1
|
Wu J, Bloch N, Chang AY, Bhavsar R, Wang Q, Crawford A, DiLillo DJ, Vazzana K, Mohrs K, Dudgeon D, Patel S, Ahmed H, Garg V, Amatulli M, Antao OQ, Yan Y, Wang S, Ramos W, Krueger P, Adler C, Ni M, Wei Y, Guo C, Macdonald L, Huang T, Ullman E, Hermann A, Yancopoulos GD, Murphy AJ, Davis S, Olson WC, Lin JC, Smith E, Zhang T. A PD-1-targeted, receptor-masked IL-2 immunocytokine that engages IL-2Rα strengthens T cell-mediated anti-tumor therapies. Cell Rep Med 2024; 5:101747. [PMID: 39326410 PMCID: PMC11513833 DOI: 10.1016/j.xcrm.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
The clinical use of interleukin-2 (IL-2) for cancer immunotherapy is limited by severe toxicity. Emerging IL-2 therapies with reduced IL-2 receptor alpha (IL-2Rα) binding aim to mitigate toxicity and regulatory T cell (Treg) expansion but have had limited clinical success. Here, we show that IL-2Rα engagement is critical for the anti-tumor activity of systemic IL-2 therapy. A "non-α" IL-2 mutein induces systemic expansion of CD8+ T cells and natural killer (NK) cells over Tregs but exhibits limited anti-tumor efficacy. We develop a programmed cell death protein 1 (PD-1)-targeted, receptor-masked IL-2 immunocytokine, PD1-IL2Ra-IL2, which attenuates systemic IL-2 activity while maintaining the capacity to engage IL-2Rα on PD-1+ T cells. Mice treated with PD1-IL2Ra-IL2 show no systemic toxicities observed with unmasked IL-2 treatment yet achieve robust tumor growth control. Furthermore, PD1-IL2Ra-IL2 can be effectively combined with other T cell-mediated immunotherapies to enhance anti-tumor responses. These findings highlight the therapeutic potential of PD1-IL2Ra-IL2 as a targeted, receptor-masked, and "α-maintained" IL-2 therapy for cancer.
Collapse
Affiliation(s)
- Jiaxi Wu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA.
| | - Nicolin Bloch
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Aaron Y Chang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Qingqing Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Katja Mohrs
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Supriya Patel
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Hassan Ahmed
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Vidur Garg
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Olivia Q Antao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yuetian Yan
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Shunhai Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Willy Ramos
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Pamela Krueger
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Chunguang Guo
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Lynn Macdonald
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Erica Ullman
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Aynur Hermann
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | - Samuel Davis
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - John C Lin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Eric Smith
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Tong Zhang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
2
|
Verlingue L, Italiano A, Prenen H, Guerra Alia EM, Tosi D, Perets R, Lugowska I, Moiseyenko V, Gumus M, Arslan C, Lindsay CR, Deva S, Taus Á, Oaknin A, Rottey S, Cicin I, Goksu SS, Smolin A, Roselló-Keränen S, Habigt C, Marbach D, Boetsch C, Dejardin D, Sleiman N, Evers S, Richard M, Ardeshir C, Charo J, Kraxner A, Teichgräber V, Keshelava N, Dziadziuszko R. Phase 2 study of the antitumour activity and safety of simlukafusp alfa (FAP-IL2v) combined with atezolizumab in patients with recurrent and/or metastatic cervical squamous cell carcinoma. EBioMedicine 2024; 109:105374. [PMID: 39395231 DOI: 10.1016/j.ebiom.2024.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/24/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Simlukafusp alfa (FAP-IL2v) is an immune cytokine engineered to selectively promote immune responses in the tumour microenvironment. We evaluated the antitumour activity and safety of FAP-IL2v plus atezolizumab in recurrent and/or metastatic cervical squamous cell carcinoma (SCC) in a phase 2 basket study (NCT03386721). METHODS Patients with confirmed metastatic, persistent or recurrent cervical SCC who had progressed on ≥1 anti-cancer therapy and had measurable disease were enrolled. FAP-IL2v 10 mg was administered once every 3 weeks (Q3W) or once weekly (QW) for 4 weeks then once every 2 weeks (Q2W) with the corresponding Q3W or Q2W atezolizumab regimens. The primary endpoint was objective response rate by investigator assessment. FINDINGS Forty-eight patients were enrolled (Q3W: n = 47; QW/Q2W: n = 1). Among 45 response evaluable patients, objective responses occurred in 12 patients (27%; CI 16.0-41.0), including 3 complete and 9 partial responses. Responses occurred in 6/19 PD-L1 positive patients (32%; 95% CI 15.4-54.0) and 5/24 PD-L1 negative patients (21%; 95% CI 9.2-35.6). Median duration of response was 13.3 months (95% CI 7.6-NE). Median progression-free survival was 3.7 months (95% CI 3.3-9.0). Adverse events (AEs) were consistent with the known safety profile of each drug. AEs leading to withdrawal of either agent occurred in 6 patients (13%). Pronounced expansion and activation of natural killer and CD8 T cells in peripheral blood and increased tumour infiltration and inflammation were observed. INTERPRETATION FAP-IL2v plus atezolizumab is clinically active and has manageable safety in patients with recurrent and/or metastatic cervical SCC. FUNDING F. Hoffmann-La Roche Ltd.
Collapse
Affiliation(s)
| | | | - Hans Prenen
- Antwerp University Hospital, Edegem, Belgium
| | | | - Diego Tosi
- Montpellier Cancer Institute, Montpellier, France
| | - Ruth Perets
- Division of Oncology, Clinical Research Institute at Rambam, Rambam Medical Center, Haifa, Israel
| | - Iwona Lugowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | | | - Cagatay Arslan
- Izmir Economy University Medical Point Hospital, Izmir, Turkey
| | | | | | - Álvaro Taus
- Medical Oncology Department Hospital del Mar, CIBERONC, Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Ana Oaknin
- Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | | | | | | | - Susana Roselló-Keränen
- INCLIVA Biomedical Research Institute, Hospital Clinico Universitario de Valencia, Valencia, Spain
| | - Christin Habigt
- Roche Pharma Research and Early Development, Penzburg, Germany
| | - Daniel Marbach
- Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | | - David Dejardin
- Roche Product Development, Data Science, Roche Innovation Center, Basel, Switzerland
| | - Nassim Sleiman
- Roche Product Development, Data Science, Roche Innovation Center, Basel, Switzerland
| | - Stefan Evers
- Roche Pharma Research and Early Development, Discovery & Translational Area Oncology, Roche Innovation Center, Basel, Switzerland
| | - Muriel Richard
- Roche Pharma Research and Early Development, Discovery & Translational Area Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Jehad Charo
- Roche Pharma Research and Early Development, Discovery & Translational Area Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Anton Kraxner
- Roche Pharma Research and Early Development, Discovery & Translational Area Oncology, Roche Innovation Center, Basel, Switzerland
| | - Volker Teichgräber
- Roche Pharma Research and Early Development, Discovery & Translational Area Oncology, Roche Innovation Center, Basel, Switzerland
| | - Nino Keshelava
- Roche Pharma Research and Early Development, Discovery & Translational Area Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | | |
Collapse
|
3
|
Leonard EK, Tomala J, Gould JR, Leff MI, Lin JX, Li P, Porter MJ, Johansen ER, Thompson L, Cao SD, Hou S, Henclova T, Huliciak M, Sargunas PR, Fabilane CS, Vaněk O, Kovar M, Schneider B, Raimondi G, Leonard WJ, Spangler JB. Engineered cytokine/antibody fusion proteins improve IL-2 delivery to pro-inflammatory cells and promote antitumor activity. JCI Insight 2024; 9:e173469. [PMID: 39115939 PMCID: PMC11457862 DOI: 10.1172/jci.insight.173469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Progress in cytokine engineering is driving therapeutic translation by overcoming these proteins' limitations as drugs. The IL-2 cytokine is a promising immune stimulant for cancer treatment but is limited by its concurrent activation of both pro-inflammatory immune effector cells and antiinflammatory regulatory T cells, toxicity at high doses, and short serum half-life. One approach to improve the selectivity, safety, and longevity of IL-2 is complexing with anti-IL-2 antibodies that bias the cytokine toward immune effector cell activation. Although this strategy shows potential in preclinical models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multiprotein drug and concerns regarding complex stability. Here, we introduced a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine toward immune effector cells. We optimized IC construction and engineered the cytokine/antibody affinity to improve immune bias. We demonstrated that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared with natural IL-2, both alone and combined with immune checkpoint inhibitors. Moreover, therapeutic efficacy was observed without inducing toxicity. This work presents a roadmap for the design and translation of cytokine/antibody fusion proteins.
Collapse
Affiliation(s)
- Elissa K. Leonard
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jakub Tomala
- Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec, Czech Republic
- Department of Chemical & Biomolecular Engineering and
| | - Joseph R. Gould
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael I. Leff
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Peng Li
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mitchell J. Porter
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Eric R. Johansen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ladaisha Thompson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Shenda Hou
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tereza Henclova
- Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Maros Huliciak
- Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec, Czech Republic
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Charina S. Fabilane
- Program in Molecular Biophysics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bohdan Schneider
- Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Giorgio Raimondi
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery
| | - Warren J. Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jamie B. Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering and
- Translational Tissue Engineering Center
- Department of Oncology
- Bloomberg-Kimmel Institute for Cancer Immunotherapy
- Sidney Kimmel Comprehensive Cancer Center; and
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Nan Y, Bai Y, Hu X, Zhou K, Wu T, Zhu A, Li M, Dou Z, Cao Z, Zhang X, Xu S, Zhang Y, Lin J, Zeng X, Fan J, Zhang X, Wang X, Ju D. Targeting IL-33 reprograms the tumor microenvironment and potentiates antitumor response to anti-PD-L1 immunotherapy. J Immunother Cancer 2024; 12:e009236. [PMID: 39231544 PMCID: PMC11409265 DOI: 10.1136/jitc-2024-009236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The main challenge against patients with cancer to derive benefits from immune checkpoint inhibitors targeting PD-1/PD-L1 appears to be the immunosuppressive tumor microenvironment (TME), in which IL-33/ST2 signal fulfills critical functions. However, whether IL-33 limits the therapeutic efficacy of anti-PD-L1 remains uncertain. METHODS Molecular mechanisms of IL-33/ST2 signal on anti-PD-L1 treatment lewis lung carcinoma tumor model were assessed by RNA-seq, ELISA, WB and immunofluorescence (IF). A sST2-Fc fusion protein was constructed for targeting IL-33 and combined with anti-PD-L1 antibody for immunotherapy in colon and lung tumor models. On this basis, bifunctional fusion proteins were generated for PD-L1-targeted blocking of IL-33 in tumors. The underlying mechanisms of dual targeting of IL-33 and PD-L1 revealed by RNA-seq, scRNA-seq, FACS, IF and WB. RESULTS After anti-PD-L1 administration, tumor-infiltrating ST2+ regulatory T cells (Tregs) were elevated. Blocking IL-33/ST2 signal with sST2-Fc fusion protein potentiated antitumor efficacy of PD-L1 antibody by enhancing T cell responses in tumor models. Bifunctional fusion protein anti-PD-L1-sST2 exhibited enhanced antitumor efficacy compared with combination therapy, not only inhibited tumor progression and extended the survival, but also provided long-term protective antitumor immunity. Mechanistically, the superior antitumor activity of targeting IL-33 and PD-L1 originated from reducing immunosuppressive factors, such as Tregs and exhausted CD8+ T cells while increasing tumor-infiltrating cytotoxic T lymphocyte cells. CONCLUSIONS In this study, we demonstrated that IL-33/ST2 was involved in the immunosuppression mechanism of PD-L1 antibody therapy, and blockade by sST2-Fc or anti-PD-L1-sST2 could remodel the inflammatory TME and induce potent antitumor effect, highlighting the potential therapeutic strategies for the tumor treatment by simultaneously targeting IL-33 and PD-L1.
Collapse
Affiliation(s)
- Yanyang Nan
- Fudan University School of Pharmacy, Shanghai, China
| | - Yu Bai
- Fudan University School of Pharmacy, Shanghai, China
| | - Xiaozhi Hu
- Fudan University School of Pharmacy, Shanghai, China
| | - Kaicheng Zhou
- Fudan University School of Pharmacy, Shanghai, China
| | - Tao Wu
- Fudan University School of Pharmacy, Shanghai, China
| | - An Zhu
- Fudan University School of Pharmacy, Shanghai, China
| | - Mengyang Li
- Fudan University School of Pharmacy, Shanghai, China
| | - Zihan Dou
- Fudan University School of Pharmacy, Shanghai, China
| | - Zhonglian Cao
- Fudan University School of Pharmacy, Shanghai, China
| | - Xumeng Zhang
- University of Michigan, Ann Arbor, Michigan, USA
| | - Shuwen Xu
- Fudan University School of Pharmacy, Shanghai, China
| | | | - Jun Lin
- Fudan University School of Pharmacy, Shanghai, China
| | - Xian Zeng
- Fudan University School of Pharmacy, Shanghai, China
| | - Jiajun Fan
- Fudan University School of Pharmacy, Shanghai, China
| | - Xuyao Zhang
- Fudan University School of Pharmacy, Shanghai, China
| | - Xuebin Wang
- Shanghai Jiao Tong University, Shanghai, China
| | - Dianwen Ju
- Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
5
|
He K, Puebla-Osorio N, Barsoumian HB, Sezen D, Rafiq Z, Riad TS, Hu Y, Huang A, Voss TA, Leyton CSK, Schuda LJ, Hsu E, Heiber J, Cortez MA, Welsh JW. Novel engineered IL-2 Nemvaleukin alfa combined with PD1 checkpoint blockade enhances the systemic anti-tumor responses of radiation therapy. J Exp Clin Cancer Res 2024; 43:251. [PMID: 39218928 PMCID: PMC11367833 DOI: 10.1186/s13046-024-03165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Combining interleukin-2 (IL-2) with radiotherapy (RT) and immune checkpoint blockade (ICB) has emerged as a promising approach to address ICB resistance. However, conventional IL-2 cytokine therapy faces constraints owing to its brief half-life and adverse effects. RDB 1462, the mouse ortholog of Nemvaleukin alfa, is an engineered IL-2 with an intermediate affinity that selectively stimulates antitumor CD8 T and NK cells while limiting regulatory T cell expansion. This study aimed to evaluate the antitumor activity and mechanism of action of the combination of RDB 1462, RT, and anti-PD1 in mouse tumor models. METHODS Two bilateral lung adenocarcinoma murine models were established using 344SQ-Parental and 344SQ anti-PD1-resistant cell lines. Primary tumors were treated with RT, and secondary tumors were observed for evidence of abscopal effects. We performed immune phenotyping by flow cytometry, analyzed 770 immune-related genes using NanoString, and performed T cell receptor (TCR) repertoire analysis. Serum pro-inflammatory cytokine markers were analyzed by 23-plex kit. RESULTS Compared to native IL-2 (RDB 1475), RDB 1462 demonstrated superior systemic antitumoral responses, attributable, at least in part, to augmented levels of CD4 and CD8 T cells with the latter. Our findings reveal substantial reductions in primary and secondary tumor volumes compared to monotherapy controls, with some variability observed among different dosing schedules of RDB 1462 combined with RT. Blood and tumor tissue-based flow cytometric phenotyping reveals an increase in effector memory CD8 and CD4 T cells and a decrease in immunosuppressive cells accompanied by a significant increase in IL-2, IFN-γ, and GM-CSF levels in the combination group. Transcriptomic profiling and TCR sequencing reveal favorable gene expression and T cell repertoire patterns with the dual combination. Furthermore, integrating anti-PD1 therapy with RT and RDB 1462 further reduced primary and secondary tumor volumes, prolonged survival, and decreased lung metastasis. Observations of immune cell profiles indicated that RT with escalating doses of RDB 1462 significantly reduced tumor growth and increased tumor-specific immune cell populations. CONCLUSION The addition of Nemvaleukin therapy may enhance responses to RT alone and in combination with anti-PD1.
Collapse
Affiliation(s)
- Kewen He
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China.
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Duygu Sezen
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Radiation Oncology, Koç University School of Medicine, Istanbul, Turkey
| | - Zahid Rafiq
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S Riad
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yun Hu
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ailing Huang
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tiffany A Voss
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Claudia S Kettlun Leyton
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lily Jae Schuda
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ethan Hsu
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Maria-Angelica Cortez
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W Welsh
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
6
|
Liu R, Yang G, Guo H, Chen F, Lu S, Zhu H. Roles of naïve CD4 + T cells and their differentiated subtypes in lung adenocarcinoma and underlying potential regulatory pathways. J Transl Med 2024; 22:781. [PMID: 39175022 PMCID: PMC11340134 DOI: 10.1186/s12967-024-05530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Naïve CD4+ T cells and their differentiated counterparts play a significant regulatory role in the tumor immune microenvironment, yet their effects on lung adenocarcinoma (LUAD) are not fully understood. METHODS We utilized Mendelian randomization to assess the causal association between naïve CD4+ T cells and LUAD. Employing a modified single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm with The Cancer Genome Atlas (TCGA) database, we determined the infiltration levels of naïve CD4+ T cells and their differentiation subtypes and investigated their correlation with clinical characteristics. Potential regulatory pathways of T helper cells were identified through Mantel tests and Kyoto Encyclopedia of Genes and Genomes (KEGG) database enrichment analysis. RESULTS Mendelian randomization analysis revealed an inhibitory effect of naïve CD4+ T cells on LUAD (false discovery rate < 0.05), which was corroborated by observational experiments using TCGA database. Specifically, T helper cell type 2 demonstrated a promotive effect on LUAD in terms of overall, disease-free, and progression-free survival (p < 0.05). Moreover, regulatory T cells exhibited a protective effect on LUAD in terms of disease-specific survival (p < 0.01). Concurrently, we explored the overall impact of naïve CD4+ T cell differentiation subtypes on LUAD, revealing upregulation in pathways such as neutrophil degranulation, MAPK family signaling pathways, and platelet activation, signaling, and aggregation. CONCLUSION Naïve CD4+ T cells and their differentiated counterparts play essential regulatory roles in the tumor immune microenvironment, demonstrating bidirectionality in their effects.Thus, elucidating the mechanisms and developing novel cell differentiation-inducing agents will benefit anti-cancer therapy.
Collapse
Affiliation(s)
- Runze Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Guangjian Yang
- Department of Respiratory Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hongbo Guo
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Feihu Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Shuangqing Lu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
7
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
8
|
Prenen H, Deva S, Keam B, Lindsay CR, Lugowska I, Yang JC, Longo F, de Miguel M, Ponz-Sarvise M, Ahn MJ, Gumus M, Champiat S, Italiano A, Salas S, Perets R, Arslan C, Cho BC, Evers S, Boetsch C, Marbach D, Dejardin D, Sleiman N, Ardeshir C, Richard M, Charo J, Kraxner A, Keshelava N, Teichgräber V, Moreno V. Phase II Study to Determine the Antitumor Activity and Safety of Simlukafusp Alfa (FAP-IL2v) Combined with Atezolizumab in Esophageal Cancer. Clin Cancer Res 2024; 30:2945-2953. [PMID: 38709220 DOI: 10.1158/1078-0432.ccr-23-2677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE In this study, we report the results from the esophageal squamous cell carcinoma (SCC) cohort of a phase II, noncomparative, basket study evaluating the antitumor activity and safety of fibroblast activation protein-IL2 variant (FAP-IL2v) plus atezolizumab in patients with advanced/metastatic solid tumors (NCT03386721). PATIENTS AND METHODS Eligible patients had an Eastern Cooperative Oncology Group performance status of 0 to 1; measurable metastatic, persistent, or recurrent esophageal SCC; progression on ≥1 prior therapy; and were checkpoint inhibitor-naïve. Patients received FAP-IL2v 10 mg plus atezolizumab 1,200 mg intravenously every 3 weeks, or FAP-IL2v weekly for 4 weeks and then every 2 weeks plus atezolizumab 840 mg intravenously every 2 weeks. The primary endpoint was investigator-assessed objective response rate (ORR). RESULTS In the response-evaluable population (N = 34), the best confirmed ORR was 20.6% [95% confidence interval (CI), 10.4-36.8], with a complete response seen in 1 patient and partial responses in 6 patients. The disease control rate was 44.1% (complete response = 2.9%; partial response = 17.6%; stable disease = 23.5%), and the median duration of response was 10.1 mon/ths (95% CI, 5.6-26.7). The median progression-free survival was 1.9 months (95% CI, 1.8-3.7). Analysis of response by PDL1 expression (Ventana SP263) resulted in an ORR of 26.7% for patients with PDL1-positive tumors (tumor area positivity cutoff ≥1%; n = 15) and 7.1% for patients with PDL1-negative tumors (tumor area positivity cutoff <1%; n = 14). Overall, the treatment combination was tolerable, and adverse events were consistent with the known safety profiles of each drug. CONCLUSIONS FAP-IL2v plus atezolizumab demonstrated clinical activity and was tolerable in patients with previously treated esophageal SCC.
Collapse
Affiliation(s)
- Hans Prenen
- Antwerp University Hospital, Edegem, Belgium
| | | | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Colin R Lindsay
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Iwona Lugowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - James C Yang
- National Taiwan University Hospital, National Taiwan University Cancer Center, Taipei City, Taiwan
| | - Federico Longo
- Ramón y Cajal University Hospital, IRYCIS, Universidad Alcala, CIBERONC, Madrid, Spain
| | - Maria de Miguel
- START-Madrid-FJD, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | | | - Myung-Ju Ahn
- Samusung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Stephane Champiat
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | | | | | - Ruth Perets
- Division of Oncology, Clinical Research Institute at Rambam, Rambam Medical Center, Haifa, Israel
| | - Cagatay Arslan
- Izmir Economy University Medical Point Medical Hospital, Izmir, Turkey
| | - Byoung C Cho
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Stefan Evers
- Roche Pharma Research and Early Development, Discovery and Translational Area Oncology, Roche Innovation Center, Basel, Switzerland
| | | | - Daniel Marbach
- Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - David Dejardin
- Biostatistics, Product Development, Roche Innovation Center, Basel, Switzerland
| | - Nassim Sleiman
- Biostatistics, Product Development, Roche Innovation Center, Basel, Switzerland
| | | | - Muriel Richard
- Roche Pharma Research and Early Development, Discovery and Translational Area Oncology, Roche Innovation Center, Basel, Switzerland
| | - Jehad Charo
- Roche Pharma Research and Early Development, Discovery and Translational Area Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Anton Kraxner
- Roche Pharma Research and Early Development, Discovery and Translational Area Oncology, Roche Innovation Center, Basel, Switzerland
| | - Nino Keshelava
- Roche Pharma Research and Early Development, Discovery and Translational Area Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Volker Teichgräber
- Roche Pharma Research and Early Development, Discovery and Translational Area Oncology, Roche Innovation Center, Basel, Switzerland
| | - Victor Moreno
- START-Madrid-FJD, Hospital Fundación Jimenez Diaz, Madrid, Spain
| |
Collapse
|
9
|
Kaptein P, Slingerland N, Metoikidou C, Prinz F, Brokamp S, Machuca-Ostos M, de Roo G, Schumacher TN, Yeung YA, Moynihan KD, Djuretic IM, Thommen DS. CD8-Targeted IL2 Unleashes Tumor-Specific Immunity in Human Cancer Tissue by Reviving the Dysfunctional T-cell Pool. Cancer Discov 2024; 14:1226-1251. [PMID: 38563969 PMCID: PMC11215409 DOI: 10.1158/2159-8290.cd-23-1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Tumor-specific CD8+ T cells are key effectors of antitumor immunity but are often rendered dysfunctional in the tumor microenvironment. Immune-checkpoint blockade can restore antitumor T-cell function in some patients; however, most do not respond to this therapy, often despite T-cell infiltration in their tumors. We here explored a CD8-targeted IL2 fusion molecule (CD8-IL2) to selectively reactivate intratumoral CD8+ T cells in patient-derived tumor fragments. Treatment with CD8-IL2 broadly armed intratumoral CD8+ T cells with enhanced effector capacity, thereby specifically enabling reinvigoration of the dysfunctional T-cell pool to elicit potent immune activity. Notably, the revival of dysfunctional T cells to mediate effector activity by CD8-IL2 depended on simultaneous antigen recognition and was quantitatively and qualitatively superior to that achieved by PD-1 blockade. Finally, CD8-IL2 was able to functionally reinvigorate T cells in tumors resistant to anti-PD-1, underscoring its potential as a novel treatment strategy for patients with cancer. Significance: Reinvigorating T cells is crucial for response to checkpoint blockade therapy. However, emerging evidence suggests that the PD-1/PD-L1 axis is not the sole impediment for activating T cells within tumors. Selectively targeting cytokines toward specific T-cell subsets might overcome these barriers and stimulate T cells within resistant tumors. See related article by Moynihan et al., p. 1206 (32).
Collapse
Affiliation(s)
- Paulien Kaptein
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Nadine Slingerland
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Christina Metoikidou
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Felix Prinz
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Simone Brokamp
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Mercedes Machuca-Ostos
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Guido de Roo
- Flow Cytometry Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Ton N.M. Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Yik A. Yeung
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | | | | | - Daniela S. Thommen
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Liu X, Zhao A, Xiao S, Li H, Li M, Guo W, Han Q. PD-1: A critical player and target for immune normalization. Immunology 2024; 172:181-197. [PMID: 38269617 DOI: 10.1111/imm.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
Immune system imbalances contribute to the pathogenesis of several different diseases, and immunotherapy shows great therapeutic efficacy against tumours and infectious diseases with immune-mediated derivations. In recent years, molecules targeting the programmed cell death protein 1 (PD-1) immune checkpoint have attracted much attention, and related signalling pathways have been studied clearly. At present, several inhibitors and antibodies targeting PD-1 have been utilized as anti-tumour therapies. However, increasing evidence indicates that PD-1 blockade also has different degrees of adverse side effects, and these new explorations into the therapeutic safety of PD-1 inhibitors contribute to the emerging concept that immune normalization, rather than immune enhancement, is the ultimate goal of disease treatment. In this review, we summarize recent advancements in PD-1 research with regard to immune normalization and targeted therapy.
Collapse
Affiliation(s)
- Xuening Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Alison Zhao
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Su Xiao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- People's Hospital of Zhoucun, Zibo, Shandong, China
| | - Haohao Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Menghua Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Wei Guo
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Shi W, Liu N, Liu Z, Yang Y, Zeng Q, Wang Y, Song L, Hu F, Fu J, Chen J, Wu M, Zhou L, Zhu F, Gong L, Zhu J, Jiang L, Lu H. Next-generation anti-PD-L1/IL-15 immunocytokine elicits superior antitumor immunity in cold tumors with minimal toxicity. Cell Rep Med 2024; 5:101531. [PMID: 38697105 PMCID: PMC11148641 DOI: 10.1016/j.xcrm.2024.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/24/2023] [Accepted: 04/04/2024] [Indexed: 05/04/2024]
Abstract
The clinical applications of immunocytokines are severely restricted by dose-limiting toxicities. To address this challenge, here we propose a next-generation immunocytokine concept involving the design of LH05, a tumor-conditional anti-PD-L1/interleukin-15 (IL-15) prodrug. LH05 innovatively masks IL-15 with steric hindrance, mitigating the "cytokine sink" effect of IL-15 and reducing systemic toxicities associated with wild-type anti-PD-L1/IL-15. Moreover, upon specific proteolytic cleavage within the tumor microenvironment, LH05 releases an active IL-15 superagonist, exerting potent antitumor effects. Mechanistically, the antitumor efficacy of LH05 depends on the increased infiltration of CD8+ T and natural killer cells by stimulating the chemokines CXCL9 and CXCL10, thereby converting cold tumors into hot tumors. Additionally, the tumor-conditional anti-PD-L1/IL-15 can synergize with an oncolytic virus or checkpoint blockade in advanced and metastatic tumor models. Our findings provide a compelling proof of concept for the development of next-generation immunocytokines, contributing significantly to current knowledge and strategies of immunotherapy.
Collapse
Affiliation(s)
- Wenqiang Shi
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zexin Liu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqi Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiongya Zeng
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luyao Song
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fang Hu
- Hangzhou Converd Inc., Hangzhou, Zhejiang 311121, China
| | - Jin Fu
- Hangzhou Converd Inc., Hangzhou, Zhejiang 311121, China
| | - Junsheng Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyuan Wu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Zhou
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China
| | - Fengping Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200052, China
| | - Likun Gong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Long Jiang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Huili Lu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Ren Z, Zhang X, Fu YX. Facts and Hopes on Chimeric Cytokine Agents for Cancer Immunotherapy. Clin Cancer Res 2024; 30:2025-2038. [PMID: 38190116 DOI: 10.1158/1078-0432.ccr-23-1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/17/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Cytokines are key mediators of immune responses that can modulate the antitumor activity of immune cells. Cytokines have been explored as a promising cancer immunotherapy. However, there are several challenges to cytokine therapy, especially a lack of tumor targeting, resulting in high toxicity and limited efficacy. To overcome these limitations, novel approaches have been developed to engineer cytokines with improved properties, such as chimeric cytokines. Chimeric cytokines are fusion proteins that combine different cytokine domains or link cytokines to antibodies (immunocytokines) or other molecules that can target specific receptors or cells. Chimeric cytokines can enhance the selectivity and stability of cytokines, leading to reduced toxicity and improved efficacy. In this review, we focus on two promising cytokines, IL2 and IL15, and summarize the current advances and challenges of chimeric cytokine design and application for cancer immunotherapy. Most of the current approaches focus on increasing the potency of cytokines, but another important goal is to reduce toxicity. Cytokine engineering is promising for cancer immunotherapy as it can enhance tumor targeting while minimizing adverse effects.
Collapse
Affiliation(s)
| | - Xuhao Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yang-Xin Fu
- Changping Laboratory, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Radi H, Ferdosi-Shahandashti E, Kardar GA, Hafezi N. An Updated Review of Interleukin-2 Therapy in Cancer and Autoimmune Diseases. J Interferon Cytokine Res 2024; 44:143-157. [PMID: 38421721 DOI: 10.1089/jir.2023.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Interleukin-2 (IL-2) is a cytokine that acts in dual and paradoxical ways in the immunotherapy of cancers and autoimmune diseases. Numerous clinical trial studies have shown that the use of different doses of this cytokine in various autoimmune diseases, transplantations, and cancers has resulted in therapeutic success. However, side effects of varying severity have been observed in patients. In recent years, to prevent these side effects, IL-2 has been engineered to bind more specifically to its receptors on the cell surface, decreasing IL-2 toxicities in patients. In this review article, we focus on some recent clinical trial studies and analyze them to determine the appropriate dose of IL-2 drug with the least toxicities. In addition, we discuss the engineering performed on IL-2, which shows that engineered IL-2 increases the specificity function of IL-2 and decreases its adverse effects.
Collapse
Affiliation(s)
- Hale Radi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Gholam Ali Kardar
- National Institute for Genetic Engineering and Biotechnology, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Hafezi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
14
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
15
|
Lee M, Im SK, Baek S, Ji M, Kim M, Lee EJ, Ji ST, Ferrando-Martinez S, Wolfarth A, Lee JY, Kim D, Choi D. rhIL-7-hyFc and hIL-2/TCB2c combination promotes an immune-stimulatory tumor microenvironment that improves antitumor efficacy of checkpoint inhibitors. J Immunother Cancer 2024; 12:e008001. [PMID: 38471713 DOI: 10.1136/jitc-2023-008001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Recombinant human interleukin (rhIL)-7-hyFc (efineptakin alfa; NT-I7) is a potent T-cell amplifier, with two IL-7 molecules fused to IgD/IgG4 elements. rhIL-7-hyFc promotes extensive infiltration of CD8+ T cells into the tumor, concurrently increasing the numbers of intratumoral PD-1+CD8+ T cells. The hIL-2/TCB2 complex (SLC-3010) inhibits tumor growth by preferential activation of CD122 (IL-2Rβ)high CD8+ T cells and natural killer cells, over regulatory T cells (Tregs). We investigated the underlying mechanisms of rhIL-7-hyFc and hIL-2/TCB2c antitumor activity and the potential synergistic efficacy, specifically focusing on tumor-specific CD8+ cells within the tumor and the tumor-draining lymph nodes (tdLN). METHODS MC38 and CT26 tumor-bearing mice were administered with 10 mg/kg rhIL-7-hyFc intramuscularly and 0.9 mg/kg hIL-2/TCB2c intravenously. Anti-PD-1 monoclonal antibody was administered intraperitoneally three times at 3-day intervals at a dose of 5 mg/kg. Tumor volume was measured to assess efficacy. To compare the composition of immune cells between each monotherapy and the combination therapy, we analyzed tumors and tdLNs by flow cytometry. RESULTS Our data demonstrate that the combination of rhIL-7-hyFc and hIL-2/TCB2c increases efficacy and generates an immune-stimulatory tumor microenvironment (TME). The TME is characterized by an increased infiltration of tumor-specific CD8+ T cells, and a decreased frequency of CD39highTIM-3+ Treg cells. Most importantly, rhIL-7-hyFc increases infiltration of a CD62L+Ly108+ early progenitor population of exhausted CD8+ T cells (TPEX), which may retain long-term proliferation capacity and replenish functional effector CD8+ T cells. hIL-2/TCB2c induces differentiation of CD62L+Ly108+ TPEX rapidly into CD101+ terminally differentiated subsets (terminally exhausted T cell (TEX term)). Our study also demonstrates that rhIL-7-hyFc significantly enhances the proliferation rate of TPEX in the tdLNs, positively correlating with their abundance within the tumor. Moreover, rhIL-7-hyFc and hIL-2/TCB2c can overcome the limited therapeutic effectiveness of PD-1 blockade, culminating in the complete regression of tumors. CONCLUSIONS rhIL-7-hyFc can expand and maintain the progenitor pool of exhausted CD8+ T cells, whereas hIL-2/TCB2c promotes their differentiation into TEX term. Together, this induces an immune-stimulatory TME that improves the efficacy of checkpoint blockade.
Collapse
Affiliation(s)
- Minji Lee
- Research Institute of NeoImmuneTech, Co., Ltd, Pohang, Korea (the Republic of)
| | - Sun-Kyoung Im
- Research Institute of NeoImmuneTech, Co., Ltd, Pohang, Korea (the Republic of)
| | - Seungtae Baek
- Research Institute of NeoImmuneTech, Co., Ltd, Pohang, Korea (the Republic of)
| | - Mankyu Ji
- Research Institute of NeoImmuneTech, Co., Ltd, Pohang, Korea (the Republic of)
| | - Miyoung Kim
- Research Institute of NeoImmuneTech, Co., Ltd, Pohang, Korea (the Republic of)
| | - Eun Ju Lee
- Research Institute of NeoImmuneTech, Co., Ltd, Pohang, Korea (the Republic of)
| | - Seung Taek Ji
- Research Institute of NeoImmuneTech, Co., Ltd, Pohang, Korea (the Republic of)
| | | | | | | | - Daeun Kim
- Selecxine, Pohang, Korea (the Republic of)
| | - Donghoon Choi
- Research Institute of NeoImmuneTech, Co., Ltd, Pohang, Korea (the Republic of)
| |
Collapse
|
16
|
Shouse AN, LaPorte KM, Malek TR. Interleukin-2 signaling in the regulation of T cell biology in autoimmunity and cancer. Immunity 2024; 57:414-428. [PMID: 38479359 PMCID: PMC11126276 DOI: 10.1016/j.immuni.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 05/26/2024]
Abstract
Interleukin-2 (IL-2) is a critical cytokine for T cell peripheral tolerance and immunity. Here, we review how IL-2 interaction with the high-affinity IL-2 receptor (IL-2R) supports the development and homeostasis of regulatory T cells and contributes to the differentiation of helper, cytotoxic, and memory T cells. A critical element for each T cell population is the expression of CD25 (Il2rα), which heightens the receptor affinity for IL-2. Signaling through the high-affinity IL-2R also reinvigorates CD8+ exhausted T (Tex) cells in response to checkpoint blockade. We consider the molecular underpinnings reflecting how IL-2R signaling impacts these various T cell subsets and the implications for enhancing IL-2-dependent immunotherapy of autoimmunity, other inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Acacia N Shouse
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kathryn M LaPorte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
17
|
Ma F, Lin Y, Ni Z, Wang S, Zhang M, Wang X, Zhang Z, Luo X, Miao X. Microwave ablation enhances the systemic immune response in patients with lung cancer. Oncol Lett 2024; 27:106. [PMID: 38298427 PMCID: PMC10829076 DOI: 10.3892/ol.2024.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/06/2023] [Indexed: 02/02/2024] Open
Abstract
Microwave ablation (MWA) is a key alternative therapy to conventional surgery for the treatment of lung cancer. In addition to eliminating local tumors, MWA may promote antitumor immunological responses, such as abscopal effects in distant lesions. However, the intensity of MWA is limited and the underlying mechanisms are not well-defined. The present study assessed the impact of MWA on immune cell subsets and cytokines in patients with lung cancer. A total of 45 patients with lung cancer who underwent percutaneous lung tumor MWA were enrolled. Peripheral blood samples were collected before and 24 h after MWA and changes in immune cell subsets [lymphocytes, CD3+, CD4+ and CD8+ T cells, B cells and natural killer (NK) cells] and serum cytokine levels (IL-1β, IL-2, IL-4-6, IL-8, IL-10, IL-12p70, IL-17A and F, IL-22, TNF-α, TNF-β and IFN-γ) were assessed by flow cytometry and ELISA. The number of total lymphocytes, CD4+ T and NK cells in the peripheral blood significantly decreased 24 h after MWA, while number of CD8+ T cells remained stable, leading to a higher proportion of CD8+ T cells. In addition, the serum levels of IL-2, IL-1β, IL-6, IL-12p70, IL-22, TNF-α and IFN-γ were significantly increased 24 h after MWA, indicating a T helper 1 type immune response. The immune response in patients with advanced stage disease was comparable with patients in the early stage group; however, the number of total lymphocytes and CD3+ T cells significantly decreased and the ratio of CD4/CD8 and IL-2 levels significantly increased. The early immune response after MWA may contribute to systemic antitumor immunity in patients with both early and advanced disease. Thus, MWA may exhibit potential as a local therapy and trigger abscopal effects in distant lesions in patients with lung cancer.
Collapse
Affiliation(s)
- Fuqi Ma
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yuhua Lin
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Zhenhua Ni
- Central Lab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Shiqiang Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Mengjie Zhang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xiaoe Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Zhuhua Zhang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xuming Luo
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xiayi Miao
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
18
|
Sprent J, Boyman O. Optimising IL-2 for Cancer Immunotherapy. Immune Netw 2024; 24:e5. [PMID: 38455463 PMCID: PMC10917570 DOI: 10.4110/in.2024.24.e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
The key role of T cells in cancer immunotherapy is well established and is highlighted by the remarkable capacity of Ab-mediated checkpoint blockade to overcome T-cell exhaustion and amplify anti-tumor responses. However, total or partial tumor remission following checkpoint blockade is still limited to only a few types of tumors. Hence, concerted attempts are being made to devise new methods for improving tumor immunity. Currently, much attention is being focused on therapy with IL-2. This cytokine is a powerful growth factor for T cells and optimises their effector functions. When used at therapeutic doses for cancer treatment, however, IL-2 is highly toxic. Nevertheless, recent work has shown that modifying the structure or presentation of IL-2 can reduce toxicity and lead to effective anti-tumor responses in synergy with checkpoint blockade. Here, we review the complex interaction of IL-2 with T cells: first during normal homeostasis, then during responses to pathogens, and finally in anti-tumor responses.
Collapse
Affiliation(s)
- Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- St. Vincent’s Clinical School, University of New South Wales, Sydney 1466, Australia
- Menzies Institute of Medical Research, Hobart 7000, Australia
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich 8091, Switzerland
- Faculty of Medicine and Faculty of Science, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
19
|
Wang X, Zou W. Caught in the middle: MARCH5 mediates PD-1-induced IL-2R degradation. Cell Res 2024; 34:3-4. [PMID: 38049517 PMCID: PMC10770175 DOI: 10.1038/s41422-023-00902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Affiliation(s)
- Xinghao Wang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA.
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Codarri Deak L, Hashimoto M, Umaña P, Klein C. Beyond checkpoint inhibition: PD-1 cis-targeting of an IL-2Rβγ-biased interleukin-2 variant as a novel approach to build on checkpoint inhibition. Oncoimmunology 2023; 12:2197360. [PMID: 37025392 PMCID: PMC10072055 DOI: 10.1080/2162402x.2023.2197360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
The immunocytokine PD1-IL2v was designed to overcome liabilities and improve efficacy of IL-2 therapies. PD1-IL2v preferentially targets PD-1+ T-cells and acts on antigen-specific stem-like PD-1+ TCF-1+ CD8+ T-cells expanding and differentiating them towards better effectors resulting in superior efficacy in LCMV chronic infection and tumor models compared to checkpoint inhibition.
Collapse
|
21
|
Kang JJ, Ohoka A, Sarkar CA. Designing Multivalent and Multispecific Biologics. Annu Rev Chem Biomol Eng 2023; 15:293-314. [PMID: 38064501 DOI: 10.1146/annurev-chembioeng-100722-112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the era of precision medicine, multivalent and multispecific therapeutics present a promising approach for targeted disease intervention. These therapeutics are designed to interact with multiple targets simultaneously, promising enhanced efficacy, reduced side effects, and resilience against drug resistance. We dissect the principles guiding the design of multivalent biologics, highlighting challenges and strategies that must be considered to maximize therapeutic effect. Engineerable elements in multivalent and multispecific biologic design-domain affinities, valency, and spatial presentation-must be considered in the context of the molecular targets as well as the balance of important properties such as target avidity and specificity. We illuminate recent applications of these principles in designing protein and cell therapies and identify exciting future directions in this field, underscored by advances in biomolecular and cellular engineering and computational approaches. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer J Kang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| | - Ayako Ohoka
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
- Present affiliation: AbbVie Inc., North Chicago, Illinois, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| |
Collapse
|
22
|
Luo M, Gong W, Zhang Y, Li H, Ma D, Wu K, Gao Q, Fang Y. New insights into the stemness of adoptively transferred T cells by γc family cytokines. Cell Commun Signal 2023; 21:347. [PMID: 38049832 PMCID: PMC10694921 DOI: 10.1186/s12964-023-01354-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 12/06/2023] Open
Abstract
T cell-based adoptive cell therapy (ACT) has exhibited excellent antitumoral efficacy exemplified by the clinical breakthrough of chimeric antigen receptor therapy (CAR-T) in hematologic malignancies. It relies on the pool of functional T cells to retain the developmental potential to serially kill targeted cells. However, failure in the continuous supply and persistence of functional T cells has been recognized as a critical barrier to sustainable responses. Conferring stemness on infused T cells, yielding stem cell-like memory T cells (TSCM) characterized by constant self-renewal and multilineage differentiation similar to pluripotent stem cells, is indeed necessary and promising for enhancing T cell function and sustaining antitumor immunity. Therefore, it is crucial to identify TSCM cell induction regulators and acquire more TSCM cells as resource cells during production and after infusion to improve antitumoral efficacy. Recently, four common cytokine receptor γ chain (γc) family cytokines, encompassing interleukin-2 (IL-2), IL-7, IL-15, and IL-21, have been widely used in the development of long-lived adoptively transferred TSCM in vitro. However, challenges, including their non-specific toxicities and off-target effects, have led to substantial efforts for the development of engineered versions to unleash their full potential in the induction and maintenance of T cell stemness in ACT. In this review, we summarize the roles of the four γc family cytokines in the orchestration of adoptively transferred T cell stemness, introduce their engineered versions that modulate TSCM cell formation and demonstrate the potential of their various combinations. Video Abstract.
Collapse
Affiliation(s)
- Mengshi Luo
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjian Gong
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuewen Zhang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
23
|
Niederlova V, Tsyklauri O, Kovar M, Stepanek O. IL-2-driven CD8 + T cell phenotypes: implications for immunotherapy. Trends Immunol 2023; 44:890-901. [PMID: 37827864 PMCID: PMC7615502 DOI: 10.1016/j.it.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
The therapeutic potential of interleukin (IL)-2 in cancer treatment has been known for decades, yet its widespread adoption in clinical practice remains limited. Recently, chimeric proteins of an anti-PD-1 antibody and suboptimal IL-2 variants were shown to stimulate potent antitumor and antiviral immunity by inducing unique effector CD8+ T cells in mice. A similar subset of cytotoxic T cells is induced by depletion of regulatory T cells (Tregs), suggesting IL-2 sequestration as a major mechanism through which regulatory T cells suppress activated CD8+ T cells. Here, we present our view of how IL-2-based biologicals can boost the antitumor response at a cellular level, and propose that the role of Tregs following such treatments may have been previously overestimated.
Collapse
Affiliation(s)
- Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
24
|
Santollani L, Wittrup KD. Spatiotemporally programming cytokine immunotherapies through protein engineering. Immunol Rev 2023; 320:10-28. [PMID: 37409481 DOI: 10.1111/imr.13234] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Cytokines have long been considered promising cancer immunotherapy agents due to their endogenous role in activating and proliferating lymphocytes. However, since the initial FDA approvals of Interleukin-2 (IL-2) and Interferon-ɑ (IFNɑ) for oncology over 30 years ago, cytokines have achieved little success in the clinic due to narrow therapeutic windows and dose-limiting toxicities. This is attributable to the discrepancy between the localized, regulated manner in which cytokines are deployed endogenously versus the systemic, untargeted administration used to date in most exogenous cytokine therapies. Furthermore, cytokines' ability to stimulate multiple cell types, often with paradoxical effects, may present significant challenges for their translation into effective therapies. Recently, protein engineering has emerged as a tool to address the shortcomings of first-generation cytokine therapies. In this perspective, we contextualize cytokine engineering strategies such as partial agonism, conditional activation and intratumoral retention through the lens of spatiotemporal regulation. By controlling the time, place, specificity, and duration of cytokine signaling, protein engineering can allow exogenous cytokine therapies to more closely approach their endogenous exposure profile, ultimately moving us closer to unlocking their full therapeutic potential.
Collapse
Affiliation(s)
- Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
Lan X, Zebley CC, Youngblood B. Cellular and molecular waypoints along the path of T cell exhaustion. Sci Immunol 2023; 8:eadg3868. [PMID: 37656775 PMCID: PMC10618911 DOI: 10.1126/sciimmunol.adg3868] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Thirty years of foundational research investigating molecular and cellular mechanisms promoting T cell exhaustion are now enabling rational design of T cell-based therapies for the treatment of chronic infections and cancer. Once described as a static cell fate, it is now well appreciated that the developmental path toward exhaustion is composed of a heterogeneous pool of cells with varying degrees of effector potential that ultimately converge on a terminally differentiated state. Recent description of the developmental stages along the differentiation trajectory of T cell exhaustion has provided insight into past immunotherapeutic success and future opportunities. Here, we discuss the hallmarks of distinct developmental stages occurring along the path to T cell dysfunction and the impact of these discrete CD8+ T cell fates on cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
26
|
Kamali AN, Bautista JM, Eisenhut M, Hamedifar H. Immune checkpoints and cancer immunotherapies: insights into newly potential receptors and ligands. Ther Adv Vaccines Immunother 2023; 11:25151355231192043. [PMID: 37662491 PMCID: PMC10469281 DOI: 10.1177/25151355231192043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/14/2023] [Indexed: 09/05/2023] Open
Abstract
Checkpoint markers and immune checkpoint inhibitors have been increasingly identified and developed as potential immunotherapeutic targets in various human cancers. Despite valuable efforts to discover novel immune checkpoints and their ligands, the precise roles of their therapeutic functions, as well as the broad identification of their counterpart receptors, remain to be addressed. In this context, it has been suggested that various putative checkpoint receptors can be induced upon activation. In the tumor microenvironment, T cells, as crucial immune response against malignant diseases as well as other immune central effector cells, such as natural killer cells, are regulated via co-stimulatory or co-inhibitory signals from immune or tumor cells. Studies have shown that exposure of T cells to tumor antigens upregulates the expression of inhibitory checkpoint receptors, leading to T-cell dysfunction or exhaustion. Although targeting immune checkpoint regulators has shown relative clinical efficacy in some tumor types, most trials in the field of cancer immunotherapies have revealed unsatisfactory results due to de novo or adaptive resistance in cancer patients. To overcome these obstacles, combinational therapies with newly discovered inhibitory molecules or combined blockage of several checkpoints provide a rationale for further research. Moreover, precise identification of their receptors counterparts at crucial checkpoints is likely to promise effective therapies. In this review, we examine the prospects for the application of newly emerging checkpoints, such as T-cell immunoglobulin and mucin domain 3, lymphocyte activation gene-3, T-cell immunoreceptor with Ig and ITIM domains (TIGIT), V-domain Ig suppressor of T-cell activation (VISTA), new B7 family proteins, and B- and T-cell lymphocyte attenuator, in association with immunotherapy of malignancies. In addition, their clinical and biological significance is discussed, including their expression in various human cancers, along with their roles in T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Ali N. Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Simin Dasht Industrial Area, Karaj, Iran
- CinnaGen Research and Production Co., Alborz 3165933155, Iran
| | - José M. Bautista
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Michael Eisenhut
- Department of Pediatrics, Luton and Dunstable University Hospital NHS Foundation Trust, Luton, UK
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| |
Collapse
|
27
|
Nederlof I, Voorwerk L, Kok M. Facts and Hopes in Immunotherapy for Early-Stage Triple-Negative Breast Cancer. Clin Cancer Res 2023; 29:2362-2370. [PMID: 36622327 PMCID: PMC10320476 DOI: 10.1158/1078-0432.ccr-22-0701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 01/10/2023]
Abstract
A substantial fraction of early-stage triple-negative breast cancer (eTNBC) is characterized by high levels of stromal tumor-infiltrating lymphocytes (sTIL) and has a good prognosis even without systemic treatment, highlighting the importance of an endogenous anticancer immune response. Still, a considerable proportion of patients with eTNBC need some "therapeutical push" to kick-start this immune response. Exploiting this immune response with immune-checkpoint inhibition (ICI), in combination with chemotherapy, has made its way into standard of care in eTNBC. Major challenges in the near future include finding those patients with eTNBC who can be treated with ICI alone or with a reduced chemotherapy backbone. Exploring the optimal duration of ICI and finding biomarkers to predict response will be key to enable personalized implementation of ICI in patients with eTNBC. For patients who currently do not respond effectively to ICI plus chemotherapy, challenges lie in finding new immunomodulatory therapies and developing response-guided neoadjuvant approaches.
Collapse
Affiliation(s)
- Iris Nederlof
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Leonie Voorwerk
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marleen Kok
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Shimizu K, Ueda S, Kawamura M, Aoshima H, Satoh M, Nakabayashi J, Fujii SI. Combination of cancer vaccine with CD122-biased IL-2/anti-IL-2 Ab complex shapes the stem-like effector NK and CD8 + T cells against tumor. J Immunother Cancer 2023; 11:e006409. [PMID: 37400134 PMCID: PMC10577731 DOI: 10.1136/jitc-2022-006409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND A key to success of cancer immunotherapy is the amplification and sustenance of various effector cells. The hallmark of prominent antitumor T cells is their long-term effector function. Although interleukin (IL)-2 is an attractive cytokine, several attempts have been made towards developing IL-2 modalities with improved effectiveness and safety that enhance natural killer (NK) cells or T cells in cancer models. However, whether such IL-2 modalities can simultaneously support long-term innate and adaptive immunity, particularly stem-like memory, has not been shown. To resolve this issue, we compared the antitumor cellular mechanism with two IL-2/anti-IL-2 complexes (IL-2Cxs) administered in combination with a therapeutic cancer vaccine, which we had previously established as an in vivo dendritic cell-targeting therapy. METHODS Two types of IL-2Cxs, CD25-biased IL-2Cx and CD122-biased IL-2Cx, together with a Wilms' tumor 1-expressing vaccine, were evaluated in a leukemic model. The immunological response and synergistic antitumor efficacy of these IL-2Cxs were then evaluated. RESULTS When CD25-biased or CD122-biased IL-2Cxs in combination with the vaccine were assessed in an advanced-leukemia model, the CD122-biased IL-2Cx combination showed 100% survival, but the CD25-biased IL-2Cx did not. We first showed that invariant natural killer T (NKT) 1 cells are predominantly activated by CD122-biased IL-2Cx. In addition, in-depth analysis of immune responses by CD122-biased IL-2Cx in lymphoid tissues and the tumor microenvironment revealed a dramatic increase in the distinct subsets of NK and CD8+ T cells with stem-like phenotype (CD27+Sca-1hi, CXCR3hi, CD127+TCF-1+T-bet+ Eomes+). Moreover, CD122-biased IL-2Cx combination therapy maintained long-term memory CD8+ T cells capable of potent antitumor protection. After the high dimensional profiling analysis of NK and CD8+T cells, principal component analysis revealed that the stem-like-NK cell and stem-like-CD8+T cell state in the combination were integrated in the same group. CONCLUSIONS CD122-biased IL-2Cx combined with the vaccine can induce a series of reactions in the immune cascade, including activation of not only NKT1 cells, but also NK and CD8+ T cells with a stem-like memory phenotype. Since it can also lead to a long-term, strong antitumor response, the combination of CD122-biased IL-2Cx with a vaccine may serve as a potential and competent strategy for patients with advanced cancer.
Collapse
Affiliation(s)
- Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Program for Drug Discovery and Medical Technology Platforms, RIKEN, Yokohama, Japan
| | - Shogo Ueda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masami Kawamura
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Honoka Aoshima
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mikiko Satoh
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jun Nakabayashi
- Department of Mathematics, Tokyo Medical and Dental University, Ichikawa, Japan
| | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Program for Drug Discovery and Medical Technology Platforms, RIKEN, Yokohama, Japan
| |
Collapse
|
29
|
Onyshchenko K, Luo R, Guffart E, Gaedicke S, Grosu AL, Firat E, Niedermann G. Expansion of circulating stem-like CD8 + T cells by adding CD122-directed IL-2 complexes to radiation and anti-PD1 therapies in mice. Nat Commun 2023; 14:2087. [PMID: 37045833 PMCID: PMC10097749 DOI: 10.1038/s41467-023-37825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Combination of radiation therapy (RT) with immune checkpoint blockade can enhance systemic anti-tumor T cell responses. Here, using two mouse tumor models, we demonstrate that adding long-acting CD122-directed IL-2 complexes (IL-2c) to RT/anti-PD1 further increases tumor-specific CD8+ T cell numbers. The highest increase (>50-fold) is found in the blood circulation. Compartmental analysis of exhausted T cell subsets shows that primarily undifferentiated, stem-like, tumor-specific CD8+ T cells expand in the blood; these cells express the chemokine receptor CXCR3, which is required for migration into tumors. In tumor tissue, effector-like but not terminally differentiated exhausted CD8+ T cells increase. Consistent with the surge in tumor-specific CD8+ T cells in blood that are migration and proliferation competent, we observe a CD8-dependent and CXCR3-dependent enhancement of the abscopal effect against distant/non-irradiated tumors and find that CD8+ T cells isolated from blood after RT/anti-PD1/IL-2c triple treatment can be a rich source of tumor-specific T cells for adoptive transfers.
Collapse
MESH Headings
- Animals
- Mice
- Adoptive Transfer/methods
- Apoptosis
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/radiation effects
- CD8-Positive T-Lymphocytes/transplantation
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cell Proliferation/radiation effects
- Colonic Neoplasms/blood
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/radiotherapy
- Combined Modality Therapy
- Disease Models, Animal
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Interleukin-2/immunology
- Interleukin-2 Receptor beta Subunit/immunology
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymphocytes, Tumor-Infiltrating/cytology
- Lymphocytes, Tumor-Infiltrating/immunology
- Melanoma, Experimental/blood
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/radiotherapy
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Receptors, CXCR3/antagonists & inhibitors
- Receptors, CXCR3/metabolism
- Stem Cells/cytology
Collapse
Affiliation(s)
- Kateryna Onyshchenko
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ren Luo
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Elena Guffart
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simone Gaedicke
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Firat
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
30
|
Ke H, Zhang F, Wang J, Xiong L, An X, Tu X, Chen C, Wang Y, Mao B, Guo S, Ju C, He X, Sun R, Zhang L, O'Connor OA, Li QX. HX009, a novel BsAb dual targeting PD1 x CD47, demonstrates potent anti-lymphoma activity in preclinical models. Sci Rep 2023; 13:5419. [PMID: 37012357 PMCID: PMC10070465 DOI: 10.1038/s41598-023-32547-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Both PD1/PD-L1 and CD47 blockades have demonstrated limited activity in most subtypes of NHL save NK/T-cell lymphoma. The hemotoxicity with anti-CD47 agents in the clinic has been speculated to account for their limitations. Herein we describe a first-in-class and rationally designed bispecific antibody (BsAb), HX009, targeting PD1 and CD47 but with weakened CD47 binding, which selectively hones the BsAb for tumor microenvironment through PD1 interaction, potentially reducing toxicity. In vitro characterization confirmed: (1) Both receptor binding/ligand blockade, with lowered CD47 affinity; (2) functional PD1/CD47 blockades by reporter assays; (3) T-cell activation in Staphylococcal-enterotoxin-B-pretreated PBMC and mixed-lymphocyte-reaction. In vivo modeling demonstrated antitumor activity in Raji-B and Karpass-229-T xenograft lymphomas. In the humanized mouse syngeneic A20 B-lymphoma (huCD47-A20) HuGEMM model, which has quadruple knocked-in hPD1xhPD-L1xhCD47xhSIRPα genes and an intact autologous immune-system, a contribution of effect is demonstrated for each targeted biologic (HX008 targeting PD1 and SIRPα-Fc targeting CD47), which is clearly augmented by the dual targeting with HX009. Lastly, the expression of the immune-checkpoints PD-L1/L2 and CD47 seemed co-regulated among a panel of lymphoma-derived-xenografts, where HX009 maybe more effective in those with upregulated CD47. Our data warrants HX009's further clinical development for treating NHLs.
Collapse
Affiliation(s)
- Hang Ke
- Hanx Pharmaceuticals, Inc., Hangzhou, China
| | | | | | | | - Xiaoyu An
- Crown Bioscience, Inc., San Diego, USA
| | | | - Cen Chen
- Hanx Pharmaceuticals, Inc., Hangzhou, China
| | | | | | - Sheng Guo
- Crown Bioscience, Inc., San Diego, USA
| | | | - Xiangfei He
- Shanghai Model Organisms Center, Inc. (SMOC), Shanghai, China
| | - Ruilin Sun
- Shanghai Model Organisms Center, Inc. (SMOC), Shanghai, China
| | - Lei Zhang
- Hanx Pharmaceuticals, Inc., Hangzhou, China
| | - Owen A O'Connor
- Division of Hematology and Oncology, University of Virginia Cancer Center, University of Virginia, Charlottesville, USA
| | - Qi-Xiang Li
- Hanx Pharmaceuticals, Inc., Hangzhou, China.
| |
Collapse
|
31
|
Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023; 41:450-465. [PMID: 36917950 DOI: 10.1016/j.ccell.2023.02.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Regulatory T cells (Tregs) are abundant in tumor tissues, raising a question of whether immunosuppressive tumor-infiltrating Tregs (TI-Tregs) can be selectively depleted or functionally attenuated to evoke effective anti-tumor immune responses by conventional T cells (Tconvs), without perturbing Treg-dependent immune homeostasis in healthy organs and causing autoimmunity. Here, we review current cancer immunotherapy strategies, including immune checkpoint blockade (ICB) antibodies against CTLA-4 and PD-1 and discuss their effects on TI-Tregs. We also discuss approaches that exploit differentially regulated molecules on the cell surface (e.g., CTLA-4) and intracellularly (e.g., T cell receptor signaling molecules) between TI-Tregs and Tconvs as well as their dependence on cytokines (e.g., IL-2) and metabolites (e.g., lactate). We envisage that targeting TI-Tregs could be effective as a monotherapy and/or when combined with ICB antibodies.
Collapse
Affiliation(s)
- Christopher Tay
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Atsushi Tanaka
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
32
|
Dendritic cell-mimicking scaffolds for ex vivo T cell expansion. Bioact Mater 2023; 21:241-252. [PMID: 36157246 PMCID: PMC9474324 DOI: 10.1016/j.bioactmat.2022.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
We propose an ex vivo T cell expansion system that mimics natural antigen-presenting cells (APCs) for adoptive cell therapy (ACT). Microfiber scaffolds coated with dendritic cell (DC) membrane replicate physicochemical properties of dendritic cells specific for T cell activation such as rapid recognition by T cells, long duration of T cell tethering, and DC-specific co-stimulatory cues. The DC membrane-coated scaffold is first surface-immobilized with T cell stimulatory ligands, anti-CD3 (αCD3) and anti-CD28 (αCD28) antibodies, followed by adsorption of releasable interleukin-2 (IL-2). The scaffolds present both surface and soluble cues to T cells ex vivo in the same way that these cues are presented by natural APCs in vivo. We demonstrate that the DC-mimicking scaffold promotes greater polyclonal expansion of primary human T cells as compared to αCD3/αCD28-functionalized Dynabead. More importantly, major histocompatibility complex molecules derived from the DC membrane of the scaffold allow antigen-specific T cell expansion with target cell-specific killing ability. In addition, most of the expanded T cells (∼97%) can be harvested from the scaffold by density gradient centrifugation. Overall, the DC-mimicking scaffold offers a scalable, modular, and customizable platform for rapid expansion of highly functional T cells for ACT. The scaffold mimics physicochemical properties of natural antigen-presenting cells. The scaffold presents T cell stimulatory cues as antigen-presenting cell does. This platform supports both polyclonal and antigen-specific T cell expansion. This platform offers a large-scale manufacturing system for adoptive cell therapy.
Collapse
|
33
|
Yousefpour P, Ni K, Irvine DJ. Targeted modulation of immune cells and tissues using engineered biomaterials. NATURE REVIEWS BIOENGINEERING 2023; 1:107-124. [PMID: 37772035 PMCID: PMC10538251 DOI: 10.1038/s44222-022-00016-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 09/30/2023]
Abstract
Therapies modulating the immune system offer the prospect of treating a wide range of conditions including infectious diseases, cancer and autoimmunity. Biomaterials can promote specific targeting of immune cell subsets in peripheral or lymphoid tissues and modulate the dosage, timing and location of stimulation, thereby improving safety and efficacy of vaccines and immunotherapies. Here we review recent advances in biomaterials-based strategies, focusing on targeting of lymphoid tissues, circulating leukocytes, tissue-resident immune cells and immune cells at disease sites. These approaches can improve the potency and efficacy of immunotherapies by promoting immunity or tolerance against different diseases.
Collapse
Affiliation(s)
- Parisa Yousefpour
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
34
|
Li ZG, He J, Miao M. Low-dose interleukin-2 therapy in autoimmune and inflammatory diseases: facts and hopes. Sci Bull (Beijing) 2023; 68:10-13. [PMID: 36621432 DOI: 10.1016/j.scib.2022.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhan-Guo Li
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism and Immune Diagnosis, Peking University People's Hospital, Beijing 100044, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| | - Jing He
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism and Immune Diagnosis, Peking University People's Hospital, Beijing 100044, China
| | - Miao Miao
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism and Immune Diagnosis, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
35
|
Tichet M, Wullschleger S, Chryplewicz A, Fournier N, Marcone R, Kauzlaric A, Homicsko K, Deak LC, Umaña P, Klein C, Hanahan D. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8 + T cells and reprogramming macrophages. Immunity 2023; 56:162-179.e6. [PMID: 36630914 DOI: 10.1016/j.immuni.2022.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Immunotherapies have shown remarkable, albeit tumor-selective, therapeutic benefits in the clinic. Most patients respond transiently at best, highlighting the importance of understanding mechanisms underlying resistance. Herein, we evaluated the effects of the engineered immunocytokine PD1-IL2v in a mouse model of de novo pancreatic neuroendocrine cancer that is resistant to checkpoint and other immunotherapies. PD1-IL2v utilizes anti-PD-1 as a targeting moiety fused to an immuno-stimulatory IL-2 cytokine variant (IL2v) to precisely deliver IL2v to PD-1+ T cells in the tumor microenvironment. PD1-IL2v elicited substantial infiltration by stem-like CD8+ T cells, resulting in tumor regression and enhanced survival in mice. Combining anti-PD-L1 with PD1-IL2v sustained the response phase, improving therapeutic efficacy both by reprogramming immunosuppressive tumor-associated macrophages and enhancing T cell receptor (TCR) immune repertoire diversity. These data provide a rationale for clinical trials to evaluate the combination therapy of PD1-IL2v and anti-PD-L1, particularly in immunotherapy-resistant tumors infiltrated with PD-1+ stem-like T cells.
Collapse
Affiliation(s)
- Mélanie Tichet
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, 1011 Lausanne, Switzerland; Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1011 Lausanne, Switzerland
| | - Stephan Wullschleger
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| | - Agnieszka Chryplewicz
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1011 Lausanne, Switzerland
| | - Nadine Fournier
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rachel Marcone
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Annamaria Kauzlaric
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Krisztian Homicsko
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1011 Lausanne, Switzerland; Department of Oncology, CHUV, 46 Rue Bugnon, 1011 Lausanne, Switzerland; Center for Personalized Oncology, CHUV, 46 Rue Bugnon, 1011 Lausanne, Switzerland
| | | | - Pablo Umaña
- Roche-Innovation Center Zurich, 8952 Schlieren, Switzerland
| | | | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, 1011 Lausanne, Switzerland; Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1011 Lausanne, Switzerland.
| |
Collapse
|
36
|
Shen J, Zou Z, Guo J, Cai Y, Xue D, Liang Y, Wang W, Peng H, Fu YX. An engineered concealed IL-15-R elicits tumor-specific CD8+T cell responses through PD-1-cis delivery. J Exp Med 2022; 219:213502. [PMID: 36165896 PMCID: PMC9521244 DOI: 10.1084/jem.20220745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022] Open
Abstract
Checkpoint blockade immunotherapy releases the inhibition of tumor-infiltrating lymphocytes (TILs) but weakly induces TIL proliferation. Exogenous IL-15 could further expand TILs and thus synergize with αPD-L1 therapy. However, systemic delivery of IL-15 extensively expands peripheral NK cells, causing severe toxicity. To redirect IL-15 to intratumoral PD-1+CD8+T effector cells instead of NK cells for better tumor control and lower toxicity, we engineered an anti-PD-1 fusion with IL-15-IL-15Rα, whose activity was geographically concealed by immunoglobulin Fc region with an engineered linker (αPD-1-IL-15-R) to bypass systemic NK cells. Systematic administration of αPD-1-IL-15-R elicited extraordinary antitumor efficacy with undetectable toxicity. Mechanistically, cis-delivery of αPD-1-IL-15-R vastly expands tumor-specific CD8+T cells for tumor rejection. Additionally, αPD-1-IL-15-R upregulated PD-1 and IL-15Rβ on T cells to create a feedforward activation loop, thus rejuvenating TILs, not only resulting in tumor control in situ, but also suppressing tumor metastasis. Collectively, renavigating IL-15 to tumor-specific PD-1+CD8+T cells, αPD-1-IL-15-R elicits effective systemic antitumor immunity.
Collapse
Affiliation(s)
- Jiao Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhuangzhi Zou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingya Guo
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yueqi Cai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Diyuan Xue
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yong Liang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wenyan Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
37
|
Liu L, Chen J. Therapeutic antibodies for precise cancer immunotherapy: current and future perspectives. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:555-569. [PMID: 37724258 PMCID: PMC10471122 DOI: 10.1515/mr-2022-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/25/2022] [Indexed: 09/20/2023]
Abstract
Antibodies, as one of the most important components of host adaptive immune system, play an important role in defense of infectious disease, immune surveillance, and autoimmune disease. Due to the development of recombinant antibody technology, antibody therapeutics become the largest and rapidly expanding drug to provide major health benefits to patients, especially for the treatment of cancer patients. Many antibody-based therapeutic strategies have been developed including monoclonal antibodies, antibody-drug conjugates, bispecific and trispecific antibodies and pro-antibodies with promising results from both clinical and pre-clinical trials. However, the response rate and side-effect still vary between patients with undefined mechanisms. Here, we summarized the current and future perspectives of antibody-based cancer immunotherapeutic strategies for designing next-generation drugs.
Collapse
Affiliation(s)
- Longchao Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiahui Chen
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
38
|
Bae J, Liu L, Moore C, Hsu E, Zhang A, Ren Z, Sun Z, Wang X, Zhu J, Shen J, Qiao J, Fu YX. IL-2 delivery by engineered mesenchymal stem cells re-invigorates CD8 + T cells to overcome immunotherapy resistance in cancer. Nat Cell Biol 2022; 24:1754-1765. [PMID: 36474070 DOI: 10.1038/s41556-022-01024-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/27/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint blockade (ICB)-based immunotherapy depends on functional tumour-infiltrating lymphocytes (TILs), but essential cytokines are less understood. Here we uncover an essential role of endogenous IL-2 for ICB responsiveness and the correlation between insufficient IL-2 signalling and T-cell exhaustion as tumours progress. To determine if exogenous IL-2 in the tumour microenvironment can overcome ICB resistance, we engineered mesenchymal stem cells (MSCs) to successfully deliver IL-2 mutein dimer (SIL2-EMSC) to TILs. While MSCs have been used to suppress inflammation, SIL2-EMSCs elicit anti-tumour immunity and overcome ICB resistance without toxicity. Mechanistically, SIL2-EMSCs activate and expand pre-existing CD8+ TILs, sufficient for tumour control and induction of systemic anti-tumour effects. Furthermore, engineered MSCs create synergy of innate and adaptive immunity. The therapeutic benefits of SIL2-EMSCs were also observed in humanized mouse models. Overall, engineered MSCs rejuvenate CD8+ TILs and thus potentiate ICB and chemotherapy.
Collapse
Affiliation(s)
- Joonbeom Bae
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Longchao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Casey Moore
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric Hsu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anli Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhenhua Ren
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhichen Sun
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiankun Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiao Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Qiao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
39
|
Chen J, Shen Z, Jiang X, Huang Z, Wu C, Jiang D, Yin L. Preclinical evaluation of IAP0971, a novel immunocytokine that binds specifically to PD1 and fuses IL15/IL15R α complex. Antib Ther 2022; 6:38-48. [PMID: 36683766 PMCID: PMC9847340 DOI: 10.1093/abt/tbac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Background Currently, cytokine therapy for cancer has demonstrated efficacy in certain diseases but is generally accompanied by severe toxicity. The field of antibody-cytokine fusion proteins (immunocytokines) arose to target these effector molecules to the tumor microenvironment to expand the therapeutic window of cytokine therapy. Therefore, we have developed a novel immunocytokine that binds specifically to programmed death 1 (PD1) and fuses IL15/IL15Rα complex (referred to as IAP0971) for cancer immunotherapy. Methods We report here the making of IAP0971, a novel immunocytokine that binds specifically to PD1 and fuses IL15/IL15Rα complex, and preclinical characterization including pharmacology, pharmacodynamics, pharmacokinetics and toxicology, and discuss its potential as a novel agent for treating patients with advanced malignant tumors. Results IAP0971 bound to human IL2/15Rβ proteins specifically and blocked PD1/PDL1 signaling transduction pathway. IAP0971 promoted the proliferation of CD8 + T cells and natural killer T (NKT) cells, and further activated NK cells to kill tumor cells validated by in vitro assays. In an hPD1 knock-in mouse model, IAP0971 showed potent anti-tumor activity. Preclinical studies in non-human primates following single or repeated dosing of IAP0971 showed favorable pharmacokinetics and well-tolerated toxicology profile. Conclusion IAP0971 has demonstrated a favorable safety profile and potent anti-tumor activities in vivo. A Phase I/IIa clinical trial to evaluate the safety, tolerability and preliminary efficacy of IAP0971 in patients with advanced malignant tumors is on-going (NCT05396391).
Collapse
Affiliation(s)
| | | | - Xiaoling Jiang
- SunHo (China) BioPharmaceutical Co., Ltd, No.5 Xingjian Road, Economic and Technological Development Zone, Nanjing 210008, Jiangsu Province, China
| | - Zhenzhen Huang
- SunHo (China) BioPharmaceutical Co., Ltd, No.5 Xingjian Road, Economic and Technological Development Zone, Nanjing 210008, Jiangsu Province, China
| | - Chongbing Wu
- SunHo (China) BioPharmaceutical Co., Ltd, No.5 Xingjian Road, Economic and Technological Development Zone, Nanjing 210008, Jiangsu Province, China
| | - Dongcheng Jiang
- SunHo (China) BioPharmaceutical Co., Ltd, No.5 Xingjian Road, Economic and Technological Development Zone, Nanjing 210008, Jiangsu Province, China
| | - Liusong Yin
- To whom correspondence should be addressed. Liusong Yin, No.5 Xingjian Road, Economic and Technological Development Zone, Nanjing 210008, Jiangsu Province, China. Tel: (+86) 18651612904; Fax: +86-25-85666030;
| |
Collapse
|
40
|
Rajtak A, Ostrowska-Leśko M, Żak K, Tarkowski R, Kotarski J, Okła K. Integration of local and systemic immunity in ovarian cancer: Implications for immunotherapy. Front Immunol 2022; 13:1018256. [PMID: 36439144 PMCID: PMC9684707 DOI: 10.3389/fimmu.2022.1018256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/18/2022] [Indexed: 08/21/2023] Open
Abstract
Cancer is a disease that induces many local and systemic changes in immunity. The difficult nature of ovarian cancer stems from the lack of characteristic symptoms that contributes to a delayed diagnosis and treatment. Despite the enormous progress in immunotherapy, its efficacy remains limited. The heterogeneity of tumors, lack of diagnostic biomarkers, and complex immune landscape are the main challenges in the treatment of ovarian cancer. Integrative approaches that combine the tumor microenvironment - local immunity - together with periphery - systemic immunity - are urgently needed to improve the understanding of the disease and the efficacy of treatment. In fact, multiparametric analyses are poised to improve our understanding of ovarian tumor immunology. We outline an integrative approach including local and systemic immunity in ovarian cancer. Understanding the nature of both localized and systemic immune responses will be crucial to boosting the efficacy of immunotherapies in ovarian cancer patients.
Collapse
Affiliation(s)
- Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Marta Ostrowska-Leśko
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
- Chair and Department of Toxicology, Medical University of Lublin, Lublin, Poland
| | - Klaudia Żak
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Student Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Rafał Tarkowski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Karolina Okła
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
- Department of Surgery, University of Michigan Rogel Cancer Center, Ann Arbor, MI, United States
| |
Collapse
|
41
|
Effect of Tertiary Lymphoid Structures on Prognosis of Patients with Hepatocellular Carcinoma and Preliminary Exploration of Its Formation Mechanism. Cancers (Basel) 2022; 14:cancers14205157. [PMID: 36291944 PMCID: PMC9601110 DOI: 10.3390/cancers14205157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary At present, research on tertiary lymphoid structures (TLSs) in hepatocellular carcinoma (HCC) has been limited to the prognostic impact. Our manuscript first validates previous studies using two databases and then initially explores the key molecules and mechanisms of TLS formation and immunotherapy implications for HCC patients by using the TCGA database. For example, LCK, a key molecule in the formation of TLSs, may affect the formation of TLSs by regulating the cytokine signalling pathway, chemokine signalling pathway, T-cell activation and P53 signalling pathway. Second, the expression level of LCK is another factor affecting the sensitivity of HCC patients to immune checkpoint inhibitors. In conclusion, our study provides a potential mechanism for further exploration of TLSs. Abstract Background: Tertiary lymphoid structures (TLSs) are formed by the aggregation of tumour-infiltrating lymphocytes (TILs), which is driven by chemokines or cytokines in the tumour microenvironment. Studies have shown that TLSs are associated with good prognosis in patients with various solid tumours and can improve patient responses to immunotherapy. However, the role of TLSs in hepatocellular carcinoma (HCC) remains controversial, and the underlying molecular mechanism is unclear. Methods: According to haematoxylin-eosin (HE) staining results, HCC patients in Xijing Hospital data and TCGA data were divided into TLS+ and TLS- groups, and Kaplan–Meier (KM) analysis was performed to assess overall survival (OS) and recurrence-free survival (RFS). Immunofluorescence (IF) and immunohistochemistry (IHC) were used to identify TILs in the TLS+ group. Lymphocyte-specific protein tyrosine kinase (LCK), a molecule involved in TLS formation, was explored in LinkedOmics. TILs were divided into two groups by drawing receiver operating characteristic (ROC) curves to calculate cut-off values. Spearman correlation analysis was used to calculate the correlation between LCK and TILs, and the molecular pathways by which LCK regulates immunotherapy were clarified through enrichment analysis. The half-maximal inhibitory concentration (IC50) distribution of sorafenib was observed in groups that varied in LCK expression. Results: According to the HE results, 61 cases in the Xijing Hospital cohort and 195 cases in the TCGA cohort had TLSs, while 89 cases and 136 cases did not. The KM results showed that TLSs had no effect on the OS of HCC patients but significantly affected RFS. The IF/IHC results showed that higher TIL numbers in TLSs were correlated with better prognosis in HCC patients. Spearman correlation analysis showed that LCK expression was positively correlated with TIL numbers. Enrichment analysis showed that upregulation of LCK expression mainly regulated the cytokine signalling pathway, the chemokine signalling pathway and T-cell activation. The IC50 scores of sorafenib in HCC patients with high LCK expression were lower, and the sensitivity was higher. Conclusion: TLSs mainly affected the early RFS of HCC patients but had no effect on OS. The high expression of the TLS formation-related gene LCK can increase the sensitivity of HCC patients to ICIs.
Collapse
|
42
|
Liu N, Mishra K, Stiel AC, Gujrati V, Ntziachristos V. The sound of drug delivery: Optoacoustic imaging in pharmacology. Adv Drug Deliv Rev 2022; 189:114506. [PMID: 35998826 DOI: 10.1016/j.addr.2022.114506] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
Optoacoustic (photoacoustic) imaging offers unique opportunities for visualizing biological function in vivo by achieving high-resolution images of optical contrast much deeper than any other optical technique. The method detects ultrasound waves that are generated inside tissue by thermo-elastic expansion, i.e., the conversion of light absorption by tissue structures to ultrasound when the tissue is illuminated by the light of varying intensity. Listening instead of looking to light offers the major advantage of image formation with a resolution that obeys ultrasonic diffraction and not photon diffusion laws. While the technique has been widely used to explore contrast from endogenous photo-absorbing molecules, such as hemoglobin or melanin, the use of exogenous agents can extend applications to a larger range of biological and possible clinical applications, such as image-guided surgery, disease monitoring, and the evaluation of drug delivery, biodistribution, and kinetics. This review summarizes recent developments in optoacoustic agents, and highlights new functions visualized and potent pharmacology applications enabled with the use of external contrast agents.
Collapse
Affiliation(s)
- Nian Liu
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kanuj Mishra
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Vipul Gujrati
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich 80992, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
43
|
Zhou X, Ni Y, Liang X, Lin Y, An B, He X, Zhao X. Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Front Immunol 2022; 13:915094. [PMID: 36189283 PMCID: PMC9520263 DOI: 10.3389/fimmu.2022.915094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint blockade (ICB) has rapidly transformed the treatment paradigm for various cancer types. Multiple single or combinations of ICB treatments have been approved by the US Food and Drug Administration, providing more options for patients with advanced cancer. However, most patients could not benefit from these immunotherapies due to primary and acquired drug resistance. Thus, a better understanding of the mechanisms of ICB resistance is urgently needed to improve clinical outcomes. Here, we focused on the changes in the biological functions of CD8+ T cells to elucidate the underlying resistance mechanisms of ICB therapies and summarized the advanced coping strategies to increase ICB efficacy. Combinational ICB approaches and individualized immunotherapies require further in-depth investigation to facilitate longer-lasting efficacy and a more excellent safety of ICB in a broader range of patients.
Collapse
|
44
|
Ando S, Araki K. CD8 T cell heterogeneity during T cell exhaustion and PD-1-targeted immunotherapy. Int Immunol 2022; 34:571-577. [PMID: 35901837 PMCID: PMC9533227 DOI: 10.1093/intimm/dxac038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022] Open
Abstract
Persistent antigenic stimulation results in loss of effector function or physical deletion of antigen-specific CD8 T cells. This T cell state is called T cell exhaustion and occurs during chronic infection and cancer. Antigen-specific CD8 T cells during T cell exhaustion express the inhibitory receptor PD-1, the expression of which plays a major role in T cell dysfunction. PD-1 blockade re-invigorates CD8 T cell immunity and has been proven effective against many different types of human cancer. To further improve the efficacy of PD-1-targeted immunotherapy in cancer patients, a better understanding of T cell exhaustion is required. Recent studies have revealed that antigen-specific CD8 T cells during T cell exhaustion are heterogeneous and have also uncovered the detailed mechanisms for PD-1-targeted immunotherapy. Here, we review the CD8 T cell subsets that arise during T cell exhaustion, the lineage relationship among these individual subsets and the role of each subset in PD-1 blockade. Also, we discuss potential strategies to enhance the efficacy of PD-1-targeted immunotherapy.
Collapse
Affiliation(s)
- Satomi Ando
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, 45229 OH, USA
| | - Koichi Araki
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, 45229 OH, USA
| |
Collapse
|
45
|
Sellars MC, Wu CJ, Fritsch EF. Cancer vaccines: Building a bridge over troubled waters. Cell 2022; 185:2770-2788. [PMID: 35835100 PMCID: PMC9555301 DOI: 10.1016/j.cell.2022.06.035] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 12/16/2022]
Abstract
Cancer vaccines aim to direct the immune system to eradicate cancer cells. Here we review the essential immunologic concepts underpinning natural immunity and highlight the multiple unique challenges faced by vaccines targeting cancer. Recent technological advances in mass spectrometry, neoantigen prediction, genetically and pharmacologically engineered mouse models, and single-cell omics have revealed new biology, which can help to bridge this divide. We particularly focus on translationally relevant aspects, such as antigen selection and delivery and the monitoring of human post-vaccination responses, and encourage more aggressive exploration of novel approaches.
Collapse
Affiliation(s)
- MacLean C Sellars
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Edward F Fritsch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
46
|
Li Y, Li X, Geng X, Zhao H. The IL-2A receptor pathway and its role in lymphocyte differentiation and function. Cytokine Growth Factor Rev 2022; 67:66-79. [DOI: 10.1016/j.cytogfr.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
47
|
Kaptein P, Jacoberger-Foissac C, Dimitriadis P, Voabil P, de Bruijn M, Brokamp S, Reijers I, Versluis J, Nallan G, Triscott H, McDonald E, Tay J, Long GV, Blank CU, Thommen DS, Teng MWL. Addition of interleukin-2 overcomes resistance to neoadjuvant CTLA4 and PD1 blockade in ex vivo patient tumors. Sci Transl Med 2022; 14:eabj9779. [PMID: 35476594 DOI: 10.1126/scitranslmed.abj9779] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neoadjuvant immunotherapy with anti-cytotoxic T lymphocyte-associated protein 4 (CTLA4) + anti-programmed cell death protein 1 (PD1) monoclonal antibodies has demonstrated remarkable pathological responses and relapse-free survival in ~80% of patients with clinically detectable stage III melanoma. However, about 20% of the treated patients do not respond. In pretreatment biopsies of patients with melanoma, we found that resistance to neoadjuvant CTLA4 + PD1 blockade was associated with a low CD4/interleukin-2 (IL-2) gene signature. Ex vivo, addition of IL-2 to CTLA4 + PD1 blockade induced T cell activation and deep immunological responses in anti-CTLA4 + anti-PD1-resistant human tumor specimens. In the 4T1.2 breast cancer mouse model of neoadjuvant immunotherapy, triple combination of anti-CTLA4 + anti-PD1 + IL-2 cured almost twice as many mice as compared with dual checkpoint inhibitor therapy. This improved efficacy was due to the expansion of tumor-specific CD8+ T cells and improved proinflammatory cytokine polyfunctionality of both CD4+ and CD8+ T effector cells and regulatory T cells. Depletion studies suggested that CD4+ T cells were critical for priming of CD8+ T cell immunity against 4T1.2 and helped in the expansion of tumor-specific CD8+ T cells early after neoadjuvant triple immunotherapy. Our results suggest that the addition of IL-2 can overcome resistance to neoadjuvant anti-CTLA4 + anti-PD1, providing the rationale for testing this combination as a neoadjuvant therapy in patients with early-stage cancer.
Collapse
Affiliation(s)
- Paulien Kaptein
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | | | - Petros Dimitriadis
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Paula Voabil
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Marjolein de Bruijn
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Simone Brokamp
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Irene Reijers
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Judith Versluis
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Gahyathiri Nallan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Hannah Triscott
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.,School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| | - Elizabeth McDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Joshua Tay
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Georgina V Long
- Melanoma Institute Australia, University of Sydney, Sydney 2006, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia.,Royal North Shore and Mater Hospitals, Sydney 2065, Australia
| | - Christian U Blank
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands.,Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Daniela S Thommen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Michele W L Teng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.,School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| |
Collapse
|
48
|
Holcomb EA, Zou W. A forced marriage of IL-2 and PD-1 antibody nurtures tumor-infiltrating T cells. J Clin Invest 2022; 132:e156628. [PMID: 35104808 PMCID: PMC8803318 DOI: 10.1172/jci156628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
IL-2 is a pleiotropic cytokine. In this issue of the JCI, Ren et al. report on the development of a low-affinity IL-2 paired with anti-PD-1 (PD-1-laIL-2) that reactivates intratumoral CD8+ T cells, but not CD4+ Treg cells. PD-1-laIL-2 treatment synergized with anti-PD-L1 therapy to overcome tumor resistance to immune checkpoint blockade (ICB) in tumor-bearing mice. Rejection of rechallenged tumors following PD-1-laIL-2 therapy demonstrated the establishment of a potent T cell memory response. Furthermore, PD-1-laIL-2 therapy manifested no obvious toxicity. These findings suggest the potential of PD-1-laIL-2 therapy in treating patients with cancer.
Collapse
Affiliation(s)
| | - Weiping Zou
- Graduate Program in Immunology
- Department of Surgery, and
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
49
|
PD-1-cis IL-2R agonism yields better effectors from stem-like CD8 + T cells. Nature 2022; 610:161-172. [PMID: 36171284 PMCID: PMC9534752 DOI: 10.1038/s41586-022-05192-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/04/2022] [Indexed: 12/22/2022]
Abstract
Expansion and differentiation of antigen-experienced PD-1+TCF-1+ stem-like CD8+ T cells into effector cells is critical for the success of immunotherapies based on PD-1 blockade1-4. Hashimoto et al. have shown that, in chronic infections, administration of the cytokine interleukin (IL)-2 triggers an alternative differentiation path of stem-like T cells towards a distinct population of 'better effector' CD8+ T cells similar to those generated in an acute infection5. IL-2 binding to the IL-2 receptor α-chain (CD25) was essential in triggering this alternative differentiation path and expanding better effectors with distinct transcriptional and epigenetic profiles. However, constitutive expression of CD25 on regulatory T cells and some endothelial cells also contributes to unwanted systemic effects from IL-2 therapy. Therefore, engineered IL-2 receptor β- and γ-chain (IL-2Rβγ)-biased agonists are currently being developed6-10. Here we show that IL-2Rβγ-biased agonists are unable to preferentially expand better effector T cells in cancer models and describe PD1-IL2v, a new immunocytokine that overcomes the need for CD25 binding by docking in cis to PD-1. Cis binding of PD1-IL2v to PD-1 and IL-2Rβγ on the same cell recovers the ability to differentiate stem-like CD8+ T cells into better effectors in the absence of CD25 binding in both chronic infection and cancer models and provides superior efficacy. By contrast, PD-1- or PD-L1-blocking antibodies alone, or their combination with clinically relevant doses of non-PD-1-targeted IL2v, cannot expand this unique subset of better effector T cells and instead lead to the accumulation of terminally differentiated, exhausted T cells. These findings provide the basis for the development of a new generation of PD-1 cis-targeted IL-2R agonists with enhanced therapeutic potential for the treatment of cancer and chronic infections.
Collapse
|