1
|
Beraldo-Neto E, Amador FC, Fernandes KR, Justo GZ, Lacerda JT, Juliano MA. Proteomic Dynamics of Multidrug Resistance Mechanisms in Lucena 1 Cell Line. Cells 2024; 13:1427. [PMID: 39272999 PMCID: PMC11394376 DOI: 10.3390/cells13171427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The Lucena 1 cell line, derived from the human chronic myeloid leukemia cell line K562 under selective pressure of vincristine supplementation, exhibits multidrug resistance (MDR). This study aims to explore and elucidate the underlying mechanisms driving MDR in the Lucena 1 cell line. A proteomic analysis comparing K562 and Lucena 1 revealed qualitative differences, with a focus on the ATP-dependent efflux pump, Translocase ABCB1, a key contributor to drug resistance. Tubulin analysis identified two unique isoforms, Tubulin beta 8B and alpha chain-like 3, exclusive to Lucena 1, potentially influencing resistance mechanisms. Additionally, the association of Rap1A and Krit1 in cytoskeletal regulation and the presence of STAT1, linked to the urea cycle and tumor development, offered insights into Lucena 1's distinctive biology. The increased expression of carbonic anhydrase I suggested a role in pH regulation. The discovery of COP9, a tumor suppressor targeting p53, further highlighted the Lucena 1 complex molecular landscape. This study offers new insights into the MDR phenotype and its multifactorial consequences in cellular pathways. Thus, unraveling the mechanisms of MDR holds promise for innovating cancer models and antitumor targeted strategies, since inhibiting the P-glycoprotein (P-gp)/ABCB1 protein is not always an effective approach given the associated treatment toxicity.
Collapse
Affiliation(s)
- Emidio Beraldo-Neto
- Biochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Fernanda Cardoso Amador
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Karolina Rosa Fernandes
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Giselle Zenker Justo
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - José Thalles Lacerda
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Maria A Juliano
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| |
Collapse
|
2
|
Zuo X, Cheng Q, Wang Z, Liu J, Lu W, Wu G, Zhu S, Liu X, Lv T, Song Y. A novel oral TLR7 agonist orchestrates immune response and synergizes with PD-L1 blockade via type I IFN pathway in lung cancer. Int Immunopharmacol 2024; 137:112478. [PMID: 38901243 DOI: 10.1016/j.intimp.2024.112478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Despite the groundbreaking impact of immune checkpoint blockade (ICB), response rates in non-small cell lung cancer remain modest, particularly in immune-excluded or immune-desert microenvironments. Toll-like receptor 7 (TLR7) emerges as a latent target bridging innate and adaptive immunity, offering a promising avenue for combination therapies to augment ICB efficacy. Here, we explored the anti-tumor activity of the novel oral TLR7 agonist TQ-A3334 and its potential to enhance anti-programmed death ligand 1 (PD-L1) therapy through a combination strategy in a syngeneic murine lung cancer model. Oral administration of TQ-A3334 significantly alleviated tumor burden in C57BL/6J mice, modulated by type I interferon (IFN), and exhibited low toxicity. This therapy elicited activation of both innate and adaptive immune cells in tumor tissue, particularly increasing the abundance of CD8+ TILs through type I IFN pathway and subsequent CXCL10 expression. In vitro examinations validated that IFN-α-stimulated tumor cells exhibited increased secretion of CXCL10, conducive to the promoted trafficking of CD8+ T cells. Furthermore, combining TQ-A3334 with anti-PD-L1 treatment exceeded tumor control, with a further increase in CD8+ TIL frequency compared to monotherapy. These findings suggest that TQ-A3334 can mobilize innate immunity and promote T cell recruitment into the tumor microenvironment; a combination of TQ-A3334 and anti-PD-L1 antibodies can intensify the sensitivity of tumors to anti-PD-L1 therapy, which demonstrates significant potential for treating poorly immune-infiltrated lung cancer.
Collapse
Affiliation(s)
- Xueying Zuo
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Qinpei Cheng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Zimu Wang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing 210008, Jiangsu, China
| | - Jiaxin Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing 210008, Jiangsu, China
| | - Wanjun Lu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Guannan Wu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Xin Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China.
| |
Collapse
|
3
|
Lim L, Hu MH, Fan D, Tu HF, Tsai YC, Cheng M, Wang S, Chang CL, Wu TC, Hung CF. STAT1-Deficient HPV E6/E7-Associated Cancers Maintain Host Immunocompetency against Therapeutic Intervention. Vaccines (Basel) 2024; 12:430. [PMID: 38675812 PMCID: PMC11053987 DOI: 10.3390/vaccines12040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Human papillomavirus (HPV) remains a global health concern because it contributes to the initiation of various HPV-associated cancers such as anal, cervical, oropharyngeal, penile, vaginal, and vulvar cancer. In HPV-associated cancers, oncogenesis begins with an HPV infection, which is linked to the activation of the Janus protein tyrosine kinase (JAK)/STAT signaling pathway. Various STAT signaling pathways, such as STAT3 activation, have been well documented for their tumorigenic role, yet the role of STAT1 in tumor formation remains unclear. In the current study, STAT1-/- mice were used to investigate the role of STAT1 in the tumorigenesis of a spontaneous HPV E6/E7-expressing oral tumor model. Subsequently, our candidate HPV DNA vaccine CRT/E7 was administered to determine whether the STAT1-/- host preserves a therapeutic-responsive tumor microenvironment. The results indicated that STAT1-/- induces robust tumorigenesis, yet a controlled tumor response was attained upon CRT/E7 vaccination. Characterizing this treatment effect, immunological analysis found a higher percentage of circulating CD4+ and CD8+ T cells and tumor-specific cytotoxic T cells. In addition, a reduction in exhaustive lymphocyte activity was observed. Further analysis of a whole-cell tumor challenge affirmed these findings, as spontaneous tumor growth was more rapid in STAT1-/- mice. In conclusion, STAT1 deletion accelerates tumorigenesis, but STAT1-/- mice maintains immunocompetency in CRT/E7 treatments.
Collapse
Affiliation(s)
- Ling Lim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei 104217, Taiwan;
| | - Ming-Hung Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Darrell Fan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Ya-Chea Tsai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Michelle Cheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Suyang Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
| | - Chih-Long Chang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei 104217, Taiwan;
| | - Tzyy-Choou Wu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA (T.-C.W.)
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
4
|
Dong L, Wei X, Yu L, Li Y, Chen L. Inhibition of SIRT7 promotes STAT1 activation and STAT1-dependent signaling in hepatocellular carcinoma. Cell Signal 2024; 114:111005. [PMID: 38070755 DOI: 10.1016/j.cellsig.2023.111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
The signal transducer and activator of transcription 1 (STAT1) plays a crucial role in regulating tumor progression. However, the mechanisms governing its phosphorylation and biological functions remain incompletely understood. Here, we present compelling evidence indicating that knockdown of SIRT7 inhibits Smurf1-induced ubiquitination of STAT1, consequently impeding the proteasome pathway degradation of STAT1. This inhibition leads to increased stability of STAT1 and enhanced binding to JAK1. Importantly, SIRT7 exerts a negative regulatory effect on STAT1 activation and IFN-γ/STAT1 signaling in hepatocellular carcinoma (HCC). Etoposide treatment not only facilitates STAT1 activation but also downregulates SIRT7 expression. Notably, knockdown of STAT1 in SIRT7-deficient cells attenuates the increase in cell apoptosis induced by Etoposide treatment. In conclusion, our data shed light on the intricate interplay between ubiquitination, STAT1, SIRT7, and Smurf1, elucidating their impact on STAT1-related signaling. These insights contribute to a more comprehensive understanding of the molecular mechanisms involved in STAT1 regulation and suggest potential avenues for the development of targeted therapies against cancer.
Collapse
Affiliation(s)
- Ling Dong
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Xufu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Le Yu
- School of Life Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yixin Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
5
|
Imitola J, Hollingsworth EW, Watanabe F, Olah M, Elyaman W, Starossom S, Kivisäkk P, Khoury SJ. Stat1 is an inducible transcriptional repressor of neural stem cells self-renewal program during neuroinflammation. Front Cell Neurosci 2023; 17:1156802. [PMID: 37663126 PMCID: PMC10469489 DOI: 10.3389/fncel.2023.1156802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
A central issue in regenerative medicine is understanding the mechanisms that regulate the self-renewal of endogenous stem cells in response to injury and disease. Interferons increase hematopoietic stem cells during infection by activating STAT1, but the mechanisms by which STAT1 regulates intrinsic programs in neural stem cells (NSCs) during neuroinflammation is less known. Here we explored the role of STAT1 on NSC self-renewal. We show that overexpressing Stat1 in NSCs derived from the subventricular zone (SVZ) decreases NSC self-renewal capacity while Stat1 deletion increases NSC self-renewal, neurogenesis, and oligodendrogenesis in isolated NSCs. Importantly, we find upregulation of STAT1 in NSCs in a mouse model of multiple sclerosis (MS) and an increase in pathological T cells expressing IFN-γ rather than interleukin 17 (IL-17) in the cerebrospinal fluid of affected mice. We find IFN-γ is superior to IL-17 in reducing proliferation and precipitating an abnormal NSC phenotype featuring increased STAT1 phosphorylation and Stat1 and p16ink4a gene expression. Notably, Stat1-/- NSCs were resistant to the effect of IFN-γ. Lastly, we identified a Stat1-dependent gene expression profile associated with an increase in the Sox9 transcription factor, a regulator of self-renewal. Stat1 binds and transcriptionally represses Sox9 in a transcriptional luciferase assay. We conclude that Stat1 serves as an inducible checkpoint for NSC self-renewal that is upregulated during chronic brain inflammation leading to decreased self-renewal. As such, Stat1 may be a potential target to modulate for next generation therapies to prevent progression and loss of repair function in NSCs/neural progenitors in MS.
Collapse
Affiliation(s)
- Jaime Imitola
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Multiple Sclerosis and Neuroimmunology, University of Connecticut Health Center, Farmington, CT, United States
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ethan W. Hollingsworth
- Medical Scientist Training Program, University of California, Irvine, Irvine, CA, United States
| | - Fumihiro Watanabe
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Multiple Sclerosis and Neuroimmunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Marta Olah
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Wassim Elyaman
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Sarah Starossom
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Pia Kivisäkk
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Alzheimer’s Clinical and Translational Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Samia J. Khoury
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Abu Haidar Neuroscience Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
6
|
Rwandamuriye FX, Evans CW, Wylie B, Norret M, Vitali B, Ho D, Nguyen D, Roper EA, Wang T, Hepburn MS, Sanderson RW, Pfirrmann M, Fear VS, Forbes CA, Wyatt K, Ryan AL, Johns TG, Phillips MB, Hodder R, Leslie C, Kennedy BF, Zemek RM, Iyer KS, Lesterhuis WJ. A surgically optimized intraoperative poly(I:C)-releasing hydrogel prevents cancer recurrence. Cell Rep Med 2023; 4:101113. [PMID: 37467718 PMCID: PMC10394259 DOI: 10.1016/j.xcrm.2023.101113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/10/2023] [Accepted: 06/18/2023] [Indexed: 07/21/2023]
Abstract
Recurrences frequently occur following surgical removal of primary tumors. In many cancers, adjuvant therapies have limited efficacy. Surgery provides access to the tumor microenvironment, creating an opportunity for local therapy, in particular immunotherapy, which can induce local and systemic anti-cancer effects. Here, we develop a surgically optimized biodegradable hyaluronic acid-based hydrogel for sustained intraoperative delivery of Toll-like receptor 3 agonist poly(I:C) and demonstrate that it significantly reduces tumor recurrence after surgery in multiple mouse models. Mechanistically, poly(I:C) induces a transient interferon alpha (IFNα) response, reshaping the tumor/wound microenvironment by attracting inflammatory monocytes and depleting regulatory T cells. We demonstrate that a pre-existing IFN signature predicts response to the poly(I:C) hydrogel, which sensitizes tumors to immune checkpoint therapy. The safety, immunogenicity, and surgical feasibility are confirmed in a veterinary trial in canine soft tissue tumors. The surgically optimized poly(I:C)-loaded hydrogel provides a safe and effective approach to prevent cancer recurrence.
Collapse
Affiliation(s)
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Ben Wylie
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Marck Norret
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Breana Vitali
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Diwei Ho
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Dat Nguyen
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Ellise A Roper
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Tao Wang
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia; Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, WA, Australia
| | - Rowan W Sanderson
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia; Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, WA, Australia
| | - Maren Pfirrmann
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia; Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Vanessa S Fear
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Catherine A Forbes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Ken Wyatt
- Perth Veterinary Specialists, Osborne Park, WA, Australia; Murdoch Veterinary School, Murdoch University, Murdoch, WA, Australia
| | - Anne L Ryan
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia; Department of Oncology, Hematology and Tissue and Cellular Therapies, Perth Children's Hospital, Perth, WA, Australia
| | - Terrance G Johns
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Marianne B Phillips
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia; Department of Oncology, Hematology and Tissue and Cellular Therapies, Perth Children's Hospital, Perth, WA, Australia
| | - Rupert Hodder
- Department of Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Connull Leslie
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia; Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Crawley, WA, Australia
| | - Rachael M Zemek
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | | | | |
Collapse
|
7
|
Zhou B, Basu J, Kazmi HR, Chitrala KN, Mo X, Preston-Alp S, Cai KQ, Kappes D, Zaidi MR. Interferon-gamma signaling promotes melanoma progression and metastasis. Oncogene 2023; 42:351-363. [PMID: 36463370 PMCID: PMC9991867 DOI: 10.1038/s41388-022-02561-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
Interferon-gamma (IFNG) has long been regarded as the flag-bearer for the anti-cancer immunosurveillance mechanisms. However, relatively recent studies have suggested a dual role of IFNG, albeit there is no direct experimental evidence for its potential pro-tumor functions. Here we provide in vivo evidence that treatment of mouse melanoma cell lines with Ifng enhances their tumorigenicity and metastasis in lung colonization allograft assays performed in immunocompetent syngeneic host mice, but not in immunocompromised host mice. We also show that this enhancement is dependent on downstream signaling via Stat1 but not Stat3, suggesting an oncogenic function of Stat1 in melanoma. The experimental results suggest that melanoma cell-specific Ifng signaling modulates the tumor microenvironment and its pro-tumorigenic effects are partially dependent on the γδ T cells, as Ifng-enhanced tumorigenesis was inhibited in the TCR-δ knockout mice. Overall, these results show that Ifng signaling may have tumor-promoting effects in melanoma by modulating the immune cell composition of the tumor microenvironment.
Collapse
Affiliation(s)
- Bo Zhou
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,MEI Pharma, San Diego, CA, USA
| | - Jayati Basu
- Fox Chase Cancer Center, Philadelphia, PA, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hasan Raza Kazmi
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kumaraswamy Naidu Chitrala
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Department of Engineering Technology, University of Houston, Houston, TX, USA
| | - Xuan Mo
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sarah Preston-Alp
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kathy Q Cai
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - M Raza Zaidi
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Goossens S, Cauwels A, Pieters T, De Smedt R, T'Sas S, Almeida A, Daneels W, Van Vlierberghe P, Tavernier J. Direct and indirect anti-leukemic properties of activity-on-target interferons for the treatment of T-cell acute lymphoblastic leukemia. Haematologica 2022; 107:1448-1453. [PMID: 34647441 PMCID: PMC9152961 DOI: 10.3324/haematol.2021.278913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent University, B-9000 Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent
| | - Anje Cauwels
- Cancer Research Institute Ghent (CRIG), Ghent University, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Orionis Biosciences BV, B-9052 Ghent
| | - Tim Pieters
- Cancer Research Institute Ghent (CRIG), Ghent University, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent
| | - Renate De Smedt
- Cancer Research Institute Ghent (CRIG), Ghent University, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent
| | - Sara T'Sas
- Cancer Research Institute Ghent (CRIG), Ghent University, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent
| | - André Almeida
- Cancer Research Institute Ghent (CRIG), Ghent University, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent
| | - Willem Daneels
- Cancer Research Institute Ghent (CRIG), Ghent University, B-9000 Ghent, Belgium; Department of Hematology, Ghent University Hospital, B-9000 Ghent
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent University, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent.
| | - Jan Tavernier
- Cancer Research Institute Ghent (CRIG), Ghent University, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Orionis Biosciences BV, B-9052 Ghent
| |
Collapse
|
9
|
Herranz D. INTERFERing with the progression of T-cell acute lymphoblastic leukemia: a multifaceted therapy. Haematologica 2022; 107:1232-1234. [PMID: 34647445 PMCID: PMC9152966 DOI: 10.3324/haematol.2021.279549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854.
| |
Collapse
|
10
|
Bowornruangrit P, Kumkate S, Sirigulpanit W, Leardkamolkarn V. Combined Effects of Fludarabine and Interferon Alpha on Autophagy Regulation Define the Phase of Cell Survival and Promotes Responses in LLC-MK2 and K562 Cells. Med Sci (Basel) 2022; 10:medsci10010020. [PMID: 35323219 PMCID: PMC8950195 DOI: 10.3390/medsci10010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a known mechanism of cells under internal stress that regulates cellular function via internal protein recycling and the cleaning up of debris, leading to healthy live cells. However, the stimulation of autophagy by external factors such as chemical compounds or viral infection mostly tends to induce apoptosis/cell death. This study hypothesizes that manipulation of the autophagy mechanism to the pro-cell survival and/or decreased pro-viral niche can be a strategy for effective antiviral and anticancer treatment. Cells susceptible to viral infection, namely LLC-MK2, normal monkey epithelium, and K562, human immune-related lymphocyte, which is also a cancer cell line, were treated with fludarabine nucleoside analog (Fdb), interferon alpha (IFN-α), and a combination of Fdb and IFN-α, and then were evaluated for signs of adaptive autophagy and STAT1 antiviral signaling by Western blotting and immunolabeling assays. The results showed that the low concentration of Fdb was able to activate an autophagy response in both cell types, as demonstrated by the intense immunostaining of LC3B foci in the autophagosomes of living cells. Treatment with IFN-α (10 U/mL) showed no alteration in the initiator of mTOR autophagy but dramatically increased the intracellular STAT1 signaling molecules in both cell types. Although in the combined Fdb and IFN-α treatment, both LLC-MK2 and K562 cells showed only slight changes in the autophagy-responsive proteins p-mTOR and LC3B, an adaptive autophagy event was clearly shown in the autophagosome of the LLC-MK2 cell, suggesting the survival phase of the normal cell. The combined effect of Fdb and IFN-α treatment on the antiviral response was identified by the level of activation of the STAT1 antiviral marker. Significantly, the adaptive autophagy mediated by Fdb was able to suppress the IFN-α-mediated pSTAT1 signaling in both cell types to a level that is appropriate for cellular function. It is concluded that the administration of an appropriate dose of Fdb and IFN-α in combination is beneficial for the treatment of some types of cancer and viral infection.
Collapse
Affiliation(s)
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Wipawan Sirigulpanit
- Division of Pharmacology and Biopharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand;
| | - Vijittra Leardkamolkarn
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Correspondence:
| |
Collapse
|
11
|
Ho WW, Gomes-Santos IL, Aoki S, Datta M, Kawaguchi K, Talele NP, Roberge S, Ren J, Liu H, Chen IX, Andersson P, Chatterjee S, Kumar AS, Amoozgar Z, Zhang Q, Huang P, Ng MR, Chauhan VP, Xu L, Duda DG, Clark JW, Pittet MJ, Fukumura D, Jain RK. Dendritic cell paucity in mismatch repair-proficient colorectal cancer liver metastases limits immune checkpoint blockade efficacy. Proc Natl Acad Sci U S A 2021; 118:e2105323118. [PMID: 34725151 PMCID: PMC8609309 DOI: 10.1073/pnas.2105323118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 12/21/2022] Open
Abstract
Liver metastasis is a major cause of mortality for patients with colorectal cancer (CRC). Mismatch repair-proficient (pMMR) CRCs make up about 95% of metastatic CRCs, and are unresponsive to immune checkpoint blockade (ICB) therapy. Here we show that mouse models of orthotopic pMMR CRC liver metastasis accurately recapitulate the inefficacy of ICB therapy in patients, whereas the same pMMR CRC tumors are sensitive to ICB therapy when grown subcutaneously. To reveal local, nonmalignant components that determine CRC sensitivity to treatment, we compared the microenvironments of pMMR CRC cells grown as liver metastases and subcutaneous tumors. We found a paucity of both activated T cells and dendritic cells in ICB-treated orthotopic liver metastases, when compared with their subcutaneous tumor counterparts. Furthermore, treatment with Feline McDonough sarcoma (FMS)-like tyrosine kinase 3 ligand (Flt3L) plus ICB therapy increased dendritic cell infiltration into pMMR CRC liver metastases and improved mouse survival. Lastly, we show that human CRC liver metastases and microsatellite stable (MSS) primary CRC have a similar paucity of T cells and dendritic cells. These studies indicate that orthotopic tumor models, but not subcutaneous models, should be used to guide human clinical trials. Our findings also posit dendritic cells as antitumor components that can increase the efficacy of immunotherapies against pMMR CRC.
Collapse
Affiliation(s)
- William W Ho
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Igor L Gomes-Santos
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Shuichi Aoki
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Meenal Datta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Kosuke Kawaguchi
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Nilesh P Talele
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Sylvie Roberge
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Jun Ren
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Hao Liu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Ivy X Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Patrik Andersson
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Sampurna Chatterjee
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Ashwin S Kumar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Qixian Zhang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Peigen Huang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Mei Rosa Ng
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Vikash P Chauhan
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Dan G Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Jeffrey W Clark
- Department of Hematology/Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Mikael J Pittet
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland;
- Ludwig Institute for Cancer Research, 1005 Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals, CH-1211 Geneva, Switzerland
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;
| |
Collapse
|
12
|
Huang L, Xu W, Yan D, Shi X, You X, Xu J, You P, Ke Y, Dai L. An insertion variant of MGMT disrupts a STAT1 binding site and confers susceptibility to glioma. Cancer Cell Int 2021; 21:506. [PMID: 34544433 PMCID: PMC8454171 DOI: 10.1186/s12935-021-02211-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Background O6-methylguanine-DNA methyltransferase (MGMT) is a pivotal enzyme for repairing DNA alkylation damage. Epigenetic modification of MGMT has been well known as a promising prognostic biomarker for glioma. However, the significance of genetic variations of MGMT in glioma carcinogenesis has not been fully elucidated. Methods The associations between expression quantitative trait loci (eQTLs) of MGMT and glioma susceptibility were evaluated in a case–control study of 1056 individuals. The function of susceptibility locus for glioma was explored with a set of biochemical assays, including luciferase reporter gene, EMSA and supershift EMSA, ChIP, and siRNA knockdown. Results We found that rs11016798 TT genotype was associated with a significantly decreased risk of glioma (OR = 0.57, 95% CI 0.39–0.85; P = 0.006). Stratification analyses indicated that the association between rs11016798 and glioma was more pronounced in males (OR = 0.62, 95% CI 0.40–0.97; P = 0.035), older subjects (OR = 0.46, 95% CI 0.27–0.80; P = 0.006), WHO grade IV glioma (OR = 0.58, 95% CI 0.35–0.96; P = 0.033), and IDH wildtype glioma (OR = 0.43, 95% CI 0.21–0.88; P = 0.022). We characterized an insertion variant rs10659396 in the upstream of MGMT as a causative variant. The risk allele rs10659396 ins allele was demonstrated to downregulate MGMT expression by disrupting a STAT1 binding site. Knockdown of STAT1 remarkably attenuated MGMT expression. Moreover, the rs10659396 allele-specific positive correlation was observed between the expression of STAT1 and MGMT in population. Conclusions The study demonstrates that an insertion variant of MGMT rs10659396 confers susceptibility to glioma by downregulating MGMT expression through disrupting a STAT1 binding site. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02211-4.
Collapse
Affiliation(s)
- Liming Huang
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, #20 Chazhong Road, Fuzhou, 350005, China. .,Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Wenshen Xu
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Danfang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xi Shi
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, #20 Chazhong Road, Fuzhou, 350005, China
| | - Xin You
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, #20 Chazhong Road, Fuzhou, 350005, China
| | - Jiaqi Xu
- Department of Medicine, The Third Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, #363 Guobin Road, Fuzhou, 350108, China
| | - Pingping You
- Department of Medicine, The Third Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, #363 Guobin Road, Fuzhou, 350108, China
| | - Yuanyuan Ke
- Department of Medicine, The Third Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, #363 Guobin Road, Fuzhou, 350108, China
| | - Lian Dai
- Department of Medicine, The Third Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, #363 Guobin Road, Fuzhou, 350108, China.
| |
Collapse
|
13
|
The effect of acute heat stress on the innate immune function of rainbow trout based on the transcriptome. J Therm Biol 2021; 96:102834. [PMID: 33627272 DOI: 10.1016/j.jtherbio.2021.102834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/09/2020] [Accepted: 01/02/2021] [Indexed: 01/21/2023]
Abstract
Heat stress is a condition in which the body's homeostasis is disturbed as a result of the rise in water temperature, resulting in the decline or even death of growth, immunity, and other functions. The mechanisms directing this response are not fully understood. To better characterize the effects of acute heat stress on the innate immune function of rainbow trout, we identified differentially regulated messenger RNA (mRNA) and non-coding RNA (ncRNA) in rainbow trout exposed to acute heat stress. Next-generation RNA sequencing and comprehensive bioinformatics analysis were conducted to characterize the transcriptome profiles, including mRNA, microRNA (miRNA), and long non-coding RNA (lncRNA). The head kidney of rainbow trout were exposed to acute heat stress at 22.5 °C for 24 h. A total of 2605 lncRNAs, 214 miRNAs, and 5608 mRNAs were identified as differentially regulated. Among these expressed genes differentially, 45 lncRNAs and 2 target genes, as well as 38 miRNAs and 14 target genes were significantly enriched in the innate immune response of rainbow trout. LncRNA is used as competitive endogenous RNA (ceRNA) to construct the ceRNA-miRNA-mRNA interaction network. Enrichment analysis of the Kyoto encyclopedia of genes and genomes (KEGG) of ceRNA, the differentially expressed genes related to the innate immune function of rainbow trout, were significantly enriched in the signaling pathway mediated by mitogen-activated protein kinase (MAPK). Overall, these analyses showed the effects of heat stress on the innate immune function in rainbow trout at the transcriptome level, providing a theoretical basis to improve the production and breeding of rainbow trout and the selection of new heat-resistant varieties.
Collapse
|
14
|
Zhan X, Guo S, Li Y, Ran H, Huang H, Mi L, Wu J, Wang X, Xiao D, Chen L, Li D, Zhang S, Yan X, Yu Y, Li T, Han Q, He K, Cui J, Li T, Zhou T, Rich JN, Bao S, Zhang X, Li A, Man J. Glioma stem-like cells evade interferon suppression through MBD3/NuRD complex-mediated STAT1 downregulation. J Exp Med 2020; 217:151561. [PMID: 32181805 PMCID: PMC7201922 DOI: 10.1084/jem.20191340] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Type I interferons (IFNs) are known to mediate antineoplastic effects during tumor progression. Type I IFNs can be produced by multiple cell types in the tumor microenvironment; however, the molecular mechanisms by which tumor cells evade the inhibition of immune microenvironment remain unknown. Here we demonstrate that glioma stem-like cells (GSCs) evade type I IFN suppression through downregulation of STAT1 to initiate tumor growth under inhospitable conditions. The downregulation of STAT1 is mediated by MBD3, an epigenetic regulator. MBD3 is preferentially expressed in GSCs and recruits NuRD complex to STAT1 promoter to suppress STAT1 expression by histone deacetylation. Importantly, STAT1 overexpression or MBD3 depletion induces p21 transcription, resensitizes GSCs to IFN suppression, attenuates GSC tumor growth, and prolongs animal survival. Our findings demonstrate that inactivation of STAT1 signaling by MBD3/NuRD provides GSCs with a survival advantage to escape type I IFN suppression, suggesting that targeting MBD3 may represent a promising therapeutic opportunity to compromise GSC tumorigenic potential.
Collapse
Affiliation(s)
- Xiaoyan Zhan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Saisai Guo
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Yuanyuan Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Haowen Ran
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Haohao Huang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Lanjuan Mi
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jin Wu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xinzheng Wang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Dake Xiao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Lishu Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Da Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Songyang Zhang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xu Yan
- The First Hospital of Jilin University, Changchun, China
| | - Yu Yu
- The First Hospital of Jilin University, Changchun, China
| | - Tingting Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Qiuying Han
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Kun He
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jiuwei Cui
- The First Hospital of Jilin University, Changchun, China
| | - Tao Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.,Center for Cancer Stem Cell Research, Lerner Research Institute, Cleveland, OH.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Xuemin Zhang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, National Center of Biomedical Analysis, Beijing, China.,The First Hospital of Jilin University, Changchun, China
| | - Ailing Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,The First Hospital of Jilin University, Changchun, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| |
Collapse
|
15
|
Islam S, Espitia CM, Persky DO, Carew JS, Nawrocki ST. Resistance to histone deacetylase inhibitors confers hypersensitivity to oncolytic reovirus therapy. Blood Adv 2020; 4:5297-5310. [PMID: 33108458 PMCID: PMC7594386 DOI: 10.1182/bloodadvances.2020002297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022] Open
Abstract
Despite the promising antilymphoma activity of histone deacetylase (HDAC) inhibitors as a drug class, resistance is a significant clinical issue. Elucidating the molecular mechanisms driving HDAC inhibitor resistance and/or the specific targets that are altered in drug-resistant cells may facilitate the development of strategies that overcome drug resistance and are more effective for refractory patients. We generated novel T-cell lymphoma (TCL) cell line models of acquired resistance to the HDAC inhibitor belinostat to identify potential effective therapies. Belinostat-resistant cells displayed significant cross-resistance to other HDAC inhibitors including romidepsin, panobinostat, and vorinostat. Consistent with a lack of sensitivity to HDAC inhibitors, the resistant cells failed to induce increased acetylated histones. Drug-resistant cells featured significantly decreased expression of the key antiviral mediators IRF1 and STAT1. On the basis of these findings, we investigated the efficacy of the clinical formulation of reovirus (Reolysin) in parental and drug-resistant models. Our investigation revealed that HDAC inhibitor-resistant cells displayed enhanced vulnerability to reovirus replication and cell death in both in vitro and in vivo models compared with their parental counterparts. Importantly, Reolysin also significantly increased the antilymphoma activity of belinostat in HDAC inhibitor-resistant cells. Our data demonstrate that Reolysin alone or in combination with belinostat is a novel therapeutic strategy to treat TCL patients who develop resistance to HDAC inhibitors.
Collapse
Affiliation(s)
- Shariful Islam
- Division of Translational and Regenerative Medicine, Department of Medicine, and
| | - Claudia M Espitia
- Division of Translational and Regenerative Medicine, Department of Medicine, and
| | - Daniel O Persky
- Division of Hematology and Oncology, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ
| | - Jennifer S Carew
- Division of Translational and Regenerative Medicine, Department of Medicine, and
| | - Steffan T Nawrocki
- Division of Translational and Regenerative Medicine, Department of Medicine, and
| |
Collapse
|
16
|
Santos MLC, Brito BBD, da Silva FAF, Botelho ACDS, Melo FFD. Nephrotoxicity in cancer treatment: An overview. World J Clin Oncol 2020; 11:190-204. [PMID: 32355641 PMCID: PMC7186234 DOI: 10.5306/wjco.v11.i4.190] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/24/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023] Open
Abstract
Anticancer drug nephrotoxicity is an important and increasing adverse drug event that limits the efficacy of cancer treatment. The kidney is an important elimination pathway for many antineoplastic drugs and their metabolites, which occurs by glomerular filtration and tubular secretion. Chemotherapeutic agents, both conventional cytotoxic agents and molecularly targeted agents, can affect any segment of the nephron including its microvasculature, leading to many clinical manifestations such as proteinuria, hypertension, electrolyte disturbances, glomerulopathy, acute and chronic interstitial nephritis, acute kidney injury and at times chronic kidney disease. The clinician should be alert to recognize several factors that may maximize renal dysfunction and contribute to the increased incidence of nephrotoxicity associated with these drugs, such as intravascular volume depletion, the associated use of nonchemotherapeutic nephrotoxic drugs (analgesics, antibiotics, proton pump inhibitors, and bone-targeted therapies), radiographic ionic contrast media or radiation therapy, urinary tract obstruction, and intrinsic renal disease. Identification of patients at higher risk for nephrotoxicity may allow the prevention or at least reduction in the development and severity of this adverse effect. Therefore, the aim of this brief review is to provide currently available evidences on oncologic drug-related nephrotoxicity.
Collapse
Affiliation(s)
- Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029094, Bahia, Brazil
| | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029094, Bahia, Brazil
| | | | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029094, Bahia, Brazil
| |
Collapse
|
17
|
Vidal P. Interferon α in cancer immunoediting: From elimination to escape. Scand J Immunol 2020; 91:e12863. [PMID: 31909839 DOI: 10.1111/sji.12863] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/11/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
Abstract
Interferon α (IFNα) is a cytokine that mediates diverse immune responses to tumours. It is the oldest immune-based oncologic drug and has been widely used to treat various malignancies in humans. Yet, the use of IFNα in cancer therapy has only resulted in limited success and even led to worse clinical outcomes under certain instances. The emergence of the cancer immunoediting concept-which implicates the host immune system in promoting tumour growth-recapitulates the need to evaluate the immune functions of IFNα. This review proposes that IFNα has dual opposing roles in cancer development based on the mutational status of its signalling components, which determines the expression of anti- or pro-tumorigenic IFN-stimulated genes (ISGs). This duality may translate into new applications of IFNα in cancer immunotherapy.
Collapse
Affiliation(s)
- Paolo Vidal
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Philippines
| |
Collapse
|
18
|
Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C, Prenen H, Pauwels P, Trinh XB, Wouters A, Smits EL, Lardon F, van Dam PA. The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol 2020; 60:41-56. [DOI: 10.1016/j.semcancer.2019.10.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
|
19
|
Blazanin N, Cheng T, Carbajal S, DiGiovanni J. Activation of a protumorigenic IFNγ/STAT1/IRF-1 signaling pathway in keratinocytes following exposure to solar ultraviolet light. Mol Carcinog 2019; 58:1656-1669. [PMID: 31237385 DOI: 10.1002/mc.23073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2025]
Abstract
In this study, we evaluated the role of signal transducer and activator of transcription 1 (STAT1) in response to acute solar ultraviolet (SUV) radiation in mouse epidermis. Analysis of the epidermis from SUV-irradiated mice revealed rapid phosphorylation of STAT1 (pSTAT1) on both tyrosine (tyr701) and serine (ser727) residues and increased levels of IRF-1 while later timepoints showed increased levels of unphosphorylated STAT1 (uSTAT1). STAT1 activation led to upregulation of several proinflammatory chemokine mRNAs in epidermis including Cxcl9, Cxcl10, and Ccl2, as well as, the immune checkpoint inhibitor Pd-l1. In addition, mRNA and protein levels of cyclooxygenase-2 (Cox-2/COX2) were upregulated in epidermis following exposure to SUV. Mice with keratinocyte-specific STAT1 deletion did not exhibit increased IRF-1 or proinflammatory gene expression in epidermis. Furthermore, epidermal COX-2 induction after SUV exposure was significantly reduced in mice with keratinocyte-specific deletion of STAT1. Additionally, SUV irradiation rapidly upregulated interferon gamma (IFNγ) mRNA in the epidermis and that skin resident epidermal CD3 + T-cells were the source of IFNγ production. IFNγ receptor-deficient mice confirmed dependency of STAT1 activation, proinflammatory gene expression and COX-2 upregulation in the epidermis on paracrine IFNγ signaling. Furthermore, keratinocyte-specific STAT1-deficiency reduced proliferation and hyperplasia due to SUV irradiation and this was associated with decreased immune infiltration of mast cells in the dermis. Collectively, the current results demonstrate that exposure to SUV leads to upregulation of IFNγ and downstream pSTAT1/IRF-1/uSTAT1 signaling in the epidermis. Further study of this pathway could lead to identification of novel targets for the prevention of nonmelanoma skin cancer.
Collapse
Affiliation(s)
- Nicholas Blazanin
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Tianyi Cheng
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Steve Carbajal
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
20
|
Osipov A, Murphy A, Zheng L. From immune checkpoints to vaccines: The past, present and future of cancer immunotherapy. Adv Cancer Res 2019; 143:63-144. [PMID: 31202363 DOI: 10.1016/bs.acr.2019.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a worldwide medical problem with significant repercussions on individual patients and societies as a whole. In order to alter the outcomes of this deadly disease the treatment of cancer over the centuries has undergone a unique evolution. However, utilizing the best treatment modalities and achieving cures or long-term durable responses have been inconsistent and limited, that is until recently. Contemporary research has highlighted a fundamental gap in our understanding of how we approach treating cancer, by revealing the intricate relationship between the immune system and tumors. In this atmosphere, the growth of immunotherapy has not only forever changed our understanding of cancer biology, but the manner by which we treat patients. It's paradigm shifting success has led to the approval of over 10 different immunotherapeutic agents, including checkpoint inhibitors, vaccine-based therapies, oncolytic viruses and T cell directed therapies for nearly 20 different indications across countless tumor types. Despite the breakthroughs that have occurred in the field of immunotherapy, it has not been the panacea for all cancers. With a deeper understanding of the immune system we have been able to peer into tumor immune escape and therapy resistance. Simultaneously this understanding has paved the way for the investigation and development of novel immune system altering agents and combinatorial therapies. In this chapter we review the immune system and its intricate relationship with cancer, the evolution of immunotherapy, its current landscape, and future directions in the context of resistance mechanisms and the challenges faced by immunotherapy against cancer.
Collapse
Affiliation(s)
- Arsen Osipov
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adrian Murphy
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lei Zheng
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
21
|
Sharma J, Larkin J. Therapeutic Implication of SOCS1 Modulation in the Treatment of Autoimmunity and Cancer. Front Pharmacol 2019; 10:324. [PMID: 31105556 PMCID: PMC6499178 DOI: 10.3389/fphar.2019.00324] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
The suppressor of cytokine signaling (SOCS) family of intracellular proteins has a vital role in the regulation of the immune system and resolution of inflammatory cascades. SOCS1, also called STAT-induced STAT inhibitor (SSI) or JAK-binding protein (JAB), is a member of the SOCS family with actions ranging from immune modulation to cell cycle regulation. Knockout of SOCS1 leads to perinatal lethality in mice and increased vulnerability to cancer, while several SNPs associated with the SOCS1 gene have been implicated in human inflammation-mediated diseases. In this review, we describe the mechanism of action of SOCS1 and its potential therapeutic role in the prevention and treatment of autoimmunity and cancer. We also provide a brief outline of the other JAK inhibitors, both FDA-approved and under investigation.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
22
|
Suarez-Kelly LP, Levine KM, Olencki TE, Del Campo SEM, Streacker EA, Brooks TR, Karpa VI, Markowitz J, Bingman AK, Geyer SM, Kendra KL, Carson WE. A pilot study of interferon-alpha-2b dose reduction in the adjuvant therapy of high-risk melanoma. Cancer Immunol Immunother 2019; 68:619-629. [PMID: 30725205 PMCID: PMC6447692 DOI: 10.1007/s00262-019-02308-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Lorena P Suarez-Kelly
- Comprehensive Cancer Center, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, N924 Doan Hall 410 W. 10th Ave, Columbus, OH, 43210-1228, USA
| | - Kala M Levine
- Comprehensive Cancer Center, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, N924 Doan Hall 410 W. 10th Ave, Columbus, OH, 43210-1228, USA
| | - Thomas E Olencki
- Medical Oncology, Department of Internal Medicine, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | | | | | - Taylor R Brooks
- Division of Rheumatology and Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Volodymyr I Karpa
- Comprehensive Cancer Center, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, N924 Doan Hall 410 W. 10th Ave, Columbus, OH, 43210-1228, USA
| | - Joseph Markowitz
- Comprehensive Cancer Center, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, N924 Doan Hall 410 W. 10th Ave, Columbus, OH, 43210-1228, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Anissa K Bingman
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
- Hematology, Department of Internal Medicine, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Susan M Geyer
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
- Hematology, Department of Internal Medicine, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Kari L Kendra
- Medical Oncology, Department of Internal Medicine, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - William E Carson
- Comprehensive Cancer Center, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, N924 Doan Hall 410 W. 10th Ave, Columbus, OH, 43210-1228, USA.
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
23
|
Abstract
Cancer therapies are a common cause of acute and chronic kidney disease, which are increasingly being seen by nephrologists in clinical practice. Conventional chemotherapeutic drugs and novel targeted agents are effective cancer therapies but their use is complicated by nephrotoxicity. Cancer immunotherapies exploit various properties of immune cells to enhance immune-mediated tumor killing. Interferon and high-dose interleukin-2 are older immunotherapies first employed clinically in the 1980s and 1990s to treat a number of different cancers. While effective, these two therapies have well-known systemic toxicities, which include acute kidney disease. The emergence of the new cancer immunotherapies over the past decade brings more effective treatment options. The immune checkpoint inhibitors and chimeric antigen receptor T cells are exciting additions to the cancer treatment armamentarium. These agents effectively treat a several and a growing list of cancers that have otherwise failed other therapies. However, as with the conventional and targeted cancer agents, drug-induced acute and chronic kidney disease is an untoward effect of this group of drugs. We will undertake a case-based review: the newer immunotherapies followed by the older therapies, interferon and interleukin-2.
Collapse
Affiliation(s)
- Danielle L Saly
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Mark A Perazella
- Section of Nephrology, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Veterans Affairs Medical Center, West Haven, CT, USA
| |
Collapse
|
24
|
Perazella MA, Shirali AC. Nephrotoxicity of Cancer Immunotherapies: Past, Present and Future. J Am Soc Nephrol 2018; 29:2039-2052. [PMID: 29959196 PMCID: PMC6065079 DOI: 10.1681/asn.2018050488] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nephrotoxicity from cancer therapies is common and increasingly encountered in clinical practice, such that the subfield of "onco-nephrology" has emerged. Conventional chemotherapeutic drugs and novel agents targeting specific genes/proteins are effective cancer therapies but suffer from a number of adverse kidney effects. An effective avenue of cancer treatment is immunotherapy, which uses drugs that augment immune system-mediated recognition and targeting of tumor cells. As such, leveraging the immune system to target malignant cells represents an important modality in eradicating cancer. IFN and high-dose IL-2 are older immunotherapies used in clinical practice to treat various malignancies, whereas new cancer immunotherapies have emerged over the past decade that offer even more effective treatment options. The immune checkpoint inhibitors are an exciting addition to the cancer immunotherapy armamentarium. Chimeric antigen receptor T cells are also a new immunotherapy used to treat various hematologic malignancies. However, as with the conventional and targeted cancer agents, the immunotherapies are also associated with immune-related adverse effects, which includes nephrotoxicity.
Collapse
Affiliation(s)
- Mark A Perazella
- Section of Nephrology, Department of Medicine, Yale University, New Haven, Connecticut; and
- Department of Medicine, Veterans Affairs Medical Center, West Haven, Connecticut
| | - Anushree C Shirali
- Section of Nephrology, Department of Medicine, Yale University, New Haven, Connecticut; and
| |
Collapse
|
25
|
Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood 2018; 132:694-706. [PMID: 29907599 DOI: 10.1182/blood-2017-10-810739] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/07/2018] [Indexed: 12/16/2022] Open
Abstract
Inhibition of Janus-kinase 1/2 (JAK1/2) is a mainstay to treat myeloproliferative neoplasms (MPN). Sporadic observations reported the co-incidence of B-cell non-Hodgkin lymphomas during treatment of MPN with JAK1/2 inhibitors. We assessed 626 patients with MPN, including 69 with myelofibrosis receiving JAK1/2 inhibitors for lymphoma development. B-cell lymphomas evolved in 4 (5.8%) of 69 patients receiving JAK1/2 inhibition compared with 2 (0.36%) of 557 with conventional treatment (16-fold increased risk). A similar 15-fold increase was observed in an independent cohort of 929 patients with MPN. Considering primary myelofibrosis only (N = 216), 3 lymphomas were observed in 31 inhibitor-treated patients (9.7%) vs 1 (0.54%) of 185 control patients. Lymphomas were of aggressive B-cell type, extranodal, or leukemic with high MYC expression in the absence of JAK2 V617F or other MPN-associated mutations. Median time from initiation of inhibitor therapy to lymphoma diagnosis was 25 months. Clonal immunoglobulin gene rearrangements were already detected in the bone marrow during myelofibrosis in 16.3% of patients. Lymphomas occurring during JAK1/2 inhibitor treatment were preceded by a preexisting B-cell clone in all 3 patients tested. Sequencing verified clonal identity in 2 patients. The effects of JAK1/2 inhibition were mirrored in Stat1-/- mice: 16 of 24 mice developed a spontaneous myeloid hyperplasia with the concomitant presence of aberrant B cells. Transplantations of bone marrow from diseased mice unmasked the outgrowth of a malignant B-cell clone evolving into aggressive B-cell leukemia-lymphoma. We conclude that JAK/STAT1 pathway inhibition in myelofibrosis is associated with an elevated frequency of aggressive B-cell lymphomas. Detection of a preexisting B-cell clone may identify individuals at risk.
Collapse
|
26
|
Cai L, Liu J, Wang Y, Chen H, Ma Y, Wang Y, Wang Y. Enhanced anti-melanoma efficacy of interferon α-2b via overexpression of ING4 by enhanced Fas/FasL-mediated apoptosis. Oncol Lett 2018; 15:9577-9583. [PMID: 29805679 DOI: 10.3892/ol.2018.8534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/18/2018] [Indexed: 11/05/2022] Open
Abstract
Melanoma, is a highly aggressive and the most lethal form of skin cancer, and is known to be resistant to current therapeutic modalities. Interferon (IFN)-α2b is an immunostimulatory cytokine and is used to treat melanoma by inhibiting proliferation and promoting apoptosis of cells. However, there is a need to improve the efficacy of IFN-α2b. Inhibitor of growth family member 4 (ING4) has been reported to function as a tumor suppressor and is involved in regulating cell cycle progression, apoptosis, cell migration and invasion. Previously studies have also reported that caspase-3, caspase-8, poly (ADP-ribose) polymerase (PARP) and Fas/Fas ligand (FasL) pathways are involved in the process of apoptosis. In the present study, it was investigated whether overexpression of ING4 is able to enhance IFN-α2b response in human melanoma cells. It was determined that the overexpression of ING4 was able to increase the effects of IFN-α2b, and induce cell death and apoptosis in melanoma cells. Furthermore, the overexpression of ING4 resulted in decreased expression of PARP, caspase-3 and -8. The expression of cleaved PARP, cleaved caspase-3, cleaved caspase-8, Fas and FasL was increased in the A375 melanoma cell line. These results demonstrate that the overexpression of ING4 is able to enhance the anti-melanoma activity of IFN-α2b. These findings provide a potential therapeutic strategy where a combination of ING4 overexpression and IFN-α2b treatment may lead to higher levels of apoptosis in melanoma cells.
Collapse
Affiliation(s)
- Limin Cai
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jing Liu
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yu Wang
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongxiao Chen
- Department of Dermatology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Yanli Ma
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yanhua Wang
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yongchen Wang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
27
|
Markowitz J, Wang J, Vangundy Z, You J, Yildiz V, Yu L, Foote IP, Branson OE, Stiff AR, Brooks TR, Biesiadecki B, Olencki T, Tridandapani S, Freitas MA, Papenfuss T, Phelps MA, Carson WE. Nitric oxide mediated inhibition of antigen presentation from DCs to CD4 + T cells in cancer and measurement of STAT1 nitration. Sci Rep 2017; 7:15424. [PMID: 29133913 PMCID: PMC5684213 DOI: 10.1038/s41598-017-14970-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
Myeloid derived suppressor cells (MDSC) produce nitric oxide (NO) and inhibit dendritic cell (DC) immune responses in cancer. DCs present cancer cell antigens to CD4+ T cells through Jak-STAT signal transduction. In this study, NO donors (SNAP and DETA-NONOate) inhibited DC antigen presentation. As expected, MDSC isolated from peripheral blood mononuclear cells (PBMC) from cancer patients produced high NO levels. We hypothesized that NO producing MDSC in tumor-bearing hosts would inhibit DC antigen presentation. Antigen presentation from DCs to CD4+ T cells (T cell receptor transgenic OT-II) was measured via a [3H]-thymidine incorporation proliferation assay. MDSC from melanoma tumor models decreased the levels of proliferation more than pancreatic cancer derived MDSC. T cell proliferation was restored when MDSC were treated with inhibitors of inducible nitric oxide synthase (L-NAME and NCX-4016). A NO donor inhibited OT II T cell receptor recognition of OT II specific tetramers, thus serving as a direct measure of NO inhibition of antigen presentation. Our group has previously demonstrated that STAT1 nitration also mediates MDSC inhibitory effects on immune cells. Therefore, a novel liquid chromatography-tandem mass spectrometry assay demonstrated that nitration of the STAT1-Tyr701 occurs in PBMC derived from both pancreatic cancer and melanoma patients.
Collapse
Affiliation(s)
- Joseph Markowitz
- Moffitt Cancer Center Department of Cutaneous Oncology, Tampa, United States. .,Department of Oncologic Sciences USF Morsani School of Medicine, Tampa, United States. .,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, United States.
| | - Jiang Wang
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, United States
| | - Zach Vangundy
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, United States
| | - Jia You
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, United States
| | - Vedat Yildiz
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, United States.,Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, United States
| | - Lianbo Yu
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, United States.,Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, United States
| | - Isaac P Foote
- Moffitt Cancer Center Department of Cutaneous Oncology, Tampa, United States
| | - Owen E Branson
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, United States
| | - Andrew R Stiff
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, United States
| | - Taylor R Brooks
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, United States
| | - Brandon Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, United States
| | - Thomas Olencki
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, United States
| | - Susheela Tridandapani
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, United States
| | - Michael A Freitas
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, United States
| | - Tracey Papenfuss
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, United States
| | - Mitch A Phelps
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, United States
| | - William E Carson
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, United States. .,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, United States.
| |
Collapse
|
28
|
Hou D, Wang D, Ma X, Chen W, Guo S, Guan H. Effects of total flavonoids of sea buckthorn ( Hippophae rhamnoides L.) on cytotoxicity of NK92-MI cells. Int J Immunopathol Pharmacol 2017; 30:353-361. [PMID: 28994628 PMCID: PMC5806804 DOI: 10.1177/0394632017736673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L.) has multifarious medicinal properties including immunoregulatory effect. The total flavonoids of Hippophae rhamnoides L. (TFH) are the main active components isolated from berries of sea buckthorn. The aim of this study was to evaluate the effects of TFH on the cytotoxicity of NK92-MI cells and its possible mechanisms. NK92-MI cells were treated with TFH (2.5 or 5.0 mg/L) or phosphate-buffered saline (PBS) for 24 h, the cytotoxicity against K562 was detected by measuring the release of lactate dehydrogenase (LDH), expression levels of NCRs (NKp30, NKp44, NKp46) and NKG2D were detected by flow cytometry, and expression levels of perforin and granzyme B were detected by western blot. Cytokine Antibody Arrays with 80 cytokine proteins were used to profile the effect of TFH on cytokines. Western blot was adopted to detect the effects of TFH on STAT1, STAT4, and STAT5 signal pathway. Compared with the normal control group, TFH could significantly enhance NK92-MI cell cytotoxicity against K562 cells, upregulate expressions of NKp44, NKp46, perforin, and granzyme B. TFH could upregulate expressions of IL-1α, IL-2, IL-7, IL-15, CSF-2, CSF-3, MCP-1, MIG, IFN-γ, TNF-α, and TNF-β and downregulate expressions of IL-16, MIP-1β, CX3CL-1, and MIF. TFH could increase expressions of phospho-STAT1 and phospho-STAT5. The results suggest that TFH stimulated NK92-MI cells to activate and enhance cytotoxicity of NK92-MI cells.
Collapse
Affiliation(s)
- Diandong Hou
- 1 Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| | - Decheng Wang
- 2 The Second Clinical Medical Institute, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| | - Xiande Ma
- 3 Experiment and Technology Center, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| | - Wenna Chen
- 3 Experiment and Technology Center, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| | - Shengnan Guo
- 3 Experiment and Technology Center, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| | - Hongquan Guan
- 4 Basic Medical Science College, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| |
Collapse
|
29
|
Sanlorenzo M, Vujic I, Carnevale-Schianca F, Quaglino P, Gammaitoni L, Fierro MT, Aglietta M, Sangiolo D. Role of interferon in melanoma: old hopes and new perspectives. Expert Opin Biol Ther 2017; 17:475-483. [PMID: 28274138 DOI: 10.1080/14712598.2017.1289169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Interferons (IFNs) play a key role in modulating anti-microbial and antitumor immune responses. In oncology, past attempts to exploit IFNs therapeutically did not fulfill expectations, and had only modest clinical results, mostly limited to adjuvant melanoma treatment. The recent successes of immunotherapy in oncology have brought new attention to the potential of immune-modulatory agents like the IFNs. Areas covered: The authors review the biological effects of IFN on melanoma and immune cells. Then, the authors summarize the clinical results of adjuvant and therapeutic IFN in melanoma, giving focus to possible prognostic factors and new on-going clinical trials. Expert opinion: IFNs offer intriguing opportunities for synergism between conventional treatments and recently introduced molecular-targeted and immunotherapy approaches. However, the full comprehension of all IFN effects and their multiple biologic links is challenging. A strong commitment toward parallel translational research is needed to facilitate the interpretation of IFN's expected and unexpected effects, guiding the rational design of informative clinical studies.
Collapse
Affiliation(s)
- Martina Sanlorenzo
- a Department of Oncology , University of Torino , Candiolo , Torino , Italy.,b Department of Medical Sciences, Section of Dermatology , University of Turin , Torino , Italy.,c Division of Medical Oncology, Experimental Cell Therapy , Candiolo Cancer Institute , Candiolo , Torino , Italy
| | - Igor Vujic
- d School of Medicine , Sigmund Freud University , Vienna , Austria.,e Department of Dermatology , The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna , Vienna , Austria
| | - Fabrizio Carnevale-Schianca
- c Division of Medical Oncology, Experimental Cell Therapy , Candiolo Cancer Institute , Candiolo , Torino , Italy
| | - Pietro Quaglino
- b Department of Medical Sciences, Section of Dermatology , University of Turin , Torino , Italy
| | - Loretta Gammaitoni
- c Division of Medical Oncology, Experimental Cell Therapy , Candiolo Cancer Institute , Candiolo , Torino , Italy
| | - Maria Teresa Fierro
- b Department of Medical Sciences, Section of Dermatology , University of Turin , Torino , Italy
| | - Massimo Aglietta
- a Department of Oncology , University of Torino , Candiolo , Torino , Italy.,c Division of Medical Oncology, Experimental Cell Therapy , Candiolo Cancer Institute , Candiolo , Torino , Italy
| | - Dario Sangiolo
- a Department of Oncology , University of Torino , Candiolo , Torino , Italy.,c Division of Medical Oncology, Experimental Cell Therapy , Candiolo Cancer Institute , Candiolo , Torino , Italy
| |
Collapse
|
30
|
Gotthardt D, Sexl V. STATs in NK-Cells: The Good, the Bad, and the Ugly. Front Immunol 2017; 7:694. [PMID: 28149296 PMCID: PMC5241313 DOI: 10.3389/fimmu.2016.00694] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/28/2016] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK)-cells are major players in the fight against viral infections and transformed cells, but there is increasing evidence attributing a disease-promoting role to NK-cells. Cytokines present in the tumor microenvironment shape NK-cell maturation, function, and effector responses. Many cytokines signal via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway that is also frequently altered and constitutively active in a broad range of tumor cells. As a consequence, there are currently major efforts to develop therapeutic strategies to target this pathway. Therefore, it is of utmost importance to understand the role and contributions of JAK-STAT molecules in NK-cell biology-only this knowledge will allow us to predict effects of JAK-STAT inhibition for NK-cell functions and to successfully apply precision medicine. We will review the current knowledge on the role of JAK-STAT signaling for NK-cell functions and discuss conditions involved in the switch from NK-cell tumor surveillance to disease promotion.
Collapse
Affiliation(s)
- Dagmar Gotthardt
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
31
|
INFα-2b inhibitory effects on CD4(+)CD25(+)FOXP3(+) regulatory T cells in the tumor microenvironment of C57BL/6 J mice with melanoma xenografts. BMC Cancer 2016; 16:397. [PMID: 27389040 PMCID: PMC4936163 DOI: 10.1186/s12885-016-2473-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 06/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Regulatory T cells (Tregs), particularly the CD4+CD25+Foxp3+ Tregs, down regulate immunity and promote tumor cell growth by directly suppressing CD8+ and CD4+ T cells. Alternatively they can promote tumor growth by generating interleukin-10 (IL-10) and transforming growth factor β (TGFβ) in situ, which help tumor cells to evade the immune system. Methods In vivo tumor models were prepared via subcutaneous injection with a suspension of B16 melanoma cells into the left upper flank of C57BL/6 J mice. The mice were randomized into five groups: radiotherapy (RT), chemotherapy (CT), radiochemotherapy (RCT), Inteferon α (INFα) groups, and a control group. Flow cytometry was used to determine the Tregs levels in the spleen and peripheral blood, and immunohistochemistry was performed to determine the expression levels of TGFβ and IL-10 in the tumor microenvironment. Results Tumor weight was significantly reduced in the CT or RCT groups (40.91 % and 41.83 %, respectively), while the reduction in tumor weight was relatively lower for the RT and IFNα groups (15.10 % and 13.15 %, respectively). The flow cytometry results showed that the ratios of CD4+CD25+Foxp3+ Tregs to lymphocytes and CD4+ cells in the spleen and in peripheral blood were significantly decreased after treatment with IFNα (P < 0.05). Expression of TGFβ and IL-10 in the tumor microenvironment in the CT and RT groups was higher compared with the control group (P < 0.01), while the expression of TGFβ and IL-10 in the INFα group was not significantly different (P > 0.05). Conclusions The results show that INFα-2b inhibits cancer cell immune evasion by decreasing the levels of CD4+CD25+Foxp3+ Tregs and suppressing the expression of TGFβ and IL-10 in the tumor microenvironment.
Collapse
|
32
|
Green DS, Nunes AT, Annunziata CM, Zoon KC. Monocyte and interferon based therapy for the treatment of ovarian cancer. Cytokine Growth Factor Rev 2016; 29:109-15. [PMID: 27026228 PMCID: PMC4899185 DOI: 10.1016/j.cytogfr.2016.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/27/2016] [Indexed: 12/11/2022]
Abstract
Cytokines and cells of the innate immune system have been shown to be critical regulators in the elimination, equilibrium and escape of malignant cells. Despite in vitro and in vivo evidence, components of the innate immune system have shown limited efficacy in the treatment of ovarian cancer. Intraperitoneal immunotherapies are a promising field that has not yet been fully explored in ovarian cancer. Cytokine immunotherapy using interferon alpha (IFN-α) and interferon gamma (IFN-γ) has predominantly been used intraperitoneally in ovarian cancer, with promising results. Early studies also showed that autologous monocytes infused into the peritoneum have anti-tumor properties. Combination therapies have been shown to be more effective in treating cancer than mono-therapies. Based on these observations the combination of cell therapy with cytokine therapy may provide a unique strategy for the treatment of chemotherapy resistant solid cancers.
Collapse
Affiliation(s)
- Daniel S Green
- Cytokine Biology Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, USA.
| | - Ana T Nunes
- Medical Oncology Branch, NCI, 10 Center DR, RM 12N226, Bethesda, MD 20814, USA.
| | - Christina M Annunziata
- Women's Malignancy Branch, NCI, NIH, Translational Genomics Section, 10 Center DR RM 3B43A, Bethesda, MD 20892, USA.
| | - Kathryn C Zoon
- Cytokine Biology Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, USA.
| |
Collapse
|
33
|
Pérez-Torres A, Vera-Aguilera J, Sahaza JH, Vera-Aguilera C, Moreno-Aguilera E, Pulido-Camarillo E, Nuñez-Ochoa L, Jeganathan P. Hematological Effects, Serum, and Pulmonary Cytokine Profiles in a Melanoma Mouse Model Treated with GK1. Cancer Biother Radiopharm 2016; 30:247-54. [PMID: 26181852 DOI: 10.1089/cbr.2015.1835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE In a previous study, we demonstrated the therapeutic efficacy of a subcutaneous injection of GK1 peptide in a melanoma mouse model, effectively increasing the mean survival time by 42.58%, delaying tumor growth, and increasing intratumoral necrosis compared with the control. As a first approach to investigate the anti-melanoma effect of GK1, this study was carried out to determine the hematological effects along with both serum and lung cytokine profiles in a melanoma lung metastatic model. MATERIALS AND METHODS Thirteen C57BL6 female mice were transfected in the lateral tail vein with 2×10(5) B16-F0 melanoma cells. After 7 days, mice were separated in two different groups and treatments were initiated (day 0): The GK1-treated group (seven mice) were injected every 5 days intravenously with GK1 (10 μg) in the lateral tail vein, and the control group (six mice) were injected every 5 days with intravenous saline solution. Blood samples were collected every 5 days from day 0; tumor samples were obtained for cytokine measurements on the day of sacrifice. RESULTS In the peripheral blood, mice treated with GK1 presented a statistically significant decrease in IFN-γ (p<0.05), and lymphocytes tended to be lower compared with the control mice (p=0.06). Lung metastatic analysis demonstrated a significant increase in IFN-γ and IL-12p70 (p<0.05); a significant decrease in IL-17, IL-4, IL-22, IL-23, and IL-12p40 (p<0.05); and a marginal decrease in IL-1β (p=0.07) compared with the control. DISCUSSION Our results suggest that an intratumoral increase of cytokines with antitumor activity along with an intratumoral decrease of cytokines with protumor activity could explain, in part, the anti-melanoma effects of GK1 in a lung metastatic melanoma mouse model. Further studies must be performed to elucidate the precise mechanisms of action for GK1 peptide against melanoma, and their eventual application in humans.
Collapse
Affiliation(s)
- Armando Pérez-Torres
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México , México City, México
| | | | - Jorge H Sahaza
- 3 Corporación para Investigaciones Biológicas (CIB) , Unidad de Micología Médica y Experimental, Medellín, Colombia
| | - Carlos Vera-Aguilera
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México , México City, México
| | - Eduardo Moreno-Aguilera
- 4 Servicio de Gastrocirugía, Hospital de Especialidades , Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México DF, México
| | - Evelyn Pulido-Camarillo
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México , México City, México
| | - Luis Nuñez-Ochoa
- 5 Departamento de Patología Clínica/Oncología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México , México City, México
| | - Pratheepa Jeganathan
- 6 Department of Mathematics and Statistics, Texas Tech University , Lubbock, Texas
| |
Collapse
|
34
|
Abstract
Metastatic melanoma has a poor prognosis; the median survival for patients with stage IV melanoma ranges from 8 to 18 months after diagnosis. Interferon-α provides significant improvement in disease-free survival at the cost of poor tolerability. Identifying patients who benefit the most may improve the cost:benefit ratio. In addition, no data exist for the role of adjuvant therapy in noncutaneous melanoma. Molecular profiles may help to identify patients who benefit the most from adjuvant interferon therapy. In this review, the American Joint Commission on Cancer 2009 staging criteria and emerging biomarker data to guide adjuvant treatment decisions will be discussed. Several criteria to guide selection of patients are discussed in detail. These include Breslow thickness, number of positive lymph nodes, whether or not the primary lesion has ulcerated, immunologic markers, and cytokine profiles. Substantial progress has been made in deciding which patients benefit from interferon-α adjuvant therapy. Interferon-α is the only agent currently approved for the adjuvant treatment of this deadly disease, despite its side effect profile. More effective drugs with better tolerability are needed.
Collapse
|
35
|
Abstract
Type I interferons (IFNs) are known for their key role in antiviral immune responses. In this Review, we discuss accumulating evidence indicating that type I IFNs produced by malignant cells or tumour-infiltrating dendritic cells also control the autocrine or paracrine circuits that underlie cancer immunosurveillance. Many conventional chemotherapeutics, targeted anticancer agents, immunological adjuvants and oncolytic viruses are only fully efficient in the presence of intact type I IFN signalling. Moreover, the intratumoural expression levels of type I IFNs or of IFN-stimulated genes correlate with favourable disease outcome in several cohorts of patients with cancer. Finally, new anticancer immunotherapies are being developed that are based on recombinant type I IFNs, type I IFN-encoding vectors and type I IFN-expressing cells.
Collapse
|
36
|
|
37
|
Yue C, Xu J, Tan Estioko MD, Kotredes KP, Lopez-Otalora Y, Hilliard BA, Baker DP, Gallucci S, Gamero AM. Host STAT2/type I interferon axis controls tumor growth. Int J Cancer 2014; 136:117-26. [PMID: 24895110 DOI: 10.1002/ijc.29004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 05/08/2014] [Indexed: 12/31/2022]
Abstract
The role of STAT2 in mediating the antigrowth effects of type I interferon (IFN) is well-documented in vitro. Yet evidence of IFN-activated STAT2 as having tumor suppressor function in vivo and participation in antitumor immunity is lacking. Here we show in a syngeneic tumor transplantation model that STAT2 reduces tumor growth. Stat2(-/-) mice formed larger tumors compared to wild type (WT) mice. IFN-β treatment of Stat2(-/-) mice did not cause tumor regression. Gene expression analysis revealed a small subset of immunomodulatory genes to be downregulated in tumors established in Stat2(-/-) mice. Additionally, we found tumor antigen cross-presentation by Stat2(-/-) dendritic cells to T cells to be impaired. Adoptive transfer of tumor antigen specific CD8(+) T cells primed by Stat2(-/-) dendritic cells into tumor-bearing Stat2(-/-) mice did not induce tumor regression with IFN-β intervention. We observed that an increase in the number of CD4(+) and CD8(+) T cells in the draining lymph nodes of IFN-β-treated tumor-bearing WT mice was absent in IFN-β treated Stat2(-/-) mice. Thus our study provides evidence for further evaluation of STAT2 function in cancer patients receiving type I IFN based immunotherapy.
Collapse
Affiliation(s)
- Chanyu Yue
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Constitutive expression of interferons (IFNs) and activation of their signaling pathways have pivotal roles in host responses to malignant cells in the tumor microenvironment. IFNs are induced by the innate immune system and in tumors through stimulation of Toll-like receptors (TLRs) and through other signaling pathways in response to specific cytokines. Although in the oncologic context IFNs have been thought of more as exogenous pharmaceuticals, the autocrine and paracrine actions of endogenous IFNs probably have even more critical effects on neoplastic disease outcomes. Through high-affinity cell surface receptors, IFNs modulate transcriptional signaling, leading to regulation of more than 2,000 genes with varying patterns of temporal expression. Induction of the gene products by both unphosphorylated and phosphorylated STAT1 after ligand binding results in alterations in tumor cell survival, inhibition of angiogenesis, and augmentation of actions of T, natural killer (NK), and dendritic cells. The interferon-stimulated gene (ISG) signature can be a favorable biomarker of immune response but, in a seemingly paradoxical finding, a specific subset of the full ISG signature indicates an unfavorable response to DNA-damaging interventions such as radiation. IFNs in the tumor microenvironment thus can alter the emergence, progression, and regression of malignancies.
Collapse
Affiliation(s)
- Hyeonjoo Cheon
- Lerner Research Institute, Taussig Cancer Institute, and Case Comprehensive Cancer Center, Cleveland, OH.
| | - Ernest C Borden
- Lerner Research Institute, Taussig Cancer Institute, and Case Comprehensive Cancer Center, Cleveland, OH
| | - George R Stark
- Lerner Research Institute, Taussig Cancer Institute, and Case Comprehensive Cancer Center, Cleveland, OH
| |
Collapse
|
39
|
Hasselbalch HC. A new era for IFN-α in the treatment of Philadelphia-negative chronic myeloproliferative neoplasms. Expert Rev Hematol 2014; 4:637-55. [DOI: 10.1586/ehm.11.63] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Qu J, Hou Z, Han Q, Jiang W, Zhang C, Tian Z, Zhang J. Intracellular poly(I:C) initiated gastric adenocarcinoma cell apoptosis and subsequently ameliorated NK cell functions. J Interferon Cytokine Res 2013; 34:52-9. [PMID: 24032591 DOI: 10.1089/jir.2012.0118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural killer (NK) cells are granular lymphocytic cells that exert essential functions in viral infection defense and tumor immune surveillance. However, the functions of NK cells were impaired in cancer patients. Polycytidylic acid [poly(I:C)] has been used as an immune adjuvant to improve innate and adaptive immune responses. In this study, intracellular poly(I:C) could trigger gastric adenocarcinoma cells apoptosis quickly. Meanwhile, the sensitivity of poly(I:C)-treated gastric adenocarcinoma cells to NK cell cytolysis was increased, concomitant with the elevated expression of MICA/B and Fas. Furthermore, the cytolytic activity of NK cells against tumor cells was augmented significantly by the supernatant from poly(I:C)-transfected tumor cells compared with NK cells treated by the supernatant from untreated tumor cells, as well as the proliferation and migration abilities of NK cells. In this process, the activating receptors and cytolysis-associated molecules of NK cells were up-regulated. Further investigation showed that type I interferon (IFN) produced by poly(I:C)-transfected gastric adenocarcinoma cells played an important role in this process. Our findings demonstrated that intracellular poly(I:C) not only triggered gastric adenocarcinoma cell apoptosis, but also enhanced NK responses via inducing type I IFN production by gastric adenocarcinoma cells. These functions make poly(I:C) a promising therapeutic medicine for gastric adenocarcinoma.
Collapse
Affiliation(s)
- Jing Qu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Institute of Immunopharmacology and Immunotherapy, Shandong University , Jinan, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Messina NL, Banks KM, Vidacs E, Martin BP, Long F, Christiansen AJ, Smyth MJ, Clarke CJP, Johnstone RW. Modulation of antitumour immune responses by intratumoural
Stat1
expression. Immunol Cell Biol 2013; 91:556-67. [DOI: 10.1038/icb.2013.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Nicole L Messina
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
- Deptartment of Pathology, University of MelbourneParkvilleVictoriaAustralia
| | - Kellie M Banks
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
| | - Eva Vidacs
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
| | - Ben P Martin
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
| | - Fennella Long
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
| | - Ailsa J Christiansen
- Institute of Pharmaceutical Science, Swiss Federal Institute of Technology (ETHZ)ZurichSwitzerland
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, Queensland Institute of Medical ResearchHerstonQueenslandAustralia
- School of Medicine, University of QueenslandHerstonQueenslandAustralia
| | - Christopher J P Clarke
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
- Deptartment of Pathology, University of MelbourneParkvilleVictoriaAustralia
| | - Ricky W Johnstone
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
- Sir Peter MacCallum Department of Oncology, University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
42
|
Abstract
Better understanding of the underlying principles of tumor biology and immunology, enhanced by recent insights into the mechanisms of immune recognition, regulation, and tumor escape has provided new approaches for cancer immunotherapy. This article reviews the current status and future directions of cancer immunotherapy, with a focus on the recent encouraging results from immune-modulating antibodies and adoptive cell therapy.
Collapse
Affiliation(s)
- Fumito Ito
- Department of Surgery, University of Michigan Health System, 3410 Cancer Center/5932, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5932, USA
| | | |
Collapse
|
43
|
Busse A, Rapion J, Fusi A, Suciu S, Nonnenmacher A, Santinami M, Kruit WHJ, Testori A, Punt CJA, Dalgleish AG, Spatz A, Eggermont AMM, Keilholz U. Analysis of surrogate gene expression markers in peripheral blood of melanoma patients to predict treatment outcome of adjuvant pegylated interferon alpha 2b (EORTC 18991 side study). Cancer Immunol Immunother 2013; 62:1223-33. [PMID: 23624802 PMCID: PMC11028414 DOI: 10.1007/s00262-013-1428-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
Abstract
We analysed mRNA levels of interferon response genes (ISG15, STAT1, CXCL10) of inhibitors of the JAK/STAT pathway (STAT3, SOCS1, SOCS3) and of cytokines (TNFα, IL10, TGFß1) in peripheral blood of 91 stage III melanoma patients enrolled in EORTC 18991 trial to find biomarkers indicative for disease stage and predictive for efficacy of pegylated interferon alpha-2b (PEG-IFNα-2b) therapy. mRNA levels were analysed at baseline and after 6 months. Univariate and multivariate analyses were performed to estimate the prognostic and predictive role of mRNA levels for distant metastasis-free survival (DMFS) and relapse-free survival (RFS). Compared to healthy controls, melanoma patients showed significantly higher TGFβ1 mRNA levels. In a multivariate model, increasing SOCS1 and SOCS3 mRNA levels were associated with worse RFS (P = 0.02 and P = 0.04, respectively) and DMFS (P = 0.05 and P = 0.05, respectively) due to negative correlation between, respectively, SOCS1/SOCS3 mRNA levels and ulceration or Breslow thickness. No impact of PEG-IFNα-2b on mRNA levels was observed except for ISG15 mRNA levels, which decreased in the treatment arm (P = 0.001). It seems that patients with a decrease >60 % of ISG15 mRNA levels during 6 months PEG-IFNα-2b had inferior outcome.
Collapse
Affiliation(s)
- Antonia Busse
- Department of Medicine III, Charité-CBF, Hindenburgdamm 30, 12200, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hwang I, Scott JM, Kakarla T, Duriancik DM, Choi S, Cho C, Lee T, Park H, French AR, Beli E, Gardner E, Kim S. Activation mechanisms of natural killer cells during influenza virus infection. PLoS One 2012; 7:e51858. [PMID: 23300570 PMCID: PMC3534084 DOI: 10.1371/journal.pone.0051858] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/13/2012] [Indexed: 12/22/2022] Open
Abstract
During early viral infection, activation of natural killer (NK) cells elicits the effector functions of target cell lysis and cytokine production. However, the cellular and molecular mechanisms leading to NK cell activation during viral infections are incompletely understood. In this study, using a model of acute viral infection, we investigated the mechanisms controlling cytotoxic activity and cytokine production in response to influenza (flu) virus. Analysis of cytokine receptor deficient mice demonstrated that type I interferons (IFNs), but not IL-12 or IL-18, were critical for the NK cell expression of both IFN-γ and granzyme B in response to flu infection. Further, adoptive transfer experiments revealed that NK cell activation was mediated by type I IFNs acting directly on NK cells. Analysis of signal transduction molecules showed that during flu infection, STAT1 activation in NK cells was completely dependent on direct type I IFN signaling, whereas STAT4 activation was only partially dependent. In addition, granzyme B induction in NK cells was mediated by signaling primarily through STAT1, but not STAT4, while IFN-γ production was mediated by signaling through STAT4, but not STAT1. Therefore, our findings demonstrate the importance of direct action of type I IFNs on NK cells to mount effective NK cell responses in the context of flu infection and delineate NK cell signaling pathways responsible for controlling cytotoxic activity and cytokine production.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Cytokines/metabolism
- Female
- Flow Cytometry
- Humans
- Influenza, Human/immunology
- Influenza, Human/metabolism
- Influenza, Human/virology
- Interferon-gamma/metabolism
- Interleukin-12/metabolism
- Interleukin-18/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Orthomyxoviridae/immunology
- Receptors, Interleukin-12/physiology
- Receptors, Interleukin-18/physiology
- STAT1 Transcription Factor/physiology
- STAT4 Transcription Factor/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Ilwoong Hwang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Jeannine M. Scott
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Tejaswi Kakarla
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - David M. Duriancik
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| | - Seohyun Choi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Chunghwan Cho
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Taehyung Lee
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Hyojin Park
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Anthony R. French
- Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eleni Beli
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| | - Elizabeth Gardner
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| | - Sungjin Kim
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
45
|
Zhu S, Cao L, Yu Y, Yang L, Yang M, Liu K, Huang J, Kang R, Livesey KM, Tang D. Inhibiting autophagy potentiates the anticancer activity of IFN1@/IFNα in chronic myeloid leukemia cells. Autophagy 2012; 9:317-27. [PMID: 23242206 PMCID: PMC3590253 DOI: 10.4161/auto.22923] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
IFN1@ (interferon, type 1, cluster, also called IFNα) has been extensively studied as a treatment for patients with chronic myeloid leukemia (CML). The mechanism of anticancer activity of IFN1@ is complex and not well understood. Here, we demonstrate that autophagy, a mechanism of cellular homeostasis for the removal of dysfunctional organelles and proteins, regulates IFN1@-mediated cell death. IFN1@ activated the cellular autophagic machinery in immortalized or primary CML cells. Activation of JAK1-STAT1 and RELA signaling were required for IFN1@-induced expression of BECN1, a key regulator of autophagy. Moreover, pharmacological and genetic inhibition of autophagy enhanced IFN1@-induced apoptosis by activation of the CASP8-BID pathway. Taken together, these findings provide evidence for an important mechanism that links autophagy to immunotherapy in leukemia.
Collapse
Affiliation(s)
- Shan Zhu
- Department of Pediatrics; Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pisapia L, Pozzo GD, Barba P, Citro A, Harris PE, Maffei A. Contrasting effects of IFNα on MHC class II expression in professional vs. nonprofessional APCs: Role of CIITA type IV promoter. RESULTS IN IMMUNOLOGY 2012; 2:174-83. [PMID: 24371581 DOI: 10.1016/j.rinim.2012.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/16/2012] [Accepted: 09/19/2012] [Indexed: 01/01/2023]
Abstract
We previously demonstrated that, in ex vivo cultures, IFNα downregulates the expression of MHC class II (MHCII) genes in human non-professional APCs associated with pancreatic islets. IFNα has an opposing effect on MHCII expression in professional APCs. In this study, we found that the mechanism responsible for the IFNα-mediated MHCII's downregulation in human MHCII-positive non-professional antigen presenting human non-hematopoietic cell lines is the result of the negative feedback system that regulates cytokine signal transduction, which eventually inhibits promoters III and IV of CIITA gene. Because the CIITA-PIV isoform is mostly responsible for the constitutive expression of MHCII genes in non-professional APCs, we pursued and achieved the specific knockdown of CIITA-PIV mRNA in our in vitro system, obtaining a partial silencing of MHCII molecules similar to that obtained by IFNα. We believe that our results offer a new understanding of the potential significance of CIITA-PIV as a therapeutic target for interventional strategies that can manage autoimmune disease and allograft rejection with little interference on the function of professional APCs of the immune system.
Collapse
Affiliation(s)
- Laura Pisapia
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Alessandra Citro
- Department of Medicine of Columbia University Medical Center, New York, NY, USA
| | - Paul E Harris
- Department of Medicine of Columbia University Medical Center, New York, NY, USA
| | - Antonella Maffei
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy ; Department of Medicine of Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
47
|
Reinsbach S, Nazarov PV, Philippidou D, Schmitt M, Wienecke-Baldacchino A, Muller A, Vallar L, Behrmann I, Kreis S. Dynamic regulation of microRNA expression following interferon-γ-induced gene transcription. RNA Biol 2012; 9:978-89. [PMID: 22767256 DOI: 10.4161/rna.20494] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are major players in post-transcriptional gene regulation. Even small changes in miRNA levels may have profound consequences for the expression levels of target genes. Hence, miRNAs themselves need to be tightly, albeit dynamically, regulated. Here, we investigated the dynamic behavior of miRNAs over a wide time range following stimulation of melanoma cells with interferon-γ (IFN-γ), which activates the transcription factor STAT1. By applying several bioinformatic and statistical software tools for visualization and identification of differentially expressed miRNAs derived from time-series microarray experiments, 8.9% of 1105 miRNAs appeared to be directly or indirectly regulated by STAT1. Focusing on distinct dynamic expression patterns, we found that the majority of robust miRNA expression changes occurred in the intermediate time range (24-48 h). Three miRNAs (miR-27a, miR-30a, miR-34a) had a delayed regulation occurring at 72 h while none showed significant expression changes at early time points between 30 min and 6 h. Expression patterns of individual miRNAs were altered gradually over time or abruptly increased or decreased between two time points. Furthermore, we observed coordinated dynamic transcription of most miRNA clusters while few were found to be regulated independently of their genetic cluster. Most interestingly, several "star" or passenger strand sequences were specifically regulated over time while their "guide" strands were not.
Collapse
Affiliation(s)
- Susanne Reinsbach
- Signal Transduction Laboratory, Life Sciences Research Unit, University of Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kohanbash G, Okada H. MicroRNAs and STAT interplay. Semin Cancer Biol 2011; 22:70-5. [PMID: 22210182 DOI: 10.1016/j.semcancer.2011.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/15/2011] [Indexed: 12/19/2022]
Abstract
MicroRNA (miR) are emerging as important gene expression regulators often involved in a variety of pathogenesis such as cancers and autoimmunity. Signal transducers and activators of transcription (STAT) proteins are the principle signaling proteins for many cytokines and growth factors, thereby play a critical role in regulating immune cell homeostasis, differentiation and cellular functions. In this review, we discuss recent advances in the field demonstrating active interactions between STATs and miRs, with our primary focus on the promotion and inhibition of immune cells and cancer. Additionally, we review the reciprocal regulations between STATs and miR, and discuss how we can use this knowledge in the context of diseases. For example, recent findings related to STAT1 and miR-155 support the presence of a positive feedback loop of miR-155 and STAT1 in response to inflammatory signals or infection. STAT3 is known to play critical roles in tumorigenesis and cancer-induced immunosuppression. There is a growing body of evidence demonstrating that STAT3 directly activates miR-21, one of miRs that promote cancer cell survival and proliferation. While some miRs directly regulate STATs, there are findings demonstrating indirect STAT regulation by miRs also mediate important biological mechanisms. Therefore, further research is warranted to elucidate significant contributions made by direct and indirect miR-STAT mechanisms. As we learn more about miR pathways, we gain the opportunity to manipulate them in cancer cells to slow down growth or increase their susceptibility anti-tumor immunity.
Collapse
Affiliation(s)
- Gary Kohanbash
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
49
|
Tarhini AA, Pahuja S, Kirkwood JM. Neoadjuvant therapy for high-risk bulky regional melanoma. J Surg Oncol 2011; 104:386-90. [PMID: 21858833 DOI: 10.1002/jso.21882] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clinically detectable regional lymph node melanoma metastasis (AJCC stage IIIB-C) carries a risk of relapse and death that approaches 70% at 5 years. Surgical management is the cornerstone of therapy, with postoperative adjuvant therapy utilizing high-dose interferon alfa-2b (HDI). Neoadjuvant chemotherapy or immunotherapy in addition to surgery has been demonstrated to improve outcome in the management of patients with a variety of solid tumors. In patients with melanoma, the characteristics of the host immune response differ between patients with earlier stage and those with more advanced stages of disease (and particularly between those with measurable active disease and those without measurable gross disease) providing rationale for neoadjuvant approaches with immunotherapy. Host immune tolerance is now understood to impede the results of therapy for advanced disease, but appears to be less an issue for patients with microscopic high-risk operable disease, where the host may be more susceptible to immunologic interventions. Phase II studies have shown that neoadjuvant biochemotherapy has limited activity in melanoma patients with local-regional metastases, where chemotherapy may potentially alter the effects of immunotherapeutic agents. Studies of neoadjuvant HDI therapy for high-risk melanoma patients with bulky regional stage IIIB-C lymphadenopathy have shown unexpectedly high clinical and pathologic response rates, without increased morbidity. Through the design of neoadjuvant trials utilizing promising emerging melanoma therapeutics in which it is possible to obtain biopsy samples before and after therapy, a greater understanding of the dynamic interaction between tumors and the immune system is possible. This should lead to the identification of new targets for the treatment of melanoma and aid the development of new immunotherapy that may have greater specificity and less toxicity. This will simplify the evaluation of promising new combinations of agents with HDI to build on the clinical, immunologic, and molecular effect of this therapy for patients with melanoma.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- Department of Medicine and Division of Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
50
|
Mundy-Bosse BL, Lesinski GB, Jaime-Ramirez AC, Benninger K, Khan M, Kuppusamy P, Guenterberg K, Kondadasula SV, Chaudhury AR, La Perle KM, Kreiner M, Young G, Guttridge DC, Carson WE. Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res 2011; 71:5101-10. [PMID: 21680779 PMCID: PMC3148319 DOI: 10.1158/0008-5472.can-10-2670] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Our group and others have determined that immune effector cells from patients with advanced cancers exhibit reduced activation of IFN signaling pathways. We hypothesized that increases in immune regulatory cells termed myeloid-derived suppressor cells (MDSC) could interfere with the host immune response to tumors by inhibiting immune cell responsiveness to IFNs. The C26 murine adenocarcinoma model was employed to study immune function in advanced malignancy. C26-bearing mice had significantly elevated levels of GR1(+)CD11b(+) MDSC as compared with control mice, and splenocytes from tumor-bearing mice exhibited reduced phosphorylation of STAT1 (P-STAT1) on Tyr(701) in response to IFN-α or IFN-γ. This inhibition was seen in splenic CD4(+) and CD8(+) T cells as well as natural killer cells. In vitro coculture experiments revealed that MDSC inhibited the IFN responsiveness of splenocytes from normal mice. Treatment of C26-bearing mice with gemcitabine or an anti-GR1 antibody led to depletion of MDSC and restored splenocyte IFN responsiveness. Spleens from C26-bearing animals displayed elevated levels of iNOS protein and nitric oxide. In vitro treatment of splenocytes with a nitric oxide donor led to a decreased STAT1 IFN response. The elevation in nitric oxide in C26-bearing mice was associated with increased levels of nitration on STAT1. Finally, splenocytes from iNOS knockout mice bearing C26 tumors exhibited a significantly elevated IFN response as compared with control C26 tumor-bearing mice. These data suggest that nitric oxide produced by MDSC can lead to reduced IFN responsiveness in immune cells.
Collapse
Affiliation(s)
- Bethany L. Mundy-Bosse
- Department of Integrated Biomedical Sciences, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
| | - Gregory B. Lesinski
- Department of Internal Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
| | - Alena C. Jaime-Ramirez
- Department of Integrated Biomedical Sciences, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
| | - Kristen Benninger
- Department of Surgery, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
| | - Mahmood Khan
- The Dorothy M. Davis Heart and Lung Research Institute, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
| | - Periannan Kuppusamy
- Department of Internal Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
- The Dorothy M. Davis Heart and Lung Research Institute, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
| | - Kristan Guenterberg
- Department of Surgery, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
| | - Sri Vidya Kondadasula
- Department of Oncology, Karmanos Cancer Institute, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
| | - Abhik Ray Chaudhury
- Department of Pathology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
| | - Krista M La Perle
- Department of Veterinary Biosciences, College of Veterinary Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
| | - Melanie Kreiner
- Department of Surgery, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
| | - Gregory Young
- The Center for Biostatistics, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
| | - Denis C. Guttridge
- Department of Molecular Virology, Immunology, and Medical Genetics, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
| | - William E. Carson
- Department of Surgery, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus OH, 43210
| |
Collapse
|