1
|
Gurevich E, Landau D. Tubulointerstitial nephritis in children and adolescents. Pediatr Nephrol 2024:10.1007/s00467-024-06526-y. [PMID: 39320551 DOI: 10.1007/s00467-024-06526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
The tubulointerstitial compartment comprises most of the kidney parenchyma. Inflammation in this compartment (tubulointerstitial nephritis-TIN) can be acute and resolves if the offending factor is withdrawn or may enter a chronic process leading to irreversible kidney damage. Etiologic factors differ, including different exposures, infections, and autoimmune and genetic tendency, and the initial damage can be acute, recurrent, or permanent, determining whether the acute inflammatory process will lead to complete healing or to a chronic course of inflammation leading to fibrosis. Clinical and laboratory findings of TIN are often nonspecific, which may lead to delayed diagnosis and a poorer clinical outcome. We provide a general review of TIN, with special mention of the molecular pathophysiological mechanisms of the associated kidney damage.
Collapse
Affiliation(s)
- Evgenia Gurevich
- Pediatrics Department, Barzilai University Medical Center, Ashqelon, Israel.
- Ben Gurion University of Negev, Faculty of Health Sciences, Beer Sheva, Israel.
| | - Daniel Landau
- Department of Nephrology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Nanamatsu A, de Araújo L, LaFavers KA, El-Achkar TM. Advances in uromodulin biology and potential clinical applications. Nat Rev Nephrol 2024:10.1038/s41581-024-00881-7. [PMID: 39160319 DOI: 10.1038/s41581-024-00881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Uromodulin (also known as Tamm-Horsfall protein) is a kidney-specific glycoprotein secreted bidirectionally into urine and into the circulation, and it is the most abundant protein in normal urine. Although the discovery of uromodulin predates modern medicine, its significance in health and disease has been rather enigmatic. Research studies have gradually revealed that uromodulin exists in multiple forms and has important roles in urinary and systemic homeostasis. Most uromodulin in urine is polymerized into highly organized filaments, whereas non-polymeric uromodulin is detected both in urine and in the circulation, and can have distinct roles. The interactions of uromodulin with the immune system, which were initially reported to be a key role of this protein, are now better understood. Moreover, the discovery that uromodulin is associated with a spectrum of kidney diseases, including acute kidney injury, chronic kidney disease and autosomal-dominant tubulointerstitial kidney disease, has further accelerated investigations into the role of this protein. These discoveries have prompted new questions and ushered in a new era in uromodulin research. Here, we delineate the latest discoveries in uromodulin biology and its emerging roles in modulating kidney and systemic diseases, and consider future directions, including its potential clinical applications.
Collapse
Affiliation(s)
- Azuma Nanamatsu
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Larissa de Araújo
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kaice A LaFavers
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Chen C, Zhong W, Zheng H, Dai G, Zhao W, Wang Y, Dong Q, Shen B. The role of uromodulin in cardiovascular disease: a review. Front Cardiovasc Med 2024; 11:1417593. [PMID: 39049957 PMCID: PMC11267628 DOI: 10.3389/fcvm.2024.1417593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Uromodulin, also referred to as Tamm Horsfall protein (THP), is a renal protein exclusively synthesized by the kidneys and represents the predominant urinary protein under normal physiological conditions. It assumes a pivotal role within the renal system, contributing not only to ion transport and immune modulation but also serving as a critical factor in the prevention of urinary tract infections and kidney stone formation. Emerging evidence indicates that uromodulin may serve as a potential biomarker extending beyond renal function. Recent clinical investigations and Mendelian randomization studies have unveiled a discernible association between urinary regulatory protein levels and cardiovascular events and mortality. This review primarily delineates the intricate relationship between uromodulin and cardiovascular disease, elucidates its predictive utility as a novel biomarker for cardiovascular events, and delves into its involvement in various physiological and pathophysiological facets of the cardiovascular system, incorporating recent advancements in corresponding genetics.
Collapse
Affiliation(s)
- Chengqian Chen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wentao Zhong
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Hao Zheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Gaoying Dai
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Qi Dong
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Barr SI, Bessa SS, Mohamed TM, Abd El-Azeem EM. Exosomal UMOD gene expression and urinary uromodulin level as early noninvasive diagnostic biomarkers for diabetic nephropathy in type 2 diabetic patients. Diabetol Int 2024; 15:389-399. [PMID: 39101162 PMCID: PMC11291796 DOI: 10.1007/s13340-023-00686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/11/2023] [Indexed: 08/06/2024]
Abstract
Background Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Exosomes are promising biomarkers for disease diagnosis and uromodulin is a kidney-specific protein. So, this study was designed to investigate the change in the gene expression of urinary exosomal uromodulin mRNA and urinary uromodulin level and determine the diagnostic potential of these noninvasive biomarkers in the early stage of diabetic nephropathy in type 2 diabetic patients. Method This study included 100 participants; urinary exosomes were isolated using polyethylene glycol (PEG). Gene expression of exosomal uromodulin mRNA was determined by quantitative real-time polymerase chain reaction (q-RT-PCR). The urinary uromodulin levels were determined by an enzyme-linked immunosorbent assay (ELISA). Result In this study, the gene expression of exosomal uromodulin (UMOD) mRNA and the level of urinary uromodulin showed a significant increase in all diabetic groups with and without nephropathy compared to the control group. The exosomal UMOD mRNA showed a significant positive correlation with urinary uromodulin in all groups. Multiple logistic regression showed that urinary uromodulin was an independent determinant for DN. A diagnostic model of two indicators, exosomal UMOD mRNA and urinary uromodulin, can significantly predict DN. The area under the curve is 0.095, with a 95% confidence interval of 0.98-1, and 0.81, with a 95% confidence interval of 0.69-0.92, for the exosomal UMOD mRNA and urinary uromodulin, respectively. Conclusion Urinary exosomal mRNA of UMOD and urinary uromodulin levels are progressively elevated in an early stage of DN, even before the microalbuminuria stage, so they could be used as early predictors for DN.
Collapse
Affiliation(s)
- Shaimaa I. Barr
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sahar S. Bessa
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Tarek M. Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | |
Collapse
|
5
|
Karagiannidis AG, Theodorakopoulou MP, Pella E, Sarafidis PA, Ortiz A. Uromodulin biology. Nephrol Dial Transplant 2024; 39:1073-1087. [PMID: 38211973 PMCID: PMC11210992 DOI: 10.1093/ndt/gfae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 01/13/2024] Open
Abstract
Uromodulin is a kidney-specific glycoprotein which is exclusively produced by the epithelial cells lining the thick ascending limb and early distal convoluted tubule. It is currently recognized as a multifaceted player in kidney physiology and disease, with discrete roles for intracellular, urinary, interstitial and serum uromodulin. Among these, uromodulin modulates renal sodium handling through the regulation of tubular sodium transporters that reabsorb sodium and are targeted by diuretics, such as the loop diuretic-sensitive Na+-K+-2Cl- cotransporter type 2 (NKCC2) and the thiazide-sensitive Na+/Cl- cotransporter (NCC). Given these roles, the contribution of uromodulin to sodium-sensitive hypertension has been proposed. However, recent studies in humans suggest a more complex interaction between dietary sodium intake, uromodulin and blood pressure. This review presents an updated overview of the uromodulin's biology and its various roles, and focuses on the interaction between uromodulin and sodium-sensitive hypertension.
Collapse
Affiliation(s)
- Artemios G Karagiannidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marieta P Theodorakopoulou
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eva Pella
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis A Sarafidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| |
Collapse
|
6
|
Zhang Z, Tanaka I, Nakahashi-Ouchida R, Ernst PB, Kiyono H, Kurashima Y. Glycoprotein 2 as a gut gate keeper for mucosal equilibrium between inflammation and immunity. Semin Immunopathol 2024; 45:493-507. [PMID: 38170255 PMCID: PMC11136868 DOI: 10.1007/s00281-023-00999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Glycoprotein 2 (GP2) is a widely distributed protein in the digestive tract, contributing to mucosal barrier maintenance, immune homeostasis, and antigen-specific immune response, while also being linked to inflammatory bowel disease (IBD) pathogenesis. This review sheds light on the extensive distribution of GP2 within the gastrointestinal tract and its intricate interplay with the immune system. Furthermore, the significance of GP2 autoantibodies in diagnosing and categorizing IBD is underscored, alongside the promising therapeutic avenues for modulating GP2 to regulate immunity and maintain mucosal balance.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
| | - Izumi Tanaka
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
| | - Rika Nakahashi-Ouchida
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Peter B Ernst
- Department of Medicine, School of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), San Diego, CA, USA
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, CA, USA
- Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, CA, USA
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
| | - Hiroshi Kiyono
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Department of Medicine, School of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), San Diego, CA, USA
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- HanaVax Inc., Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan.
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan.
- Department of Medicine, School of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), San Diego, CA, USA.
- Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan.
| |
Collapse
|
7
|
Thielemans R, Speeckaert R, Delrue C, De Bruyne S, Oyaert M, Speeckaert MM. Unveiling the Hidden Power of Uromodulin: A Promising Potential Biomarker for Kidney Diseases. Diagnostics (Basel) 2023; 13:3077. [PMID: 37835820 PMCID: PMC10572911 DOI: 10.3390/diagnostics13193077] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Uromodulin, also known as Tamm-Horsfall protein, represents the predominant urinary protein in healthy individuals. Over the years, studies have revealed compelling associations between urinary and serum concentrations of uromodulin and various parameters, encompassing kidney function, graft survival, cardiovascular disease, glucose metabolism, and overall mortality. Consequently, there has been a growing interest in uromodulin as a novel and effective biomarker with potential applications in diverse clinical settings. Reduced urinary uromodulin levels have been linked to an elevated risk of acute kidney injury (AKI) following cardiac surgery. In the context of chronic kidney disease (CKD) of different etiologies, urinary uromodulin levels tend to decrease significantly and are strongly correlated with variations in estimated glomerular filtration rate. The presence of uromodulin in the serum, attributable to basolateral epithelial cell leakage in the thick ascending limb, has been observed. This serum uromodulin level is closely associated with kidney function and histological severity, suggesting its potential as a biomarker capable of reflecting disease severity across a spectrum of kidney disorders. The UMOD gene has emerged as a prominent locus linked to kidney function parameters and CKD risk within the general population. Extensive research in multiple disciplines has underscored the biological significance of the top UMOD gene variants, which have also been associated with hypertension and kidney stones, thus highlighting the diverse and significant impact of uromodulin on kidney-related conditions. UMOD gene mutations are implicated in uromodulin-associated kidney disease, while polymorphisms in the UMOD gene show a significant association with CKD. In conclusion, uromodulin holds great promise as an informative biomarker, providing valuable insights into kidney function and disease progression in various clinical scenarios. The identification of UMOD gene variants further strengthens its relevance as a potential target for better understanding kidney-related pathologies and devising novel therapeutic strategies. Future investigations into the roles of uromodulin and regulatory mechanisms are likely to yield even more profound implications for kidney disease diagnosis, risk assessment, and management.
Collapse
Affiliation(s)
- Raïsa Thielemans
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium; (R.T.); (C.D.)
| | | | - Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium; (R.T.); (C.D.)
| | - Sander De Bruyne
- Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.D.B.); (M.O.)
| | - Matthijs Oyaert
- Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.D.B.); (M.O.)
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium; (R.T.); (C.D.)
- Research Foundation Flanders, 1000 Brussels, Belgium
| |
Collapse
|
8
|
Colceriu MC, Aldea PL, Răchișan AL, Clichici S, Sevastre-Berghian A, Mocan T. Vesicoureteral Reflux and Innate Immune System: Physiology, Physiopathology, and Clinical Aspects. J Clin Med 2023; 12:jcm12062380. [PMID: 36983379 PMCID: PMC10058356 DOI: 10.3390/jcm12062380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Vesicoureteral reflux represents one of the most concerning topics in pediatric nephrology due to its frequency, clinical expression with the potential to evolve into chronic kidney disease, and last but not least, its socio-economic implications. The presence of vesicoureteral reflux, the occurrence of urinary tract infections, and the development of reflux nephropathy, hypertension, chronic kidney disease, and finally, end-stage renal disease represent a progressive spectrum of a single physiopathological condition. For the proper management of these patients with the best clinical outcomes, and in an attempt to prevent the spread of uropathogens' resistance to antibacterial therapy, we must better understand the physiopathology of urinary tract infections in patients with vesicoureteral reflux, and at the same time, we should acknowledge the implication and response of the innate immune system in this progressive pathological condition. The present paper focuses on theoretical aspects regarding the physiopathology of vesicoureteral reflux and the interconditionality between urinary tract infections and the innate immune system. In addition, we detailed aspects regarding cytokines, interleukins, antimicrobial peptides, and proteins involved in the innate immune response as well as their implications in the physiopathology of reflux nephropathy. New directions of study should focus on using these innate immune system effectors as diagnostic and therapeutic tools in renal pathology.
Collapse
Affiliation(s)
- Marius-Cosmin Colceriu
- Department of Functional Biosciences, Discipline of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Paul Luchian Aldea
- Department of Community Medicine, Discipline of Public Health and Management, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Andreea-Liana Răchișan
- Department of Mother and Child, Discipline of Pediatrics II, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Functional Biosciences, Discipline of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Alexandra Sevastre-Berghian
- Department of Functional Biosciences, Discipline of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Teodora Mocan
- Department of Functional Biosciences, Discipline of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400158 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Gueye S, Gauthier M, Benyahia R, Trape L, Dahri S, Kounde C, Perier T, Meklati L, Guelib I, Faye M, Rostaing L. [Nephropathy associated with monoclonal immunoglobulins: From clonal expansion B to renal toxicity of pathological immunoglobulins]. Nephrol Ther 2022; 18:591-603. [PMID: 36428151 DOI: 10.1016/j.nephro.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022]
Abstract
Germinal center regulation pathways are often involved in lymphomagenesis and myelomagenesis. Most of the lymphomas (and multiple myeloma) derive from post-germinal center B-cells that have undergone somatic hypermutation and class switch recombination. Hence, B-cell clonal expansion can be responsible for the presence of a monoclonal component (immunoglobulin) of variable titer which, owing to physicochemical properties, can provoke pathologically defined entities of diseases. These diseases can affect any functional part of the kidney, by multiple mechanisms, either well known or not. The presence of renal deposition is influenced by germinal gene involved, immunoglobulin primary structure, post-translational modifications and microenvironmental interactions. The two ways immunoglobulin can cause kidney toxicity are (i) an excess of production (overcoming catabolism power by proximal tubule epithelial cells) with an excess of free light chains within the distal tubules and a subsequent risk of precipitation due to local physicochemical properties; (ii) by structural characteristics that predispose immunoglobulin to a renal disease (whatever their titer). The purpose of this manuscript is to review literature concerning the pathophysiology of renal toxicities of clonal immunoglobulin, from molecular B-cell expansion mechanisms to immunoglobulin renal toxicity.
Collapse
Affiliation(s)
- Serigne Gueye
- Service de néphrologie-dialyse, CH de Cahors, France.
| | | | | | - Lucas Trape
- Service de néphrologie-dialyse, CH de Cahors, France
| | - Souad Dahri
- Service de néphrologie-dialyse, CH de Cahors, France
| | | | - Thomas Perier
- Service de néphrologie-dialyse, CH de Cahors, France
| | | | | | - Maria Faye
- Université Cheikh Anta Diop, Dakar, Sénégal
| | - Lionel Rostaing
- Service de néphrologie-dialyse, CH de Cahors, France; Service de néphrologie, hémodialyse, aphérèses et greffe rénale, France; Inserm U563, IFR-BMT, CHU de Purpan, Toulouse, France; Université Grenoble-Alpes, France
| |
Collapse
|
10
|
Mary S, Boder P, Padmanabhan S, McBride MW, Graham D, Delles C, Dominiczak AF. Role of Uromodulin in Salt-Sensitive Hypertension. Hypertension 2022; 79:2419-2429. [PMID: 36378920 PMCID: PMC9553220 DOI: 10.1161/hypertensionaha.122.19888] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The exclusive expression of uromodulin in the kidneys has made it an intriguing protein in kidney and cardiovascular research. Genome-wide association studies discovered variants of uromodulin that are associated with chronic kidney diseases and hypertension. Urinary and circulating uromodulin levels reflect kidney and cardiovascular health as well as overall mortality. More recently, Mendelian randomization studies have shown that genetically driven levels of uromodulin have a causal and adverse effect on kidney function. On a mechanistic level, salt sensitivity is an important factor in the pathophysiology of hypertension, and uromodulin is involved in salt reabsorption via the NKCC2 (Na+-K+-2Cl- cotransporter) on epithelial cells of the ascending limb of loop of Henle. In this review, we provide an overview of the multifaceted physiology and pathophysiology of uromodulin including recent advances in its genetics; cellular trafficking; and mechanistic and clinical studies undertaken to understand the complex relationship between uromodulin, blood pressure, and kidney function. We focus on tubular sodium reabsorption as one of the best understood and pathophysiologically and clinically most important roles of uromodulin, which can lead to therapeutic interventions.
Collapse
Affiliation(s)
- Sheon Mary
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Philipp Boder
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Sandosh Padmanabhan
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Martin W. McBride
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Anna F. Dominiczak
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Luda KM, Da Silva C, Ahmadi F, Mowat AM, Ohno H, Kotarsky K, Agace WW. Identification and characterization of murine glycoprotein 2-expressing intestinal dendritic cells. Scand J Immunol 2022; 96:e13219. [PMID: 37807915 PMCID: PMC9786990 DOI: 10.1111/sji.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
The intestinal lamina propria (LP) contains distinct subsets of classical dendritic cells (cDC), each playing key non-redundant roles in intestinal immune homeostasis. Here, we show that glycoprotein 2 (GP2), a GPI-anchored protein and receptor for bacterial type-I fimbriae, is selectively expressed by CD103+CD11b+ cDC in the murine small intestine (SI). GP2 expression was induced on CD103+CD11b+ cDC within the SI-LP and was regulated by IRF4, TGFβR1- and retinoic acid signalling. Mice selectively lacking Gp2 on CD103+CD11b+ cDC (huLang-Cre.gp2fl/fl mice) had normal numbers and proportions of innate and adaptive immune cells in the SI-LP suggesting that GP2 expression by CD103+CD11b+ cDC is not required for intestinal immune homoeostasis.
Collapse
Affiliation(s)
- Katarzyna M Luda
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Clement Da Silva
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Fatemeh Ahmadi
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Allan Mcl Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Knut Kotarsky
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - William W Agace
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Mucosal Immunology Laboratory, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
12
|
The Effect of miR-505-5p on Inhibition of Serum Uromodulin Ameliorates Myocardial Inflammation and Apoptosis Induced by Ischemia-Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3521971. [PMID: 36225178 PMCID: PMC9550459 DOI: 10.1155/2022/3521971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Background It has been found that miR-505-5p is closely related to cardiovascular metabolic risk factors. Nonetheless, there is little research analyzing miR-505-5p for its role as well as molecular mechanism in myocardial injury caused by ischemia-reperfusion (I/R). Methods This work utilized quantitative reverse transcriptase PCR (qRT-PCR) for detecting miR-505-5p and serum uromodulin (sUmod) levels. sUmod, interleukin-1beta (IL-1β), IL-6, IL-10, caspase7, caspase9, tumor necrosis factor-alpha (TNF-α), Bax, and Bcl-xL expression was detected by western blot. Bioinformatics database was used for target prediction and miR-505-5's target was determined by luciferase reporter gene assay. Results Relative to sham group, sUmod was highly expressed within myocardial I/R injury (MIRI), whereas sUmod silencing significantly decreased the heart weight/body weight ratio, reduced serum myocardial enzymes expression, ameliorated I/R-mediated myocardial apoptosis, and inflammation. TargetScan bioinformatics database and luciferase reporter genes confirmed that sUmod was miR-505-5p's direct target gene, besides, miR-505-5p overexpression significantly improved the myocardial injury score, increased IL-10, decreased TNF-α, IL-1β, IL-6 expression, decreased caspase7, caspase9, Bax expression, and increased Bcl-xL expression. More importantly, overexpression of sUmod abolished miR-505-5p overexpression's role in I/R-mediated myocardial apoptosis and inflammation. Conclusion miR-505-5p can improve I/R-mediated myocardial apoptosis and inflammation by targeting sUmod. In this study, miR-505-5p is related to MIRI pathogenesis, which provides the new possible targeted therapy in patients with MIRI.
Collapse
|
13
|
Akwo EA, Chen HC, Liu G, Triozzi JL, Tao R, Yu Z, Chung CP, Giri A, Ikizler TA, Stein CM, Siew ED, Feng Q, Robinson-Cohen C, Hung AM. Phenome-Wide Association Study of UMOD Gene Variants and Differential Associations With Clinical Outcomes Across Populations in the Million Veteran Program a Multiethnic Biobank. Kidney Int Rep 2022; 7:1802-1818. [PMID: 35967117 PMCID: PMC9366371 DOI: 10.1016/j.ekir.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Common variants in the UMOD gene are considered an evolutionary adaptation against urinary tract infections (UTIs) and have been implicated in kidney stone formation, chronic kidney disease (CKD), and hypertension. However, differences in UMOD variant-phenotype associations across population groups are unclear. Methods We tested associations between UMOD/PDILT variants and up to 1528 clinical diagnosis codes mapped to phenotype groups in the Million Veteran Program (MVP), using published phenome-wide association study (PheWAS) methodology. Associations were tested using logistic regression adjusted for age, sex, and 10 principal components of ancestry. Bonferroni correction for multiple comparisons was applied. Results Among 648,593 veterans, mean (SD) age was 62 (14) years; 9% were female, 19% Black, and 8% Hispanic. In White patients, the rs4293393 UMOD risk variant associated with increased uromodulin was associated with increased odds of CKD (odds ratio [OR]: 1.22, 95% CI: 1.20-1.24, P = 5.90 × 10-111), end-stage kidney disease (OR: 1.17, 95% CI: 1.11-1.24, P = 2.40 × 10-09), and hypertension (OR: 1.03, 95% CI: 1.05-1.05, P = 2.11 × 10-06) and significantly lower odds of UTIs (OR: 0.94, 95% CI: 0.92-0.96, P = 1.21 × 10-10) and kidney calculus (OR: 0.85, 95% CI: 0.83-0.86, P = 4.27 × 10-69). Similar findings were observed across UMOD/PDILT variants. The rs77924615 PDILT variant had stronger associations with acute cystitis in White female (OR: 0.73, 95% CI: 0.59-0.91, P = 4.98 × 10-03) versus male (OR: 0.99, 95% CI: 0.89-1.11, P = 8.80 × 10-01) (P interaction = 0.01) patients. In Black patients, the rs77924615 PDILT variant was significantly associated with pyelonephritis (OR: 0.65, 95% CI: 0.54-0.79, P = 1.05 × 10-05), whereas associations with UMOD promoter variants were attenuated. Conclusion Robust associations were observed between UMOD/PDILT variants linked with increased uromodulin expression and lower odds of UTIs and calculus and increased odds of CKD and hypertension. However, these associations varied significantly across ancestry groups and sex.
Collapse
Affiliation(s)
- Elvis A. Akwo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ge Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jefferson L. Triozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Nashville, Tennessee, USA
| | - Zhihong Yu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cecilia P. Chung
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Nashville, Tennessee, USA
- Division of Rheumatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ayush Giri
- Vanderbilt Genetics Institute, Nashville, Tennessee, USA
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - T. Alp Ikizler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - C. Michael Stein
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward D. Siew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Adriana M. Hung
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - the VA Million Veteran Program12
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Nashville, Tennessee, USA
- Division of Rheumatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Correll VL, Otto JJ, Risi CM, Main BP, Boutros PC, Kislinger T, Galkin VE, Nyalwidhe JO, Semmes OJ, Yang L. Optimization of small extracellular vesicle isolation from expressed prostatic secretions in urine for in-depth proteomic analysis. J Extracell Vesicles 2022; 11:e12184. [PMID: 35119778 PMCID: PMC8815402 DOI: 10.1002/jev2.12184] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 01/23/2023] Open
Abstract
The isolation and subsequent molecular analysis of extracellular vesicles (EVs) derived from patient samples is a widely used strategy to understand vesicle biology and to facilitate biomarker discovery. Expressed prostatic secretions in urine are a tumor proximal fluid that has received significant attention as a source of potential prostate cancer (PCa) biomarkers for use in liquid biopsy protocols. Standard EV isolation methods like differential ultracentrifugation (dUC) co-isolate protein contaminants that mask lower-abundance proteins in typical mass spectrometry (MS) protocols. Further complicating the analysis of expressed prostatic secretions, uromodulin, also known as Tamm-Horsfall protein (THP), is present at high concentrations in urine. THP can form polymers that entrap EVs during purification, reducing yield. Disruption of THP polymer networks with dithiothreitol (DTT) can release trapped EVs, but smaller THP fibres co-isolate with EVs during subsequent ultracentrifugation. To resolve these challenges, we describe here a dUC method that incorporates THP polymer reduction and alkaline washing to improve EV isolation and deplete both THP and other common protein contaminants. When applied to human expressed prostatic secretions in urine, we achieved relative enrichment of known prostate and prostate cancer-associated EV-resident proteins. Our approach provides a promising strategy for global proteomic analyses of urinary EVs.
Collapse
Affiliation(s)
- Vanessa L. Correll
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Joseph J. Otto
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Cristina M. Risi
- Department of Physiological SciencesEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Brian P. Main
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Paul C. Boutros
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of UrologyUniversity of CaliforniaLos AngelesCaliforniaUSA
- Institute for Precision HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
- Jonsson Comprehensive Cancer CenterUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Thomas Kislinger
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Vitold E. Galkin
- Department of Physiological SciencesEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Julius O. Nyalwidhe
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - O. John Semmes
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Lifang Yang
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| |
Collapse
|
15
|
Jordanova E, Samardzic V, Pekovic-Perunicic G, Tica-Jevtic J, Simic-Ogrizovic S. THE IMPORTANCE OF DETERMINING THE UROMODULIN SERUM CONCENTRATION IN DIABETES MELLITUS TYPE 2 PATIENTS. SANAMED 2022. [DOI: 10.24125/sanamed.v16i3.528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Kolbe KR, Sanches TR, Fanelli C, Garnica MR, Urbano de Castro L, Gooch K, Thomas S, Taylor S, Gorringe A, Noronha IDL, Andrade L. Acute kidney injury in a mouse model of meningococcal disease. Int J Immunopathol Pharmacol 2021; 35:20587384211056507. [PMID: 34930061 PMCID: PMC8725215 DOI: 10.1177/20587384211056507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Introduction Meningococcal disease is associated with high mortality. When acute kidney injury (AKI)
occurs in patients with severe meningococcal disease, it is typically attributable to
sepsis, although meningococcal disease and lipopolysaccharide release are rarely
investigated. Therefore, we evaluated renal tissue in a mouse model of meningococcal
disease. Methods Female BALB/c mice were induced to AKI by meningococcal challenge. Markers of renal
function were evaluated in infected and control mice. Results In the infected mice, serum concentrations of tumor necrosis factor alpha, interferon
gamma, interleukins (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, and IL-12), and
granulocyte–macrophage colony-stimulating factor were elevated, as was renal
interstitial infiltration with lymphocytes and neutrophils (p < 0.01
for the latter). Histological analysis showed meningococcal microcolonies in the renal
interstitium, without acute tubular necrosis. Infected mice also showed elevated renal
expression of toll-like receptor 2, toll-like receptor 4, and Tamm–Horsfall protein. The
expression of factors in the intrinsic pathway of apoptosis was equal to or lower than
that observed in the control mice. Urinary sodium and potassium were also lower in
infected mice, probably due to a tubular defect. Conclusion Our findings corroborate those of other studies of AKI in sepsis. To our knowledge,
this is the first time that meningococci have been identified in renal interstitium and
that the resulting apoptosis and inflammation have been evaluated. However, additional
studies are needed in order to elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Karin R Kolbe
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | - Talita R Sanches
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | - Camilla Fanelli
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | - Margoth R Garnica
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | | | | | | - Irene de L Noronha
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
17
|
Then C, Herder C, Thorand B, Sujana C, Heier M, Meisinger C, Peters A, Koenig W, Rathmann W, Roden M, Stumvoll M, Maalmi H, Then H, Ferrari U, Scherberich J, Seissler J. Association of serum uromodulin with adipokines in dependence of type 2 diabetes. Cytokine 2021; 150:155786. [PMID: 34920231 DOI: 10.1016/j.cyto.2021.155786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/24/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND The renal tubular glycoprotein uromodulin is associated with obesity and type 2 diabetes, but the underlying mechanisms are elusive. We investigated the association of serum uromodulin with adipokines and tested the effect modification by diabetes status. METHODS The associations of serum uromodulin with eight adipokines were assessed in 795-1080 participants of the KORA F4 study aged 62-81 years using linear regression models adjusted for sex, age, BMI, estimated glomerular filtration rate and diabetes. Significant associations were assessed for effect modification by diabetes status. We further tested using logistic regression whether adjustment for the significant adipokines affected the association of uromodulin with type 2 diabetes. RESULTS Serum uromodulin was inversely associated with chemerin and retinol-binding protein-4 after multivariable adjustment (p < 0.001) and Bonferroni correction for multiple testing. No significant association was observed between uromodulin and the other adipokines (leptin, adiponectin, secreted frizzled-related protein 5, progranulin, omentin-1 and vaspin) after correcting for multiple testing. The association of uromodulin with chemerin and retinol-binding protein-4 was stronger in participants with type 2 diabetes than in participants without diabetes (p for interaction < 0.05). However, inclusion of chemerin and retinol-binding protein-4 in logistic regression models did not attenuate the association of serum uromodulin with diabetes. CONCLUSIONS Serum uromodulin was inversely associated with the predominantly pro-inflammatory adipokines chemerin and retinol-binding protein-4. The associations were stronger in participants with type 2 diabetes compared to participants without diabetes. However, the association of serum uromodulin with type 2 diabetes was independent of chemerin and retinol-binding protein-4.
Collapse
Affiliation(s)
- Cornelia Then
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany; Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany.
| | - Christian Herder
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Germany; Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Chaterina Sujana
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; KORA Study Centre, University Hospital Augsburg, Augsburg, Germany
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Augsburg, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany; Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany; Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Wolfgang Rathmann
- Institute of Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Germany; Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | | | - Haifa Maalmi
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Germany; Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Germany
| | | | - Uta Ferrari
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany
| | - Jürgen Scherberich
- Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-Universität, Munich, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany; Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany; German Center for Diabetes Research (DZD), Partner München-Neuherberg, Germany
| | | |
Collapse
|
18
|
Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 2021; 135:201-227. [PMID: 33416083 PMCID: PMC7796315 DOI: 10.1042/cs20190895] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
Collapse
|
19
|
Role of Dendritic Cell in Diabetic Nephropathy. Int J Mol Sci 2021; 22:ijms22147554. [PMID: 34299173 PMCID: PMC8308035 DOI: 10.3390/ijms22147554] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/18/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most significant microvascular complications in diabetic patients. DN is the leading cause of end-stage renal disease, accounting for approximately 50% of incident cases. The current treatment options, such as optimal control of hyperglycemia and elevated blood pressure, are insufficient to prevent its progression. DN has been considered as a nonimmune, metabolic, or hemodynamic glomerular disease initiated by hyperglycemia. However, recent studies suggest that DN is an inflammatory disease, and immune cells related with innate and adaptive immunity, such as macrophage and T cells, might be involved in its development and progression. Although it has been revealed that kidney dendritic cells (DCs) accumulation in the renal tissue of human and animal models of DN require activated T cells in the kidney disease, little is known about the function of DCs in DN. In this review, we describe kidney DCs and their subsets, and the role in the pathogenesis of DN. We also suggest how to improve the kidney outcomes by modulating kidney DCs optimally in the patients with DN.
Collapse
|
20
|
Mansour SG, Liu C, Jia Y, Reese PP, Hall IE, El-Achkar TM, LaFavers KA, Obeid W, El-Khoury JM, Rosenberg AZ, Daneshpajouhnejad P, Doshi MD, Akalin E, Bromberg JS, Harhay MN, Mohan S, Muthukumar T, Schröppel B, Singh P, Weng FL, Thiessen-Philbrook HR, Parikh CR. Uromodulin to Osteopontin Ratio in Deceased Donor Urine Is Associated With Kidney Graft Outcomes. Transplantation 2021; 105:876-885. [PMID: 32769629 PMCID: PMC8805736 DOI: 10.1097/tp.0000000000003299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Deceased-donor kidneys experience extensive injury, activating adaptive and maladaptive pathways therefore impacting graft function. We evaluated urinary donor uromodulin (UMOD) and osteopontin (OPN) in recipient graft outcomes. METHODS Primary outcomes: all-cause graft failure (GF) and death-censored GF (dcGF). Secondary outcomes: delayed graft function (DGF) and 6-month estimated glomerular filtration rate (eGFR). We randomly divided our cohort of deceased donors and recipients into training and test datasets. We internally validated associations between donor urine UMOD and OPN at time of procurement, with our primary outcomes. The direction of association between biomarkers and GF contrasted. Subsequently, we evaluated UMOD:OPN ratio with all outcomes. To understand these mechanisms, we examined the effect of UMOD on expression of major histocompatibility complex II in mouse macrophages. RESULTS Doubling of UMOD increased dcGF risk (adjusted hazard ratio [aHR], 1.1; 95% confidence interval [CI], 1.02-1.2), whereas OPN decreased dcGF risk (aHR, 0.94; 95% CI, 0.88-1). UMOD:OPN ratio ≤3 strengthened the association, with reduced dcGF risk (aHR, 0.57; 0.41-0.80) with similar associations for GF, and in the test dataset. A ratio ≤3 was also associated with lower DGF (aOR, 0.73; 95% CI, 0.60-0.89) and higher 6-month eGFR (adjusted β coefficient, 3.19; 95% CI, 1.28-5.11). UMOD increased major histocompatibility complex II expression elucidating a possible mechanism behind UMOD's association with GF. CONCLUSIONS UMOD:OPN ratio ≤3 was protective, with lower risk of DGF, higher 6-month eGFR, and improved graft survival. This ratio may supplement existing strategies for evaluating kidney quality and allocation decisions regarding deceased-donor kidney transplantation.
Collapse
Affiliation(s)
- Sherry G. Mansour
- Program of Applied Translational Research, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Liu
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yaqi Jia
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Peter P. Reese
- Department of Medicine, Renal-Electrolyte and Hypertension Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Isaac E. Hall
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Tarek M. El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine and the Indianapolis VA Medical Center
| | - Kaice A. LaFavers
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine and the Indianapolis VA Medical Center
| | - Wassim Obeid
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Joe M. El-Khoury
- Program of Applied Translational Research, Yale University School of Medicine, New Haven, CT, USA
| | - Avi Z. Rosenberg
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Mona D. Doshi
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Enver Akalin
- Department of Internal Medicine, Division of Nephrology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jonathan S. Bromberg
- Department of Surgery, Division of Transplantation, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Meera N. Harhay
- Department of Internal Medicine, Division of Nephrology & Hypertension, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA
| | - Sumit Mohan
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Medicine, Division of Nephrology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Thangamani Muthukumar
- Department of Medicine, Division of Nephrology and Hypertension, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | | | - Pooja Singh
- Department of Medicine, Division of Nephrology, Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Francis L. Weng
- Saint Barnabas Medical Center, RWJBarnabas Health, Livingston, NJ, USA
| | | | - Chirag R. Parikh
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
21
|
Li H, Kostel SA, DiMartino SE, Hashemi Gheinani A, Froehlich JW, Lee RS. Uromodulin Isolation and Its N-Glycosylation Analysis by NanoLC-MS/MS. J Proteome Res 2021; 20:2662-2672. [PMID: 33650863 DOI: 10.1021/acs.jproteome.0c01053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The glycoprotein uromodulin (UMOD) is the most abundant protein in urine, and N-glycans are critical for many biological functions of UMOD. Comprehensive glycan profiling of UMOD provides valuable information to understand the exact mechanisms of glycan-regulated functions. To perform comprehensive glycosylation analysis of UMOD from urine samples with limited volumes, we developed a streamlined workflow that included UMOD isolation from 5 mL of urine from 6 healthy adult donors (3 males and 3 females) and a glycosylation analysis using a highly sensitive and reproducible nanoLC-MS/MS based glycomics approach. In total, 212 N-glycan compositions were identified from the purified UMOD, and 17% were high-mannose glycans, 2% were afucosylated/asialylated, 3% were neutral fucosylated, 28% were sialylated (with no fucose), 46% were fucosylated and sialylated, and 4% were sulfated. We found that isolation of UMOD resulted in a significant decrease in the relative quantity of high-mannose and sulfated glycans with a significant increase of neutral fucosylated glycans in the UMOD-depleted urine relative to the undepleted urine, but depletion had little impact on the sialylated glycans. To our knowledge, this is the first study to perform comprehensive N-glycan profiling of UMOD using nanoLC-MS/MS. This analytical workflow would be very beneficial for studies with limited sample size, such as pediatric studies, and can be applied to larger patient cohorts not only for UMOD interrogation but also for global glycan analysis.
Collapse
Affiliation(s)
- Haiying Li
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Stephen A Kostel
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shannon E DiMartino
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ali Hashemi Gheinani
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - John W Froehlich
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Richard S Lee
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
22
|
Ludes PO, de Roquetaillade C, Chousterman BG, Pottecher J, Mebazaa A. Role of Damage-Associated Molecular Patterns in Septic Acute Kidney Injury, From Injury to Recovery. Front Immunol 2021; 12:606622. [PMID: 33732235 PMCID: PMC7957065 DOI: 10.3389/fimmu.2021.606622] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are a group of immunostimulatory molecules, which take part in inflammatory response after tissue injury. Kidney-specific DAMPs include Tamm-Horsfall glycoprotein, crystals, and uromodulin, released by tubular damage for example. Non-kidney-specific DAMPs include intracellular particles such as nucleus [histones, high-mobility group box 1 protein (HMGB1)] and cytosol parts. DAMPs trigger innate immunity by activating the NRLP3 inflammasome, G-protein coupled class receptors or the Toll-like receptor. Tubular necrosis leads to acute kidney injury (AKI) in either septic, ischemic or toxic conditions. Tubular necrosis releases DAMPs such as histones and HMGB1 and increases vascular permeability, which perpetuates shock and hypoperfusion via Toll Like Receptors. In acute tubular necrosis, intracellular abundance of NADPH may explain a chain reaction where necrosis spreads from cell to cell. The nature AKI in intensive care units does not have preclinical models that meet a variation of blood perfusion or a variation of glomerular filtration within hours before catecholamine infusion. However, the dampening of several DAMPs in AKI could provide organ protection. Research should be focused on the numerous pathophysiological pathways to identify the relative contribution to renal dysfunction. The therapeutic perspectives could be strategies to suppress side effect of DAMPs and to promote renal function regeneration.
Collapse
Affiliation(s)
- Pierre-Olivier Ludes
- Department of Anesthesiology and Intensive Care, Hautepierre Hospital, Strasbourg University Hospital, Strasbourg, France.,EA 3072, Mitochondrie Stress Oxydant et Protection Musculaire, Faculté de Médecine, FRU 6702, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Charles de Roquetaillade
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, DMU Parabol, APHP.Nord, Paris, France.,Inserm U942 MASCOT, Université de Paris, Paris, France
| | - Benjamin Glenn Chousterman
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, DMU Parabol, APHP.Nord, Paris, France.,Inserm U942 MASCOT, Université de Paris, Paris, France
| | - Julien Pottecher
- Department of Anesthesiology and Intensive Care, Hautepierre Hospital, Strasbourg University Hospital, Strasbourg, France.,EA 3072, Mitochondrie Stress Oxydant et Protection Musculaire, Faculté de Médecine, FRU 6702, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Alexandre Mebazaa
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, DMU Parabol, APHP.Nord, Paris, France.,Inserm U942 MASCOT, Université de Paris, Paris, France
| |
Collapse
|
23
|
Alesutan I, Luong TTD, Schelski N, Masyout J, Hille S, Schneider MP, Graham D, Zickler D, Verheyen N, Estepa M, Pasch A, Maerz W, Tomaschitz A, Pilz S, Frey N, Lang F, Delles C, Müller OJ, Pieske B, Eckardt KU, Scherberich J, Voelkl J. Circulating uromodulin inhibits vascular calcification by interfering with pro-inflammatory cytokine signalling. Cardiovasc Res 2021; 117:930-941. [PMID: 32243494 DOI: 10.1093/cvr/cvaa081] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Uromodulin is produced exclusively in the kidney and secreted into both urine and blood. Serum levels of uromodulin are correlated with kidney function and reduced in chronic kidney disease (CKD) patients, but physiological functions of serum uromodulin are still elusive. This study investigated the role of uromodulin in medial vascular calcification, a key factor associated with cardiovascular events and mortality in CKD patients. METHODS AND RESULTS Experiments were performed in primary human (HAoSMCs) and mouse (MOVAS) aortic smooth muscle cells, cholecalciferol overload and subtotal nephrectomy mouse models and serum from CKD patients. In three independent cohorts of CKD patients, serum uromodulin concentrations were inversely correlated with serum calcification propensity. Uromodulin supplementation reduced phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. In human serum, pro-inflammatory cytokines tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β) co-immunoprecipitated with uromodulin. Uromodulin inhibited TNFα and IL-1β-induced osteo-/chondrogenic signalling and activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated β cells (NF-kB) as well as phosphate-induced NF-kB-dependent transcriptional activity in HAoSMCs. In vivo, adeno-associated virus (AAV)-mediated overexpression of uromodulin ameliorated vascular calcification in mice with cholecalciferol overload. Conversely, cholecalciferol overload-induced vascular calcification was aggravated in uromodulin-deficient mice. In contrast, uromodulin overexpression failed to reduce vascular calcification during renal failure in mice. Carbamylated uromodulin was detected in serum of CKD patients and uromodulin carbamylation inhibited its anti-calcific properties in vitro. CONCLUSIONS Uromodulin counteracts vascular osteo-/chondrogenic transdifferentiation and calcification, at least in part, through interference with cytokine-dependent pro-calcific signalling. In CKD, reduction and carbamylation of uromodulin may contribute to vascular pathology.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Aorta/immunology
- Aorta/metabolism
- Cell Transdifferentiation/drug effects
- Cells, Cultured
- Chondrogenesis
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Humans
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Middle Aged
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Osteogenesis
- Phenotype
- Protein Carbamylation
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/immunology
- Signal Transduction
- Uromodulin/blood
- Uromodulin/genetics
- Uromodulin/pharmacology
- Vascular Calcification/blood
- Vascular Calcification/immunology
- Vascular Calcification/prevention & control
- Young Adult
- Mice
Collapse
Affiliation(s)
- Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
| | - Trang T D Luong
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nadeshda Schelski
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jaber Masyout
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, 20246 Hamburg, Germany
| | - Markus P Schneider
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
- German Chronic Kidney Disease (GCKD) Study
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nicolas Verheyen
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Calciscon AG, Aarbergstrasse 5, 2560 Nidau-Biel, Switzerland
- Nierenpraxis Bern, Bubenbergplatz 5, 3011 Bern, Switzerland
- Department of Nephrology, Lindenhofspital, Bremgartenstrasse 117, 3001 Bern, Switzerland
| | - Winfried Maerz
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
- Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Ludolf Krehl Street 7-11, 68167 Mannheim, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, P5,7, 68161 Mannheim, Germany
| | | | - Stefan Pilz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, 20246 Hamburg, Germany
| | - Florian Lang
- Department of Physiology, Eberhard-Karls University, Wilhelmstr. 56, 72076 Tübingen, Germany
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, 20246 Hamburg, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
- German Chronic Kidney Disease (GCKD) Study
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Juergen Scherberich
- Department of Nephrology and Clinical Immunology, Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-Universität, Sanatoriumsplatz 2, 81545 München, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
24
|
Abstract
Uromodulin, a protein exclusively produced by the kidney, is the most abundant urinary protein in physiological conditions. Already described several decades ago, uromodulin has gained the spotlight in recent years, since the discovery that mutations in its encoding gene UMOD cause a renal Mendelian disease (autosomal dominant tubulointerstitial kidney disease) and that common polymorphisms are associated with multifactorial disorders, such as chronic kidney disease, hypertension, and cardiovascular diseases. Moreover, variations in uromodulin levels in urine and/or blood reflect kidney functioning mass and are of prognostic value for renal function, cardiovascular events, and overall mortality. The clinical relevance of uromodulin reflects its multifunctional nature, playing a role in renal ion transport and immunomodulation, in protection against urinary tract infections and renal stones, and possibly as a systemic antioxidant. Here, we discuss the multifaceted roles of this protein in kidney physiology and its translational relevance.
Collapse
Affiliation(s)
- Céline Schaeffer
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy;
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Disorders Group, University of Zurich, CH-8057 Zurich, Switzerland
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy;
| |
Collapse
|
25
|
Zhang Z, Li D, Ma X, Li X, Guo Z, Liu Y, Zheng S. Carboxylated nanodiamond-mediated NH2-PLGA nanoparticle-encapsulated fig polysaccharides for strongly enhanced immune responses in vitro and in vivo. Int J Biol Macromol 2020; 165:1331-1345. [DOI: 10.1016/j.ijbiomac.2020.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
|
26
|
Then C, Herder C, Then H, Thorand B, Huth C, Heier M, Meisinger C, Peters A, Koenig W, Rathmann W, Roden M, Stumvoll M, Maalmi H, Meitinger T, Lechner A, Scherberich J, Seissler J. Serum uromodulin is inversely associated with biomarkers of subclinical inflammation in the population-based KORA F4 study. Clin Kidney J 2020; 14:1618-1625. [PMID: 34221377 PMCID: PMC8248959 DOI: 10.1093/ckj/sfaa165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 01/24/2023] Open
Abstract
Background Uromodulin is a kidney-specific glycoprotein synthesized in tubular cells of
Henle’s loop exerting nephroprotective and immunomodulatory
functions in the urinary tract. A small amount of uromodulin is also
released into the systemic circulation, where its physiological role is
unknown. Serum uromodulin (sUmod) has been associated with metabolic risk
factors and with cardiovascular events and mortality, where these
associations were partly stronger in men than in women. In this study, we
investigated the associations of sUmod with biomarkers of subclinical
inflammation in a population-based sample of women and men. Methods Associations of sUmod with 10 biomarkers of subclinical inflammation were
assessed in 1065 participants of the Cooperative Health Research in the
Region of Augsburg (KORA) F4 study aged 62–81 years using
linear regression models adjusted for sex, age, body mass index, estimated
glomerular filtration rate and diabetes. Analyses were performed in the
total study sample and stratified by sex. Results sUmod was inversely associated with white blood cell count, high-sensitive
C-reactive protein, interleukin (IL)-6, tumour necrosis factor-α,
myeloperoxidase, superoxide dismutase-3, IL-1 receptor antagonist and IL-22
after multivariable adjustment and correction for multiple testing
(P < 0.001 for each observation). There was a trend
towards a stronger association of sUmod with pro-inflammatory markers in men
than in women, with a significant P for sex interaction (<0.001)
regarding the relation of sUmod with IL-6. Conclusions sUmod was inversely associated with biomarkers of subclinical inflammation in
older participants of the KORA F4 study. The association of sUmod with IL-6
differed between women and men. Future research should focus on whether the
immunomodulatory properties of sUmod are one explanation for the association
of sUmod with cardiovascular outcomes and mortality.
Collapse
Affiliation(s)
- Cornelia Then
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU, München, Germany.,Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Holger Then
- Mathematics department, Freie Waldorfschule Augsburg, Augsburg, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Cornelia Huth
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,KORA Study Centre, University Hospital Augsburg, Augsburg, Germany
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Chair of Epidemiology at UNIKAT Augsburg, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany.,Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Diabetes Center, Leibniz Institute at Heinrich Heine University Düsseldorf, Institute of Biometrics and Epidemiology, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - Haifa Maalmi
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Meitinger
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Andreas Lechner
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU, München, Germany.,Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Jürgen Scherberich
- Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-Universität, Munich, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU, München, Germany.,Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
27
|
Sabapathy V, Venkatadri R, Dogan M, Sharma R. The Yin and Yang of Alarmins in Regulation of Acute Kidney Injury. Front Med (Lausanne) 2020; 7:441. [PMID: 32974364 PMCID: PMC7472534 DOI: 10.3389/fmed.2020.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a major clinical burden affecting 20 to 50% of hospitalized and intensive care patients. Irrespective of the initiating factors, the immune system plays a major role in amplifying the disease pathogenesis with certain immune cells contributing to renal damage, whereas others offer protection and facilitate recovery. Alarmins are small molecules and proteins that include granulysins, high-mobility group box 1 protein, interleukin (IL)-1α, IL-16, IL-33, heat shock proteins, the Ca++ binding S100 proteins, adenosine triphosphate, and uric acid. Alarmins are mostly intracellular molecules, and their release to the extracellular milieu signals cellular stress or damage, generally leading to the recruitment of the cells of the immune system. Early studies indicated a pro-inflammatory role for the alarmins by contributing to immune-system dysregulation and worsening of AKI. However, recent developments demonstrate anti-inflammatory mechanisms of certain alarmins or alarmin-sensing receptors, which may participate in the prevention, resolution, and repair of AKI. This dual function of alarmins is intriguing and has confounded the role of alarmins in AKI. In this study, we review the contribution of various alarmins to the pathogenesis of AKI in experimental and clinical studies. We also analyze the approaches for the therapeutic utilization of alarmins for AKI.
Collapse
Affiliation(s)
| | | | | | - Rahul Sharma
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
28
|
Tammaro A, Kers J, Scantlebery AML, Florquin S. Metabolic Flexibility and Innate Immunity in Renal Ischemia Reperfusion Injury: The Fine Balance Between Adaptive Repair and Tissue Degeneration. Front Immunol 2020; 11:1346. [PMID: 32733450 PMCID: PMC7358591 DOI: 10.3389/fimmu.2020.01346] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/27/2020] [Indexed: 01/10/2023] Open
Abstract
Renal ischemia reperfusion injury (IRI), a common event after renal transplantation, causes acute kidney injury (AKI), increases the risk of delayed graft function (DGF), primes the donor kidney for rejection, and contributes to the long-term risk of graft loss. In the last decade, epidemiological studies have linked even mild episodes of AKI to chronic kidney disease (CKD) progression, and innate immunity seems to play a crucial role. The ischemic insult triggers an acute inflammatory reaction that is elicited by Pattern Recognition Receptors (PRRs), expressed on both infiltrating immune cells as well as tubular epithelial cells (TECs). Among the PRRs, Toll-like receptors (TLRs), their synergistic receptors, Nod-like receptors (NLRs), and the inflammasomes, play a pivotal role in shaping inflammation and TEC repair, in response to renal IRI. These receptors represent promising targets to modulate the extent of inflammation, but also function as gatekeepers of tissue repair, protecting against AKI-to-CKD progression. Despite the important considerations on timely use of therapeutics, in the context of IRI, treatment options are limited by a lack of understanding of the intra- and intercellular mechanisms associated with the activation of innate immune receptors and their impact on adaptive tubular repair. Accumulating evidence suggests that TEC-associated innate immunity shapes the tubular response to stress through the regulation of immunometabolism. Engagement of innate immune receptors provides TECs with the metabolic flexibility necessary for their plasticity during injury and repair. This could significantly affect pathogenic processes within TECs, such as cell death, mitochondrial damage, senescence, and pro-fibrotic cytokine secretion, well-known to exacerbate inflammation and fibrosis. This article provides an overview of the past 5 years of research on the role of innate immunity in experimental and human IRI, with a focus on the cascade of events activated by hypoxic damage in TECs: from programmed cell death (PCD) and mitochondrial dysfunction-mediated metabolic rewiring of TECs to maladaptive repair and progression to fibrosis. Finally, we will discuss the important crosstalk between metabolism and innate immunity observed in TECs and their therapeutic potential in both experimental and clinical research.
Collapse
Affiliation(s)
- Alessandra Tammaro
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, Netherlands.,Biomolecular Systems Analytics, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Angelique M L Scantlebery
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
29
|
Royal V, Leung N, Troyanov S, Nasr SH, Écotière L, LeBlanc R, Adam BA, Angioi A, Alexander MP, Asunis AM, Barreca A, Bianco P, Cohen C, Drosou ME, Fatima H, Fenoglio R, Gougeon F, Goujon JM, Herrera GA, Knebelmann B, Lepori N, Maletta F, Manso R, Motwani SS, Pani A, Rabant M, Rennke HG, Rocatello D, Rosenblum F, Sanders PW, Santos A, Soto K, Sis B, Touchard G, Venner CP, Bridoux F. Clinicopathologic predictors of renal outcomes in light chain cast nephropathy: a multicenter retrospective study. Blood 2020; 135:1833-1846. [PMID: 32160635 PMCID: PMC7243151 DOI: 10.1182/blood.2019003807] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/26/2020] [Indexed: 01/15/2023] Open
Abstract
Light chain cast nephropathy (LCCN) in multiple myeloma often leads to severe and poorly reversible acute kidney injury. Severe renal impairment influences the allocation of chemotherapy and its tolerability; it also affects patient survival. Whether renal biopsy findings add to the clinical assessment in predicting renal and patient outcomes in LCCN is uncertain. We retrospectively reviewed clinical presentation, chemotherapy regimens, hematologic response, and renal and patient outcomes in 178 patients with biopsy-proven LCCN from 10 centers in Europe and North America. A detailed pathology review, including assessment of the extent of cast formation, was performed to study correlations with initial presentation and outcomes. Patients presented with a mean estimated glomerular filtration rate (eGFR) of 13 ± 11 mL/min/1.73 m2, and 82% had stage 3 acute kidney injury. The mean number of casts was 3.2/mm2 in the cortex. Tubulointerstitial lesions were frequent: acute tubular injury (94%), tubulitis (82%), tubular rupture (62%), giant cell reaction (60%), and cortical and medullary inflammation (95% and 75%, respectively). Medullary inflammation, giant cell reaction, and the extent of cast formation correlated with eGFR value at LCCN diagnosis. During a median follow-up of 22 months, mean eGFR increased to 43 ± 30 mL/min/1.73 m2. Age, β2-microglobulin, best hematologic response, number of cortical casts per square millimeter, and degree of interstitial fibrosis/tubular atrophy (IFTA) were independently associated with a higher eGFR during follow-up. This eGFR value correlated with overall survival, independently of the hematologic response. This study shows that extent of cast formation and IFTA in LCCN predicts the quality of renal response, which, in turn, is associated with overall survival.
Collapse
Affiliation(s)
- Virginie Royal
- Division of Pathology, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC, Canada
| | - Nelson Leung
- Division of Nephrology and Hypertension and Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Stéphan Troyanov
- Department of Medicine, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Samih H Nasr
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Laure Écotière
- Department of Nephrology and Renal Transplantation, CIC INSERM 1402, Centre Hospitalier Universitaire, Université de Poitiers, Poitiers, CNRS UMR 7276, Limoges, and French Reference Centre for AL Amyloidosis, Poitiers, France
| | - Richard LeBlanc
- Division of Hemato-Oncology, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC, Canada
| | - Benjamin A Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Andrea Angioi
- Divisione di Nefrologia e Dialisi, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | - Mariam P Alexander
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Anna Maria Asunis
- Department of Pathology, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | - Antonella Barreca
- Division of Pathology, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Paola Bianco
- Department of Pathology, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | - Camille Cohen
- Department of Nephrology, Hôpital Necker-Enfants Malades, AP-HP, Centre-Université de Paris, Paris, France
| | - Maria E Drosou
- Division of Nephrology and Hypertension and Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Huma Fatima
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Roberta Fenoglio
- Nephrology and Dialysis Unit, S. Giovanni Bosco Hospital and University of Turin, Turin, Italy
| | - François Gougeon
- Division of Pathology, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Jean-Michel Goujon
- Department of Pathology and Ultrastructural Pathology, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Guillermo A Herrera
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL
| | - Bertrand Knebelmann
- Department of Nephrology, Hôpital Necker-Enfants Malades, AP-HP, Centre-Université de Paris, Paris, France
| | - Nicola Lepori
- Divisione di Nefrologia e Dialisi, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | - Francesca Maletta
- Division of Pathology, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Rita Manso
- Department of Pathology, Hospital Fernando Fonseca, Lisbon, Portugal
| | - Shveta S Motwani
- Dana-Farber Cancer Institute and Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Antonello Pani
- Divisione di Nefrologia e Dialisi, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | - Marion Rabant
- Department of Pathology, Hôpital Necker-Enfants Malades, AP-HP, Centre-Université de Paris, Paris, France
| | - Helmut G Rennke
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dario Rocatello
- Nephrology and Dialysis Unit, S. Giovanni Bosco Hospital and University of Turin, Turin, Italy
| | - Frida Rosenblum
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Paul W Sanders
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Veterans Affairs Medical Center, Birmingham, AL
| | - Afonso Santos
- Department of Nephrology, Hospital Fernando Fonseca, Lisbon, Portugal; and
| | - Karina Soto
- Department of Nephrology, Hospital Fernando Fonseca, Lisbon, Portugal; and
| | - Banu Sis
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Guy Touchard
- Department of Nephrology and Renal Transplantation, CIC INSERM 1402, Centre Hospitalier Universitaire, Université de Poitiers, Poitiers, CNRS UMR 7276, Limoges, and French Reference Centre for AL Amyloidosis, Poitiers, France
- Department of Pathology and Ultrastructural Pathology, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | | | - Frank Bridoux
- Department of Nephrology and Renal Transplantation, CIC INSERM 1402, Centre Hospitalier Universitaire, Université de Poitiers, Poitiers, CNRS UMR 7276, Limoges, and French Reference Centre for AL Amyloidosis, Poitiers, France
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Uromodulin (UMOD), also known as Tamm-Horsfall protein, is the most abundant protein in human urine. UMOD has multiple functions such as protection against urinary tract infections and nephrolithiasis. This review outlines recent progress made in UMOD's role in renal physiology, tubular transport, and mineral metabolism. RECENT FINDINGS UMOD is mostly secreted in the thick ascending limb (TAL) and to a lesser degree in the distal convoluted tubule (DCT). UMOD secretion is regulated by the calcium-sensing receptor. UMOD upregulates ion channels [e.g., renal outer medullary potassium channel, transient receptor potential cation channel subfamily V member 5, and transient receptor potential melastatin 6 (TRPM6)] and cotransporters [e.g., Na,K,2Cl cotransporter (NKCC2) and sodium-chloride cotransporter (NCC)] in the TAL and DCT. Higher serum UMOD concentrations have been associated with higher renal function and preserved renal reserve. Higher serum UMOD has also been linked to a lower risk of cardiovascular disease and diabetes mellitus. SUMMARY With better serum UMOD detection assays the extent of different functions for UMOD is still expanding. Urinary UMOD regulates different tubular ion channels and cotransporters. Variations of urinary UMOD secretion can so contribute to common disorders such as hypertension or nephrolithiasis.
Collapse
|
31
|
Van JAD, Clotet-Freixas S, Zhou J, Batruch I, Sun C, Glogauer M, Rampoldi L, Elia Y, Mahmud FH, Sochett E, Diamandis EP, Scholey JW, Konvalinka A. Peptidomic Analysis of Urine from Youths with Early Type 1 Diabetes Reveals Novel Bioactivity of Uromodulin Peptides In Vitro. Mol Cell Proteomics 2020; 19:501-517. [PMID: 31879271 PMCID: PMC7050109 DOI: 10.1074/mcp.ra119.001858] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic hyperglycemia is known to disrupt the proteolytic milieu, initiating compensatory and maladaptive pathways in the diabetic kidney. Such changes in intrarenal proteolysis are captured by the urinary peptidome. To elucidate the early kidney response to chronic hyperglycemia, we conducted a peptidomic investigation into urines from otherwise healthy youths with type 1 diabetes and their non-diabetic peers using unbiased and targeted mass spectrometry-based techniques. This cross-sectional study included two separate cohorts for the discovery (n = 30) and internal validation (n = 30) of differential peptide excretion. Peptide bioactivity was predicted using PeptideRanker and subsequently verified in vitro Proteasix and the Nephroseq database were used to identify putative proteases responsible for peptide generation and examine their expression in diabetic nephropathy. A total of 6550 urinary peptides were identified in the discovery analysis. We further examined the subset of 162 peptides, which were quantified across all thirty samples. Of the 15 differentially excreted peptides (p < 0.05), seven derived from a C-terminal region (589SGSVIDQSRVLNLGPITRK607) of uromodulin, a kidney-specific protein. Increased excretion of five uromodulin peptides was replicated in the validation cohort using parallel reaction monitoring (p < 0.05). One of the validated peptides (SGSVIDQSRVLNLGPI) activated NFκB and AP-1 signaling, stimulated cytokine release, and enhanced neutrophil migration in vitro. In silico analyses highlighted several potential proteases such as hepsin, meprin A, and cathepsin B to be responsible for generating these peptides. In summary, we identified a urinary signature of uromodulin peptides associated with early type 1 diabetes before clinical manifestations of kidney disease and discovered novel bioactivity of uromodulin peptides in vitro Our present findings lay the groundwork for future studies to validate peptide excretion in larger and broader populations, to investigate the role of bioactive uromodulin peptides in high glucose conditions, and to examine proteases that cleave uromodulin.
Collapse
Affiliation(s)
- Julie A D Van
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Joyce Zhou
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Chunxiang Sun
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | | | - Luca Rampoldi
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, University of Toronto, Toronto, Canada
| | - James W Scholey
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Medicine, Division of Nephrology, University Health Network, Toronto, Canada
| | - Ana Konvalinka
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Medicine, Division of Nephrology, University Health Network, Toronto, Canada
| |
Collapse
|
32
|
Then C, Then HL, Lechner A, Thorand B, Meisinger C, Heier M, Peters A, Koenig W, Rathmann W, Scherberich J, Seissler J. Serum uromodulin and risk for cardiovascular morbidity and mortality in the community-based KORA F4 study. Atherosclerosis 2020; 297:1-7. [PMID: 32058862 DOI: 10.1016/j.atherosclerosis.2020.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Serum uromodulin, a novel biomarker of kidney function and tubular integrity, has been linked to cardiovascular events and total mortality in patients at high cardiovascular risk. Here, we analyze the association of serum uromodulin with cardiovascular morbidity and cardiovascular as well as total mortality in the population-based KORA F4 study stratified by sex. METHODS Baseline serum uromodulin was measured in 1079 participants of the KORA F4 study (age 62-81 years). Using multivariable adjusted Cox proportional hazards models, the associations of serum uromodulin with total mortality and cardiovascular mortality were analyzed after a median follow-up period of 8.6 years, and with non-fatal and fatal stroke and myocardial infarction/coronary death after a median follow-up time of 8.4 years. RESULTS Serum uromodulin was significantly inversely associated with total mortality (HR 0.65; 95% CI 0.53-0.79 per standard deviation of logarithmized serum uromodulin; p < 0.001) and cardiovascular mortality (HR 0.70; 95% CI 0.52-0.93) in men, but not in women (HR for all-cause mortality in women 0.98; 95% CI 0.77-1.25, HR for cardiovascular mortality 0.78; 95% CI 0.56-1.11) after adjustment for age, BMI, diabetes and eGFR. In addition, serum uromodulin was significantly inversely associated with incident stroke in men (HR 0.68; 95% CI 0.50-0.92), but not in women (HR 0.96; 95% CI 0.68-1.38) after multivariable adjustment. The association of serum uromodulin with incident myocardial infarction was attenuated and lost significance after multivariable adjustment in both sexes. CONCLUSIONS Serum uromodulin is an independent biomarker for total and cardiovascular mortality in men from the general community aged 62 years or older.
Collapse
Affiliation(s)
- Cornelia Then
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany; Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany.
| | | | - Andreas Lechner
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany; Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany; German Center for Diabetes Research (DZD), München, Neuherberg, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), München, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Chair of Epidemiology at UNIKAT Augsburg, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; KORA Study Centre, University Hospital Augsburg, Augsburg, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), München, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany; Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany; Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Wolfgang Rathmann
- German Diabetes Center, Leibniz Institute at Heinrich Heine University Düsseldorf, Institute of Biometrics and Epidemiology, Düsseldorf, Germany
| | - Jürgen Scherberich
- Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-Universität, Munich, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany; Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
33
|
Xu X, Barreiro K, Musante L, Kretz O, Lin H, Zou H, Huber TB, Holthofer H. Management of Tamm-Horsfall Protein for Reliable Urinary Analytics. Proteomics Clin Appl 2019; 13:e1900018. [PMID: 31424164 PMCID: PMC6900072 DOI: 10.1002/prca.201900018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/10/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Urinary extracellular vesicles (uEVs) are a novel source of biomarkers. However, urinary Tamm-Horsfall Protein (THP; uromodulin) interferes with all vesicle isolation attempts, precipitates with normal urinary proteins, thus, representing an unwanted "contaminant" in urinary assays. Thus, the aim is to develop a simple method to manage THP efficiently. EXPERIMENTAL DESIGN The uEVs are isolated by hydrostatic filtration dialysis (HFD) and treated with a defined solution of urea to optimize release of uEVs from sample. Presence of uEVs is confirmed by transmission electron microscopy, Western blotting, and proteomic profiling in MS. RESULTS Using HFD with urea treatment for uEV isolation reduces sample complexity to a great extent. The novel simplified uEV isolation protocol allows comprehensive vesicle proteomics analysis and should be part of any urine analytics to release all sample constituents from THP trap. CONCLUSIONS AND CLINICAL RELEVANCE The method brings a quick and easy protocol for THP management during uEV isolation, providing major benefits for comprehensive sample analytics.
Collapse
Affiliation(s)
- Xiaomeng Xu
- Institute of Nephrology and UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
- Guangdong Shunde Southern Medical University Science Park
| | - Karina Barreiro
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland
| | - Luca Musante
- Division of NephrologyUniversity of VirginiaCharlottesvilleUSA
| | - Oliver Kretz
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Hanfei Lin
- Institute of Nephrology and UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Hequn Zou
- Institute of Nephrology and UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Tobias B. Huber
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Harry Holthofer
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Centre for Bioanalytical Sciences (CBAS)Dublin City UniversityDublinIreland
| |
Collapse
|
34
|
Scherberich JE, Gruber R, Nockher WA, Christensen EI, Schmitt H, Herbst V, Block M, Kaden J, Schlumberger W. Serum uromodulin-a marker of kidney function and renal parenchymal integrity. Nephrol Dial Transplant 2019; 33:284-295. [PMID: 28206617 PMCID: PMC5837243 DOI: 10.1093/ndt/gfw422] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/07/2016] [Indexed: 11/12/2022] Open
Abstract
Background An ELISA to analyse uromodulin in human serum (sUmod) was developed, validated and tested for clinical applications. Methods We assessed sUmod, a very stable antigen, in controls, patients with chronic kidney disease (CKD) stages 1-5, persons with autoimmune kidney diseases and recipients of a renal allograft by ELISA. Results Median sUmod in 190 blood donors was 207 ng/mL (women: men, median 230 versus 188 ng/mL, P = 0.006). sUmod levels in 443 children were 193 ng/mL (median). sUmod was correlated with cystatin C (rs = -0.862), creatinine (rs = -0.802), blood urea nitrogen (BUN) (rs = -0.645) and estimated glomerular filtration rate (eGFR)-cystatin C (rs = 0.862). sUmod was lower in systemic lupus erythematosus-nephritis (median 101 ng/mL), phospholipase-A2 receptor- positive glomerulonephritis (median 83 ng/mL) and anti-glomerular basement membrane positive pulmorenal syndromes (median 37 ng/mL). Declining sUmod concentrations paralleled the loss of kidney function in 165 patients with CKD stages 1-5 with prominent changes in sUmod within the 'creatinine blind range' (71-106 µmol/L). Receiver-operating characteristic analysis between non-CKD and CKD-1 was superior for sUmod (AUC 0.90) compared with eGFR (AUC 0.39), cystatin C (AUC 0.39) and creatinine (AUC 0.27). sUmod rapidly recovered from 0 to 62 ng/mL (median) after renal transplantation in cases with immediate graft function and remained low in delayed graft function (21 ng/mL, median; day 5-9: relative risk 1.5-2.9, odds ratio 1.5-6.4). Immunogold labelling disclosed that Umod is transferred within cytoplasmic vesicles to both the apical and basolateral plasma membrane. Umod revealed a disturbed intracellular location in kidney injury. Conclusions We conclude that sUmod is a novel sensitive kidney-specific biomarker linked to the structural integrity of the distal nephron and to renal function.
Collapse
Affiliation(s)
- Jürgen E Scherberich
- Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Rudolf Gruber
- Krankenhaus Barmherzige Brüder, Teaching Hospital of the University of Regensburg, Regensburg, Germany
| | | | | | | | - Victor Herbst
- Institute for Experimental Immunology, Euroimmun AG, Lübeck, Germany
| | - Matthias Block
- Institute for Experimental Immunology, Euroimmun AG, Lübeck, Germany
| | - Jürgen Kaden
- Kidney Transplant Centre, Municipal Hospital Berlin-Friedrichshain, Teaching Hospital of the Charité Berlin, Berlin, Germany
| | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) can cluster in geographic locations or in people of particular genetic ancestries. We explore APOL1 nephropathy and Balkan nephropathy as examples of CKD clustering that illustrate genetics and environment conspiring to cause high rates of kidney disease. Unexplained hotspots of kidney disease in Asia and Central America are then considered from the perspective of potential gene × environment interactions. RECENT FINDINGS We report on evidence supporting both genes and environment in these CKD hotspots. Differing genetic susceptibility between populations and within populations may explain why causal environmental risk factors have been so hard to identify conclusively. Similarly, one cannot explain why these epidemics of kidney disease are happening now without invoking environmental changes. SUMMARY Approaches to these CKD hotspots are of necessity becoming more holistic. Genetic studies may help us identify the environmental triggers by teaching us about disease biology and may empower environmental risk factor studies by allowing for stratification of study participants by genetic susceptibility.
Collapse
|
36
|
Then C, Then H, Meisinger C, Heier M, Peters A, Koenig W, Rathmann W, Scherberich J, Seissler J. Serum uromodulin is associated with but does not predict type 2 diabetes in elderly KORA F4/FF4 study participants. J Clin Endocrinol Metab 2019; 104:3795-3802. [PMID: 30892596 DOI: 10.1210/jc.2018-02557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/14/2019] [Indexed: 11/19/2022]
Abstract
AIMS Serum uromodulin has recently emerged as promising biomarker for kidney function and was suggested to be associated with type 2 diabetes (T2D) in coronary patients. Here, we analyzed the association of serum uromodulin with T2D in the population-based KORA F4/FF4 study. METHODS In 1119 participants of the KORA F4 study aged 62 - 81 years, serum uromodulin was measured and the association of serum uromodulin with T2D was assessed using logistic and linear regression models stratified for sex. After a mean follow-up time of 6.5 years, 635 participants where reevaluated. Glucose tolerance status was determined by oral glucose tolerance test at baseline and at the follow-up examination except in cases of known T2D. RESULTS Serum uromodulin was inversely associated with T2D in the crude analysis and after adjustment for age and BMI in men (p < 0.001) and in women (p < 0.05). After further adjustment for estimated glomerular filtration rate, serum uromodulin was significantly inversely associated with T2D in men (p < 0.001), but not in women. Serum uromodulin was not associated with prediabetes after multivariate adjustment and did not predict T2D in men or in women after the follow-up time of 6.5 ± 0.3 years. CONCLUSIONS In participants of the KORA F4 study, serum uromodulin is independently associated with T2D in men, but is no predictor of future development of T2D.
Collapse
Affiliation(s)
- Cornelia Then
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany
- Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany
| | | | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Epidemiology at UNIKAT Augsburg, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Koenig
- Institute of Epidemiology and Biostatistics, University of Ulm, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Rathmann
- German Diabetes Center, Leibniz Institute at Heinrich Heine University Düsseldorf, Institute of Biometrics and Epidemiology, Düsseldorf, Germany
| | - Jürgen Scherberich
- Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-Universität, Munich, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany
- Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
37
|
Maydan O, McDade PG, Liu Y, Wu XR, Matsell DG, Eddy AA. Uromodulin deficiency alters tubular injury and interstitial inflammation but not fibrosis in experimental obstructive nephropathy. Physiol Rep 2019; 6:e13654. [PMID: 29595914 PMCID: PMC5875544 DOI: 10.14814/phy2.13654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 12/11/2022] Open
Abstract
Human GWAS and Mendelian genetic studies have linked polymorphic variants and mutations in the human uromodulin gene (UMOD) with chronic kidney disease. The primary function of this kidney‐specific and secreted protein remains elusive. This study investigated whether UMOD deficiency modified responses to unilateral ureteral obstruction (UUO)‐induced kidney injury. Kidneys harvested from groups of wild‐type (UMOD+/+) and knockout (UMOD−/−) male mice (n = 7–10 each) were studied on days 7, 14, and 21. Compared to sham kidneys, UMOD protein levels increased 9–13x after UUO and were associated with increased urinary UMOD levels. Kidney KIM‐1 protein levels were higher in the UMOD−/− groups at all time‐points (4–14x). The UMOD−/− groups also had higher KIM‐1 kidney‐to‐urine relative ratios (5–35x). In vitro studies using KIM‐1 expressing 769‐P cells showed lower KIM‐1 levels in the presence of UMOD protein. Levels of proapoptotic genes and the epithelial cell apoptotic protein marker M30 were significantly lower in the UMOD−/− groups. Both M30 and KIM‐1 colocalized with intraluminal UMOD protein deposits. Interstitial inflammation was less intense in the UMOD−/− groups. Renal fibrosis severity (kidney collagen mRNA and protein) was similar in both genotypic groups on days 7, 14, and 21. Our findings suggest a role for UMOD‐dependent inhibition of KIM‐1 expression and its apoptotic cell scavenging responses during chronic obstruction‐associated tubular injury.
Collapse
Affiliation(s)
- Olena Maydan
- Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Paul G McDade
- Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Yan Liu
- Department of Urology, New York University, New York, New York
| | - Xue-Ru Wu
- Department of Urology, New York University, New York, New York
| | - Douglas G Matsell
- Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Allison A Eddy
- Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Bjornstad P, Wiromrat P, Johnson RJ, Sippl R, Cherney DZI, Wong R, Rewers MJ, Snell-Bergeon JK. Serum Uromodulin Predicts Less Coronary Artery Calcification and Diabetic Kidney Disease Over 12 Years in Adults With Type 1 Diabetes: The CACTI Study. Diabetes Care 2019; 42:297-302. [PMID: 30482755 PMCID: PMC6341281 DOI: 10.2337/dc18-1527] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Novel biomarkers are needed to better predict coronary artery calcification (CAC), a marker of subclinical atherosclerosis, and diabetic kidney disease (DKD) in type 1 diabetes. We evaluated the associations between serum uromodulin (SUMOD [a biomarker associated with anti-inflammatory and renal protective properties]), CAC progression, and DKD development over 12 years. RESEARCH DESIGN AND METHODS Participants (n = 527, 53% females) in the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study were examined during 2002-2004, at a mean age of 39.6 ± 9.0 years and a median duration of diabetes of 24.8 years. Urine albumin-to-creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR) determined by the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) creatinine equation were measured at baseline and after a mean follow-up period of 12.1 ± 1.5 years. Elevated albumin excretion was defined as ACR ≥30 mg/g, rapid GFR decline (>3 mL/min/1.73 m2/year), and impaired GFR as eGFR <60 mL/min/1.73 m2. SUMOD was measured on stored baseline plasma samples (Meso Scale Discovery). CAC was measured using electron beam computed tomography. CAC progression was defined as a change in the square root-transformed CAC volume of ≥2.5. RESULTS Higher baseline SUMOD level conferred lower odds of CAC progression (odds ratio 0.68; 95% CI 0.48-0.97), incident elevated albumin excretion (0.37; 0.16-0.86), rapid GFR decline (0.56; 0.35-0.91), and impaired GFR (0.44; 0.24-0.83) per 1 SD increase in SUMOD (68.44 ng/mL) after adjustment for baseline age, sex, systolic blood pressure, LDL cholesterol, and albuminuria/GFR. The addition of SUMOD to models with traditional risk factors also significantly improved the prediction performance for CAC progression and incident DKD. CONCLUSIONS Higher baseline SUMOD level predicted lower odds of both CAC progression and incident DKD over 12 years in adults with type 1 diabetes.
Collapse
Affiliation(s)
- Petter Bjornstad
- Section of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO .,Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO
| | - Pattara Wiromrat
- Section of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO
| | - Richard J Johnson
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Rachel Sippl
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, and Department of Physiology, University of Toronto, Ontario, Canada
| | - Randy Wong
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO
| | | |
Collapse
|
39
|
Friedman DJ, Alper SL. Modulation of tubular solute reuptake in UMOD knockout mice. Am J Physiol Renal Physiol 2018. [PMID: 29513073 DOI: 10.1152/ajprenal.00080.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- David J Friedman
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School , Boston, Massachusetts
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
40
|
Otterpohl KL, Hart RG, Evans C, Surendran K, Chandrasekar I. Nonmuscle myosin 2 proteins encoded by Myh9, Myh10, and Myh14 are uniquely distributed in the tubular segments of murine kidney. Physiol Rep 2018; 5. [PMID: 29208685 PMCID: PMC5727274 DOI: 10.14814/phy2.13513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022] Open
Abstract
The diverse epithelial cell types of the kidneys are segregated into nephron segments and the collecting ducts in order to endow each tubular segment with unique functions. The rich diversity of the epithelial cell types is highlighted by the unique membrane channels and receptors expressed within each nephron segment. Our previous work identified a critical role for Myh9 and Myh10 in mammalian endocytosis. Here, we examined the expression patterns of Nonmuscle myosin 2 (NM2) heavy chains encoded by Myh9, Myh10, and Myh14 in mouse kidneys as these genes may confer unique nephron segment‐specific membrane transport properties. Interestingly, we found that each segment of the renal tubules predominately expressed only two of the three NM2 isoforms, with isoform‐specific subcellular localization, and different levels of expression within a nephron segment. Additionally, we identify Myh14 to be restricted to the intercalated cells and Myh10 to be restricted to the principal cells within the collecting ducts and connecting segments. We speculate that the distinct expression pattern of the NM2 proteins likely reflects the diversity of the intracellular trafficking machinery present within the different renal tubular epithelial segments.
Collapse
Affiliation(s)
- Karla L Otterpohl
- Enabling Technologies Group - Sanford Research, Sioux Falls, South Dakota, USA
| | - Ryan G Hart
- Enabling Technologies Group - Sanford Research, Sioux Falls, South Dakota, USA
| | - Claire Evans
- Molecular Pathology Core, Sanford Research, Sioux Falls, South Dakota, USA
| | - Kameswaran Surendran
- Pediatrics and Rare Diseases Group - Sanford Research, Sioux Falls, South Dakota, USA.,Department of Pediatrics, USD Sanford School of Medicine, Sioux Falls, South Dakota, USA
| | - Indra Chandrasekar
- Enabling Technologies Group - Sanford Research, Sioux Falls, South Dakota, USA.,Department of Pediatrics, USD Sanford School of Medicine, Sioux Falls, South Dakota, USA
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Involved in innate immunity, toll-like receptors (TLRs) recognize pathogenic and endogenous ligands. Ligand binding initiates an inflammatory cascade which if sustained leads to fibrosis. This review summarizes the role of TLRs in diabetic kidney disease (DKD) with particular emphasis on TLR2 and TLR4. RECENT FINDINGS Collectively, preclinical evidence to date supports the causative role of TLR2 and TLR4 in both type I and type II DKD. The relative importance of each is still unclear. In experimental models, there are increased TLR2 and TLR4 ligands, expression and signalling. Functional studies using inhibitors or knockout animal models confirm causality. Clinical evidence also supports increased ligands and TLR2 and TLR4 expression in diabetes however there are no clinical studies examining whether interruption of these pathways confer renoprotection. SUMMARY Preclinical evidence to date supports the role of TLR2 and TLR4 in DKD. It will be useful to examine the value of interrupting these signalling pathways in clinical trials.
Collapse
|
42
|
Wu TH, Li KJ, Yu CL, Tsai CY. Tamm-Horsfall Protein is a Potent Immunomodulatory Molecule and a Disease Biomarker in the Urinary System. Molecules 2018; 23:molecules23010200. [PMID: 29361765 PMCID: PMC6017547 DOI: 10.3390/molecules23010200] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 01/14/2023] Open
Abstract
Tamm–Horsfall protein (THP), or uromodulin (UMOD), is an 80–90-kDa phosphatidylinositol-anchored glycoprotein produced exclusively by the renal tubular cells in the thick ascending limb of the loop of Henle. Physiologically, THP is implicated in renal countercurrent gradient formation, sodium homeostasis, blood pressure regulation, and a defense molecule against infections in the urinary system. Investigations have also revealed that THP is an effective binding ligand for serum albumin, immunoglobulin G light chains, complement components C1 and C1q, interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, and interferon-γ through its carbohydrate side chains for maintaining circulatory and renal immune homeostasis. Thus, THP can be regarded as part of the innate immune system. UMOD mutations play crucial roles in congenital urolithiasis, hereditary hyperuricemia/gout, and medullary cystic kidney diseases. Recent investigations have focused on the immunomodulatory effects of THP on immune cells and on THP as a disease biomarker of acute and chronic kidney diseases. Our studies have suggested that normal urinary THP, through its epidermal growth factor (EGF)-like domains, binds to the surface-expressed EGF-like receptors, cathepsin G, or lactoferrin to enhance polymorphonuclear leukocyte phagocytosis, proinflammatory cytokine production by monocytes/macrophages, and lymphocyte proliferation by activating the Rho family and mitogen-activated protein kinase signaling pathways. Furthermore, our data support both an intact protein core structure and carbohydrate side chains are important for the different protein-binding capacities of THP. Prospectively, parts of the whole THP molecule may be used for anti-TNF-α therapy in inflammatory diseases, autoantibody-depleting therapy in autoimmune disorders, and immune intensification in immunocompromised hosts.
Collapse
Affiliation(s)
- Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan.
| | - Ko-Jen Li
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Chia-Li Yu
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, 201 Shih-Pai Road, Sec 2, Taipei 112, Taiwan.
| |
Collapse
|
43
|
Abstract
The nephrons of the kidney are independent functional units harboring cells of a low turnover during homeostasis. As such, physiological renal cell death is a rather rare event and dead cells are flushed away rapidly with the urinary flow. Renal cell necrosis occurs in acute kidney injuries such as thrombotic microangiopathies, necrotizing glomerulonephritis, or tubular necrosis. All of these are associated with intense intrarenal inflammation, which contributes to further renal cell loss, an autoamplifying process referred to as necroinflammation. But how does renal cell necrosis trigger inflammation? Here, we discuss the role of danger-associated molecular patterns (DAMPs), mitochondrial (mito)-DAMPs, and alarmins, as well as their respective pattern recognition receptors. The capacity of DAMPs and alarmins to trigger cytokine and chemokine release initiates the recruitment of leukocytes into the kidney that further amplify necroinflammation. Infiltrating neutrophils often undergo neutrophil extracellular trap formation associated with neutrophil death or necroptosis, which implies a release of histones, which act not only as DAMPs but also elicit direct cytotoxic effects on renal cells, namely endothelial cells. Proinflammatory macrophages and eventually cytotoxic T cells further drive kidney cell death and inflammation. Dissecting the molecular mechanisms of necroinflammation may help to identify the best therapeutic targets to limit nephron loss in kidney injury.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Santhosh V Kumar
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Maciej Lech
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Jyaysi Desai
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
44
|
Abstract
Inflammasomes influence a diverse range of kidney disease, including acute and chronic kidney diseases, and those mediated by innate and adaptive immunity. Both IL-18 and in particular IL-1β are validated therapeutic targets in several kidney diseases. In addition to leukocyte-derived inflammasomes, renal tissue cells express functional inflammasome components. Furthermore, a range of endogenous substances that directly activate inflammasomes also mediate kidney injury. Many of the functional studies have focussed on the NLRP3 inflammasome, and there is also evidence for the involvement of other inflammasomes in some conditions. While, at least in some disease, the mechanistic details of the involvement of the inflammasome remain to be elucidated, therapies focussed on inflammasomes and their products have potential in treating kidney disease in the future.
Collapse
Affiliation(s)
- Holly L Hutton
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Maliha A Alikhan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia.
- Department of Nephrology, Monash Health, Clayton, VIC, Australia.
- Department of Paediatric Nephrology, Monash Health, Clayton, VIC, Australia.
| |
Collapse
|
45
|
Micanovic R, Khan S, Janosevic D, Lee ME, Hato T, Srour EF, Winfree S, Ghosh J, Tong Y, Rice SE, Dagher PC, Wu XR, El-Achkar TM. Tamm-Horsfall Protein Regulates Mononuclear Phagocytes in the Kidney. J Am Soc Nephrol 2017; 29:841-856. [PMID: 29180395 DOI: 10.1681/asn.2017040409] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
Tamm-Horsfall protein (THP), also known as uromodulin, is a kidney-specific protein produced by cells of the thick ascending limb of the loop of Henle. Although predominantly secreted apically into the urine, where it becomes highly polymerized, THP is also released basolaterally, toward the interstitium and circulation, to inhibit tubular inflammatory signaling. Whether, through this latter route, THP can also regulate the function of renal interstitial mononuclear phagocytes (MPCs) remains unclear, however. Here, we show that THP is primarily in a monomeric form in human serum. Compared with wild-type mice, THP-/- mice had markedly fewer MPCs in the kidney. A nonpolymerizing, truncated form of THP stimulated the proliferation of human macrophage cells in culture and partially restored the number of kidney MPCs when administered to THP-/- mice. Furthermore, resident renal MPCs had impaired phagocytic activity in the absence of THP. After ischemia-reperfusion injury, THP-/- mice, compared with wild-type mice, exhibited aggravated injury and an impaired transition of renal macrophages toward an M2 healing phenotype. However, treatment of THP-/- mice with truncated THP after ischemia-reperfusion injury mitigated the worsening of AKI. Taken together, our data suggest that interstitial THP positively regulates mononuclear phagocyte number, plasticity, and phagocytic activity. In addition to the effect of THP on the epithelium and granulopoiesis, this new immunomodulatory role could explain the protection conferred by THP during AKI.
Collapse
Affiliation(s)
| | | | | | | | | | - Edward F Srour
- Departments of Medicine.,Microbiology and Immunology, and
| | | | | | - Yan Tong
- Biostatistics, Indiana University, Indianapolis, Indiana
| | | | - Pierre C Dagher
- Departments of Medicine.,Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; and
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University and Manhattan Veterans Affairs, New York, New York
| | - Tarek M El-Achkar
- Departments of Medicine, .,Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; and
| |
Collapse
|
46
|
Devuyst O, Pattaro C. The UMOD Locus: Insights into the Pathogenesis and Prognosis of Kidney Disease. J Am Soc Nephrol 2017; 29:713-726. [PMID: 29180396 DOI: 10.1681/asn.2017070716] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The identification of genetic factors associated with kidney disease has the potential to provide critical insights into disease mechanisms. Genome-wide association studies have uncovered genomic regions associated with renal function metrics and risk of CKD. UMOD is among the most outstanding loci associated with CKD in the general population, because it has a large effect on eGFR and CKD risk that is consistent across different ethnic groups. The relevance of UMOD for CKD is clear, because the encoded protein, uromodulin (Tamm-Horsfall protein), is exclusively produced by the kidney tubule and has specific biochemical properties that mediate important functions in the kidney and urine. Rare mutations in UMOD are the major cause of autosomal dominant tubulointerstitial kidney disease, a condition that leads to CKD and ESRD. In this brief review, we use the UMOD paradigm to describe how population genetic studies can yield insight into the pathogenesis and prognosis of kidney diseases.
Collapse
Affiliation(s)
- Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and
| | - Cristian Pattaro
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
47
|
Devuyst O, Olinger E, Rampoldi L. Uromodulin: from physiology to rare and complex kidney disorders. Nat Rev Nephrol 2017; 13:525-544. [PMID: 28781372 DOI: 10.1038/nrneph.2017.101] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uromodulin (also known as Tamm-Horsfall protein) is exclusively produced in the kidney and is the most abundant protein in normal urine. The function of uromodulin remains elusive, but the available data suggest that this protein might regulate salt transport, protect against urinary tract infection and kidney stones, and have roles in kidney injury and innate immunity. Interest in uromodulin was boosted by genetic studies that reported involvement of the UMOD gene, which encodes uromodulin, in a spectrum of rare and common kidney diseases. Rare mutations in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), which leads to chronic kidney disease (CKD). Moreover, genome-wide association studies have identified common variants in UMOD that are strongly associated with risk of CKD and also with hypertension and kidney stones in the general population. These findings have opened up a new field of kidney research. In this Review we summarize biochemical, physiological, genetic and pathological insights into the roles of uromodulin; the mechanisms by which UMOD mutations cause ADTKD, and the association of common UMOD variants with complex disorders.
Collapse
Affiliation(s)
- Olivier Devuyst
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Eric Olinger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Luca Rampoldi
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
48
|
Early involvement of cellular stress and inflammatory signals in the pathogenesis of tubulointerstitial kidney disease due to UMOD mutations. Sci Rep 2017; 7:7383. [PMID: 28785050 PMCID: PMC5547146 DOI: 10.1038/s41598-017-07804-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/03/2017] [Indexed: 01/22/2023] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an inherited disorder that causes progressive kidney damage and renal failure. Mutations in the UMOD gene, encoding uromodulin, lead to ADTKD-UMOD related. Uromodulin is a GPI-anchored protein exclusively produced by epithelial cells of the thick ascending limb of Henle's loop. It is released in the tubular lumen after proteolytic cleavage and represents the most abundant protein in human urine in physiological condition. We previously generated and characterized a transgenic mouse model expressing mutant uromodulin (Tg UmodC147W) that recapitulates the main features of ATDKD-UMOD. While several studies clearly demonstrated that mutated uromodulin accumulates in endoplasmic reticulum, the mechanisms that lead to renal damage are not fully understood. In our work, we used kidney transcriptional profiling to identify early events of pathogenesis in the kidneys of Tg UmodC147W mice. Our results demonstrate up-regulation of inflammation and fibrosis and down-regulation of lipid metabolism in young Tg UmodC147W mice, before any functional or histological evidence of kidney damage. We also show that pro-inflammatory signals precede fibrosis onset and are already present in the first week after birth. Early induction of inflammation is likely relevant for ADTKD-UMOD pathogenesis and related pathways can be envisaged as possible novel targets for therapeutic intervention.
Collapse
|
49
|
Susceptibility to Urinary Tract Infection: Benefits and Hazards of the Antibacterial Host Response. Microbiol Spectr 2017; 4. [PMID: 27337480 DOI: 10.1128/microbiolspec.uti-0019-2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A paradigm shift is needed to improve and personalize the diagnosis of infectious disease and to select appropriate therapies. For many years, only the most severe and complicated bacterial infections received more detailed diagnostic and therapeutic attention as the efficiency of antibiotic therapy has guaranteed efficient treatment of patients suffering from the most common infections. Indeed, treatability almost became a rationale not to analyze bacterial and host parameters in these larger patient groups. Due to the rapid spread of antibiotic resistance, common infections like respiratory tract- or urinary-tract infections (UTIs) now pose new and significant therapeutic challenges. It is fortunate and timely that infectious disease research can offer such a wealth of new molecular information that is ready to use for the identification of susceptible patients and design of new suitable therapies. Paradoxically, the threat of antibiotic resistance may become a window of opportunity, by encouraging the implementation of new diagnostic and therapeutic approaches. The frequency of antibiotic resistance is rising rapidly in uropathogenic organisms and the molecular and genetic understanding of UTI susceptibility is quite advanced. More bold translation of the new molecular diagnostic and therapeutic tools would not just be possible but of great potential benefit in this patient group. This chapter reviews the molecular basis for susceptibility to UTI, including recent advances in genetics, and discusses the consequences for diagnosis and therapy. By dissecting the increasingly well-defined molecular interactions between bacteria and host and the molecular features of excessive bacterial virulence or host-response malfunction, it is becoming possible to isolate the defensive from the damaging aspects of the host response. Distinguishing "good" from "bad" inflammation has been a long-term quest of biomedical science and in UTI, patients need the "good" aspects of the inflammatory response to resist infection while avoiding the "bad" aspects, causing chronicity and tissue damage.
Collapse
|
50
|
Garimella PS, Bartz TM, Ix JH, Chonchol M, Shlipak MG, Devarajan P, Bennett MR, Sarnak MJ. Urinary Uromodulin and Risk of Urinary Tract Infections: The Cardiovascular Health Study. Am J Kidney Dis 2017; 69:744-751. [PMID: 28029393 PMCID: PMC5409878 DOI: 10.1053/j.ajkd.2016.08.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/06/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Laboratory studies suggest that urinary uromodulin, the most common protein in the urine of healthy adults, may protect against urinary tract infection (UTI). Epidemiologic studies evaluating this relationship in humans are lacking. STUDY DESIGN Prospective longitudinal cohort study. SETTING & PARTICIPANTS 953 participants enrolled in the Cardiovascular Health Study. PREDICTOR Uromodulin assayed using enzyme-linked immunosorbent assay in spot urine samples. OUTCOMES Composite of outpatient UTI events or UTI-related hospitalizations and each of them individually identified using International Classification of Diseases, Ninth Revision (ICD-9) codes using negative binomial regression with robust standard errors adjusted for age, race, sex, body mass index, diabetes, estimated glomerular filtration rate, and urinary albumin and urinary creatinine excretion. RESULTS Median uromodulin level was 25.9 (IQR, 17.3-38.9) μg/mL, mean age of participants was 78 years, 61% were women, and 15% were black. There were 331 outpatient UTI events and 87 UTI-related hospitalizations among 186 participants during a median 9.9 years of follow-up. Persons in the highest quartile (>38.93μg/mL) of uromodulin concentration had a significantly lower risk for the composite outcome (incidence rate ratio [IRR], 0.47; 95% CI, 0.29-0.79) compared with those in the lowest quartile (≤17.26μg/mL). This association remained significant for outpatient UTI events (highest vs lowest quartile even after excluding those with prior UTI: IRR, 0.42; 95% CI, 0.23-0.77). The direction of association with UTI hospitalization was similar, but not statistically significant (IRR, 0.78; 95% CI, 0.39-1.58). LIMITATIONS Use of ICD-9 codes to identify outcomes and lack of generalizability to younger populations. CONCLUSIONS High urinary uromodulin levels are associated with lower risk for UTI in older community-dwelling adults independent of traditional UTI risk factors. This finding supports prior laboratory data indicating a protective role of uromodulin against UTI. Further research is needed to understand if this may lead to new treatments to prevent or treat UTI.
Collapse
Affiliation(s)
| | | | - Joachim H Ix
- University of California San Diego, San Diego, CA
| | | | - Michael G Shlipak
- San Francisco VA Medical Center and the University of California San Francisco, San Francisco, CA
| | | | | | | |
Collapse
|