1
|
Castrogiovanni P, Sanfilippo C, Imbesi R, Lazzarino G, Li Volti G, Tibullo D, Vicario N, Parenti R, Giuseppe L, Barbagallo I, Alanazi AM, Vecchio M, Cappello F, Musumeci G, Di Rosa M. Skeletal muscle of young females under resistance exercise exhibits a unique innate immune cell infiltration profile compared to males and elderly individuals. J Muscle Res Cell Motil 2024; 45:171-190. [PMID: 38578562 DOI: 10.1007/s10974-024-09668-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Muscle damage resulting from physical activities such as exercise triggers an immune response crucial for tissue repair and recovery. This study investigates the immune cell profiles in muscle biopsies of individuals engaged in resistance exercise (RE) and explores the impact of age and sex on the immune response following exercise-induced muscle damage. Microarray datasets from muscle biopsies of young and old subjects were analyzed, focusing on the gene expression patterns associated with immune cell activation. Genes were compared with immune cell signatures to reveal the cellular landscape during exercise. Results show that the most significant modulated gene after RE was Folliculin Interacting Protein 2 (FNIP2) a crucial regulator in cellular homeostasis. Moreover, the transcriptome was stratified based on the expression of FNIP2 and the 203 genes common to the groups obtained based on sex and age. Gene ontology analysis highlighted the FLCN-FNIP1-FNIP2 complex, which exerts as a negative feedback loop to Pi3k-Akt-mTORC1 pathway. Furthermore, we highlighted that the young females exhibit a distinct innate immune cell activation signature compared to males after a RE session. Specifically, young females demonstrate a notable overlap with dendritic cells (DCs), M1 macrophages, M2 macrophages, and neutrophils, while young males overlap with M1 macrophages, M2 macrophages, and motor neurons. Interestingly, in elderly subjects, both sexes display M1 macrophage activation signatures. Comparison of young and elderly signatures reveals an increased M1 macrophage percentage in young subjects. Additionally, common genes were identified in both sexes across different age groups, elucidating biological functions related to cell remodeling and immune activation. This study underscores the intricate interplay between sex, age, and the immune response in muscle tissue following RE, offering potential directions for future research. Nevertheless, there is a need for further studies to delve deeper and confirm the dynamics of immune cells in response to exercise-induced muscle damage.
Collapse
Affiliation(s)
- Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, 95125, Italy
| | - Cristina Sanfilippo
- Neurologic Unit, Department of Medical, Surgical Sciences and Advanced Technologies, AOU "Policlinico-San Marco", University of Catania, Via Santa Sofia n.78, Sicily, GF, Ingrassia, Catania, 95100, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, 95125, Italy
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, Rome, 00131, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania, 95123, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania, 95123, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Lazzarino Giuseppe
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania, 95123, Italy
| | - Ignazio Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania, 95123, Italy
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Michele Vecchio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95124, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, 90127, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, 90139, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, 95125, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, 95125, Italy.
| |
Collapse
|
2
|
Yanagi T, Kikuchi H, Takeuchi K, Susa K, Mori T, Chiga M, Yamamoto K, Furukawa A, Kanazawa T, Kato Y, Takahashi N, Suzuki T, Mori Y, Carter BC, Mori M, Nakano Y, Fujiki T, Hara Y, Suzuki S, Ando F, Mandai S, Honda S, Torii S, Shimizu S, Tanaka H, Fujii Y, Rai T, Uchida S, Sohara E. ULK1-regulated AMP sensing by AMPK and its application for the treatment of chronic kidney disease. Kidney Int 2024; 106:887-906. [PMID: 39428173 DOI: 10.1016/j.kint.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 10/22/2024]
Abstract
Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a central kinase involved in energy homeostasis. Increased intracellular AMP levels result in AMPK activation through the binding of AMP to the γ-subunit of AMPK. Recently, we reported that AMP-induced AMPK activation is impaired in the kidneys in chronic kidney disease (CKD) despite an increase in the AMP/ATP ratio. However, the mechanisms by which AMP sensing is disrupted in CKD are unclear. Here, we identified mechanisms of energy homeostasis in which Unc-51-like kinase 1 (ULK1)-dependent phosphorylation of AMPKγ1 at Ser260/Thr262 promoting AMP sensitivity of AMPK. AMPK activation by AMP was impaired in Ulk1 knockout mice despite an increased AMP/ATP ratio. ULK1 expression is markedly downregulated in CKD kidneys, leading to AMP sensing failure. Additionally, MK8722, an allosteric AMPK activator, stimulated AMPK in the kidneys of a CKD mouse model (5/6th nephrectomy) via a pathway that is independent of AMP sensing. Thus, our study shows that MK8722 treatment significantly attenuates the deterioration of kidney function in CKD and may be a potential therapeutic option in CKD therapeutics.
Collapse
Affiliation(s)
- Tomoki Yanagi
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroaki Kikuchi
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Koichiro Susa
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Motoko Chiga
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Asuka Furukawa
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takumi Kanazawa
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Kato
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Naohiro Takahashi
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takefumi Suzuki
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yutaro Mori
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Benjamin C Carter
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Makiko Mori
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuta Nakano
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tamami Fujiki
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yu Hara
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Soichiro Suzuki
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fumiaki Ando
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shintaro Mandai
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinya Honda
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoru Torii
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hajime Tanaka
- Department of Urology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuhisa Fujii
- Department of Urology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Nephrology and Hypertension, Dokkyo Medical University, Tochigi, Japan
| | - Shinichi Uchida
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
3
|
Kierans SJ, Taylor CT. Glycolysis: A multifaceted metabolic pathway and signaling hub. J Biol Chem 2024; 300:107906. [PMID: 39442619 PMCID: PMC11605472 DOI: 10.1016/j.jbc.2024.107906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Glycolysis is a highly conserved metabolic pathway responsible for the anaerobic production of adenosine triphosphate (ATP) from the breakdown of glucose molecules. While serving as a primary metabolic pathway in prokaryotes, glycolysis is also utilized by respiring eukaryotic cells, providing pyruvate to fuel oxidative metabolism. Furthermore, glycolysis is the primary source of ATP production in multiple cellular states (e.g., hypoxia) and is particularly important in maintaining bioenergetic homeostasis in the most abundant cell type in the human body, the erythrocyte. Beyond its role in ATP production, glycolysis also functions as a signaling hub, producing several metabolic intermediates which serve roles in both signaling and metabolic processes. These signals emanating from the glycolytic pathway can profoundly impact cell function, phenotype, and fate and have previously been overlooked. In this review, we will discuss the role of the glycolytic pathway as a source of signaling molecules in eukaryotic cells, emphasizing the newfound recognition of glycolysis' multifaceted nature and its importance in maintaining cellular homeostasis, beyond its traditional role in ATP synthesis.
Collapse
Affiliation(s)
- Sarah J Kierans
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Cormac T Taylor
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Micaglio E, Tondi L, Benedetti S, Schiavo MA, Camporeale A, Disabato G, Attanasio A, Guida G, Carrafiello G, Piepoli M, Spagnolo P, Pappone C, Lombardi M. When Paying Attention Pays Back: Missense Mutation c.1006G>A p. (Val336Ile) in PRKAG2 Gene Causing Left Ventricular Hypertrophy and Conduction Abnormalities in a Caucasian Patient: Case Report and Literature Review. Int J Mol Sci 2024; 25:9171. [PMID: 39273120 PMCID: PMC11395525 DOI: 10.3390/ijms25179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
PRKAG2 cardiomyopathy is a rare genetic disorder that manifests early in life with an autosomal dominant inheritance pattern. It harbors left ventricular hypertrophy (LVH), ventricular pre-excitation and progressively worsening conduction system defects. Its estimated prevalence among patients with LVH ranges from 0.23 to about 1%, but it is likely an underdiagnosed condition. We report the association of the PRKAG2 missense variant c.1006G>A p. (Val336Ile) with LVH, conduction abnormalities (short PR interval and incomplete right bundle branch bock) and early-onset arterial hypertension (AH) in a 44-year-old Caucasian patient. While cardiac magnetic resonance (CMR) showed a mild hypertrophic phenotype with maximal wall thickness of 17 mm in absence of tissue alterations, the electric phenotype was relevant including brady-tachy syndrome and recurrent syncope. The same variant has been detected in the patient's sister and daughter, with LVH + early-onset AH and electrocardiographic (ECG) alterations + lipothymic episodes, respectively. Paying close attention to the coexistence of LVH and ECG alterations in the proband has been helpful in directing genetic tests to exclude primary cardiomyopathy. Hence, identifying the genetic basis in the patient allowed for familial screening as well as a proper follow-up and therapeutic management of the affected members. A review of the PRKAG2 cardiomyopathy literature is provided alongside the case report.
Collapse
Affiliation(s)
- Emanuele Micaglio
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (E.M.); (C.P.)
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Lara Tondi
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Sara Benedetti
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (E.M.); (C.P.)
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Maria Alessandra Schiavo
- Cardiology Unit IRCCS Azienda, Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine University of Bologna, 40138 Bologna, Italy
| | - Antonia Camporeale
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giandomenico Disabato
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Andrea Attanasio
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Gianluigi Guida
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Massimo Piepoli
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Pietro Spagnolo
- Unit of Radiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (E.M.); (C.P.)
- Department of Cardiology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Massimo Lombardi
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
| |
Collapse
|
5
|
Tomar S, Subba A, Chatterjee Y, Singhal NK, Pareek A, Singla-Pareek SL. A cystathionine beta-synthase domain containing protein, OsCBSCBS4, interacts with OsSnRK1A and OsPKG and functions in abiotic stress tolerance in rice. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39073079 DOI: 10.1111/pce.15061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
The Cystathionine-β-Synthase (CBS) domain-containing proteins (CDCPs) constitute a functionally diverse protein superfamily, sharing an evolutionary conserved CBS domain either in pair or quad. Rice genome (Oryza sativa subsp. indica) encodes 42 CDCPs; their functions remain largely unexplored. This study examines OsCBSCBS4, a quadruple CBS domain containing protein towards its role in regulating the abiotic stress tolerance in rice. Gene expression analyses revealed upregulation of OsCBSCBS4 in response to diverse abiotic stresses. Further, the cytoplasm-localised OsCBSCBS4 showed interaction with two different kinases, a cytoplasmic localised cGMP-dependant protein kinase (OsPKG) and the nucleo-cytoplasmic catalytic subunit of sucrose-nonfermentation 1-related protein kinase 1 (OsSnRK1A). The interaction with the latter assisted in trafficking of OsCBSCBS4 to the nucleus as well. Overexpression of OsCBSCBS4 in rice resulted in enhanced tolerance to drought and salinity stress, via maintaining better physiological parameters and antioxidant activity. Additionally, OsCBSCBS4-overexpressing rice plants exhibited reduced yield penalty under stress conditions. The in silico docking and in vitro binding analyses of OsCBSCBS4 with ATP suggest its involvement in cellular energy balance. Overall, this study provides novel insight into the unexplored functions of OsCBSCBS4 and demonstrates it as a new promising target for augmenting crop resilience.
Collapse
Affiliation(s)
- Surabhi Tomar
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashish Subba
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yajnaseni Chatterjee
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, India
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
6
|
Xu Y, Bai L, Yang X, Huang J, Wang J, Wu X, Shi J. Recent advances in anti-inflammation via AMPK activation. Heliyon 2024; 10:e33670. [PMID: 39040381 PMCID: PMC11261115 DOI: 10.1016/j.heliyon.2024.e33670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Inflammation is a complex physiological phenomenon, which is the body's defensive response, but abnormal inflammation can have adverse effects, and many diseases are related to the inflammatory response. AMPK, as a key sensor of cellular energy status, plays a crucial role in regulating cellular energy homeostasis and glycolipid metabolism. In recent years, the anti-inflammation effect of AMPK and related signalling cascade has begun to enter everyone's field of vision - not least the impact on metabolic diseases. A great number of studies have shown that anti-inflammatory drugs work through AMPK and related pathways. Herein, this article summarises recent advances in compounds that show anti-inflammatory effects by activating AMPK and attempts to comment on them.
Collapse
Affiliation(s)
- Yihua Xu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Anashkin VA, Kirillova EA, Orlov VN, Baykov AA. Specific Mutations Reverse Regulatory Effects of Adenosine Phosphates and Increase Their Binding Stoichiometry in CBS Domain-Containing Pyrophosphatase. Int J Mol Sci 2024; 25:5768. [PMID: 38891956 PMCID: PMC11172384 DOI: 10.3390/ijms25115768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory cystathionine β-synthase (CBS) domains are widespread in proteins; however, difficulty in structure determination prevents a comprehensive understanding of the underlying regulation mechanism. Tetrameric microbial inorganic pyrophosphatase containing such domains (CBS-PPase) is allosterically inhibited by AMP and ADP and activated by ATP and cell alarmones diadenosine polyphosphates. Each CBS-PPase subunit contains a pair of CBS domains but binds cooperatively to only one molecule of the mono-adenosine derivatives. We used site-directed mutagenesis of Desulfitobacterium hafniense CBS-PPase to identify the key elements determining the direction of the effect (activation or inhibition) and the "half-of-the-sites" ligand binding stoichiometry. Seven amino acid residues were selected in the CBS1 domain, based on the available X-ray structure of the regulatory domains, and substituted by alanine and other residues. The interaction of 11 CBS-PPase variants with the regulating ligands was characterized by activity measurements and isothermal titration calorimetry. Lys100 replacement reversed the effect of ADP from inhibition to activation, whereas Lys95 and Gly118 replacements made ADP an activator at low concentrations but an inhibitor at high concentrations. Replacement of these residues for alanine increased the stoichiometry of mono-adenosine phosphate binding by twofold. These findings identified several key protein residues and suggested a "two non-interacting pairs of interacting regulatory sites" concept in CBS-PPase regulation.
Collapse
Affiliation(s)
- Viktor A. Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia (V.N.O.)
| | | | | | - Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia (V.N.O.)
| |
Collapse
|
8
|
Yang C, Rubin L, Yu X, Lazarovici P, Zheng W. Preclinical evidence using synthetic compounds and natural products indicates that AMPK represents a potential pharmacological target for the therapy of pulmonary diseases. Med Res Rev 2024; 44:1326-1369. [PMID: 38229486 DOI: 10.1002/med.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024]
Abstract
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is a highly conserved eukaryotic enzyme discovered as a key regulator of cellular energy homeostasis, with anti-inflammation, antioxidative stress, anticancer, and antifibrosis beneficial effects. AMPK is dysregulated in human pulmonary diseases such as acute lung injury, nonsmall cell lung cancer, pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. This review provides an overview of the beneficial role of natural, synthetic, and Chinese traditional medicines AMPK modulators in pulmonary diseases, and highlights the role of the AMPK signaling pathway in the lung, emphasizing the importance of finding lead compounds and drugs that can target and modulate AMPK to treat the lung diseases.
Collapse
Affiliation(s)
- Chao Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Jerusalem, Israel
| | - Xiyong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
9
|
Hawley SA, Russell FM, Hardie DG. AMP-activated protein kinase can be allosterically activated by ADP but AMP remains the key activating ligand. Biochem J 2024; 481:587-599. [PMID: 38592738 PMCID: PMC11088877 DOI: 10.1042/bcj20240082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. When activated by increases in ADP:ATP and/or AMP:ATP ratios (signalling energy deficit), AMPK acts to restore energy balance. Binding of AMP to one or more of three CBS repeats (CBS1, CBS3, CBS4) on the AMPK-γ subunit activates the kinase complex by three complementary mechanisms: (i) promoting α-subunit Thr172 phosphorylation by the upstream kinase LKB1; (ii) protecting against Thr172 dephosphorylation; (iii) allosteric activation. Surprisingly, binding of ADP has been reported to mimic the first two effects, but not the third. We now show that at physiologically relevant concentrations of Mg.ATP2- (above those used in the standard assay) ADP binding does cause allosteric activation. However, ADP causes only a modest activation because (unlike AMP), at concentrations just above those where activation becomes evident, ADP starts to cause competitive inhibition at the catalytic site. Our results cast doubt on the physiological relevance of the effects of ADP and suggest that AMP is the primary activator in vivo. We have also made mutations to hydrophobic residues involved in binding adenine nucleotides at each of the three γ subunit CBS repeats of the human α2β2γ1 complex and examined their effects on regulation by AMP and ADP. Mutation of the CBS3 site has the largest effects on all three mechanisms of AMP activation, especially at lower ATP concentrations, while mutation of CBS4 reduces the sensitivity to AMP. All three sites appear to be required for allosteric activation by ADP.
Collapse
Affiliation(s)
- Simon A. Hawley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Fiona M. Russell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - D. Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| |
Collapse
|
10
|
McCorvie TJ, Adamoski D, Machado RAC, Tang J, Bailey HJ, Ferreira DSM, Strain-Damerell C, Baslé A, Ambrosio ALB, Dias SMG, Yue WW. Architecture and regulation of filamentous human cystathionine beta-synthase. Nat Commun 2024; 15:2931. [PMID: 38575566 PMCID: PMC10995199 DOI: 10.1038/s41467-024-46864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Cystathionine beta-synthase (CBS) is an essential metabolic enzyme across all domains of life for the production of glutathione, cysteine, and hydrogen sulfide. Appended to the conserved catalytic domain of human CBS is a regulatory domain that modulates activity by S-adenosyl-L-methionine (SAM) and promotes oligomerisation. Here we show using cryo-electron microscopy that full-length human CBS in the basal and SAM-bound activated states polymerises as filaments mediated by a conserved regulatory domain loop. In the basal state, CBS regulatory domains sterically block the catalytic domain active site, resulting in a low-activity filament with three CBS dimers per turn. This steric block is removed when in the activated state, one SAM molecule binds to the regulatory domain, forming a high-activity filament with two CBS dimers per turn. These large conformational changes result in a central filament of SAM-stabilised regulatory domains at the core, decorated with highly flexible catalytic domains. Polymerisation stabilises CBS and reduces thermal denaturation. In PC-3 cells, we observed nutrient-responsive CBS filamentation that disassembles when methionine is depleted and reversed in the presence of SAM. Together our findings extend our understanding of CBS enzyme regulation, and open new avenues for investigating the pathogenic mechanism and therapeutic opportunities for CBS-associated disorders.
Collapse
Affiliation(s)
- Thomas J McCorvie
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK.
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, Brazil
| | - Raquel A C Machado
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, Brazil
| | - Jiazhi Tang
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Henry J Bailey
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt, Germany
| | - Douglas S M Ferreira
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Claire Strain-Damerell
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Arnaud Baslé
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andre L B Ambrosio
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Sandra M G Dias
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, Brazil
| | - Wyatt W Yue
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK.
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
11
|
Walk CL, Mullenix GJ, Maynard CW, Greene ES, Maynard C, Ward N, Dridi S. Novel 4th-generation phytase improves broiler growth performance and reduces woody breast severity through modulation of muscle glucose uptake and metabolism. Front Physiol 2024; 15:1376628. [PMID: 38559573 PMCID: PMC10978611 DOI: 10.3389/fphys.2024.1376628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
The objective of the present study was to determine the effect of a novel (4th generation) phytase supplementation as well as its mode of action on growth, meat quality, and incidence of muscle myopathies. One-day old male broilers (n = 720) were weighed and randomly allocated to 30 floor pens (24 birds/pen) with 10 replicate pens per treatment. Three diets were fed from hatch to 56- days-old: a 3-phase corn-soy based diet as a positive control (PC); a negative control (NC) formulated to be isocaloric and isonitrogenous to the PC and with a reduction in Ca and available P, respectively; and the NC supplemented with 2,000 phytase units per kg of diet (NC + P). At the conclusion of the experiment, birds fed with NC + P diet were significantly heavier and had 2.1- and 4.2-points better feed conversion ratio (FCR) compared to birds offered NC and PC diets, respectively. Processing data showed that phytase supplementation increased live weight, hot carcass without giblets, wings, tender, and skin-on drum and thigh compared to both NC and PC diets. Macroscopic scoring showed that birds fed the NC + P diet had lower woody breast (WB) severity compared to those fed the PC and NC diets, however there was no effect on white striping (WS) incidence and meat quality parameters (pH, drip loss, meat color). To delineate its mode of action, iSTAT showed that blood glucose concentrations were significantly lower in birds fed NC + P diet compared to those offered PC and NC diets, suggesting a better glucose uptake. In support, molecular analyses demonstrated that the breast muscle expression (mRNA and protein) of glucose transporter 1 (GLUT1) and glucokinase (GK) was significantly upregulated in birds fed NC + P diet compared to those fed the NC and PC diets. The expression of mitochondrial ATP synthase F0 subunit 8 (MT-ATP8) was significantly upregulated in NC + P compared to other groups, indicating intracellular ATP abundance for anabolic pathways. This was confirmed by the reduced level of phosphorylated-AMP-activated protein kinase (AMPKα1/2) at Thr172 site, upregulation of glycogen synthase (GYS1) gene and activation of mechanistic target of rapamycin and ribosomal protein S6 kinase (mTOR-P70S6K) pathway. In conclusion, this is the first report showing that in-feed supplementation of the novel phytase improves growth performance and reduces WB severity in broilers potentially through enhancement of glucose uptake, glycolysis, and intracellular ATP production, which used for muscle glycogenesis and protein synthesis.
Collapse
Affiliation(s)
| | - Garrett J. Mullenix
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Craig W. Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elisabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Clay Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Nelson Ward
- DSM Nutritional Products, Jerusalem, OH, United States
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
12
|
Qiu M, Sun Y, Tu S, Li H, Yang X, Zhao H, Yin M, Li Y, Ye W, Wang M, Wang Y. Mining oomycete proteomes for phosphatome leads to the identification of specific expanded phosphatases in oomycetes. MOLECULAR PLANT PATHOLOGY 2024; 25:e13425. [PMID: 38462784 PMCID: PMC10925823 DOI: 10.1111/mpp.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024]
Abstract
Phosphatases are important regulators of protein phosphorylation and various cellular processes, and they serve as counterparts to kinases. In this study, our comprehensive analysis of oomycete complete proteomes unveiled the presence of approximately 3833 phosphatases, with most species estimated to have between 100 and 300 putative phosphatases. Further investigation of these phosphatases revealed a significant increase in protein serine/threonine phosphatases (PSP) within oomycetes. In particular, we extensively studied the metallo-dependent protein phosphatase (PPM) within the PSP family in the model oomycete Phytophthora sojae. Our results showed notable differences in the expression patterns of PPMs throughout 10 life stages of P. sojae, indicating their vital roles in various stages of oomycete pathogens. Moreover, we identified 29 PPMs in P. sojae, and eight of them possessed accessory domains in addition to phosphate domains. We investigated the biological function of one PPM protein with an extra PH domain (PPM1); this protein exhibited high expression levels in both asexual developmental and infectious stages. Our analysis confirmed that PPM1 is indeed an active protein phosphatase, and its accessory domain does not affect its phosphatase activity. To delve further into its function, we generated knockout mutants of PPM1 and validated its essential roles in mycelial growth, sporangia and oospore production, as well as infectious stages. To the best of our knowledge, this study provides the first comprehensive inventory of phosphatases in oomycetes and identifies an important phosphatase within the expanded serine/threonine phosphatase group in oomycetes.
Collapse
Affiliation(s)
- Min Qiu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yaru Sun
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Siqun Tu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Huaibo Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Xin Yang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Haiyang Zhao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Maozhu Yin
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Yaning Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Wenwu Ye
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Ming Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yuanchao Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
13
|
Li H, Wang M, Qu K, Xu R, Zhu H. MP Allosterically Activates AMPK to Enhance ABCA1 Stability by Retarding the Calpain-Mediated Degradation Pathway. Int J Mol Sci 2023; 24:17280. [PMID: 38139111 PMCID: PMC10743971 DOI: 10.3390/ijms242417280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
It is widely recognized that macrophage cholesterol efflux mediated by the ATP-binding cassette transporter A1 (ABCA1) constitutes the initial and rate-limiting step of reverse cholesterol transport (RCT), displaying a negative correlation with the development of atherosclerosis. Although the transcriptional regulation of ABCA1 has been extensively studied in previous research, the impact of post-translational regulation on its expression remains to be elucidated. In this study, we report an AMP-activated protein kinase (AMPK) agonist called ((2R,3S,4R,5R)-3,4-dihydroxy-5-(6-((3-hydroxyphenyl) amino)-9H-purin-9-yl) tetrahydrofuran-2-yl) methyl dihydrogen phosphate (MP), which enhances ABCA1 expression through post-translational regulation rather than transcriptional regulation. By integrating the findings of multiple experiments, it is confirmed that MP directly binds to AMPK with a moderate binding affinity, subsequently triggering its allosteric activation. Further investigations conducted on macrophages unveil a novel mechanism through which MP modulates ABCA1 expression. Specifically, MP downregulates the Cav1.2 channel to obstruct the influx of extracellular Ca2+, thereby diminishing intracellular Ca2+ levels, suppressing calcium-activated calpain activity, and reducing the interaction strength between calpain and ABCA1. This cascade of events culminates in the deceleration of calpain-mediated degradation of ABCA1. In conclusion, MP emerges as a potentially promising candidate compound for developing agents aimed at enhancing ABCA1 stability and boosting cellular cholesterol efflux and RCT.
Collapse
Affiliation(s)
| | | | | | | | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China; (H.L.); (M.W.); (K.Q.); (R.X.)
| |
Collapse
|
14
|
Zamakhov IM, Anashkin VA, Moiseenko AV, Orlov VN, Vorobyeva NN, Sokolova OS, Baykov AA. The Structure and Nucleotide-Binding Characteristics of Regulated Cystathionine β-Synthase Domain-Containing Pyrophosphatase without One Catalytic Domain. Int J Mol Sci 2023; 24:17160. [PMID: 38138989 PMCID: PMC10742508 DOI: 10.3390/ijms242417160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory adenine nucleotide-binding cystathionine β-synthase (CBS) domains are widespread in proteins; however, information on the mechanism of their modulating effects on protein function is scarce. The difficulty in obtaining structural data for such proteins is ascribed to their unusual flexibility and propensity to form higher-order oligomeric structures. In this study, we deleted the most movable domain from the catalytic part of a CBS domain-containing bacterial inorganic pyrophosphatase (CBS-PPase) and characterized the deletion variant both structurally and functionally. The truncated CBS-PPase was inactive but retained the homotetrameric structure of the full-size enzyme and its ability to bind a fluorescent AMP analog (inhibitor) and diadenosine tetraphosphate (activator) with the same or greater affinity. The deletion stabilized the protein structure against thermal unfolding, suggesting that the deleted domain destabilizes the structure in the full-size protein. A "linear" 3D structure with an unusual type of domain swapping predicted for the truncated CBS-PPase by Alphafold2 was confirmed by single-particle electron microscopy. The results suggest a dual role for the CBS domains in CBS-PPase regulation: they allow for enzyme tetramerization, which impedes the motion of one catalytic domain, and bind adenine nucleotides to mitigate or aggravate this effect.
Collapse
Affiliation(s)
- Ilya M. Zamakhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia (V.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Viktor A. Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia (V.A.A.)
| | - Andrey V. Moiseenko
- Department of Biology, Lomonosov Moscow State University, 119899 Moscow, Russia (O.S.S.)
| | - Victor N. Orlov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia (V.A.A.)
| | - Natalia N. Vorobyeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia (V.A.A.)
| | - Olga S. Sokolova
- Department of Biology, Lomonosov Moscow State University, 119899 Moscow, Russia (O.S.S.)
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia (V.A.A.)
| |
Collapse
|
15
|
Li Y, Zhang L, Shen Y, Peng L, Gao F. CBSX2 is required for the efficient oxidation of chloroplast redox-regulated enzymes in darkness. PLANT DIRECT 2023; 7:e542. [PMID: 38028645 PMCID: PMC10643993 DOI: 10.1002/pld3.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Thiol/disulfide-based redox regulation in plant chloroplasts is essential for controlling the activity of target proteins in response to light signals. One of the examples of such a role in chloroplasts is the activity of the chloroplast ATP synthase (CFoCF1), which is regulated by the redox state of the CF1γ subunit and involves two cysteines in its central domain. To investigate the mechanism underlying the oxidation of CF1γ and other chloroplast redox-regulated enzymes in the dark, we characterized the Arabidopsis cbsx2 mutant, which was isolated based on its altered NPQ (non-photochemical quenching) induction upon illumination. Whereas in dark-adapted WT plants CF1γ was completely oxidized, a small amount of CF1γ remained in the reduced state in cbsx2 under the same conditions. In this mutant, reduction of CF1γ was not affected in the light, but its oxidation was less efficient during a transition from light to darkness. The redox states of the Calvin cycle enzymes FBPase and SBPase in cbsx2 were similar to those of CF1γ during light/dark transitions. Affinity purification and subsequent analysis by mass spectrometry showed that the components of the ferredoxin-thioredoxin reductase/thioredoxin (FTR-Trx) and NADPH-dependent thioredoxin reductase (NTRC) systems as well as several 2-Cys peroxiredoxins (Prxs) can be co-purified with CBSX2. In addition to the thioredoxins, yeast two-hybrid analysis showed that CBSX2 also interacts with NTRC. Taken together, our results suggest that CBSX2 participates in the oxidation of the chloroplast redox-regulated enzymes in darkness, probably through regulation of the activity of chloroplast redox systems in vivo.
Collapse
Affiliation(s)
- Yonghong Li
- College of Biology and Brewing EngineeringTaiShan UniversityTaianChina
| | - Lin Zhang
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yurou Shen
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Lianwei Peng
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Fudan Gao
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| |
Collapse
|
16
|
Sakti DH, Cornish EE, Nash BM, Jamieson RV, Grigg JR. IMPDH1-associated autosomal dominant retinitis pigmentosa: natural history of novel variant Lys314Gln and a comprehensive literature search. Ophthalmic Genet 2023; 44:437-455. [PMID: 37259572 DOI: 10.1080/13816810.2023.2215310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Inosine monophosphate dehydrogenase (IMPDH) is a key regulatory enzyme in the de novo synthesis of the purine base guanine. Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) are causative for RP10 autosomal dominant retinitis pigmentosa (adRP). This study reports a novel variant in a family with IMPDH1-associated retinopathy. We also performed a comprehensive review of all reported IMPDH1 disease causing variants with their associated phenotype. MATERIALS AND METHODS Multimodal imaging and functional studies documented the phenotype including best-corrected visual acuity (BCVA), fundus photograph, fundus autofluorescence (FAF), full field electroretinogram (ffERG), optical coherence tomography (OCT) and visual field (VF) data were collected. A literature search was performed in the PubMed and LOVD repositories. RESULTS We report 3 cases from a 2-generation family with a novel heterozygous likely pathogenic variant p. (Lys314Gln) (exon 10). The ophthalmic phenotype showed diffuse outer retinal atrophy with mild pigmentary changes with sparse pigmentary changes. FAF showed early macular involvement with macular hyperautofluorescence (hyperAF) surrounded by hypoAF. Foveal ellipsoid zone island can be found in the youngest patient but not in the older ones. The literature review identified a further 56 heterozygous, 1 compound heterozygous, and 2 homozygous variant. The heterozygous group included 43 missense, 3 in-frame, 1 nonsense, 2 frameshift, 1 synonymous, and 6 intronic variants. Exon 10 was noted as a hotspot harboring 18 variants. CONCLUSIONS We report a novel IMPDH1 variant. IMPDH1-associated retinopathy presents most frequently in the first decade of life with early macular involvement.
Collapse
Affiliation(s)
- Dhimas H Sakti
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Elisa E Cornish
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Benjamin M Nash
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Genome Diagnostics, Western Sydney Genetics Program, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Robyn V Jamieson
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - John R Grigg
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Cornwell A, Badiei A. The role of hydrogen sulfide in the retina. Exp Eye Res 2023; 234:109568. [PMID: 37460081 DOI: 10.1016/j.exer.2023.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
The discovery of the hydrogen sulfide (H2S) and the transsulfuration pathway (TSP) responsible for its synthesis in the mammalian retina has highlighted this molecule's wide range of physiological processes that influence cellular signaling, redox homeostasis, and cellular metabolism. The multi-level regulatory program that influences H2S levels in the retina depends on the relative expression and activity of TSP enzymes, which regulate the abundance of competitive substrates that support or abrogate H2S synthesis. In addition, and apart from TSP, intracellular H2S levels are regulated by mitochondrial sulfide oxidizing pathways. Retinal layers natively express differing levels of TSP enzymes, which highlight the differences in the metabolite and substrate requirement. Recent studies indicate that these systems are susceptible to pathophysiologies affecting the retina. Dysregulation at any level can upset the balance of redox and signaling processes and possibly upset oxidative stress, apoptotic signaling, ion channels, and immune response within this sensitive tissue. H2S donors are a potential therapeutic in such cases and have been demonstrated to bridge the gap, positively impacting the damaged retina. Here, we review the recent findings of H2S, how its multi-level regulation impacts the retina, and how its dysregulation is implicated in retinal pathologies.
Collapse
Affiliation(s)
- Alex Cornwell
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, 99775, AK, USA
| | - Alireza Badiei
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, 99775, AK, USA.
| |
Collapse
|
18
|
Breaker RR, Harris KA, Lyon SE, Wencker FDR, Fernando CM. Evidence that OLE RNA is a component of a major stress-responsive ribonucleoprotein particle in extremophilic bacteria. Mol Microbiol 2023; 120:324-340. [PMID: 37469248 DOI: 10.1111/mmi.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
OLE RNA is a ~600-nucleotide noncoding RNA present in many Gram-positive bacteria that thrive mostly in extreme environments, including elevated temperature, salt, and pH conditions. The precise biochemical functions of this highly conserved RNA remain unknown, but it forms a ribonucleoprotein (RNP) complex that localizes to cell membranes. Genetic disruption of the RNA or its essential protein partners causes reduced cell growth under various stress conditions. These phenotypes include sensitivity to short-chain alcohols, cold intolerance, reduced growth on sub-optimal carbon sources, and intolerance of even modest concentrations of Mg2+ . Thus, many bacterial species appear to employ OLE RNA as a component of an intricate RNP apparatus to monitor fundamental cellular processes and make physiological and metabolic adaptations. Herein we hypothesize that the OLE RNP complex is functionally equivalent to the eukaryotic TOR complexes, which integrate signals from various diverse pathways to coordinate processes central to cell growth, replication, and survival.
Collapse
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Kimberly A Harris
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Seth E Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Freya D R Wencker
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Chrishan M Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
19
|
O'Neill AG, Burrell AL, Zech M, Elpeleg O, Harel T, Edvardson S, Mor-Shaked H, Rippert AL, Nomakuchi T, Izumi K, Kollman JM. Neurodevelopmental disorder mutations in the purine biosynthetic enzyme IMPDH2 disrupt its allosteric regulation. J Biol Chem 2023; 299:105012. [PMID: 37414152 PMCID: PMC10407431 DOI: 10.1016/j.jbc.2023.105012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report the identification of two additional missense variants in IMPDH2 from affected individuals and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.
Collapse
Affiliation(s)
- Audrey G O'Neill
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Simon Edvardson
- Alyn Hospital, Hebrew University School of Medicine, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alyssa L Rippert
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tomoki Nomakuchi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kosuke Izumi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
20
|
Kvandova M, Puzserova A, Balis P. Sexual Dimorphism in Cardiometabolic Diseases: The Role of AMPK. Int J Mol Sci 2023; 24:11986. [PMID: 37569362 PMCID: PMC10418890 DOI: 10.3390/ijms241511986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and disability among both males and females. The risk of cardiovascular diseases is heightened by the presence of a risk factor cluster of metabolic syndrome, covering obesity and obesity-related cardiometabolic risk factors such as hypertension, glucose, and lipid metabolism dysregulation primarily. Sex hormones contribute to metabolic regulation and make women and men susceptible to obesity development in a different manner, which necessitates sex-specific management. Identifying crucial factors that protect the cardiovascular system is essential to enhance primary and secondary prevention of cardiovascular diseases and should be explicitly studied from the perspective of sex differences. It seems that AMP-dependent protein kinase (AMPK) may be such a factor since it has the protective role of AMPK in the cardiovascular system, has anti-diabetic properties, and is regulated by sex hormones. Those findings highlight the potential cardiometabolic benefits of AMPK, making it an essential factor to consider. Here, we review information about the cross-talk between AMPK and sex hormones as a critical point in cardiometabolic disease development and progression and a target for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Miroslava Kvandova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (A.P.); (P.B.)
| | | | | |
Collapse
|
21
|
Zheng M, Erhardt S, Cao Y, Wang J. Emerging Signaling Regulation of Sinoatrial Node Dysfunction. Curr Cardiol Rep 2023; 25:621-630. [PMID: 37227579 PMCID: PMC11418806 DOI: 10.1007/s11886-023-01885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE OF REVIEW The sinoatrial node (SAN), the natural pacemaker of the heart, is responsible for generating electrical impulses and initiating each heartbeat. Sinoatrial node dysfunction (SND) causes various arrhythmias such as sinus arrest, SAN block, and tachycardia/bradycardia syndrome. Unraveling the underlying mechanisms of SND is of paramount importance in the pursuit of developing effective therapeutic strategies for patients with SND. This review provides a concise summary of the most recent progress in the signaling regulation of SND. RECENT FINDINGS Recent studies indicate that SND can be caused by abnormal intercellular and intracellular signaling, various forms of heart failure (HF), and diabetes. These discoveries provide novel insights into the underlying mechanisms SND, advancing our understanding of its pathogenesis. SND can cause severe cardiac arrhythmias associated with syncope and an increased risk of sudden death. In addition to ion channels, the SAN is susceptible to the influence of various signalings including Hippo, AMP-activated protein kinase (AMPK), mechanical force, and natriuretic peptide receptors. New cellular and molecular mechanisms related to SND are also deciphered in systemic diseases such as HF and diabetes. Progress in these studies contributes to the development of potential therapeutics for SND.
Collapse
Affiliation(s)
- Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, 77030, USA
| | - Yuhan Cao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Cornwell A, Badiei A. From Gasotransmitter to Immunomodulator: The Emerging Role of Hydrogen Sulfide in Macrophage Biology. Antioxidants (Basel) 2023; 12:antiox12040935. [PMID: 37107310 PMCID: PMC10135606 DOI: 10.3390/antiox12040935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Hydrogen sulfide (H2S) has been increasingly recognized as a crucial inflammatory mediator in immune cells, particularly macrophages, due to its direct and indirect effects on cellular signaling, redox homeostasis, and energy metabolism. The intricate regulation of endogenous H2S production and metabolism involves the coordination of transsulfuration pathway (TSP) enzymes and sulfide oxidizing enzymes, with TSP's role at the intersection of the methionine pathway and glutathione synthesis reactions. Additionally, H2S oxidation mediated by sulfide quinone oxidoreductase (SQR) in mammalian cells may partially control cellular concentrations of this gasotransmitter to induce signaling. H2S is hypothesized to signal through the posttranslational modification known as persulfidation, with recent research highlighting the significance of reactive polysulfides, a derivative of sulfide metabolism. Overall, sulfides have been identified as having promising therapeutic potential to alleviate proinflammatory macrophage phenotypes, which are linked to the exacerbation of disease outcomes in various inflammatory conditions. H2S is now acknowledged to have a significant influence on cellular energy metabolism by affecting the redox environment, gene expression, and transcription factor activity, resulting in changes to both mitochondrial and cytosolic energy metabolism processes. This review covers recent discoveries pertaining to the involvement of H2S in macrophage cellular energy metabolism and redox regulation, and the potential implications for the inflammatory response of these cells in the broader framework of inflammatory diseases.
Collapse
Affiliation(s)
- Alex Cornwell
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Alireza Badiei
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
23
|
Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol 2023; 24:255-272. [PMID: 36316383 DOI: 10.1038/s41580-022-00547-x] [Citation(s) in RCA: 306] [Impact Index Per Article: 153.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
The classical role of AMP-activated protein kinase (AMPK) is as a cellular energy sensor activated by falling energy status, signalled by increases in AMP to ATP and ADP to ATP ratios. Once activated, AMPK acts to restore energy homeostasis by promoting ATP-producing catabolic pathways while inhibiting energy-consuming processes. In this Review, we provide an update on this canonical (AMP/ADP-dependent) activation mechanism, but focus mainly on recently described non-canonical pathways, including those by which AMPK senses the availability of glucose, glycogen or fatty acids and by which it senses damage to lysosomes and nuclear DNA. We also discuss new findings on the regulation of carbohydrate and lipid metabolism, mitochondrial and lysosomal homeostasis, and DNA repair. Finally, we discuss the role of AMPK in cancer, obesity, diabetes, nonalcoholic steatohepatitis (NASH) and other disorders where therapeutic targeting may exert beneficial effects.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
24
|
O'Neill AG, Burrell AL, Zech M, Elpeleg O, Harel T, Edvardson S, Shaked HM, Rippert AL, Nomakuchi T, Izumi K, Kollman JM. Point mutations in IMPDH2 which cause early-onset neurodevelopmental disorders disrupt enzyme regulation and filament structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532669. [PMID: 36993700 PMCID: PMC10055058 DOI: 10.1101/2023.03.15.532669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report identification of two additional affected individuals with missense variants in IMPDH2 and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.
Collapse
Affiliation(s)
- Audrey G O'Neill
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Simon Edvardson
- Alyn Hospital, Hebrew University School of Medicine, Jerusalem, Israel
| | - Hagar Mor Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alyssa L Rippert
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tomoki Nomakuchi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosuke Izumi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
25
|
Arjun OK, Prakash T. Identification of conserved genomic signatures specific to Bifidobacterium species colonising the human gut. 3 Biotech 2023; 13:97. [PMID: 36852175 PMCID: PMC9958220 DOI: 10.1007/s13205-023-03492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/25/2023] [Indexed: 02/26/2023] Open
Abstract
Bifidobacterium species are known for their ability to inhabit various habitats and are often regarded as the first colonisers of the human gut. In the present work, we have used comparative genomics to identify conserved genomic signatures specific to Bifidobacterium species associated with the human gut. Our approach discovered five genomic signatures with varying lengths and confidence. Among the predicted five signatures, a 1790 bp multi-drug resistance (MDR) signature was found to be remarkably specific to only those species that can colonise the human gut. The signature codes for a membrane transport protein belonging to the major facilitator superfamily (MFS) generally involved in MDR. Phylogenetic analyses of the MDR signature suggest a lineage-specific evolution of the MDR signature in bifidobacteria colonising the human gut. Functional annotation led to the discovery of two conserved domains in the protein; a catalytic MFS domain involved in the efflux of drugs and toxins, and a regulatory cystathionine-β-synthase (CBS) domain that can interact with adenosyl-carriers. Molecular docking simulation performed with the modelled tertiary structure of the MDR signature revealed the putative functional role of the covalently linked domains. The MFS domain displayed a high affinity towards various protein synthesis inhibitor antibiotics and human bile acids, whereas the C-terminally linked CBS domain exhibited favourable binding with molecular structures of ATP and AMP. Therefore, we believe that the predicted signature represents a niche-specific survival trait involved in bile and antibiotic resistance, imparting an adaptive advantage to the Bifidobacterium species colonising the human gut. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03492-4.
Collapse
Affiliation(s)
- O. K. Arjun
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005 India
| | - Tulika Prakash
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005 India
| |
Collapse
|
26
|
Chen J, Zeng H, Lv W, Sun N, Wang C, Xu W, Hu M, Gan X, He L, He S, Fang C. Pseudo-chromosome-length genome assembly for a deep-sea eel Ilyophis brunneus sheds light on the deep-sea adaptation. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2251-8. [PMID: 36648612 DOI: 10.1007/s11427-022-2251-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023]
Abstract
High hydrostatic pressure, low temperature, and scarce food supply are the major factors that limit the survival of vertebrates in extreme deep-sea environments. Here, we constructed a high-quality genome of the deep-sea Muddy arrowtooth eel (MAE, Ilyophis brunneus, captured below a depth of 3,500 m) by using Illumina, PacBio, and Hi-C sequencing. We compare it against those of shallow-water eel and other outgroups to explore the genetic basis that underlies the adaptive evolution to deep-sea biomes. The MAE genome was estimated to be 1.47 Gb and assembled into 14 pseudo-chromosomes. Phylogenetic analyses indicated that MAE diverged from its closely related shallow-sea species, European eel, ∼111.9 Mya and experienced a rapid evolution. The genome evolutionary analyses primarily revealed the following: (i) under high hydrostatic pressure, the positively selected gene TUBGCP3 and the expanded family MLC1 may improve the cytoskeleton stability; ACOX1 may enhance the fluidity of cell membrane and maintain transport activity; the expansion of ABCC12 gene family may enhance the integrity of DNA; (ii) positively selected HARS likely maintain the transcription ability at low temperatures; and (iii) energy metabolism under a food-limited environment may be increased by expanded and positively selected genes in AMPK and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wenqi Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Xu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mingliang Hu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lisheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China. .,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Chengchi Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Chen Y, Peng C, Tan W, Yu J, Zayas J, Peng Y, Lou Z, Pei H, Wang L. Tumor protein D52 (TPD52) affects cancer cell metabolism by negatively regulating AMPK. Cancer Med 2023; 12:488-499. [PMID: 35666017 PMCID: PMC9844640 DOI: 10.1002/cam4.4911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/18/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, with deregulation leading to cancer and other diseases. However, how this pathway is dysregulated in cancer has not been well clarified. METHODS Using a tandem affinity purification/mass-spec technique and biochemical analyses, we identified tumor protein D52 (TPD52) as an AMPKα-interacting molecule. To explore the biological effects of TPD52 in cancers, we conducted biochemical and metabolic assays in vitro and in vivo with cancer cells and TPD52 transgenic mice. Finally, we assessed the clinical significance of TPD52 expression in breast cancer patients using bioinformatics techniques. RESULTS TPD52, initially identified to be overexpressed in many human cancers, was found to form a stable complex with AMPK in cancer cells. TPD52 directly interacts with AMPKα and inhibits AMPKα kinase activity in vitro and in vivo. In TPD52 transgenic mice, overexpression of TPD52 leads to AMPK inhibition and multiple metabolic defects. Clinically, high TPD52 expression predicts poor survival of breast cancer patients. CONCLUSION The findings revealed that TPD52 is a novel regulator of energy stress-induced AMPK activation and cell metabolism. These results shed new light on AMPK regulation and understanding of the etiology of cancers with TPD52 overexpression.
Collapse
Affiliation(s)
- Yali Chen
- Department of OncologyGeorgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Changmin Peng
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health ScienceWashingtonDistrict of ColumbiaUSA
| | - Wei Tan
- Department of OncologyGeorgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health ScienceWashingtonDistrict of ColumbiaUSA
| | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterMinnesotaUSA
| | - Jacqueline Zayas
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterMinnesotaUSA
| | - Yihan Peng
- Department of OncologyGeorgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Zhenkun Lou
- Division of Oncology Research, Department of Oncology, Mayo ClinicRochesterMinnesotaUSA
| | - Huadong Pei
- Department of OncologyGeorgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
28
|
Intrafamilial Phenotypical Variability Linked to PRKAG2 Mutation-Family Case Report and Review of the Literature. Life (Basel) 2022; 12:life12122136. [PMID: 36556501 PMCID: PMC9788523 DOI: 10.3390/life12122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
PRKAG2 syndrome (PS) is a rare, early-onset autosomal dominant phenocopy of sarcomeric hypertrophic cardiomyopathy (HCM), that mainly presents with ventricular pre-excitation, cardiac hypertrophy and progressive conduction system degeneration. Its natural course, treatment and prognosis are significantly different from sarcomeric HCM. The clinical phenotypes of PRKAG2 syndrome often overlap with HCM due to sarcomere protein mutations, causing this condition to be frequently misdiagnosed. The syndrome is caused by mutations in the gene encoding for the γ2 regulatory subunit (PRKAG2) of 5′ Adenosine Monophosphate-Activated Protein Kinase (AMPK), an enzyme that modulates glucose uptake and glycolysis. PRKAG2 mutations (OMIM#602743) are responsible for structural changes of AMPK, leading to an impaired myocyte glucidic uptake, and finally causing storage cardiomyopathy. We describe the clinical and investigative findings in a family with several affected members (NM_016203.4:c.905G>A or p.(Arg302Gln), heterozygous), highlighting the various phenotypes even in the same family, and the utility of genetic testing in diagnosing PS. The particularity of this family case is represented by the fact that the index patient was diagnosed at age 16 with cardiac hypertrophy and ventricular pre-excitation while his mother, by age 42, only had Wolff−Parkinson−White syndrome, without left ventricle hypertrophy. Both the grandmother and the great-grandmother underwent pacemaker implantation at a young age because of conduction abnormalities. Making the distinction between PS and sarcomeric HCM is actionable, given the early-onset of the disease, the numerous life-threatening consequences and the high rate of conduction disorders. In patients who exhibit cardiac hypertrophy coexisting with ventricular pre-excitation, genetic screening for PRKAG2 mutations should be considered.
Collapse
|
29
|
Zhou Q, Hao B, Cao X, Gao L, Yu Z, Zhao Y, Zhu M, Zhong G, Chi F, Dai X, Mao J, Zhu Y, Rong P, Chen L, Bai X, Ye C, Chen S, Liang T, Li L, Feng XH, Tan M, Zhao B. Energy sensor AMPK gamma regulates translation via phosphatase PPP6C independent of AMPK alpha. Mol Cell 2022; 82:4700-4711.e12. [PMID: 36384136 DOI: 10.1016/j.molcel.2022.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
Maintenance of energy level to drive movements and material exchange with the environment is a basic principle of life. AMP-activated protein kinase (AMPK) senses energy level and is a major regulator of cellular energy responses. The gamma subunit of AMPK senses elevated ratio of AMP to ATP and allosterically activates the alpha catalytic subunit to phosphorylate downstream effectors. Here, we report that knockout of AMPKγ, but not AMPKα, suppressed phosphorylation of eukaryotic translation elongation factor 2 (eEF2) induced by energy starvation. We identified PPP6C as an AMPKγ-regulated phosphatase of eEF2. AMP-bound AMPKγ sequesters PPP6C, thereby blocking dephosphorylation of eEF2 and thus inhibiting translation elongation to preserve energy and to promote cell survival. Further phosphoproteomic analysis identified additional targets of PPP6C regulated by energy stress in an AMPKγ-dependent manner. Thus, AMPKγ senses cellular energy availability to regulate not only AMPKα kinase, but also PPP6C phosphatase and possibly other effectors.
Collapse
Affiliation(s)
- Qi Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaolei Cao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Lin Gao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zhenyue Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Mingrui Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guoxuan Zhong
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Fangtao Chi
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaoming Dai
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jizhong Mao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yibing Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ping Rong
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Liang Chen
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Cunqi Ye
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Hua Feng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Bin Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China.
| |
Collapse
|
30
|
Ebner JN, Ritz D, von Fumetti S. Thermal acclimation results in persistent phosphoproteome changes in the freshwater planarian Crenobia alpina (Tricladida: Planariidae). J Therm Biol 2022; 110:103367. [DOI: 10.1016/j.jtherbio.2022.103367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/22/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022]
|
31
|
Role of AMPK in Myocardial Ischemia-Reperfusion Injury-Induced Cell Death in the Presence and Absence of Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7346699. [PMID: 36267813 PMCID: PMC9578802 DOI: 10.1155/2022/7346699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022]
Abstract
Recent studies indicate cell death is the hallmark of cardiac pathology in myocardial infarction and diabetes. The AMP-activated protein kinase (AMPK) signalling pathway is considered a putative salvaging phenomenon, plays a decisive role in almost all cellular, metabolic, and survival functions, and therefore entails precise regulation of its activity. AMPK regulates various programmed cell death depending on the stimuli and context, including autophagy, apoptosis, necroptosis, and ferroptosis. There is substantial evidence suggesting that AMPK is down-regulated in cardiac tissues of animals and humans with type 2 diabetes or metabolic syndrome compared to non-diabetic control and that stimulation of AMPK (physiological or pharmacological) can ameliorate diabetes-associated cardiovascular complications, such as myocardial ischemia-reperfusion injury. Furthermore, AMPK is an exciting therapeutic target for developing novel drug candidates to treat cell death in diabetes-associated myocardial ischemia-reperfusion injury. Therefore, in this review, we summarized how AMPK regulates autophagic, apoptotic, necroptotic, and ferroptosis pathways in the context of myocardial ischemia-reperfusion injury in the presence and absence of diabetes.
Collapse
|
32
|
Salazar OR, N. Arun P, Cui G, Bay LK, van Oppen MJH, Webster NS, Aranda M. The coral Acropora loripes genome reveals an alternative pathway for cysteine biosynthesis in animals. SCIENCE ADVANCES 2022; 8:eabq0304. [PMID: 36149959 PMCID: PMC9506716 DOI: 10.1126/sciadv.abq0304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
The metabolic capabilities of animals have been derived from well-studied model organisms and are generally considered to be well understood. In animals, cysteine is an important amino acid thought to be exclusively synthesized through the transsulfuration pathway. Corals of the genus Acropora have lost cystathionine β-synthase, a key enzyme of the transsulfuration pathway, and it was proposed that Acropora relies on the symbiosis with dinoflagellates of the family Symbiodiniaceae for the acquisition of cysteine. Here, we identify the existence of an alternative pathway for cysteine biosynthesis in animals through the analysis of the genome of the coral Acropora loripes. We demonstrate that these coral proteins are functional and synthesize cysteine in vivo, exhibiting previously unrecognized metabolic capabilities of animals. This pathway is also present in most animals but absent in mammals, arthropods, and nematodes, precisely the groups where most of the animal model organisms belong to, highlighting the risks of generalizing findings from model organisms.
Collapse
Affiliation(s)
- Octavio R. Salazar
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Prasanna N. Arun
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Guoxin Cui
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicole S. Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, Australia
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Australia
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Buey RM, Fernández‐Justel D, Jiménez A, Revuelta JL. The gateway to guanine nucleotides: Allosteric regulation of IMP dehydrogenases. Protein Sci 2022; 31:e4399. [PMID: 36040265 PMCID: PMC9375230 DOI: 10.1002/pro.4399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is an evolutionarily conserved enzyme that mediates the first committed step in de novo guanine nucleotide biosynthetic pathway. It is an essential enzyme in purine nucleotide biosynthesis that modulates the metabolic flux at the branch point between adenine and guanine nucleotides. IMPDH plays key roles in cell homeostasis, proliferation, and the immune response, and is the cellular target of several drugs that are widely used for antiviral and immunosuppressive chemotherapy. IMPDH enzyme is tightly regulated at multiple levels, from transcriptional control to allosteric modulation, enzyme filamentation, and posttranslational modifications. Herein, we review recent developments in our understanding of the mechanisms of IMPDH regulation, including all layers of allosteric control that fine-tune the enzyme activity.
Collapse
Affiliation(s)
- Rubén M. Buey
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - David Fernández‐Justel
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - José L. Revuelta
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| |
Collapse
|
34
|
Baudry K, Barbut F, Domenichini S, Guillaumot D, Thy MP, Vanacker H, Majeran W, Krieger-Liszkay A, Issakidis-Bourguet E, Lurin C. Adenylates regulate Arabidopsis plastidial thioredoxin activities through the binding of a CBS domain protein. PLANT PHYSIOLOGY 2022; 189:2298-2314. [PMID: 35736508 PMCID: PMC9342986 DOI: 10.1093/plphys/kiac199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Cystathionine-β-synthase (CBS) domains are found in proteins of all living organisms and have been proposed to play a role as energy sensors regulating protein activities through their adenosyl ligand binding capacity. In plants, members of the CBSX protein family carry a stand-alone pair of CBS domains. In Arabidopsis (Arabidopsis thaliana), CBSX1 and CBSX2 are targeted to plastids where they have been proposed to regulate thioredoxins (TRXs). TRXs are ubiquitous cysteine thiol oxido-reductases involved in the redox-based regulation of numerous enzymatic activities as well as in the regeneration of thiol-dependent peroxidases. In Arabidopsis, 10 TRX isoforms have been identified in plastids and divided into five sub-types. Here, we show that CBSX2 specifically inhibits the activities of m-type TRXs toward two chloroplast TRX-related targets. By testing activation of NADP-malate dehydrogenase and reduction of 2-Cys peroxiredoxin, we found that TRXm1/2 inhibition by CBSX2 was alleviated in the presence of AMP or ATP. We also determined, by pull-down assays, a direct interaction of CBSX2 with reduced TRXm1 and m2 that was abolished in the presence of adenosyl ligands. In addition, we report that, compared with wild-type plants, the Arabidopsis T-DNA double mutant cbsx1 cbsx2 exhibits growth and chlorophyll accumulation defects in cold conditions, suggesting a function of plastidial CBSX proteins in plant stress adaptation. Together, our results show an energy-sensing regulation of plastid TRX m activities by CBSX, possibly allowing a feedback regulation of ATP homeostasis via activation of cyclic electron flow in the chloroplast, to maintain a high energy level for optimal growth.
Collapse
Affiliation(s)
- Kevin Baudry
- CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Gif sur Yvette 91190, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, Gif sur Yvette 91190, France
| | - Félix Barbut
- CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Gif sur Yvette 91190, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, Gif sur Yvette 91190, France
| | | | - Damien Guillaumot
- CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Gif sur Yvette 91190, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, Gif sur Yvette 91190, France
| | - Mai Pham Thy
- CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Gif sur Yvette 91190, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, Gif sur Yvette 91190, France
| | - Hélène Vanacker
- CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Gif sur Yvette 91190, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, Gif sur Yvette 91190, France
| | - Wojciech Majeran
- CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Gif sur Yvette 91190, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, Gif sur Yvette 91190, France
| | - Anja Krieger-Liszkay
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | | | - Claire Lurin
- CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Gif sur Yvette 91190, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, Gif sur Yvette 91190, France
| |
Collapse
|
35
|
Goswami P, Samanta SK, Agarwal T, Ghosh SK. Stress-responsive AMP Kinase like protein regulates encystation of Entamoeba invadens. Mol Biochem Parasitol 2022; 251:111507. [PMID: 35870645 DOI: 10.1016/j.molbiopara.2022.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
Starvation is always accompanied by an increase in the ratio of AMP/ATP followed by activation of AMPK. It is one of the sensors for cellular energy status and is highly conserved across various species. Its role in the stage differentiation process of protozoan species like Giardia, Plasmodium, Trypanosome, and Toxoplasma has been reported. Since Entamoeba undergoes encystation in glucose-starved conditions; it intrigued us to investigate the existence and role of AMPK during the differentiation of trophozoites to the cyst. By employing in silico approaches, we have identified an AMPK homologue which is denominated here as EiAMPK (AMPK-like protein in Entamoeba invadens). Sequence and structural analysis indicate that EiAMPK is sequentially and structurally similar to the AMPK alpha subunit of other organisms. The recombinant form of EiAMPK was functionally active and in accordance, its activity was inhibited by an AMPK-specific inhibitor (eg. Compound C). The increased expression of EiAMPK during different stresses indicated that EiAMPK is a stress-responsive gene. To further investigate, whether EiAMPK has any role in encystation, we employed RNAi-mediated gene silencing that demonstrated its active involvement in encystation. It is known that Entamoeba maintains a flow of glucose from the glycolytic pathway to chitin synthesis for cyst wall formation during encystation. It is conceivable that EiAMPK might have a command over such glucose metabolism. As anticipated, the chitin synthesis was found greatly inhibited in both EiAMPK knockdown and Compound C treated cells, indicating that EiAMPK regulates the cyst wall chitin synthesis.
Collapse
Affiliation(s)
- Piyali Goswami
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sintu Kumar Samanta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sudip K Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
36
|
Komurcu-Bayrak E, Kalkan MA, Coban N, Ozsait-Selcuk B, Bayrak F. Identification of the pathogenic effects of missense variants causing PRKAG2 cardiomyopathy. Arch Biochem Biophys 2022; 727:109340. [PMID: 35787834 DOI: 10.1016/j.abb.2022.109340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pathogenic missense variants in PRKAG2, the gene for the gamma 2 regulatory subunit of adenosine monophosphate-activated protein kinase (AMPK), cause severe progressive cardiac disease and sudden cardiac death, named PRKAG2 cardiomyopathy. In our previous study, we reported a E506K variant in the PRKAG2 gene that was associated with this disease. This study aimed to functionally characterize the three missense variants (E506K, E506Q, and R531G) of PRKAG2 and determine the possible effects on AMPK activity. METHODS The proband was clinically monitored for eight years. To investigate the functional effects of three missense variants of PRKAG2, in vitro mutagenesis experiments using HEK293 cells with wild and mutant transcripts and proteins were comparatively analyzed using quantitative RT-PCR, immunofluorescence staining, and enzyme-linked immunosorbent assay. RESULTS In the long-term follow-up, the proband was deceased due to progressive heart failure. In the in vitro experimental studies, PRKAG2 was overexpressed after 48 h of transfection in three mutated cells, after which the expression levels of PRKAG2 were regressed to the level of wild-type cells in 3-weeks stably transformed cells, except for the cells with E506K variant. E506K, E506Q, and R531G variants had caused a reduction in the AMPK activity and resulted in the formation of cytoplasmic glycogen deposits. CONCLUSION Three missense variants that alter AMPK activity affect a residue in the CBS4 domain associated with ATP/AMP-binding. Detailed information on the influence of PRKAG2 pathogenic variants on AMPK activity would be helpful to improve the treatment and management of patients with metabolic cardiomyopathy.
Collapse
Affiliation(s)
- Evrim Komurcu-Bayrak
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, Istanbul, Turkey; Istanbul University, Istanbul Faculty of Medicine, Departments of Medical Genetics, Istanbul, Turkey.
| | - Muhammed Abdulvahid Kalkan
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, Istanbul, Turkey; Istanbul University, Institute of Graduate Studies in Health Sciences, Istanbul, Turkey.
| | - Neslihan Coban
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, Istanbul, Turkey.
| | - Bilge Ozsait-Selcuk
- Istanbul University, Istanbul Faculty of Medicine, Departments of Medical Genetics, Istanbul, Turkey.
| | - Fatih Bayrak
- Acibadem Altunizade Hospital, Department of Cardiology, Istanbul, Turkey.
| |
Collapse
|
37
|
Flores K, Siques P, Brito J, Arribas SM. AMPK and the Challenge of Treating Hypoxic Pulmonary Hypertension. Int J Mol Sci 2022; 23:ijms23116205. [PMID: 35682884 PMCID: PMC9181235 DOI: 10.3390/ijms23116205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by sustained elevation of pulmonary artery pressure produced by vasoconstriction and hyperproliferative remodeling of the pulmonary artery and subsequent right ventricular hypertrophy (RVH). The search for therapeutic targets for cardiovascular pathophysiology has extended in many directions. However, studies focused on mitigating high-altitude pulmonary hypertension (HAPH) have been rare. Because AMP-activated protein kinase (AMPK) is involved in cardiovascular and metabolic pathology, AMPK is often studied as a potential therapeutic target. AMPK is best characterized as a sensor of cellular energy that can also restore cellular metabolic homeostasis. However, AMPK has been implicated in other pathways with vasculoprotective effects. Notably, cellular metabolic stress increases the intracellular ADP/ATP or AMP/ATP ratio, and AMPK activation restores ATP levels by activating energy-producing catabolic pathways and inhibiting energy-consuming anabolic pathways, such as cell growth and proliferation pathways, promoting cardiovascular protection. Thus, AMPK activation plays an important role in antiproliferative, antihypertrophic and antioxidant pathways in the pulmonary artery in HPH. However, AMPK plays contradictory roles in promoting HPH development. This review describes the main findings related to AMPK participation in HPH and its potential as a therapeutic target. It also extrapolates known AMPK functions to discuss the less-studied HAPH context.
Collapse
Affiliation(s)
- Karen Flores
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
- Correspondence: ; Tel.: +56-572526392
| | - Patricia Siques
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Julio Brito
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Silvia M. Arribas
- Department of Physiology, University Autonoma of Madrid, 28049 Madrid, Spain;
| |
Collapse
|
38
|
Gong X, Yu P, Wu T, He Y, Zhou K, Hua Y, Lin S, Wang T, Huang H, Li Y. Controversial molecular functions of CBS versus non-CBS domain variants of PRKAG2 in arrhythmia and cardiomyopathy: A case report and literature review. Mol Genet Genomic Med 2022; 10:e1962. [PMID: 35588295 PMCID: PMC9266596 DOI: 10.1002/mgg3.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
Background PRKAG2 cardiac syndrome is a rare autosomal dominant genetic disorder caused by a PRKAG2 gene variant. There are several major adverse cardiac presentations, including hypertrophic cardiomyopathy (HCM) and life‐threatening arrhythmia. Two cases with pathogenic variants in the PRKAG2 gene are reported here who presents different cardiac phenotypes. Methods Exome sequencing and variant analysis of PRKAG2 were performed to obtain genetic data, and clinical characteristics were determined. Results The first proband was a 9‐month‐old female infant (Case 1), and was identified with severe DCM and resistant heart failure. The second proband was a 10‐year‐old female infant (Case 2), and presented with HCM and ventricular preexcitation. Exome sequencing identified a de novo c.425C > T (p.T142I) heterozygous variant in the PRKAG2 gene for Case 1, and a c.869A > T (p.K290I) for Case 2. The mutated sites in the protein were labeled and identified as p.K290 in the CBS domain and p.T142 in the non‐CBS domain. Differences in the molecular functions of CBS and non‐CBS domains have not been resolved, and variants might lead to the different cardiomyopathy phenotypes. Single‐cell RNA analysis demonstrated similar expression levels of PRKAG2 in cardiomyocytes and conductive tissues. These results suggest that the arrhythmia induced by the PRKAG2 variant was the primary change, and not secondary to cardiomyopathy. Conclusion In summary, this is the first case report to describe a DCM phenotype with early onset in patients possessing a PRKAG2 c.425C > T (p.T142I) pathogenic variant. Our results aid in understanding the molecular function of non‐CBS variants in terms of the disordered sequence of transcripts. Moreover, we used scRNA‐seq to show that electrically conductive cells express a higher level of PRKAG2 than do cardiomyocytes. Therefore, variants in PRKAG2 are expected to also alter the biological function of the conduction system.
Collapse
Affiliation(s)
- Xue Gong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Peiyu Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, Chengdu Shangjin Nanfu Hospital, Chengdu, China
| | - Ting Wu
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yunru He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - He Huang
- Department of Echocardiography, West China Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Gatica D, Chiong M, Lavandero S, Klionsky DJ. The role of autophagy in cardiovascular pathology. Cardiovasc Res 2022; 118:934-950. [PMID: 33956077 PMCID: PMC8930074 DOI: 10.1093/cvr/cvab158] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic recycling pathway in which cytoplasmic components are sequestered, degraded, and recycled to survive various stress conditions. Autophagy dysregulation has been observed and linked with the development and progression of several pathologies, including cardiovascular diseases, the leading cause of death in the developed world. In this review, we aim to provide a broad understanding of the different molecular factors that govern autophagy regulation and how these mechanisms are involved in the development of specific cardiovascular pathologies, including ischemic and reperfusion injury, myocardial infarction, cardiac hypertrophy, cardiac remodelling, and heart failure.
Collapse
Affiliation(s)
- Damián Gatica
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, USA
| | - Mario Chiong
- Department of Biochemistry and Molecular Biology, Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Olivos 1007, Independencia, Santiago 8380492, Chile
| | - Sergio Lavandero
- Department of Biochemistry and Molecular Biology, Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Olivos 1007, Independencia, Santiago 8380492, Chile
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), 926 JF Gonzalez, Santiago 7860201, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-8573, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, USA
| |
Collapse
|
40
|
Chen S, Lin Y, Zhu Y, Geng L, Cui C, Li Z, Liu H, Chen H, Ju W, Chen M. Atrial Lesions in a Pedigree With PRKAG2 Cardiomyopathy: Involvement of Disrupted AMP-Activated Protein Kinase Signaling. Front Cardiovasc Med 2022; 9:840337. [PMID: 35360035 PMCID: PMC8960295 DOI: 10.3389/fcvm.2022.840337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
PRKAG2 cardiomyopathy is a rare progressive disease characterized by increased ventricular wall thickness and preexcitation. Dysfunction of the protein 5′-AMP-activated protein kinase (AMPK) plays a decisive role in the progression of ventricular lesions. Although patients with the PRKAG2-R302Q mutation have a high incidence of atrial fibrillation (AF), the molecular mechanism contributing to the disease remains unclear. We carried out whole-genome sequencing with linkage analysis in three affected members of a family. Atrial samples were obtained from the proband via surgical intervention. Control atrium biopsies were obtained from patients with persistent AF. Pathological changes were analyzed using the hematoxylin and eosin (H&E), Masson, and periodic acid–Schiff (PAS) staining. The AMPK signaling pathway was investigated by western blot. A murine atrial cardiomyocyte cell line (HL-1) and human induced pluripotent stem derived atrial cardiomyocytes (hiPSC-ACMs) were transfected with an adenovirus carrying the same mutation. We used enzyme linked immunosorbent assay (ELISA) to determine the AMPK activity in HL-1 cells and hiPSC-ACMs overexpressing PRKAG2-R302Q. Pathological results showed a large quantity of glycogen accumulation and vacuolization in cardiomyocytes from the proband atrial tissue. Western blot analysis revealed that the AMPK activity was significantly downregulated compared with that of the controls. Furthermore, remarkable glycogen deposition and impairment of AMPK activity were reproduced in HL-1 cells overexpressing PRKAG2-R302Q. Taken together, PRKAG2-R302Q mutation directly impair atrial cardiomyocytes. PRKAG2-R302Q mutation lead to glycogen deposition and promote the growth of atrial lesions by disrupting the AMPK pathway.
Collapse
Affiliation(s)
- Shaojie Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping Lin
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Le Geng
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Cui
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaomin Li
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hailei Liu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongwu Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weizhu Ju
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Weizhu Ju,
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Minglong Chen,
| |
Collapse
|
41
|
Seebacher F, Beaman J. Evolution of plasticity: metabolic compensation for fluctuating energy demands at the origin of life. J Exp Biol 2022; 225:274636. [PMID: 35254445 DOI: 10.1242/jeb.243214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phenotypic plasticity of physiological functions enables rapid responses to changing environments and may thereby increase the resilience of organisms to environmental change. Here, we argue that the principal hallmarks of life itself, self-replication and maintenance, are contingent on the plasticity of metabolic processes ('metabolic plasticity'). It is likely that the Last Universal Common Ancestor (LUCA), 4 billion years ago, already possessed energy-sensing molecules that could adjust energy (ATP) production to meet demand. The earliest manifestation of metabolic plasticity, switching cells from growth and storage (anabolism) to breakdown and ATP production (catabolism), coincides with the advent of Darwinian evolution. Darwinian evolution depends on reliable translation of information from information-carrying molecules, and on cell genealogy where information is accurately passed between cell generations. Both of these processes create fluctuating energy demands that necessitate metabolic plasticity to facilitate replication of genetic material and (proto)cell division. We propose that LUCA possessed rudimentary forms of these capabilities. Since LUCA, metabolic networks have increased in complexity. Generalist founder enzymes formed the basis of many derived networks, and complexity arose partly by recruiting novel pathways from the untapped pool of reactions that are present in cells but do not have current physiological functions (the so-called 'underground metabolism'). Complexity may thereby be specific to environmental contexts and phylogenetic lineages. We suggest that a Boolean network analysis could be useful to model the transition of metabolic networks over evolutionary time. Network analyses can be effective in modelling phenotypic plasticity in metabolic functions for different phylogenetic groups because they incorporate actual biochemical regulators that can be updated as new empirical insights are gained.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences, A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Julian Beaman
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
42
|
Emerging Role of cAMP/AMPK Signaling. Cells 2022; 11:cells11020308. [PMID: 35053423 PMCID: PMC8774420 DOI: 10.3390/cells11020308] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
The 5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects.
Collapse
|
43
|
Aledavood E, Gheeraert A, Forte A, Vuillon L, Rivalta I, Luque FJ, Estarellas C. Elucidating the Activation Mechanism of AMPK by Direct Pan-Activator PF-739. Front Mol Biosci 2021; 8:760026. [PMID: 34805275 PMCID: PMC8602109 DOI: 10.3389/fmolb.2021.760026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a key energy sensor regulating the cell metabolism in response to energy supply and demand. The evolutionary adaptation of AMPK to different tissues is accomplished through the expression of distinct isoforms that can form up to 12 heterotrimeric complexes, which exhibit notable differences in the sensitivity to direct activators. To comprehend the molecular factors of the activation mechanism of AMPK, we have assessed the changes in the structural and dynamical properties of β1- and β2-containing AMPK complexes formed upon binding to the pan-activator PF-739. The analysis revealed the molecular basis of the PF-739-mediated activation of AMPK and enabled us to identify distinctive features that may justify the slightly higher affinity towards the β1−isoform, such as the β1−Asn111 to β2−Asp111 substitution, which seems to be critical for modulating the dynamical sensitivity of β1- and β2 isoforms. The results are valuable in the design of selective activators to improve the tissue specificity of therapeutic treatment.
Collapse
Affiliation(s)
- Elnaz Aledavood
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, Spain
| | - Aria Gheeraert
- Dipartimento di Chimica Industriale "Toso Montanari" Università di Bologna, Bologna, Italy.,LAMA, University of Savoie Mont Blanc, CNRS, LAMA, Le Bourget du Lac, France
| | - Alessia Forte
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, Spain
| | - Laurent Vuillon
- LAMA, University of Savoie Mont Blanc, CNRS, LAMA, Le Bourget du Lac, France
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale "Toso Montanari" Università di Bologna, Bologna, Italy.,Université de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon, France
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Carolina Estarellas
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Chung MY, Choi HK, Hwang JT. AMPK Activity: A Primary Target for Diabetes Prevention with Therapeutic Phytochemicals. Nutrients 2021; 13:nu13114050. [PMID: 34836306 PMCID: PMC8621568 DOI: 10.3390/nu13114050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes is a metabolic syndrome characterized by inadequate blood glucose control and is associated with reduced quality of life and various complications, significantly shortening life expectancy. Natural phytochemicals found in plants have been traditionally used as medicines for the prevention of chronic diseases including diabetes in East Asia since ancient times. Many of these phytochemicals have been characterized as having few side effects, and scientific research into the mechanisms of action responsible has accumulated mounting evidence for their efficacy. These compounds, which may help to prevent metabolic syndrome disorders including diabetes, act through relevant intracellular signaling pathways. In this review, we examine the anti-diabetic efficacy of several compounds and extracts derived from medicinal plants, with a focus on AMP-activated protein kinase (AMPK) activity.
Collapse
Affiliation(s)
- Min-Yu Chung
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju 55365, Korea; (M.-Y.C.); (H.-K.C.)
| | - Hyo-Kyoung Choi
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju 55365, Korea; (M.-Y.C.); (H.-K.C.)
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju 55365, Korea; (M.-Y.C.); (H.-K.C.)
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-63-219-9315; Fax: +82-63-219-9876
| |
Collapse
|
45
|
Ma C, Liu X, Zuo D. Cloning and characterization of AMP-activated protein kinase genes in Daphnia pulex: Modulation of AMPK gene expression in response to polystyrene nanoparticles. Biochem Biophys Res Commun 2021; 583:114-120. [PMID: 34735872 DOI: 10.1016/j.bbrc.2021.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022]
Abstract
Energy metabolism is essential for almost all organisms. At the molecular level, adenosine monophosphate activated protein kinase (AMPK) plays a vital role in cellular energy homeostasis. Its molecular characterization in invertebrates, including Daphnia pulex, and the understanding of its role in response to environmental contaminants is limited. In this study, three subunits of AMPK (AMPKα, β, and γ) were cloned in D. pulex, and assigned the GenBank accession numbers MT536758, MT536759, and MT536760, respectively. Their full lengths were 2,000, 1,384, and 2594 bp, respectively, and contained open reading frames of 526, 274, and 580 amino acids, respectively. Bioinformatic analysis revealed that the three AMPK subunits all have features representative of the AMPK superfamily, and were correspondingly clustered with each orthologue branch. The three AMPK subunit genes, AMPKα, β, and γ, had the highest similarity to those of other organisms at 82%, 94%, and 71%, respectively. Nanoplastics significantly increased AMPKα expression, but decreased that of AMPKβ and γ. These results identified AMPKα, β, and γ in D. pulex, and showed that they all encode proteins with conserved functional domains. This study provides basic information on how three types of AMPK in aquatic organisms respond to environmental contaminants.
Collapse
Affiliation(s)
- Changan Ma
- School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, 201415, China
| | - Xiaojie Liu
- School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, 201415, China
| | - Di Zuo
- School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, 201415, China.
| |
Collapse
|
46
|
Afinanisa Q, Cho MK, Seong HA. AMPK Localization: A Key to Differential Energy Regulation. Int J Mol Sci 2021; 22:10921. [PMID: 34681581 PMCID: PMC8535671 DOI: 10.3390/ijms222010921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.
Collapse
Affiliation(s)
| | | | - Hyun-A Seong
- Department of Biochemistry, School of Biological Sciences, Chungbuk National University, Cheongju 28644, Korea; (Q.A.); (M.K.C.)
| |
Collapse
|
47
|
Abstract
Cyclic diguanylate (c-di-GMP) signal transduction systems provide bacteria with the ability to sense changing cell status or environmental conditions and then execute suitable physiological and social behaviors in response. In this review, we provide a comprehensive census of the stimuli and receptors that are linked to the modulation of intracellular c-di-GMP. Emerging evidence indicates that c-di-GMP networks sense light, surfaces, energy, redox potential, respiratory electron acceptors, temperature, and structurally diverse biotic and abiotic chemicals. Bioinformatic analysis of sensory domains in diguanylate cyclases and c-di-GMP-specific phosphodiesterases as well as the receptor complexes associated with them reveals that these functions are linked to a diverse repertoire of protein domain families. We describe the principles of stimulus perception learned from studying these modular sensory devices, illustrate how they are assembled in varied combinations with output domains, and summarize a system for classifying these sensor proteins based on their complexity. Biological information processing via c-di-GMP signal transduction not only is fundamental to bacterial survival in dynamic environments but also is being used to engineer gene expression circuitry and synthetic proteins with à la carte biochemical functionalities.
Collapse
|
48
|
AMPK-mTOR Signaling and Cellular Adaptations in Hypoxia. Int J Mol Sci 2021; 22:ijms22189765. [PMID: 34575924 PMCID: PMC8465282 DOI: 10.3390/ijms22189765] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular energy is primarily provided by the oxidative degradation of nutrients coupled with mitochondrial respiration, in which oxygen participates in the mitochondrial electron transport chain to enable electron flow through the chain complex (I-IV), leading to ATP production. Therefore, oxygen supply is an indispensable chapter in intracellular bioenergetics. In mammals, oxygen is delivered by the bloodstream. Accordingly, the decrease in cellular oxygen level (hypoxia) is accompanied by nutrient starvation, thereby integrating hypoxic signaling and nutrient signaling at the cellular level. Importantly, hypoxia profoundly affects cellular metabolism and many relevant physiological reactions induce cellular adaptations of hypoxia-inducible gene expression, metabolism, reactive oxygen species, and autophagy. Here, we introduce the current knowledge of hypoxia signaling with two-well known cellular energy and nutrient sensing pathways, AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1). Additionally, the molecular crosstalk between hypoxic signaling and AMPK/mTOR pathways in various hypoxic cellular adaptions is discussed.
Collapse
|
49
|
Behl T, Gupta A, Sehgal A, Sharma S, Singh S, Sharma N, Diaconu CC, Rahdar A, Hafeez A, Bhatia S, Al-Harrasi A, Bungau S. A spotlight on underlying the mechanism of AMPK in diabetes complications. Inflamm Res 2021; 70:939-957. [PMID: 34319417 DOI: 10.1007/s00011-021-01488-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is one of the centenarian metabolic disorders and is considered as a stellar and leading health issue worldwide. According to the International Diabetes Federation (IDF) Diabetes Atlas and National Diabetes Statistics, the number of diabetic patients will increase at an exponential rate from 463 to 700 million by the year 2045. Thus, there is a great need for therapies targeting functions that can help in maintaining the homeostasis of glucose levels and improving insulin sensitivity. 5' adenosine monophosphate-activated protein kinase (AMPK) activation, by various direct and indirect factors, might help to overcome the hurdles (like insulin resistance) associated with the conventional approach. MATERIALS AND RESULTS A thorough review and analysis was conducted using various database including MEDLINE and EMBASE databases, with Google scholar using various keywords. This extensive review concluded that various drugs (plant-based, synthetic indirect/direct activators) are available, showing tremendous potential in maintaining the homeostasis of glucose and lipid metabolism, without causing insulin resistance, and improving insulin sensitivity. Moreover, these drugs have an effect against diabetes and are therapeutically beneficial in the treatment of diabetes-associated complications (neuropathy and nephropathy) via mechanism involving inhibition of nuclear translocation of SMAD4 (SMAD family member) expression and association with peripheral nociceptive neurons mediated by AMPK. CONCLUSION From the available information, it may be concluded that various indirect/direct activators show tremendous potential in maintaining the homeostasis of glucose and lipid metabolism, without resulting in insulin resistance, and may improve insulin sensitivity, as well. Therefore, in a nut shell, it may be concluded that the regulation of APMK functions by various direct/indirect activators may bring promising results. These activators may emerge as a novel therapy in diabetes and its associated complications.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sanchay Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Camelia Cristina Diaconu
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, Bucharest, Romania.,Department 5, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur, Uttar Pradesh, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana, India.,Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
50
|
Involvement of the MxtR/ErdR (CrbS/CrbR) Two-Component System in Acetate Metabolism in Pseudomonas putida KT2440. Microorganisms 2021; 9:microorganisms9081558. [PMID: 34442637 PMCID: PMC8402216 DOI: 10.3390/microorganisms9081558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/20/2022] Open
Abstract
MxtR/ErdR (also called CrbS/CrbR) is a two-component system previously identified as important for the utilization of acetate in Vibrio cholerae and some Pseudomonas species. In addition, evidence has been found in Pseudomonas aeruginosa for a role in regulating the synthesis and expression, respectively, of virulence factors such as siderophores and RND transporters. In this context, we investigated the physiological role of the MxtR/ErdR system in the soil bacterium Pseudomonas putida KT2440. To that end, mxtR and erdR were individually deleted and the ability of the resulting mutants to metabolize different carbon sources was analyzed in comparison to wild type. We also assessed the impact of the deletions on siderophore production, expression of mexEF-oprN (RND transporter), and the biocontrol properties of the strain. Furthermore, the MxtR/ErdR-dependent expression of putative target genes and binding of ErdR to respective promoter regions were analyzed. Our results indicated that the MxtR/ErdR system is active and essential for acetate utilization in P. putida KT2440. Expression of scpC, pp_0354, and acsA-I was stimulated by acetate, while direct interactions of ErdR with the promoter regions of the genes scpC, pp_0354, and actP-I were demonstrated by an electromobility shift assay. Finally, our results suggested that MxtR/ErdR is neither involved in regulating siderophore production nor the expression of mexEF-oprN in P. putida KT2440 under the conditions tested.
Collapse
|