cohort comprising a total of 240 T1D patients, 172 first-degree relatives (mother and/or father), and 130 unrelated healthy controls living in Portugal. We found that three SNPs in the IGH locus show suggestive association with T1D with the highest nominal association at rs1950942 (in the IGHM-IGHJ gene region) in both the case-control study (P = 9.35E-03) and the family-based cohort (P = 3.08E-03). These SNPs were also associated with IgG AutoAbs against pancreatic antigens and with AutoAb multi-reactivity in T1D patients. Notably, we found that the SNP with the highest association with T1D susceptibility and IgG autoantibody reactivity (rs1950942) was also associated with anti-GAD IgM reactivity in T1D patients (P = 5.98E-03) and in non-affected parents (P = 4.17E-03). This finding implies that IGH association with autoreactive IgM is detectable irrespective of disease status.These results suggest that genetic variants at the IgM gene region of the IGH locus contribute to antibody autoreactivity and are associated with T1D. We propose that the control of autoantibody generation by IGH polymorphisms is a component of the complex architecture of T1D genetic susceptibility.
Collapse
Affiliation(s)
- Inês Rolim
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901, Oeiras, Portugal.,Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Nádia Duarte
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901, Oeiras, Portugal
| | - Gabriela Barata
- Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Portuguese Diabetes Association, Education and Research Center, Lisbon, Portugal
| | - João Costa
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901, Oeiras, Portugal
| | - Luís Gardete-Correia
- Portuguese Diabetes Association, Education and Research Center, Lisbon, Portugal
| | - José Boavida
- Portuguese Diabetes Association, Education and Research Center, Lisbon, Portugal
| | - Rui Duarte
- Portuguese Diabetes Association, Education and Research Center, Lisbon, Portugal
| | - João Raposo
- Portuguese Diabetes Association, Education and Research Center, Lisbon, Portugal
| | - Zulmira Peerally
- Portuguese Diabetes Association, Education and Research Center, Lisbon, Portugal
| | | | - Carlos Penha-Gonçalves
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901, Oeiras, Portugal. .,Portuguese Diabetes Association, Education and Research Center, Lisbon, Portugal.
| |
Collapse
|
30
|
Paredes-Juarez GA, de Vos P, Bulte JWM. Recent progress in the use and tracking of transplanted islets as a personalized treatment for type 1 diabetes. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017; 2:57-67. [PMID: 29276781 PMCID: PMC5737787 DOI: 10.1080/23808993.2017.1302305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Type 1 diabetes mellitus (T1DM) is an autoimmune disease in which the pancreas produces insufficient amounts of insulin. T1DM patients require exogenous sources of insulin to maintain euglycemia. Transplantation of naked or microencapsulated pancreatic islets represents an alternative paradigm to obtain an autonomous regulation of blood glucose levels in a controlled and personalized fashion. However, once transplanted, the fate of these personalized cellular therapeutics is largely unknown, justifying the development of non-invasive tracking techniques. AREAS COVERED In vivo imaging of naked pancreatic islet transplantation, monitoring of microencapsulated islet transplantation, visualizing pancreatic inflammation, imaging of molecular-genetic therapeutics, imaging of beta cell function. EXPERT COMMENTARY There are still several hurdles to overcome before (microencapsulated) islet cell transplantation will become a mainstay therapy. Non-invasive imaging methods that can track graft volume, graft rejection, graft function (insulin secretion) microcapsule engraftment, microcapsule rupture, and pancreatic inflammation are currently being developed to design the best experimental transplantation paradigms.
Collapse
Affiliation(s)
- Genaro A Paredes-Juarez
- Russell H. Morgan Department of Radiology, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul de Vos
- University Medical Center Groningen (UMCG), Department of Pathology and Medical Biology, Section Immunoendocrinology. Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Zhang L, Lanzoni G, Battarra M, Inverardi L, Zhang Q. Proteomic profiling of human islets collected from frozen pancreata using laser capture microdissection. J Proteomics 2016; 150:149-159. [PMID: 27620696 DOI: 10.1016/j.jprot.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/20/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
The etiology of Type 1 Diabetes (T1D) remains elusive. Enzymatically isolated and cultured (EIC) islets cannot fully reflect the natural protein composition and disease process of in vivo islets, because of the stress from isolation procedures. In order to study islet protein composition in conditions close to the natural environment, we performed proteomic analysis of EIC islets, and laser capture microdissected (LCM) human islets and acinar tissue from fresh-frozen pancreas sections of three cadaveric donors. 1104 and 706 proteins were identified from 6 islets equivalents (IEQ) of LCM islets and acinar tissue, respectively. The proteomic profiles of LCM islets were reproducible within and among cadaveric donors. The endocrine hormones were only detected in LCM islets, whereas catalytic enzymes were significantly enriched in acinar tissue. Furthermore, high overlap (984 proteins) and similar function distribution were found between LCM and EIC islets proteomes, except that EIC islets had more acinar contaminants and stress-related signal transducer activity proteins. The comparison among LCM islets, LCM acinar tissue and EIC islets proteomes indicates that LCM combined with proteomic methods enables accurate and unbiased profiling of islet proteome from frozen pancreata. This paves the way for proteomic studies on human islets during the progression of T1D. SIGNIFICANCE The etiological agent triggering autoimmunity against beta cells in Type 1 diabetes (T1D) remains obscure. The in vitro models available (enzymatically isolated and cultured islets, EIC islets) do not accurately reflect what happens in vivo due to lack of the natural environment where islets exist and the preparation-induced changes in cell physiology. The importance of this study is that we investigated the feasibility of laser capture microdissection (LCM) for the isolation of intact islets from frozen cadaveric pancreatic tissue sections. We compared the protein profile of LCM islets (9 replicates from 3 cadaveric donors) with that of both LCM acinar tissues (6 replicates from the same 3 cadaveric donor as LCM islets) and EIC islets (at least 4 replicates for each sample with the same islets equivalents) by using proteomics techniques with advanced instrumentation, nanoLC-Q Exactive HF Orbitrap mass spectrometry (nano LC-MS/MS). The results demonstrate that the LCM method is reliable in isolating islets with an intact environment. LCM-based islet proteomics is a feasible approach to obtain good proteome coverage for assessing the pathology of T1D using cadaveric pancreatic samples, even from very small sample amounts. Future applications of this LCM-based proteomic method may help us understand the pathogenesis of T1D and identify potential biomarkers for T1D diagnosis at an early stage.
Collapse
Affiliation(s)
- Lina Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | - Matteo Battarra
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | - Luca Inverardi
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA.,Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
32
|
Siraj ES, Gupta MK, Yifter H, Ahmed A, Kebede T, Reja A, Abdulkadir J. Islet cell-associated autoantibodies in Ethiopians with diabetes mellitus. J Diabetes Complications 2016; 30:1039-42. [PMID: 27220543 DOI: 10.1016/j.jdiacomp.2016.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND & AIMS Our understanding of the role of autoimmunity in the pathogenesis of diabetes in African populations is limited. This study aims to evaluate the prevalence of 4 different islet cell-associated antibodies in Ethiopian patients with diabetes and non-diabetic controls. METHODS A total of 187 subjects from a diabetic clinic at an Ethiopian hospital were evaluated in a cross-sectional study. Fifty-five patients had type 1 diabetes mellitus (T1DM), 86 had type 2 diabetes mellitus (T2DM) and 46 were non-diabetic controls. Islet cell-associated antibodies were measured using 4 different assays for antibodies against islet cells (ICA), glutamic acid decarboxylase (GADA), insulin (IAA) and the protein tyrosine phosphatase-like IA-2 (IA-2A). RESULTS Comparing the antibody positivity in subjects with T1DM versus T2DM, the results were as follows: 29% versus 3.5% for GADA; 21% versus 2.7% for ICA; 27% versus 16% for IAA. In the control group, the only positive result was for IAA at 2%. IA-2A was absent in all groups. The combi-assay for GADA and IA-2A detected all GADA-positive subjects. T2DM patients who were GADA positive had lower BMI, lower C-peptide levels and all of them were on insulin therapy. CONCLUSIONS Compared to Caucasians, Ethiopians with T1DM have less prevalence of islet cell-associated antibodies, but the rates are higher than in T2DM. GADA is present in Ethiopians, whereas IA-2A seems to be absent. GADA positivity in T2DM correlates with clinical features of T1DM, indicating the existence in Ethiopia of the subgroup, latent autoimmune diabetes in adults.
Collapse
Affiliation(s)
- Elias S Siraj
- Lewis Katz School of Medicine at Temple University, Section of Endocrinology, 3322North Broad St., Philadelphia, PA 19140, USA.
| | - Manjula K Gupta
- Cleveland Clinic, Department of Endocrinology, Diabetes & Metabolism, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Helen Yifter
- Addis Ababa University, Endocrine Unit, PO Box 9086, Addis Ababa, Ethiopia
| | - Abdurezak Ahmed
- Addis Ababa University, Endocrine Unit, PO Box 9086, Addis Ababa, Ethiopia
| | - Tedla Kebede
- Addis Ababa University, Endocrine Unit, PO Box 9086, Addis Ababa, Ethiopia
| | - Ahmed Reja
- Addis Ababa University, Endocrine Unit, PO Box 9086, Addis Ababa, Ethiopia
| | - Jemal Abdulkadir
- Addis Ababa University, Endocrine Unit, PO Box 9086, Addis Ababa, Ethiopia
| |
Collapse
|
33
|
Panimolle F, Tiberti C, Granato S, Semeraro A, Gianfrilli D, Anzuini A, Lenzi A, Radicioni A. Screening of endocrine organ-specific humoral autoimmunity in 47,XXY Klinefelter's syndrome reveals a significant increase in diabetes-specific immunoreactivity in comparison with healthy control men. Endocrine 2016; 52:157-64. [PMID: 25935328 DOI: 10.1007/s12020-015-0613-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
The aim of this study was to evaluate the frequency of humoral endocrine organ-specific autoimmunity in 47,XXY Klinefelter's syndrome (KS) by investigating the autoantibody profile specific to type 1 diabetes (T1DM), Addison's disease (AD), Hashimoto thyroiditis (HT), and autoimmune chronic atrophic gastritis (AG). Sixty-one adult Caucasian 47,XXY KS patients were tested for autoantibodies specific to T1DM (Insulin Abs, GAD Abs, IA-2 Abs, Znt8 Abs), HT (TPO Abs), AD (21-OH Abs), and AG (APC Abs). Thirty-five of these patients were not undergoing testosterone replacement therapy TRT (Group 1) and the remaining 26 patients started TRT before the beginning of the study (Group 2). KS autoantibody frequencies were compared to those found in 122 control men. Six of 61 KS patients (9.8 %) were positive for at least one endocrine autoantibody, compared to 6.5 % of controls. Interestingly, KS endocrine immunoreactivity was directed primarily against diabetes-specific autoantigens (8.2 %), with a significantly higher frequency than in controls (p = 0.016). Two KS patients (3.3 %) were TPO Ab positive, whereas no patients were positive for AD- and AG-related autoantigens. The autoantibody endocrine profile of untreated and treated KS patients was not significantly different. Our findings demonstrate for the first time that endocrine humoral immunoreactivity is not rare in KS patients and that it is more frequently directed against type 1 diabetes-related autoantigens, thus suggesting the importance of screening for organ-specific autoimmunity in clinical practice. Follow-up studies are needed to establish if autoantibody-positive KS patients will develop clinical T1DM.
Collapse
Affiliation(s)
- Francesca Panimolle
- Section of Medical Pathophysiology, Department of Experimental Medicine, Center of Rare Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - Claudio Tiberti
- Section of Medical Pathophysiology, Department of Experimental Medicine, Center of Rare Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Simona Granato
- Section of Medical Pathophysiology, Department of Experimental Medicine, Center of Rare Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Antonella Semeraro
- Section of Medical Pathophysiology, Department of Experimental Medicine, Center of Rare Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Daniele Gianfrilli
- Section of Medical Pathophysiology, Department of Experimental Medicine, Center of Rare Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Antonella Anzuini
- Section of Medical Pathophysiology, Department of Experimental Medicine, Center of Rare Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Andrea Lenzi
- Section of Medical Pathophysiology, Department of Experimental Medicine, Center of Rare Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Antonio Radicioni
- Section of Medical Pathophysiology, Department of Experimental Medicine, Center of Rare Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| |
Collapse
|
34
|
Xiang H, Yang C, Xiang T, Wang Z, Ge X, Li F, Su Y, Chen H, Huang X, Zeng Q. Residual β-Cell Function Predicts Clinical Response After Autologous Hematopoietic Stem Cell Transplantation. Stem Cells Transl Med 2016; 5:651-7. [PMID: 27025691 DOI: 10.5966/sctm.2015-0144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/23/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED New strategies of autologous hematopoietic stem cell transplantation (auto-HSCT) have gained much interest for the treatment of type 1 diabetes mellitus. However, assessing the clinical response and residual β-cell function still has limitations. The aim of the study was to select the optimal quantitative index to assess pre-existing β-cell function and to explore its predictive function for clinical response after auto-HSCT therapy. In this study, all of the patients who had undergone auto-HSCT were clustered into a responder group (Δβ-score > 0) and a nonresponder group (Δβ-score ≤ 0). We compared their quantitative metabolic indexes at baseline and performed receiver-operating characteristic (ROC) analysis to analyze the correlations between the indexes and clinical response. Kaplan-Meier analysis was conducted to compare the cumulative response durations in each quartile of the selected indexes. In an average of 15.13 ± 6.15 months of follow-up, 44 of 112 patients achieved a clinical response. The responder group had lower levels of fasting plasma glucose and quantitative insulin sensitivity check index (QUICKI) but higher levels of fasting C-peptide, fasting insulin, and homeostasis model assessments for insulin resistance (HOMA-IR). ROC analysis showed that HOMA-IR had the largest area under the curve (0.756), which was similar to that of QUICKI. Kaplan-Meier analysis further confirmed that the third quartile (1.3371-1.7018) of HOMA-IR or the second quartile (0.3523-0.3657) of QUICKI was preferential for a prolonged response. In conclusion, HOMA-IR and QUICKI could be optimal measurements for β-cell reserves, and they were predictive for the clinical response after auto-HSCT. SIGNIFICANCE The β-score was comprehensive and reliable in evaluating clinical response after autologous hematopoietic stem cell transplantation (HSCT). The homeostasis model assessments for insulin resistance and the quantitative insulin sensitivity check index could serve as precise assessments for residual β-cell function and good predictors of clinical response. They might be used to select optimal clinical trial participants or predict the clinical response after auto-HSCT.
Collapse
Affiliation(s)
- Hang Xiang
- Health Management Institute of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Chao Yang
- Department of Transfusion Medicine, The Second Artillery General Hospital of Chinese People's Liberation Army, Beijing, People's Republic of China
| | - Tianyuan Xiang
- Geriatrics Institute of Xiyuan Hospital, Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Zheng Wang
- Department of Biotherapy of PLA 455 Hospital, Shanghai, People's Republic of China
| | - Xin Ge
- Galactophore Department of the First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Fan Li
- Beijing Key Laboratory of Normal Aging and Geriatrics, Geriatrics Institute of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yuehan Su
- Department of Biotherapy of PLA 455 Hospital, Shanghai, People's Republic of China
| | - Haixu Chen
- Beijing Key Laboratory of Normal Aging and Geriatrics, Geriatrics Institute of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xianyong Huang
- Health Management Institute of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qiang Zeng
- Health Management Institute of Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
35
|
Blasetti A, Di Giulio C, Tumini S, Provenzano M, Rapino D, Comegna L, Prezioso G, Chiuri R, Franchini S, Chiarelli F, Stuppia L. Role of the C1858T polymorphism of protein tyrosine phosphatase non-receptor type 22 (PTPN22) in children and adolescents with type 1 diabetes. THE PHARMACOGENOMICS JOURNAL 2016; 17:186-191. [DOI: 10.1038/tpj.2016.6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/24/2015] [Accepted: 01/20/2016] [Indexed: 01/18/2023]
|
36
|
Cai T, Notkins AL. Pathophysiologic changes in IA-2/IA-2β null mice are secondary to alterations in the secretion of hormones and neurotransmitters. Acta Diabetol 2016; 53:7-12. [PMID: 25861885 PMCID: PMC5243143 DOI: 10.1007/s00592-015-0750-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/26/2015] [Indexed: 12/13/2022]
Abstract
IA-2 and IA-2β are transmembrane proteins of dense-core vesicles (DCV). The deletion of these proteins results in a reduction in the number of DCV and the secretion of hormones and neurotransmitters. As a result, this leads to a variety of pathophysiologic changes. The purpose of this review is to describe these changes, which are characterized by glucose intolerance, female infertility, behavior and learning abnormalities and alterations in the diurnal circadian rhythms of blood pressure, heart rate, spontaneous physical activity and body temperature. These findings show that the deletion of IA-2 and IA-2β results in multiple pathophysiologic changes and represents a unique in vivo model for studying the effect of hormone and neurotransmitter reduction on known and still unrecognized targets.
Collapse
Affiliation(s)
- Tao Cai
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), B30/Rm106, Bethesda, MD, 20892, USA
| | - Abner L Notkins
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), B30/Rm106, Bethesda, MD, 20892, USA.
| |
Collapse
|
37
|
Lin Y, Sun Z. Antiaging Gene Klotho Attenuates Pancreatic β-Cell Apoptosis in Type 1 Diabetes. Diabetes 2015; 64:4298-311. [PMID: 26340932 PMCID: PMC4657580 DOI: 10.2337/db15-0066] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/25/2015] [Indexed: 12/20/2022]
Abstract
Apoptosis is the major cause of death of insulin-producing β-cells in type 1 diabetes mellitus (T1DM). Klotho is a recently discovered antiaging gene. We found that the Klotho gene is expressed in pancreatic β-cells. Interestingly, halplodeficiency of Klotho (KL(+/-)) exacerbated streptozotocin (STZ)-induced diabetes (a model of T1DM), including hyperglycemia, glucose intolerance, diminished islet insulin storage, and increased apoptotic β-cells. Conversely, in vivo β-cell-specific expression of mouse Klotho gene (mKL) attenuated β-cell apoptosis and prevented STZ-induced diabetes. mKL promoted cell adhesion to collagen IV, increased FAK and Akt phosphorylation, and inhibited caspase 3 cleavage in cultured MIN6 β-cells. mKL abolished STZ- and TNFα-induced inhibition of FAK and Akt phosphorylation, caspase 3 cleavage, and β-cell apoptosis. These promoting effects of Klotho can be abolished by blocking integrin β1. Therefore, these cell-based studies indicated that Klotho protected β-cells by inhibiting β-cell apoptosis through activation of the integrin β1-FAK/Akt pathway, leading to inhibition of caspase 3 cleavage. In an autoimmune T1DM model (NOD), we showed that in vivo β-cell-specific expression of mKL improved glucose tolerance, attenuated β-cell apoptosis, enhanced insulin storage in β-cells, and increased plasma insulin levels. The beneficial effect of Klotho gene delivery is likely due to attenuation of T-cell infiltration in pancreatic islets in NOD mice. Overall, our results demonstrate for the first time that Klotho protected β-cells in T1DM via attenuating apoptosis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Autoimmunity
- Cell Adhesion
- Cell Line, Tumor
- Crosses, Genetic
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Female
- Genetic Therapy
- Insulin/blood
- Insulin/metabolism
- Insulin Resistance
- Insulin Secretion
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Klotho Proteins
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, 129 Strain
- Mice, Inbred ICR
- Mice, Inbred NOD
- Mice, Mutant Strains
- Phosphorylation
- Promoter Regions, Genetic
- Protein Processing, Post-Translational
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
38
|
Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice. PLoS One 2015; 10:e0142688. [PMID: 26606254 PMCID: PMC4659659 DOI: 10.1371/journal.pone.0142688] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/26/2015] [Indexed: 01/14/2023] Open
Abstract
In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs.
Collapse
|
39
|
Mao S, Zhang J, Zhao M, Zhang Y. Association of transforming growth factor-β1 polymorphisms with the risk of diabetes mellitus. Int J Clin Exp Med 2015; 8:21886-21892. [PMID: 26885158 PMCID: PMC4724004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
The association between transforming growth factor-β1 (TGF-β1) polymorphisms with the risk of diabetes mellitus (DM) remains elusive. We aimed to evaluate the relationship between TGF-β1 polymorphisms and DM risk. We searched the association studies according to a predefined criteria using electronic databases. The strength of association between TGF-β1 codon 10/25 polymorphisms and the risk of DM was evaluated by odds ratio (OR) with the corresponding 95% confidence interval (CI). Six case-control studies were identified for the analysis of the association between TGF-β1 codon 10/25 polymorphism and the risk of DM. CC genotype at the codon 10 polymorphism was associated with the risk of type 2 DM (T2DM) (P = 0.026, OR = 1.397, 95% CI = 1.041-1.874). No marked association was observed between codon 25 polymorphism and the risk of DM. No evidence of marked publication bias was observed. CC genotype at the TGF-β1 codon 10 site may be an indicator for the risk of T2DM. However, further larger studies should be performed in the future.
Collapse
Affiliation(s)
- Song Mao
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai, China
| | - Jianhua Zhang
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai, China
| | - Min Zhao
- Department of Nephrology, Nanjing Children’s Hospital, Affiliated to Nanjing Medical UniversityNanjing, China
| | - Yuan Zhang
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai, China
| |
Collapse
|
40
|
Xu H, Abuhatzira L, Carmona GN, Vadrevu S, Satin LS, Notkins AL. The Ia-2β intronic miRNA, miR-153, is a negative regulator of insulin and dopamine secretion through its effect on the Cacna1c gene in mice. Diabetologia 2015; 58:2298-306. [PMID: 26141787 PMCID: PMC6754265 DOI: 10.1007/s00125-015-3683-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/11/2015] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS miR-153 is an intronic miRNA embedded in the genes that encode IA-2 (also known as PTPRN) and IA-2β (also known as PTPRN2). Islet antigen (IA)-2 and IA-2β are major autoantigens in type 1 diabetes and are important transmembrane proteins in dense core and synaptic vesicles. miR-153 and its host genes are co-regulated in pancreas and brain. The present experiments were initiated to decipher the regulatory network between miR-153 and its host gene Ia-2β (also known as Ptprn2). METHODS Insulin secretion was determined by ELISA. Identification of miRNA targets was assessed using luciferase assays and by quantitative real-time PCR and western blots in vitro and in vivo. Target protector was also employed to evaluate miRNA target function. RESULTS Functional studies revealed that miR-153 mimic suppresses both glucose- and potassium-induced insulin secretion (GSIS and PSIS, respectively), whereas miR-153 inhibitor enhances both GSIS and PSIS. A similar effect on dopamine secretion also was observed. Using miRNA target prediction software, we found that miR-153 is predicted to target the 3'UTR region of the calcium channel gene, Cacna1c. Further studies confirmed that Cacna1c mRNA and protein are downregulated by miR-153 mimics and upregulated by miR-153 inhibitors in insulin-secreting freshly isolated mouse islets, in the insulin-secreting mouse cell line MIN6 and in the dopamine-secreting cell line PC12. CONCLUSIONS/INTERPRETATION miR-153 is a negative regulator of both insulin and dopamine secretion through its effect on Cacna1c expression, which suggests that IA-2β and miR-153 have opposite functional effects on the secretory pathway.
Collapse
Affiliation(s)
- Huanyu Xu
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Liron Abuhatzira
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Gilberto N Carmona
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Suryakiran Vadrevu
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Leslie S Satin
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Abner L Notkins
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
41
|
Oldstone MBA. A Jekyll and Hyde Profile: Type 1 Interferon Signaling Plays a Prominent Role in the Initiation and Maintenance of a Persistent Virus Infection. J Infect Dis 2015; 212 Suppl 1:S31-6. [PMID: 26116728 DOI: 10.1093/infdis/jiu501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The hallmarks of persistent viral infections are exhaustion of virus-specific T cells, elevated production of interleukin 10 (IL-10) and programmed death-1 (PD-1) the dominant negative regulators of the immune system and disruption of secondary lymphoid tissues. Within the first 12-24 hours after mice are infected with lymphocytic choriomeningitis virus (LCMV) clone 13, which is used as a model of persistent virus infection, we note generation of high titers of type 1 interferon. Blockade of type 1 interferon significantly lessens IL-10 and PD-1/PD-L1, allows normal secondary lymphoid architecture and re-establishes antiviral T-cell function, thus eradicating the virus and clearing the infection. Hence, type 1 interferon is a master reostat for establishing persistent viral infection.
Collapse
Affiliation(s)
- Michael B A Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
42
|
Hansen MP, Matheis N, Kahaly GJ. Type 1 diabetes and polyglandular autoimmune syndrome: A review. World J Diabetes 2015; 6:67-79. [PMID: 25685279 PMCID: PMC4317318 DOI: 10.4239/wjd.v6.i1.67] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/11/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder caused by inflammatory destruction of the pancreatic tissue. The etiopathogenesis and characteristics of the pathologic process of pancreatic destruction are well described. In addition, the putative susceptibility genes for T1D as a monoglandular disease and the relation to polyglandular autoimmune syndrome (PAS) have also been well explored. The incidence of T1D has steadily increased in most parts of the world, especially in industrialized nations. T1D is frequently associated with autoimmune endocrine and non-endocrine diseases and patients with T1D are at a higher risk for developing several glandular autoimmune diseases. Familial clustering is observed, which suggests that there is a genetic predisposition. Various hypotheses pertaining to viral- and bacterial-induced pancreatic autoimmunity have been proposed, however a definitive delineation of the autoimmune pathomechanism is still lacking. In patients with PAS, pancreatic and endocrine autoantigens either colocalize on one antigen-presenting cell or are expressed on two/various target cells sharing a common amino acid, which facilitates binding to and activation of T cells. The most prevalent PAS phenotype is the adult type 3 variant or PAS type III, which encompasses T1D and autoimmune thyroid disease. This review discusses the findings of recent studies showing noticeable differences in the genetic background and clinical phenotype of T1D either as an isolated autoimmune endocrinopathy or within the scope of polyglandular autoimmune syndrome.
Collapse
|
43
|
Hansson T, Dahlbom I, Tuvemo T, Frisk G. Silent coeliac disease is over-represented in children with type 1 diabetes and their siblings. Acta Paediatr 2015; 104:185-91. [PMID: 25283799 DOI: 10.1111/apa.12823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/14/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
AIM This study measured autoantibodies against tissue transglutaminase (anti-tTG) to detect untreated coeliac disease in children with type 1 diabetes and their siblings. METHODS Anti-tTG was measured in prospectively collected sera from 169 children at the onset of diabetes, 88 of their siblings and 96 matched control children. Coeliac disease was confirmed with a small intestinal biopsy. RESULTS Coeliac disease was diagnosed in five children before diabetes onset. A further 12 children were diagnosed after diabetes onset, without any gastrointestinal symptoms, and 11 of these had anti-tTG at the onset of diabetes, with the remaining child showing seroconversion within 6 months. Hence, all the children with both diseases had anti-tTG at or before diabetes diagnosis, and the prevalence of coeliac disease was 10.1%. Moreover, 6.8% of the siblings and 3.1% of the control children had elevated levels of anti-tTG. None of the siblings reported any coeliac-related symptoms, despite being positive for anti-tTG, and coeliac disease has so far been biopsy confirmed in 4.5%. CONCLUSION Silent coeliac disease is over-represented in children with type 1 diabetes and their siblings. All diabetes children and their siblings should be tested and followed for the presence of anti-tTG and coeliac disease.
Collapse
Affiliation(s)
- Tony Hansson
- Department of Women's and Children's Health; Uppsala University; Uppsala Sweden
- Department of Immunology, Genetics and Pathology; Uppsala University; Uppsala Sweden
| | - Ingrid Dahlbom
- Department of Women's and Children's Health; Uppsala University; Uppsala Sweden
- Therapeutic Immune Design Unit; Department of Clinical Neuroscience; Karolinska Institute; Stockholm Sweden
| | - Torsten Tuvemo
- Department of Women's and Children's Health; Uppsala University; Uppsala Sweden
| | - Gun Frisk
- Department of Immunology, Genetics and Pathology; Uppsala University; Uppsala Sweden
| |
Collapse
|
44
|
Kenefeck R, Wang CJ, Kapadi T, Wardzinski L, Attridge K, Clough LE, Heuts F, Kogimtzis A, Patel S, Rosenthal M, Ono M, Sansom DM, Narendran P, Walker LS. Follicular helper T cell signature in type 1 diabetes. J Clin Invest 2015; 125:292-303. [PMID: 25485678 PMCID: PMC4382272 DOI: 10.1172/jci76238] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/06/2014] [Indexed: 12/30/2022] Open
Abstract
The strong genetic association between particular HLA alleles and type 1 diabetes (T1D) indicates a key role for CD4+ T cells in disease; however, the differentiation state of the responsible T cells is unclear. T cell differentiation originally was considered a dichotomy between Th1 and Th2 cells, with Th1 cells deemed culpable for autoimmune islet destruction. Now, multiple additional T cell differentiation fates are recognized with distinct roles. Here, we used a transgenic mouse model of diabetes to probe the gene expression profile of islet-specific T cells by microarray and identified a clear follicular helper T (Tfh) cell differentiation signature. Introduction of T cells with a Tfh cell phenotype from diabetic animals efficiently transferred diabetes to recipient animals. Furthermore, memory T cells from patients with T1D expressed elevated levels of Tfh cell markers, including CXCR5, ICOS, PDCD1, BCL6, and IL21. Defects in the IL-2 pathway are associated with T1D, and IL-2 inhibits Tfh cell differentiation in mice. Consistent with these previous observations, we found that IL-2 inhibited human Tfh cell differentiation and identified a relationship between IL-2 sensitivity in T cells from patients with T1D and acquisition of a Tfh cell phenotype. Together, these findings identify a Tfh cell signature in autoimmune diabetes and suggest that this population could be used as a biomarker and potentially targeted for T1D interventions.
Collapse
Affiliation(s)
- Rupert Kenefeck
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| | - Chun Jing Wang
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| | - Tauseef Kapadi
- University of Birmingham, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Lukasz Wardzinski
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| | - Kesley Attridge
- University of Birmingham, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Louise E. Clough
- University of Birmingham, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Frank Heuts
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| | - Alexandros Kogimtzis
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| | - Sapna Patel
- University of Birmingham, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Miranda Rosenthal
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| | - Masahiro Ono
- Immunology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - David M. Sansom
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| | - Parth Narendran
- University of Birmingham, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Lucy S.K. Walker
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| |
Collapse
|
45
|
Yang J, Lernmark Å, Uusitalo UM, Lynch KF, Veijola R, Winkler C, Larsson HE, Rewers M, She JX, Ziegler AG, Simell OG, Hagopian WA, Akolkar B, Krischer JP, Vehik K. Prevalence of obesity was related to HLA-DQ in 2-4-year-old children at genetic risk for type 1 diabetes. Int J Obes (Lond) 2014; 38:1491-6. [PMID: 24694666 PMCID: PMC4185013 DOI: 10.1038/ijo.2014.55] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/11/2014] [Accepted: 03/21/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Body size is postulated to modulate type 1 diabetes as either a trigger of islet autoimmunity or an accelerator to clinical onset after seroconversion. As overweight and obesity continue to rise among children, the aim of this study was to determine whether human leukocyte antigen DQ (HLA-DQ) genotypes may be related to body size among children genetically at risk for type 1 diabetes. METHODS Repeated measures of weight and height were collected from 5969 children 2-4 years of age enrolled in The Environmental Determinants of Diabetes in the Young prospective study. Overweight and obesity was determined by the International Obesity Task Force cutoff values that correspond to body mass index (BMI) of 25 and 30 kg m(-)(2) at age 18. RESULTS The average BMI was comparable across specific HLA genotypes at every age point. The proportion of overweight was not different by HL A, but percent obesity varied by age with a decreasing trend among DQ2/8 carriers (P for trend=0.0315). A multivariable regression model suggested DQ2/2 was associated with higher obesity risk at age 4 (odds ratio, 2.41; 95% confidence interval, 1.21-4.80) after adjusting for the development of islet autoantibody and/or type 1 diabetes. CONCLUSIONS The HLA-DQ2/2 genotype may predispose to obesity among 2-4-year-old children with genetic risk for type 1 diabetes.
Collapse
Affiliation(s)
- Jimin Yang
- Pediatrics Epidemiology Center, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Ulla M. Uusitalo
- Pediatrics Epidemiology Center, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Kristian F. Lynch
- Pediatrics Epidemiology Center, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Riitta Veijola
- Institute of Clinical Medicine, Department of Pediatrics, University of Oulu, Oulu, Finland
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V. Neuherberg, Germany
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, Colorado
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Anette G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V. Neuherberg, Germany
| | - Olli G. Simell
- Department of Pediatrics, University of Turku, Turku, Finland
| | | | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD
| | - Jeffrey P. Krischer
- Pediatrics Epidemiology Center, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Kendra Vehik
- Pediatrics Epidemiology Center, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | |
Collapse
|
46
|
Olsson AH, Volkov P, Bacos K, Dayeh T, Hall E, Nilsson EA, Ladenvall C, Rönn T, Ling C. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet 2014; 10:e1004735. [PMID: 25375650 PMCID: PMC4222689 DOI: 10.1371/journal.pgen.1004735] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 09/05/2014] [Indexed: 12/29/2022] Open
Abstract
Genetic and epigenetic mechanisms may interact and together affect biological processes and disease development. However, most previous studies have investigated genetic and epigenetic mechanisms independently, and studies examining their interactions throughout the human genome are lacking. To identify genetic loci that interact with the epigenome, we performed the first genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human pancreatic islets. We related 574,553 single nucleotide polymorphisms (SNPs) with genome-wide DNA methylation data of 468,787 CpG sites targeting 99% of RefSeq genes in islets from 89 donors. We identified 67,438 SNP-CpG pairs in cis, corresponding to 36,783 SNPs (6.4% of tested SNPs) and 11,735 CpG sites (2.5% of tested CpGs), and 2,562 significant SNP-CpG pairs in trans, corresponding to 1,465 SNPs (0.3% of tested SNPs) and 383 CpG sites (0.08% of tested CpGs), showing significant associations after correction for multiple testing. These include reported diabetes loci, e.g. ADCY5, KCNJ11, HLA-DQA1, INS, PDX1 and GRB10. CpGs of significant cis-mQTLs were overrepresented in the gene body and outside of CpG islands. Follow-up analyses further identified mQTLs associated with gene expression and insulin secretion in human islets. Causal inference test (CIT) identified SNP-CpG pairs where DNA methylation in human islets is the potential mediator of the genetic association with gene expression or insulin secretion. Functional analyses further demonstrated that identified candidate genes (GPX7, GSTT1 and SNX19) directly affect key biological processes such as proliferation and apoptosis in pancreatic β-cells. Finally, we found direct correlations between DNA methylation of 22,773 (4.9%) CpGs with mRNA expression of 4,876 genes, where 90% of the correlations were negative when CpGs were located in the region surrounding transcription start site. Our study demonstrates for the first time how genome-wide genetic and epigenetic variation interacts to influence gene expression, islet function and potential diabetes risk in humans. Inter-individual variation in genetics and epigenetics affects biological processes and disease susceptibility. However, most studies have investigated genetic and epigenetic mechanisms independently and to uncover novel mechanisms affecting disease susceptibility there is a highlighted need to study interactions between these factors on a genome-wide scale. To identify novel loci affecting islet function and potentially diabetes, we performed the first genome-wide methylation quantitative trait locus (mQTL) analysis in human pancreatic islets including DNA methylation of 468,787 CpG sites located throughout the genome. Our results showed that DNA methylation of 11,735 CpGs in 4,504 unique genes is regulated by genetic factors located in cis (67,438 SNP-CpG pairs). Furthermore, significant mQTLs cover previously reported diabetes loci including KCNJ11, INS, HLA, PDX1 and GRB10. We also found mQTLs associated with gene expression and insulin secretion in human islets. By performing causality inference tests (CIT), we identified CpGs where DNA methylation potentially mediates the genetic impact on gene expression and insulin secretion. Our functional follow-up experiments further demonstrated that identified mQTLs/genes (GPX7, GSTT1 and SNX19) directly affect pancreatic β-cell function. Together, our study provides a detailed map of genome-wide associations between genetic and epigenetic variation, which affect gene expression and insulin secretion in human pancreatic islets.
Collapse
Affiliation(s)
- Anders H. Olsson
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Petr Volkov
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Karl Bacos
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Tasnim Dayeh
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Elin Hall
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Emma A. Nilsson
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Tina Rönn
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
- * E-mail:
| |
Collapse
|
47
|
Dave SD, Trivedi HL, Gopal SC, Chandra T. Combined therapy of insulin-producing cells and haematopoietic stem cells offers better diabetic control than only haematopoietic stem cells' infusion for patients with insulin-dependent diabetes. BMJ Case Rep 2014; 2014:bcr-2013-201238. [PMID: 25199184 DOI: 10.1136/bcr-2013-201238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Insulin-dependent diabetes mellitus (IDDM) is a chronic condition characterised by impaired blood sugar metabolism and autoimmunity. We report two children: a 5-year-old girl on exogenous insulin therapy of 30 IU/day and a 9-year-old boy on short-acting insulin 30 IU/day, long-acting insulin 70 IU/day, with IDDM since 4 and 7 years, respectively. We infused in vitro-generated donor bone marrow (BM)-derived haematopoietic stem cells (HSC) in patient 1 and insulin-secreting cells trans-differentiated from autologous adipose tissue-derived mesenchymal stem cells along with BM-HSC in patient 2 under non-myeloablative conditioning. Patient 1 improved during the initial 6 months, but then again lost metabolic control with increased blood sugar levels and insulin requirement of 32 IU/day; we lost her to follow-up after 18 months. Patient 2, over follow-up of 24.87 months, has stable blood sugar levels with glycosylated haemoglobin of 6.4% and present insulin requirement of 15 IU/day.
Collapse
Affiliation(s)
- Shruti D Dave
- Department of Pathology, Laboratory Medicine, Transfusion Services and Immunohematology, G. R. Doshi and K. M. Mehta Institute of Kidney Diseases & Research Centre (IKDRC), Dr. H. L. Trivedi Institute of Transplantation Sciences (ITS), Ahmedabad, Gujarat, India
| | - Hargovind L Trivedi
- Department of Nephrology and Transplantation Medicine, G. R. Doshi and K. M. Mehta Institute of Kidney Diseases & Research Centre (IKDRC), Dr. H. L. Trivedi Institute of Transplantation Sciences (ITS), Ahmedabad, Gujarat, India
| | - Saroj C Gopal
- Department of Paediatric Surgery, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tulika Chandra
- Department of Transfusion Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
48
|
Harashima SI, Horiuchi T, Wang Y, Notkins AL, Seino Y, Inagaki N. Sorting nexin 19 regulates the number of dense core vesicles in pancreatic β-cells. J Diabetes Investig 2014; 3:52-61. [PMID: 24843546 PMCID: PMC4014933 DOI: 10.1111/j.2040-1124.2011.00138.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aims/Introduction: Insulinoma‐associated protein 2 (IA‐2) regulates insulin secretion and the number of dense core vesicles (DCV). However, the mechanism of regulation of DCV number by IA‐2 is unknown. We examined the effect of sorting nexin 19 (SNX19), an IA‐2 interacting protein, on insulin secretion and the number of dense core vesicles (DCV). Materials and Methods: Stable SNX19 knockdown (SNX19KD) MIN6, a mouse pancreatic β‐cell line, and stable SNX19‐reintroduced SNX19KD MIN6 were established. Quantification of DCV, and lysosomes was carried out using electron micrographs. The half‐life of DCV was detected by pulse‐chase experiment. Results: Insulin secretion and content were decreased in stable SNX19KD MIN6 cells compared with those in control MIN6 cells. Electron micrographs showed that DCV number in SNX19KD cells was decreased by approximately 75% and that DCV size was decreased by approximately 40% compared with those in control cells, respectively. Furthermore, when SNX19 was reintroduced in SNX19KD cells, insulin content, insulin secretion and DCV number were increased. The half‐life of DCV was decreased in SNX19KD cells, but was increased in SNX19KD cells in which SNX19 was reintroduced. The number of lysosomes and the activity of lysosome enzyme cathepsin D were increased by approximately threefold in SNX19KD cells compared with those in control cells. In contrast, they were decreased to approximately half to one‐third in SNX19‐reintroduced SNX19KD cells. Conclusions: SNX19 regulates the number of DCV and insulin content by stabilizing DCV in β‐cells. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2011.00138.x, 2012)
Collapse
Affiliation(s)
- Shin-Ichi Harashima
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto
| | - Takahiko Horiuchi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yu Wang
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto
| | - Abner Louis Notkins
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yutaka Seino
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto
| | - Nobuya Inagaki
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto
| |
Collapse
|
49
|
Monnerat-Cahli G, Trentin-Sonoda M, Guerra B, Manso G, Ferreira ACF, Silva DLSG, Coutinho DC, Carneiro-Ramos MS, Rodrigues DC, Cabral-da-Silva MC, Goldenberg RCS, Nascimento JHM, Campos de Carvalho AC, Medei E. Bone marrow mesenchymal stromal cells rescue cardiac function in streptozotocin-induced diabetic rats. Int J Cardiol 2014; 171:199-208. [PMID: 24374203 DOI: 10.1016/j.ijcard.2013.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/05/2013] [Accepted: 12/10/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVES In the present study, we investigated whether MSC-transplantation can revert cardiac dysfunction in streptozotocin-induced diabetic rats and the immunoregulatory effects of MSC were examined. BACKGROUND Cardiac complications are one of the main causes of death in diabetes. Several studies have shown anti-diabetic effects of bone marrow mesenchymal stromal cells (MSC). METHODS/RESULTS The rats were divided in three groups: Non-diabetic, Diabetic and Diabetic-Treated with 5 × 10(6) MSC 4 weeks after establishment of diabetes. Four weeks after MSC-therapy, systemic metabolic parameters, immunological profile and cardiac function were assessed. MSC-transplantation was able to revert the hyperglycemia and body weight loss of the animals. In addition, after MSC-transplantation a decrease in corticosterone and IFN-γ sera levels without restoration of insulin and leptin plasma levels was observed. Also, MSC-therapy improved electrical remodeling, shortening QT and QTc in the ECG and action potential duration of left ventricular myocytes. No arrhythmic events were observed after MSC-transplantation. MSC-therapy rescued the cardiac beta-adrenergic sensitivity by increasing beta-1 adrenergic receptor expression. Both alpha and beta cardiac AMPK and p-AMPK returned to baseline values after MSC-therapy. However, total ERK1 and p-ERK1/2 were not different among groups. CONCLUSION The results indicate that MSC-therapy was able to rescue cardiac impairment induced by diabetes, normalize cardiac AMPK subunit expression and activity, decrease corticosterone and glycemia and exert systemic immunoregulation.
Collapse
Affiliation(s)
- Gustavo Monnerat-Cahli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mayra Trentin-Sonoda
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo Andre, Brasil
| | - Bárbara Guerra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Gabriel Manso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Andrea C F Ferreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Diorney L S G Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Danielle C Coutinho
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brasil
| | - Marcela S Carneiro-Ramos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brasil
| | - Deivid C Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mauricio C Cabral-da-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Regina C S Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - José H M Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Antonio C Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Instituto Nacional de Cardiologia, Rio de Janeiro, Brasil
| | - Emiliano Medei
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
| |
Collapse
|
50
|
Association of BANK1 and cytokine gene polymorphisms with type 1 diabetes in Tunisia. Gene 2013; 536:296-301. [PMID: 24342660 DOI: 10.1016/j.gene.2013.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/18/2013] [Accepted: 12/02/2013] [Indexed: 01/02/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease (AID) with both genetic and environmental components. We aimed to investigate the genetic association of polymorphisms in genes previously linked with other AIDs, namely BANK1, IL15 and IL2/IL21 region. A total of 76 T1D patients and 162 controls from Southern Tunisia were recruited for a case-control association study investigating the relationship between sixteen SNPs of the BANK1, IL15 and IL2/IL21 gene region and T1D. In the BANK1 gene, G allele and GG genotype of rs3733197 were significantly increased in the group of T1D patients compared to controls. In addition, in the IL15 gene, the minor allele A of rs10519613 polymorphism was significantly higher in patients than in controls. No significant association was found for SNPS in IL2/IL21 gene region. The analysis of the haplotype structure revealed the G-C-A-C-T haplotype of the IL15 gene as associated with a reduction in the risk of developing T1D, while A-T-A-C-T haplotype increased the risk of developing the disease. Furthermore, in the IL2/IL21 region, only one haplotype consisting of eight SNPs was markedly associated with T1D susceptibility. Moreover, G-C combination of the BANK1/IL15 was significantly increased in T1D patients, compared to controls. Our results establish BANK1 and IL15 as new T1D genetic susceptibility factors and replicate the association of the 4q27 region with T1D. Our data agree with the effect previously observed for other autoimmune conditions and delineate a shared underlying mechanism.
Collapse
|