1
|
Wang Z, Song K, Kim BS, Manion J. Sensory neuroimmune interactions at the barrier. Mucosal Immunol 2024:S1933-0219(24)00104-1. [PMID: 39374664 DOI: 10.1016/j.mucimm.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Epithelial barriers such as the skin, lung, and gut, in addition to having unique physiologic functions, are designed to preserve tissue homeostasis upon challenge with a variety of allergens, irritants, or pathogens. Both the innate and adaptive immune systems play a critical role in responding to epithelial cues triggered by environmental stimuli. However, the mechanisms by which organs sense and coordinate complex epithelial, stromal, and immune responses have remained a mystery. Our increasing understanding of the anatomic and functional characteristics of the sensory nervous system is greatly advancing a new field of peripheral neuroimmunology and subsequently changing our understanding of mucosal immunology. Herein, we detail how sensory biology is informing mucosal neuroimmunology, even beyond neuroimmune interactions seen within the central and autonomic nervous systems.
Collapse
Affiliation(s)
- Zhen Wang
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Keaton Song
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA.
| | - John Manion
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Pourliotopoulou E, Karampatakis T, Kachrimanidou M. Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms 2024; 12:1004. [PMID: 38792835 PMCID: PMC11124097 DOI: 10.3390/microorganisms12051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI.
Collapse
Affiliation(s)
- Evdokia Pourliotopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
3
|
Manion J, Musser MA, Kuziel GA, Liu M, Shepherd A, Wang S, Lee PG, Zhao L, Zhang J, Marreddy RKR, Goldsmith JD, Yuan K, Hurdle JG, Gerhard R, Jin R, Rakoff-Nahoum S, Rao M, Dong M. C. difficile intoxicates neurons and pericytes to drive neurogenic inflammation. Nature 2023; 622:611-618. [PMID: 37699522 PMCID: PMC11188852 DOI: 10.1038/s41586-023-06607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Clostridioides difficile infection (CDI) is a major cause of healthcare-associated gastrointestinal infections1,2. The exaggerated colonic inflammation caused by C. difficile toxins such as toxin B (TcdB) damages tissues and promotes C. difficile colonization3-6, but how TcdB causes inflammation is unclear. Here we report that TcdB induces neurogenic inflammation by targeting gut-innervating afferent neurons and pericytes through receptors, including the Frizzled receptors (FZD1, FZD2 and FZD7) in neurons and chondroitin sulfate proteoglycan 4 (CSPG4) in pericytes. TcdB stimulates the secretion of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) from neurons and pro-inflammatory cytokines from pericytes. Targeted delivery of the TcdB enzymatic domain, through fusion with a detoxified diphtheria toxin, into peptidergic sensory neurons that express exogeneous diphtheria toxin receptor (an approach we term toxogenetics) is sufficient to induce neurogenic inflammation and recapitulates major colonic histopathology associated with CDI. Conversely, mice lacking SP, CGRP or the SP receptor (neurokinin 1 receptor) show reduced pathology in both models of caecal TcdB injection and CDI. Blocking SP or CGRP signalling reduces tissue damage and C. difficile burden in mice infected with a standard C. difficile strain or with hypervirulent strains expressing the TcdB2 variant. Thus, targeting neurogenic inflammation provides a host-oriented therapeutic approach for treating CDI.
Collapse
Affiliation(s)
- John Manion
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Melissa A Musser
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gavin A Kuziel
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Min Liu
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Amy Shepherd
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Siyu Wang
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Leo Zhao
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Jie Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ravi K R Marreddy
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | | | - Ke Yuan
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julian G Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Seth Rakoff-Nahoum
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Meenakshi Rao
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Santos AAQA, Costa DVS, Foschetti DA, Duarte ASG, Martins CS, Soares PMG, Castelucci P, Brito GAC. P2X7 receptor blockade decreases inflammation, apoptosis, and enteric neuron loss during Clostridioides difficile toxin A-induced ileitis in mice. World J Gastroenterol 2022; 28:4075-4088. [PMID: 36157120 PMCID: PMC9403433 DOI: 10.3748/wjg.v28.i30.4075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clostridioides difficile (C. difficile) is the most common pathogen causing health care-associated infections. C. difficile TcdA and TcdB have been shown to activate enteric neurons; however, what population of these cells is more profoundly influenced and the mechanism underlying these effects remain unknown.
AIM To characterize a specific population of TcdA-affected myenteric neurons and investigate the role of the P2X7 receptor in TcdA-induced ileal inflammation, cell death, and the changes in the enteric nervous system in mice.
METHODS Swiss mice were used to model TcdA-induced ileitis in ileal loops exposed to TcdA (50 μg/Loop) for 4 h. To investigate the role of the P2X7 receptor, Brilliant Blue G (50 mg/kg, i.p.), which is a nonspecific P2X7 receptor antagonist, or A438079 (0.7 μg/mouse, i.p.), which is a competitive P2X7 receptor antagonist, were injected one hour prior to TcdA challenge. Ileal samples were collected to analyze the expression of the P2X7 receptor (by quantitative real-time polymerase chain reaction and immunohistochemistry), the population of myenteric enteric neurons (immunofluorescence), histological damage, intestinal inflammation, cell death (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling), neuronal loss, and S100B synthesis (immunohistochemistry).
RESULTS TcdA upregulated (P < 0.05) the expression of the P2X7 receptor gene in the ileal tissues, increasing the level of this receptor in myenteric neurons compared to that in control mice. Comparison with the control mice indicated that TcdA promoted (P < 0.05) the loss of myenteric calretinin+ (Calr) and choline acetyltransferase+ neurons and increased the number of nitrergic+ and Calr+ neurons expressing the P2X7 receptor. Blockade of the P2X7 receptor decreased TcdA-induced intestinal damage, cytokine release [interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α], cell death, enteric neuron loss, and S100B synthesis in the mouse ileum.
CONCLUSION Our findings demonstrated that TcdA induced the upregulation of the P2X7 receptor, which promoted enteric neuron loss, S100B synthesis, tissue damage, inflammation, and cell death in the mouse ileum. These findings contribute to the future directions in understanding the mechanism involved in intestinal dysfunction reported in patients after C. difficile infection.
Collapse
Affiliation(s)
- Ana A Q A Santos
- Department of Morphology, School of Medicine, Federal University of Ceara, Fortaleza 60430-170, Ceara, Brazil
| | - Deiziane V S Costa
- Department of Morphology, School of Medicine, Federal University of Ceara, Fortaleza 60430-170, Ceara, Brazil
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza 60430-170, Ceara, Brazil
| | - Danielle A Foschetti
- Department of Pathology and Legal Medicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-170, Ceara, Brazil
| | - Antoniella S G Duarte
- Department of Morphology (UFC), Federal University of Ceara, Fortaleza 60430-170, Ceara, Brazil
| | - Conceição S Martins
- Department of Morphology, School of Medicine, Federal University of Ceara, Fortaleza 60430-170, Ceara, Brazil
| | - Pedro M G Soares
- Department of Morphology, School of Medicine, Federal University of Ceara, Fortaleza 60430-170, Ceara, Brazil
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo 05508-270, Brazil
| | - Gerly A C Brito
- Department of Morphology, Federal University of Ceara, Fortaleza 60140-170, Ceara, Brazil
| |
Collapse
|
5
|
Serotonergic Paracrine Targets in the Intestinal Mucosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:81-87. [PMID: 36587148 DOI: 10.1007/978-3-031-05843-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Serotonin functions as a neurotransmitter in the enteric nervous system. Aside from its neurotransmitter role, serotonin also is a paracrine mediatorial signal in the digestive tract. It is a major paracrine signaling molecule in the integrated physiology of several classes of cells in the intestinal mucosa. Paracrine action can be initiation or suppression of activity in populations of cells that make up divergent phenotypic classes. This underlies phenotypic plasticity in single classes and links single classes to other neighboring phenotypic classes, thereby forming a single and higher-order organization in which different categories of function are integrated to work in harmony as a single homeostatic entity at higher levels of physiological organization. Phenotypic classes of cells that are linked by serotonergic paracrine signaling at upper levels of functional organization in the small intestine are (1) enterochromaffin cells; (2) enteric mast cells; (3) spinal sensory afferents; (4) sympathetic postganglionic neurons; (5) enteric neurons.
Collapse
|
6
|
Wood JD. Serotonergic Integration In the Intestinal Mucosa. Curr Pharm Des 2020; 26:3010-3014. [DOI: 10.2174/1381612826666200612161542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Mucosal serotonin (5-HT) is a key paracrine signaling molecule in the integrated physiology of enterochromaffin
cells, enteric mast cells, spinal afferent nerves and the enteric nervous system (ENS). Enterochromaffin
cells release 5-HT as a paracrine signal to enteric mast cells, spinal afferents and neurons in the ENS. Enteric
mast cells release multiple mediators of paracrine signaling, among which are histamine and the serine proteases,
chymase and tryptase, as well as serotonin. Some of these mediators diffuse to receptors on afferent nociceptive
and mechanosensitive terminals and sensitize the terminals in a manner that may underlie abdominal pain and
distension induced pain in the irritable bowel syndrome. Substance P and calcitonin gene-related peptide (CGRP),
released by spinal afferent innervation, degranulate enteric mast cells. Substance P and CGRP are significant
factors in mucosal inflammation evoked by bacteria in the colonic microbiome. Binding of immunoglobulin
antibodies to FcεRI receptors, on enteric mast cells, degranulate the mast cells and release paracrine mediators
that overlay integrative microcircuitry in the ENS. An overlay of histamine “calls up” from the ENS library of
programed gut behaviors, a defensive program consisting of a sequence of copious mucosal secretions, increased
blood flow and powerful orthograde propulsion organized to move threats out of the colonic lumen. Symptoms of
acute watery diarrhea, cramping abdominal pain and incontinence are associated with “running” of the defense
program. Intestinal behavioral programs stored in the ENS library are described as working like digital “apps”.
Collapse
Affiliation(s)
- Jackie D. Wood
- Department of Physiology and Cell Biology, The Ohio State University, College of Medicine, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Fischer S, Ückert AK, Landenberger M, Papatheodorou P, Hoffmann-Richter C, Mittler AK, Ziener U, Hägele M, Schwan C, Müller M, Kleger A, Benz R, Popoff MR, Aktories K, Barth H. Human peptide α-defensin-1 interferes with Clostridioides difficile toxins TcdA, TcdB, and CDT. FASEB J 2020; 34:6244-6261. [PMID: 32190927 DOI: 10.1096/fj.201902816r] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
The human pathogenic bacterium Clostridioides difficile produces two exotoxins TcdA and TcdB, which inactivate Rho GTPases thereby causing C. difficile-associated diseases (CDAD) including life-threatening pseudomembranous colitis. Hypervirulent strains produce additionally the binary actin ADP-ribosylating toxin CDT. These strains are hallmarked by more severe forms of CDAD and increased frequency and severity. Once in the cytosol, the toxins act as enzymes resulting in the typical clinical symptoms. Therefore, targeting and inactivation of the released toxins are of peculiar interest. Prompted by earlier findings that human α-defensin-1 neutralizes TcdB, we investigated the effects of the defensin on all three C. difficile toxins. Inhibition of TcdA, TcdB, and CDT was demonstrated by analyzing toxin-induced changes in cell morphology, substrate modification, and decrease in transepithelial electrical resistance. Application of α-defensin-1 protected cells and human intestinal organoids from the cytotoxic effects of TcdA, TcdB, CDT, and their combination which is attributed to a direct interaction between the toxins and α-defensin-1. In mice, the application of α-defensin-1 reduced the TcdA-induced damage of intestinal loops in vivo. In conclusion, human α-defensin-1 is a specific and potent inhibitor of the C. difficile toxins and a promising agent to develop novel therapeutic options against C. difficile infections.
Collapse
Affiliation(s)
- Stephan Fischer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Anna-Katharina Ückert
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Marc Landenberger
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | | | | | - Ann-Katrin Mittler
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Ulrich Ziener
- Institute of Organic Chemistry III, Ulm University, Ulm, Germany
| | - Marlen Hägele
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Martin Müller
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Michel R Popoff
- Department of Anaerobic Bacteria, Pasteur Institute, Paris, France
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
8
|
Bakirtzi K, Man Law IK, Fang K, Iliopoulos D, Pothoulakis C. MiR-21 in Substance P-induced exosomes promotes cell proliferation and migration in human colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2019; 317:G802-G810. [PMID: 31545921 PMCID: PMC6957364 DOI: 10.1152/ajpgi.00043.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/31/2023]
Abstract
Exosomes are cellular vesicles involved in intercellular communication via their specialized molecular cargo, such as miRNAs. Substance P (SP), a neuropeptide/hormone, and its high-affinity receptor, NK-1R, are highly expressed during colonic inflammation. Our previous studies show that SP/NK-1R signaling stimulates differential miRNA expression and promotes colonic epithelial cell proliferation. In this study, we examined whether SP/NK-1R signaling regulates exosome biogenesis and exosome-miRNA cargo sorting. Moreover, we examined the role of SP/NK-1R signaling in exosome-regulated cell proliferation and migration. Exosomes produced by human colonic NCM460 epithelial cells overexpressing NK-1R (NCM460-NK1R) were isolated from culture media. Exosome abundance and uptake were assessed by Western blot analysis (abundance) and Exo-Green fluorescence microscopy (abundance and uptake). Cargo-miRNA levels were assessed by RT-PCR. Cell proliferation and migration were assessed using xCELLigence technology. Colonic epithelial exosomes were isolated from mice pretreated with SP for 3 days. Cell proliferation in vivo was assessed by Ki-67 staining. SP/NK-1R signaling in human colonic epithelial cells (in vitro) and mouse colons (in vivo) increased 1) exosome production, 2) the level of fluorescence in NCM460s treated with Exo-Green-labeled exosomes, and 3) the level of miR-21 in exosome cargo. Moreover, our results showed that SP/NK-1R-induced cell proliferation and migration are at least in part dependent on intercellular communication via exosomal miR-21 in vitro and in vivo. Our results demonstrate that SP/NK-1R signaling regulates exosome biogenesis and induces its miR-21 cargo sorting. Moreover, exosomal miR-21 promotes proliferation and migration of target cells.NEW & NOTEWORTHY Substance P signaling regulates exosome production in human colonic epithelial cells and colonic crypts in wild-type mice. MiR-21 is selectively sorted into exosomes induced by Substance P stimulation and promotes cell proliferation and migration in human colonocytes and mouse colonic crypts.
Collapse
Affiliation(s)
- Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Kai Fang
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
9
|
Fang K, Law IKM, Padua D, Sideri A, Huang V, Kevil CG, Iliopoulos D, Pothoulakis C. MicroRNA-31-3p Is Involved in Substance P (SP)-Associated Inflammation in Human Colonic Epithelial Cells and Experimental Colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:586-599. [PMID: 29253460 DOI: 10.1016/j.ajpath.2017.10.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023]
Abstract
Substance P (SP) mediates colitis. SP signaling regulates the expression of several miRNAs, including miR-31-3p, in human colonocytes. However, the role of miR-31-3p in colitis and the underlying mechanisms has not been elucidated. We performed real-time PCR analysis of miR-31-3p expression in human colonic epithelial cells overexpressing neurokinin-1 receptor (NCM460 NK-1R) in response to SP stimulation and in NCM460 cells after IL-6, IL8, tumor necrosis factor (TNF)-α, and interferon-γ exposure. Functions of miR-31-3p were tested in NCM460-NK-1R cells and the trinitrobenzene sulfonic acid (TNBS) and dextran sodium sulfate (DSS) models of colitis. Targets of miRNA-31-3p were confirmed by Western blot analysis and luciferase reporter assay. Jun N-terminal kinase inhibition decreased SP-induced miR-31-3p expression. miR-31-3p expression was increased in both TNBS- and DSS-induced colitis and human colonic biopsies from ulcerative colitis, compared with controls. Intracolonic administration of a miR-31-3p chemical inhibitor exacerbated TNBS- and DSS-induced colitis and increased colonic TNF-α, CXCL10, and chemokine (C-C motif) ligand 2 (CCL2) mRNA expression. Conversely, overexpression of miR-31-3p ameliorated the severity of DSS-induced colitis. Bioinformatic, luciferase reporter assay, and Western blot analyses identified RhoA as a target of miR-31-3p in NCM460 cells. Constitutive activation of RhoA led to increased expression of CCL2, IL6, TNF-α, and CXCL10 in NCM460-NK-1R cells on SP stimulation. Our results reveal a novel SP-miR-31-3p-RhoA pathway that protects from colitis. The use of miR-31-3p mimics may be a promising approach for colitis treatment.
Collapse
Affiliation(s)
- Kai Fang
- Inflammatory Bowel Disease Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - David Padua
- Inflammatory Bowel Disease Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Aristea Sideri
- Inflammatory Bowel Disease Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Vanessa Huang
- Inflammatory Bowel Disease Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California.
| |
Collapse
|
10
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Transforming Growth Factor β1/SMAD Signaling Pathway Activation Protects the Intestinal Epithelium from Clostridium difficile Toxin A-Induced Damage. Infect Immun 2017; 85:IAI.00430-17. [PMID: 28784928 DOI: 10.1128/iai.00430-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023] Open
Abstract
Clostridium difficile, the main cause of diarrhea in hospitalized patients, produces toxins A (TcdA) and B (TcdB), which affect intestinal epithelial cell survival, proliferation, and migration and induce an intense inflammatory response. Transforming growth factor β (TGF-β) is a pleiotropic cytokine affecting enterocyte and immune/inflammatory responses. However, it has been shown that exposure of intestinal epithelium to a low concentration of TcdA induces the release of TGF-β1, which has a protective effect on epithelial resistance and a TcdA/TGF-β signaling pathway interaction. The activation of this pathway in vivo has not been elucidated. The aim of this study was to investigate the role of the TGF-β1 pathway in TcdA-induced damage in a rat intestinal epithelial cell line (IEC-6) and in a mouse model of an ileal loop. TcdA increased the expression of TGF-β1 and its receptor, TβRII, in vitro and in vivo TcdA induced nuclear translocation of the transcription factors SMAD2/3, a hallmark of TGF-β1 pathway activation, both in IEC cells and in mouse ileal tissue. The addition of recombinant TGF-β1 (rTGF-β) prevented TcdA-induced apoptosis/necrosis and restored proliferation and repair activity in IEC-6 cells in the presence of TcdA. Together, these data show that TcdA induces TGF-β1 signaling pathway activation and suggest that this pathway might play a protective role against the effect of C. difficile-toxin.
Collapse
|
12
|
Liubakka A, Vaughn BP. Clostridium difficile Infection and Fecal Microbiota Transplant. AACN Adv Crit Care 2017; 27:324-337. [PMID: 27959316 DOI: 10.4037/aacnacc2016703] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clostridium difficile infection (CDI) is a major source of morbidity and mortality for hospitalized patients. Although most patients have a clinical response to existing antimicrobial therapies, recurrent infection develops in up to 30% of patients. Fecal microbiota transplant is a novel approach to this complex problem, with an efficacy rate of nearly 90% in the setting of multiple recurrent CDI. This review covers the current epidemiology of CDI (including toxigenic and nontoxigenic strains, risk factors for infection, and recurrent infection), methods of diagnosis, existing first-line therapies in CDI, the role of fecal microbiota transplant for multiple recurrent CDIs, and the potential use of fecal microbial transplant for patients with severe or refractory infection.
Collapse
Affiliation(s)
- Alyssa Liubakka
- Alyssa Liubakka is an Internal Medicine Resident, Department of Medicine, University of Minnesota, 420 Delaware Street SE, MMC 284, Minneapolis, MN 55455 (e-mail: ). Byron P. Vaughn is an Assistant Professor of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, and part of the Microbiota Therapeutics Program, University of Minnesota, Minneapolis, Minnesota
| | - Byron P Vaughn
- Alyssa Liubakka is an Internal Medicine Resident, Department of Medicine, University of Minnesota, 420 Delaware Street SE, MMC 284, Minneapolis, MN 55455 (e-mail: ). Byron P. Vaughn is an Assistant Professor of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, and part of the Microbiota Therapeutics Program, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
13
|
Martz SL, Guzman-Rodriguez M, He SM, Noordhof C, Hurlbut DJ, Gloor GB, Carlucci C, Weese S, Allen-Vercoe E, Sun J, Claud EC, Petrof EO. A human gut ecosystem protects against C. difficile disease by targeting TcdA. J Gastroenterol 2017; 52:452-465. [PMID: 27329502 PMCID: PMC5177537 DOI: 10.1007/s00535-016-1232-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/06/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND A defined Microbial Ecosystem Therapeutic (MET-1, or "RePOOPulate") derived from the feces of a healthy volunteer can cure recurrent C. difficile infection (rCDI) in humans. The mechanisms of action whereby healthy microbiota protect against rCDI remain unclear. Since C. difficile toxins are largely responsible for the disease pathology of CDI, we hypothesized that MET-1 exerts its protective effects by inhibiting the effects of these toxins on the host. METHODS A combination of in vivo (antibiotic-associated mouse model of C. difficile colitis, mouse ileal loop model) and in vitro models (FITC-phalloidin staining, F actin Western blots and apoptosis assay in Caco2 cells, transepithelial electrical resistance measurements in T84 cells) were employed. RESULTS MET-1 decreased both local and systemic inflammation in infection and decreased both the cytotoxicity and the amount of TcdA detected in stool, without an effect on C. difficile viability. MET-1 protected against TcdA-mediated damage in a murine ileal loop model. MET-1 protected the integrity of the cytoskeleton in cells treated with purified TcdA, as indicated by FITC-phalloidin staining, F:G actin assays and preservation of transepithelial electrical resistance. Finally, co-incubation of MET-1 with purified TcdA resulted in decreased detectable TcdA by Western blot analysis. CONCLUSIONS MET-1 intestinal microbiota confers protection against C. difficile and decreases C. difficile-mediated inflammation through its protective effects against C. difficile toxins, including enhancement of host barrier function and degradation of TcdA. The effect of MET-1 on C. difficile viability seems to offer little, if any, contribution to its protective effects on the host.
Collapse
Affiliation(s)
- Sarah Lynn Martz
- Division of Infectious Diseases/GI Diseases Research Unit Wing, Department of Medicine, Kingston General Hospital, Queen's University, 76 Stuart Street, Kingston, ON, K7L 2V7, Canada
| | - Mabel Guzman-Rodriguez
- Division of Infectious Diseases/GI Diseases Research Unit Wing, Department of Medicine, Kingston General Hospital, Queen's University, 76 Stuart Street, Kingston, ON, K7L 2V7, Canada
| | - Shu-Mei He
- Division of Infectious Diseases/GI Diseases Research Unit Wing, Department of Medicine, Kingston General Hospital, Queen's University, 76 Stuart Street, Kingston, ON, K7L 2V7, Canada
| | - Curtis Noordhof
- Division of Infectious Diseases/GI Diseases Research Unit Wing, Department of Medicine, Kingston General Hospital, Queen's University, 76 Stuart Street, Kingston, ON, K7L 2V7, Canada
| | - David John Hurlbut
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, K7L 2V7, Canada
| | - Gregory Brian Gloor
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Christian Carlucci
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Scott Weese
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Erika Chiong Claud
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Elaine Olga Petrof
- Division of Infectious Diseases/GI Diseases Research Unit Wing, Department of Medicine, Kingston General Hospital, Queen's University, 76 Stuart Street, Kingston, ON, K7L 2V7, Canada.
| |
Collapse
|
14
|
Johnson MB, Young AD, Marriott I. The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders. Front Cell Neurosci 2017; 10:296. [PMID: 28101005 PMCID: PMC5209380 DOI: 10.3389/fncel.2016.00296] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
The inflammatory responses of resident central nervous system (CNS) cells are now known to play a critical role in the initiation and progression of an array of infectious and sterile neuroinflammatory disorders such as meningitis, encephalitis, Parkinson's disease, Alzheimer's disease and multiple sclerosis (MS). Regulating glial inflammatory responses in a timely manner is therefore critical in preserving normal CNS functions. The neuropeptide substance P is produced at high levels within the CNS and its selective receptor, the neurokinin 1 receptor (NK-1R), is abundantly expressed by neurons and is present on glial cell types including microglia and astrocytes. In addition to its functions as a neurotransmitter in the perception of pain and its essential role in gut motility, this tachykinin is widely recognized to exacerbate inflammation at peripheral sites including the skin, gastrointestinal tract and the lungs. Recently, a number of studies have identified a role for substance P and NK-1R interactions in neuroinflammation and described the ability of this neuropeptide to alter the immune functions of activated microglia and astrocytes. In this review article, we describe the expression of substance P and its receptor by resident CNS cells, and we discuss the ability of this neuropeptide to exacerbate the inflammatory responses of glia and immune cells that are recruited to the brain during neurodegenerative diseases. In addition, we discuss the available data indicating that the NK-1R-mediated augmentation of such responses appears to be detrimental during microbial infection and some sterile neurodegenerative disorders, and propose the repurposed use of NK-1R antagonists, of a type that are currently approved as anti-emetic and anti-anxiolytic agents, as an adjunct therapy to ameliorate the inflammatory CNS damage in these conditions.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ada D Young
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| |
Collapse
|
15
|
Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci 2016; 73:4249-4264. [PMID: 27314883 PMCID: PMC5056132 DOI: 10.1007/s00018-016-2293-z] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Substance P is a peptide mainly secreted by neurons and is involved in many biological processes, including nociception and inflammation. Animal models have provided insights into the biology of this peptide and offered compelling evidence for the importance of substance P in cell-to-cell communication by either paracrine or endocrine signaling. Substance P mediates interactions between neurons and immune cells, with nerve-derived substance P modulating immune cell proliferation rates and cytokine production. Intriguingly, some immune cells have also been found to secrete substance P, which hints at an integral role of substance P in the immune response. These communications play important functional roles in immunity including mobilization, proliferation and modulation of the activity of immune cells. This review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles. We focus on recent developments in the immunobiology of substance P and discuss the clinical implications of its ability to modulate the immune response.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Anna Marmalidou
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Mohsen Tehrani
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Peter M. Grace
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO 80309 USA
| | - Charalabos Pothoulakis
- Division of Digestive Diseases, David Geffen School of Medicine, Inflammatory Bowel Disease Center, University of California, Los Angeles, Los Angeles, CA USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
16
|
Corsetti M, Akyuz F, Tack J. Targeting tachykinin receptors for the treatment of functional gastrointestinal disorders with a focus on irritable bowel syndrome. Neurogastroenterol Motil 2015; 27:1354-70. [PMID: 26088804 DOI: 10.1111/nmo.12616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/13/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tachykinins (TKs) are a family of endogenous peptides widely expressed in the central and in the peripheral nervous systems as well as in the gastrointestinal (GI) tract. They act as full agonists at three different membrane receptors neurokinin (NK) 1, NK2, and NK3, which are G protein-coupled receptors and in the GI tract are expressed both on neurons and effector cells. PURPOSE This article reviews the literature concerning the role of TKs in the GI tract function in physiological and pathological conditions and their potential relevance in the treatment of functional GI disorders with particular reference to irritable bowel syndrome (IBS). The efficacy of NK1 antagonists in chemotherapy-induced and postoperative nausea and vomiting is well established. While pharmacodynamic studies have reported conflicting and negative results concerning the effects of NK1 and of NK3 antagonists, respectively, on the GI tract function in humans, clinical studies applying the NK3 antagonist talnetant in IBS-D were negative. Pharmacodynamic studies applying NK2 antagonists have suggested a role for antagonism of NK2 receptors in modulation of GI chemical-induced altered motility and of stress-induced altered bowel habits. Clinical studies and in particular a recently completed Phase 2 study have reported that the NK2 antagonist ibodutant is effective and safe in treating symptoms of D-IBS, especially in females.
Collapse
Affiliation(s)
- M Corsetti
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - F Akyuz
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - J Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Poole DP, Lieu T, Pelayo JC, Eriksson EM, Veldhuis NA, Bunnett NW. Inflammation-induced abnormalities in the subcellular localization and trafficking of the neurokinin 1 receptor in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2015; 309:G248-59. [PMID: 26138465 PMCID: PMC4537929 DOI: 10.1152/ajpgi.00118.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/24/2015] [Indexed: 01/31/2023]
Abstract
Activated G protein-coupled receptors traffic to endosomes and are sorted to recycling or degradative pathways. Endosomes are also a site of receptor signaling of sustained and pathophysiologically important processes, including inflammation. However, the mechanisms of endosomal sorting of receptors and the impact of disease on trafficking have not been fully defined. We examined the effects of inflammation on the subcellular distribution and trafficking of the substance P (SP) neurokinin 1 receptor (NK1R) in enteric neurons. We studied NK1R trafficking in enteric neurons of the mouse colon using immunofluorescence and confocal microscopy. The impact of inflammation was studied in IL10(-/-)-piroxicam and trinitrobenzenesulfonic acid colitis models. NK1R was localized to the plasma membrane of myenteric and submucosal neurons of the uninflamed colon. SP evoked NK1R endocytosis and recycling. Deletion of β-arrestin2, which associates with the activated NK1R, accelerated recycling. Inhibition of endothelin-converting enzyme-1 (ECE-1), which degrades endosomal SP, prevented recycling. Inflammation was associated with NK1R endocytosis in myenteric but not submucosal neurons. Whereas the NK1R in uninflamed neurons recycled within 60 min, NK1R recycling in inflamed neurons was delayed for >120 min, suggesting defective recycling machinery. Inflammation was associated with β-arrestin2 upregulation and ECE-1 downregulation, which may contribute to the defective NK1R recycling. We conclude that inflammation evokes redistribution of NK1R from the plasma membrane to endosomes of myenteric neurons through enhanced SP release and defective NK1R recycling. Defective recycling may be secondary to upregulation of β-arrestin2 and downregulation of ECE-1. Internalized NK1R may generate sustained proinflammatory signals that disrupt normal neuronal functions.
Collapse
Affiliation(s)
- Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia;
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Juan Carlos Pelayo
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Emily M Eriksson
- Population Health & Immunity, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; and Department of Laboratory Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia; Department of Genetics, The University of Melbourne, Parkville, Victoria, Australia
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia; Department of Anaesthesia and Peri-operative Medicine, Monash University, Victoria, Australia
| |
Collapse
|
18
|
McMahon SB, Russa FL, Bennett DLH. Crosstalk between the nociceptive and immune systems in host defence and disease. Nat Rev Neurosci 2015; 16:389-402. [DOI: 10.1038/nrn3946] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Fang K, Sideri A, Law IKM, Bakirtzi K, Polytarchou C, Iliopoulos D, Pothoulakis C. Identification of a novel substance P (SP)-neurokinin-1 receptor (NK-1R) microRNA-221-5p inflammatory network in human colonic epithelial cells. Cell Mol Gastroenterol Hepatol 2015; 1:503-515. [PMID: 26645045 PMCID: PMC4669978 DOI: 10.1016/j.jcmgh.2015.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Substance P (SP), a neuropeptide member of the tachykinin family, plays a critical role in colitis. MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression. However, whether SP modulates expression of microRNAs in human colonic epithelial cells remains unknown. METHODS We performed microRNA profiling analysis of SP-stimulated human colonic epithelial NCM460 cells overexpressing neurokinin-1 receptor (NCM460-NK-1R). Targets of SP-regulated microRNAs were validated by real time polymerase chain reaction (RT-PCR). Functions of miRNAs were tested in NCM460-NK-1R cells and the TNBS and DSS models of colitis. RESULTS SP stimulated differential expression of 29 microRNAs, including miR-221-5p, the highest up regulated miR (by 12.6-fold) upon SP stimulation. Bioinformatic and luciferase reporter analyses identified interleukin 6 receptor (IL-6R) mRNA as a direct target of miR-221-5p in NCM460 cells. Accordingly, SP exposure of NCM460-NK-1R cells increased IL-6R mRNA expression, while overexpression of miR-221-5p reduced IL-6R expression. NF-κB and JNK inhibition decreased SP-induced miR-221-5p expression. MiR-221-5p expression was increased in both TNBS- and DSS-induced colitis and colonic biopsies from Ulcerative Colitis, but not Crohn's Disease subjects, compared to controls. In mice, intracolonic administration of a miR-221-5p chemical inhibitor, exacerbated TNBS-and DSS-induced colitis, and increased colonic TNF-α, Cxcl10, and Col2 α 1 mRNA expression. In situ hybridization in TNBS-and DSS-exposed colons revealed increased miR-221-5p expression primarily in colonocytes. CONCLUSIONS Our results reveal a novel NK-1R-miR-221-5p-IL-6R network that protects from colitis. The use of miR-221-5p mimics may be a promising approach for colitis treatment.
Collapse
Affiliation(s)
- Kai Fang
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Aristea Sideri
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Christos Polytarchou
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, California,Correspondence Address correspondence to: Charalabos Pothoulakis, MD, Division of Digestive Diseases, Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California at Los Angeles, 675 Charles E. Young Drive, South MRL Building 1240, Los Angeles, California 90095.
| |
Collapse
|
20
|
Substance P mediates pro-inflammatory cytokine release form mesenteric adipocytes in Inflammatory Bowel Disease patients. Cell Mol Gastroenterol Hepatol 2015; 1:420-432. [PMID: 26543894 PMCID: PMC4629258 DOI: 10.1016/j.jcmgh.2015.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Substance P (SP), neurokinin-1 receptors (NK-1Rs) are expressed in mesenteric preadipocytes and SP binding activates proinflammatory signalling in these cells. We evaluated the expression levels of SP (Tac-1), NK-1R (Tacr-1), and NK-2R (Tacr-2) mRNA in preadipocytes isolated from patients with Inflammatory Bowel Disease (IBD) and examined their responsiveness to SP compared to control human mesenteric preadipocytes. The Aim of our study is to investigate the effects of the neuropeptide SP on cytokine expression in preadipocytes of IBD vs control patients and evaluate the potential effects of these cells on IBD pathophysiology via SP-NK-R interactions. METHODS Mesenteric fat was collected from control, Ulcerative colitis (UC) and Crohn's disease (CD) patients (n=10-11 per group). Preadipocytes were isolated, expanded in culture and exposed to substance P. Colon biopsies were obtained from control and IBD patients. RESULTS Tacr-1 and -2 mRNA were increased in IBD preadipocytes compared to controls, while Tac-1 mRNA was increased only in UC preadipocytes. SP differentially regulated the expression of inflammatory mediators in IBD preadipocytes compared to controls. Disease-dependent responses to SP were also observed between UC and CD preadipocytes. IL-17A mRNA expression and release increased after SP treatment in both CD and UC preadipocytes, while IL-17RA mRNA increased in colon biopsies from IBD patients. CONCLUSIONS Preadipocyte SP-NK-1R interactions during IBD may participate in IBD pathophysiology. The ability of human preadipocytes to release IL-17A in response to SP together with increased IL-17A receptor in IBD colon opens the possibility of a fat-colonic mucosa inflammatory loop that may be active during IBD.
Collapse
|
21
|
D'Auria KM, Bloom MJ, Reyes Y, Gray MC, van Opstal EJ, Papin JA, Hewlett EL. High temporal resolution of glucosyltransferase dependent and independent effects of Clostridium difficile toxins across multiple cell types. BMC Microbiol 2015; 15:7. [PMID: 25648517 PMCID: PMC4323251 DOI: 10.1186/s12866-015-0361-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/22/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Clostridium difficile toxins A and B (TcdA and TcdB), considered to be essential for C. difficile infection, affect the morphology of several cell types with different potencies and timing. However, morphological changes over various time scales are poorly characterized. The toxins' glucosyltransferase domains are critical to their deleterious effects, and cell responses to glucosyltransferase-independent activities are incompletely understood. By tracking morphological changes of multiple cell types to C. difficile toxins with high temporal resolution, cellular responses to TcdA, TcdB, and a glucosyltransferase-deficient TcdB (gdTcdB) are elucidated. RESULTS Human umbilical vein endothelial cells, J774 macrophage-like cells, and four epithelial cell lines (HCT8, T84, CHO, and immortalized mouse cecal epithelial cells) were treated with TcdA, TcdB, gdTcdB. Impedance across cell cultures was measured to track changes in cell morphology. Metrics from impedance data, developed to quantify rapid and long-lasting responses, produced standard curves with wide dynamic ranges that defined cell line sensitivities. Except for T84 cells, all cell lines were most sensitive to TcdB. J774 macrophages stretched and increased in size in response to TcdA and TcdB but not gdTcdB. High concentrations of TcdB and gdTcdB (>10 ng/ml) greatly reduced macrophage viability. In HCT8 cells, gdTcdB did not induce a rapid cytopathic effect, yet it delayed TcdA and TcdB's rapid effects. gdTcdB did not clearly delay TcdA or TcdB's toxin-induced effects on macrophages. CONCLUSIONS Epithelial and endothelial cells have similar responses to toxins yet differ in timing and degree. Relative potencies of TcdA and TcdB in mouse epithelial cells in vitro do not correlate with potencies in vivo. TcdB requires glucosyltransferase activity to cause macrophages to spread, but cell death from high TcdB concentrations is glucosyltransferase-independent. Competition experiments with gdTcdB in epithelial cells confirm common TcdA and TcdB mechanisms, yet different responses of macrophages to TcdA and TcdB suggest different, additional mechanisms or targets in these cells. This first-time, precise quantification of the response of multiple cell lines to TcdA and TcdB provides a comparative framework for delineating the roles of different cell types and toxin-host interactions.
Collapse
Affiliation(s)
- Kevin M D'Auria
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA, 22908, USA.
| | - Meghan J Bloom
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA, 22908, USA. .,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, PO Box 801340, Charlottesville, VA, 22908, USA.
| | - Yesenia Reyes
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, PO Box 801340, Charlottesville, VA, 22908, USA.
| | - Mary C Gray
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, PO Box 801340, Charlottesville, VA, 22908, USA.
| | - Edward J van Opstal
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, PO Box 801340, Charlottesville, VA, 22908, USA. .,Current address: Vanderbilt University School of Medicine, 340 Light Hall, Nashville, TN, 27232, USA.
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA, 22908, USA.
| | - Erik L Hewlett
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, PO Box 801340, Charlottesville, VA, 22908, USA.
| |
Collapse
|
22
|
Weinstock JV. Substance P and the regulation of inflammation in infections and inflammatory bowel disease. Acta Physiol (Oxf) 2015; 213:453-61. [PMID: 25424746 DOI: 10.1111/apha.12428] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/07/2014] [Accepted: 11/17/2014] [Indexed: 12/16/2022]
Abstract
Substance P (SP) and its natural analogue hemokinin-1 (HK1) are produced by lymphocytes and macrophages, and at times B cells. These peptides are an important component of the immune response during several infections and in inflammatory bowel disease (IBD). The synthesis of SP and HK1 in leucocytes is subject to immune regulation. IL12 and IL23 stimulate T cells and macrophages to make SP respectively. The cytokines driving HK1 production are not presently defined. These peptides act through a shared receptor called neurokinin-1. T cells, macrophages and probably other immune cell types can express this receptor. Several cytokines IL12, IL18 and TNFα as well as T-cell antigen receptor activation induce neurokinin-1 receptor expression on T cells, while IL10 blocks receptor display. TGFβ delays internalization of the SP/neurokine-1R complex on T cells resulting in stronger receptor signalling. One of the functions of SP and neurokinin-1 receptor is to enhance T cell IFNγ and IL17 production, amplifying the proinflammatory response. Thus, SP and HK1 have overlapping functions and are part of a sophisticated immune regulatory circuit aimed at amplifying inflammation at mucosal surfaces and in other regions of the body as shown in animal models of infection and IBD.
Collapse
Affiliation(s)
- J. V. Weinstock
- Division of Gastroenterology; Tufts Medical Center; Boston MA USA
| |
Collapse
|
23
|
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94:265-301. [PMID: 24382888 DOI: 10.1152/physrev.00031.2013] [Citation(s) in RCA: 434] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.
Collapse
|
24
|
Glutamine and alanyl-glutamine increase RhoA expression and reduce Clostridium difficile toxin-a-induced intestinal epithelial cell damage. BIOMED RESEARCH INTERNATIONAL 2012; 2013:152052. [PMID: 23484083 PMCID: PMC3591182 DOI: 10.1155/2013/152052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022]
Abstract
Clostridium difficile is a major cause of antibiotic-associated colitis and is associated with significant morbidity and mortality. Glutamine (Gln) is a major fuel for the intestinal cell population. Alanyl-glutamine (Ala-Gln) is a dipeptide that is highly soluble and well tolerated. IEC-6 cells were used in the in vitro experiments. Cell morphology was evaluated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Cell proliferation was assessed by WST-1 and Ki-67 and apoptosis was assessed by TUNEL. Cytoskeleton was evaluated by immunofluorescence for RhoA and F-actin. RhoA was quantified by immunoblotting. TcdA induced cell shrinkage as observed by AFM, SEM, and fluorescent microscopy. Additionally, collapse of the F-actin cytoskeleton was demonstrated by immunofluorescence. TcdA decreased cell volume and area and increased cell height by 79%, 66.2%, and 58.9%, respectively. Following TcdA treatment, Ala-Gln and Gln supplementation, significantly increased RhoA by 65.5% and 89.7%, respectively at 24 h. Ala-Gln supplementation increased cell proliferation by 137.5% at 24 h and decreased cell apoptosis by 61.4% at 24 h following TcdA treatment. In conclusion, TcdA altered intestinal cell morphology and cytoskeleton organization, decreased cell proliferation, and increased cell apoptosis. Ala-Gln and Gln supplementation reduced intestinal epithelial cell damage and increased RhoA expression.
Collapse
|
25
|
Kan L, Lounev VY, Pignolo RJ, Duan L, Liu Y, Stock SR, McGuire TL, Lu B, Gerard NP, Shore EM, Kaplan FS, Kessler JA. Substance P signaling mediates BMP-dependent heterotopic ossification. J Cell Biochem 2012; 112:2759-72. [PMID: 21748788 DOI: 10.1002/jcb.23259] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heterotopic ossification (HO) is a disabling condition associated with neurologic injury, inflammation, and overactive bone morphogenetic protein (BMP) signaling. The inductive factors involved in lesion formation are unknown. We found that the expression of the neuro-inflammatory factor Substance P (SP) is dramatically increased in early lesional tissue in patients who have either fibrodysplasia ossificans progressiva (FOP) or acquired HO, and in three independent mouse models of HO. In Nse-BMP4, a mouse model of HO, robust HO forms in response to tissue injury; however, null mutations of the preprotachykinin (PPT) gene encoding SP prevent HO. Importantly, ablation of SP(+) sensory neurons, treatment with an antagonist of SP receptor NK1r, deletion of NK1r gene, or genetic down-regulation of NK1r-expressing mast cells also profoundly inhibit injury-induced HO. These observations establish a potent neuro-inflammatory induction and amplification circuit for BMP-dependent HO lesion formation, and identify novel molecular targets for prevention of HO.
Collapse
Affiliation(s)
- Lixin Kan
- Department of Neurology, Northwestern University Feinberg Medical School, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mast cell–nerve axis with a focus on the human gut. Biochim Biophys Acta Mol Basis Dis 2012; 1822:85-92. [DOI: 10.1016/j.bbadis.2011.06.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 02/07/2023]
|
27
|
Wood JD. Nonruminant Nutrition Symposium: Neurogastroenterology and food allergies. J Anim Sci 2011; 90:1213-23. [PMID: 22100595 DOI: 10.2527/jas.2011-4787] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurogastroenterology is a subspecialty encompassing relations of the nervous system to the gastrointestinal tract. The central concept is emergence of whole organ behavior from coordinated activity of the musculature, mucosal epithelium, and blood vasculature. Behavior of each effector is determined by the enteric nervous system (ENS). The ENS is a minibrain positioned close to the effectors it controls. The ENS neurophysiology is in the framework of neurogastroenterology. The digestive tract is recognized as the largest lymphoid organ in the body with a unique complement of mast cells. In its position at the "dirtiest" of interfaces between the body and outside world, the mucosal immune system encounters food antigens, bacteria, parasites, viruses, and toxins. Epithelial barriers are insufficient to exclude fully the antigenic load, thereby allowing chronic challenges to the immune system. Observations in antigen-sensitized animals document direct communication between the mucosal immune system and ENS. Communication is functional and results in adaptive responses to circumstances within the lumen that are threatening to the functional integrity of the whole animal. Communication is paracrine and incorporates specialized sensing functions of mast cells for specific antigens together with the capacity of the ENS for intelligent interpretation of the signals. Immuno-neural integration progresses sequentially, beginning with immune detection, followed by signal transfer to the ENS, followed by neural interpretation and then selection of a neural program with coordinated mucosal secretion and a propulsive motor event that quickly clears the threat from the intestinal lumen. Operation of the defense program evokes symptoms of cramping abdominal pain, fecal urgency, and acute watery diarrhea. Investigative approaches to immuno-ENS interactions merge the disciplines of mucosal immunology and ENS neurophysiology into the realm of neurogastroenterology.
Collapse
Affiliation(s)
- J D Wood
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus 43210, USA.
| |
Collapse
|
28
|
Medeiros CA, Warren CA, Freire R, Vieira CA, Lima BB, Vale ML, Ribeiro RA, Souza MH, Brito GA. Role of the haem oxygenase/carbon monoxide pathway in Clostridium difficile toxin A-induced enteritis in mice. J Med Microbiol 2011; 60:1146-1154. [DOI: 10.1099/jmm.0.028910-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- C. A. Medeiros
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
- Department of Biomedical Sciences, State University of Rio Grande do Norte, Mossoró, Brazil
| | - C. A. Warren
- Division of Infectious Disease and International Health, Center for Global Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - R. Freire
- Division of Infectious Disease and International Health, Center for Global Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - C. A. Vieira
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - B. B. Lima
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - M. L. Vale
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - R. A. Ribeiro
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - M. H. Souza
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - G. A. Brito
- Department of Morphology, Federal University of Ceará, Fortaleza, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
29
|
Inui M, Ishida Y, Kimura A, Kuninaka Y, Mukaida N, Kondo T. Protective roles of CX3CR1-mediated signals in toxin A-induced enteritis through the induction of heme oxygenase-1 expression. THE JOURNAL OF IMMUNOLOGY 2010; 186:423-31. [PMID: 21131421 DOI: 10.4049/jimmunol.1000043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The injection of Clostridium difficile toxin A into the ileal loops caused fluid accumulation with the destruction of intestinal epithelial structure and the recruitment of neutrophils and macrophages. Concomitantly, intraileal gene expression of CX3CL1/fractalkine (FKN) and its receptor, CX3CR1, was enhanced. When treated with toxin A in a similar manner, CX3CR1-deficient (CX3CR1(-/-)) mice exhibited exaggerated fluid accumulation, histopathological alterations, and neutrophil recruitment, but not macrophage infiltration. Mice reconstituted with CX3CR1(-/-) mouse-derived bone marrow cells exhibited exacerbated toxin A-induced enteritis, indicating that the lack of the CX3CR1 gene for hematopoietic cells aggravated toxin A-induced enteritis. A heme oxygenase-1 (HO-1) inhibitor, tin-protoporphyrin-IX, markedly increased fluid accumulation in toxin A-treated wild-type mice, indicating the protective roles of HO-1 in this situation. HO-1 expression was detected mainly in F4/80-positive cells expressing CX3CR1, and CX3CR1(-/-) mice failed to increase HO-1 expression after toxin A treatment. Moreover, CX3CL1/FKN induced HO-1 gene expression by isolated lamina propria-derived macrophages or a mouse macrophage cell line, RAW264.7, through the activation of the ERK signal pathway. Thus, CX3CL1/FKN could induce CX3CR1-expressing macrophages to express HO-1, thereby ameliorating toxin A-induced enteritis.
Collapse
Affiliation(s)
- Masanori Inui
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Koon HW, Shih D, Karagiannides I, Zhao D, Fazelbhoy Z, Hing T, Xu H, Lu B, Gerard N, Pothoulakis C. Substance P modulates colitis-associated fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2300-9. [PMID: 20889569 DOI: 10.2353/ajpath.2010.100314] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Substance P (SP) and the neurokinin-1 receptor (NK-1R) are involved in the development of colitis and mucosal healing after colonic inflammation. We studied whether SP modulates colonic fibrosis by using a chronic model of trinitrobenzenesulfonic acid (TNBS)-induced colitis in wild-type (WT) and NK-1R-deficient (NK-1R KD) mice. We found increased mRNA expression levels of collagen, vimentin, and the fibrogenic factors transforming growth factor β1 and insulin-like growth factor 1 in the chronically inflamed colons of WT mice treated with repeated intracolonic TNBS administrations. Fibrosis in TNBS-treated mice was also evident immunohistochemically by collagen deposition in the colon. Treatment of TNBS-exposed WT mice with the NK-1R antagonist CJ-12255 reduced colonic inflammation, colonic fibrosis, fibroblast accumulation, and expression levels of the fibrogenic factors. NK-1R knockout mice chronically exposed to TNBS had similar colonic inflammation compared with WT, but reduced colonic fibrosis, fibroblast accumulation, and expression levels of fibrogenic factors. Immunohistochemical staining also showed co-localization of NK-1R with fibroblasts in inflamed colons of mice and in colonic mucosa of patients with Crohn's disease. Exposure of human colonic CCD-18Co fibroblasts to SP (10 nmol/L) increased cell migration. SP stimulated collagen synthesis in CCD-18Co fibroblasts in the presence of transforming growth factor β1 and insulin-like growth factor 1, and this effect was reduced by Akt inhibition. Thus, SP, via NK-1R, promotes intestinal fibrogenesis after chronic colitis by stimulating fibrotic responses in fibroblasts.
Collapse
Affiliation(s)
- Hon Wai Koon
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, MRL Building, Room 1240, 675 Charles E. Young Dr. South, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nam HJ, Kang JK, Kim SK, Ahn KJ, Seok H, Park SJ, Chang JS, Pothoulakis C, Lamont JT, Kim H. Clostridium difficile toxin A decreases acetylation of tubulin, leading to microtubule depolymerization through activation of histone deacetylase 6, and this mediates acute inflammation. J Biol Chem 2010; 285:32888-32896. [PMID: 20696758 DOI: 10.1074/jbc.m110.162743] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Clostridium difficile toxin A is known to cause actin disaggregation through the enzymatic inactivation of intracellular Rho proteins. Based on the rapid and severe cell rounding of toxin A-exposed cells, we speculated that toxin A may be involved in post-translational modification of tubulin, leading to microtubule instability. In the current study, we observed that toxin A strongly reduced α-tubulin acetylation in human colonocytes and mouse intestine. Fractionation analysis demonstrated that toxin A-induced α-tubulin deacetylation yielded monomeric tubulin, indicating the presence of microtubule depolymerization. Inhibition of the glucosyltransferase activity against Rho proteins of toxin A by UDP-2',3'-dialdehyde significantly abrogated toxin A-induced α-tubulin deacetylation. In colonocytes treated with trichostatin A (TSA), an inhibitor of the HDAC6 tubulin deacetylase, toxin A-induced α-tubulin deacetylation and loss of tight junction were completely blocked. Administration of TSA also attenuated proinflammatory cytokine production, mucosal damage, and epithelial cell apoptosis in mouse intestine exposed to toxin A. These results suggest that toxin A causes microtubule depolymerization by activation of HDAC6-mediated tubulin deacetylation. Indeed, blockage of HDAC6 by TSA markedly attenuates α-tubulin deacetylation, proinflammatory cytokine production, and mucosal damage in a toxin A-induced mouse enteritis model. Tubulin deacetylation is an important component of the intestinal inflammatory cascade following toxin A-mediated Rho inactivation in vitro and in vivo.
Collapse
Affiliation(s)
- Hyo Jung Nam
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, Korea
| | - Jin Ku Kang
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, Korea
| | - Sung-Kuk Kim
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, Korea
| | - Keun Jae Ahn
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 102-752, Korea
| | - Heon Seok
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea
| | - Sang Joon Park
- Department of Veterinary Histology, College of Veterinary Medicine, Kyungpook National University, Taeku 702-701, Korea
| | - Jong Soo Chang
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, Korea
| | - Charalabos Pothoulakis
- Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - John Thomas Lamont
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Ho Kim
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, Korea.
| |
Collapse
|
32
|
Sun X, Savidge T, Feng H. The enterotoxicity of Clostridium difficile toxins. Toxins (Basel) 2010; 2:1848-80. [PMID: 22069662 PMCID: PMC3153265 DOI: 10.3390/toxins2071848] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 06/23/2010] [Accepted: 07/09/2010] [Indexed: 02/06/2023] Open
Abstract
The major virulence factors of Clostridium difficile infection (CDI) are two large exotoxins A (TcdA) and B (TcdB). However, our understanding of the specific roles of these toxins in CDI is still evolving. It is now accepted that both toxins are enterotoxic and proinflammatory in the human intestine. Both purified TcdA and TcdB are capable of inducing the pathophysiology of CDI, although most studies have focused on TcdA. C. difficile toxins exert a wide array of biological activities by acting directly on intestinal epithelial cells. Alternatively, the toxins may target immune cells and neurons once the intestinal epithelial barrier is disrupted. The toxins may also act indirectly by stimulating cells to produce chemokines, proinflammatory cytokines, neuropeptides and other neuroimmune signals. This review considers the mechanisms of TcdA- and TcdB-induced enterotoxicity, and recent developments in this field.
Collapse
Affiliation(s)
- Xingmin Sun
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, 01536, USA;
| | - Tor Savidge
- The University of Texas Medical Branch, Galveston, TX, 77555, USA;
| | - Hanping Feng
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, 01536, USA;
- Author to whom correspondence should be addressed; ; Tel.: +1-508-887-4252; Fax: +1-508-839-7911
| |
Collapse
|
33
|
Popoff MR, Poulain B. Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells. Toxins (Basel) 2010; 2:683-737. [PMID: 22069606 PMCID: PMC3153206 DOI: 10.3390/toxins2040683] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/18/2010] [Accepted: 04/07/2010] [Indexed: 12/13/2022] Open
Abstract
Toxins are potent molecules used by various bacteria to interact with a host organism. Some of them specifically act on neuronal cells (clostridial neurotoxins) leading to characteristics neurological affections. But many other toxins are multifunctional and recognize a wider range of cell types including neuronal cells. Various enterotoxins interact with the enteric nervous system, for example by stimulating afferent neurons or inducing neurotransmitter release from enterochromaffin cells which result either in vomiting, in amplification of the diarrhea, or in intestinal inflammation process. Other toxins can pass the blood brain barrier and directly act on specific neurons.
Collapse
Affiliation(s)
- Michel R. Popoff
- Neurotransmission et Sécrétion Neuroendocrine, CNRS UPR 2356 IFR 37 - Neurosciences, Centre de Neurochimie, 5, rue Blaise Pascal, F-67084 STRASBOURG cedex, France;
- Author to whom correspondence should be addressed;
| | | |
Collapse
|
34
|
TGF-beta regulates T-cell neurokinin-1 receptor internalization and function. Proc Natl Acad Sci U S A 2010; 107:4293-8. [PMID: 20160079 DOI: 10.1073/pnas.0905877107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Substance P (SP) is a proinflammatory mediator implicated in inflammatory bowel disease (IBD) and other inflammatory states. SP acts by stimulating the neurokinin-1 receptor (NK-1R) on T lymphocytes and other cell types, and regulates these cells in a complex interplay with multiple cytokines. The mechanisms of interaction among these inflammatory mediators are not yet fully understood. Here, we demonstrate that function of the NK-1R, a member of the G protein-coupled receptor (GPCR) superfamily, is modulated by TGF-beta. The latter acts not on a GPCR but via serine-threonine kinase-class receptors. By flow confocal image analysis, we demonstrate that TGF-beta delays SP-induced NK-1R internalization on mucosal T cells isolated from a mouse model of IBD and on granuloma T cells in murine schistosomiasis. Furthermore, luciferase reporter-gene assays revealed that NK-1R stimulation activates the nuclear factor of activated T cell- and activator protein-1-dependent signaling pathways, which are known triggers of effector T-cell cytokine production. TGF-beta markedly increases SP-induced activation of these signaling cascades, suggesting that delayed NK-1R internalization results in enhanced signaling. Providing a link to amplified immune function, SP and TGF-beta, when applied in combination, trigger a strong release of the proinflammatory cytokines IFN-gamma and IL17 from intestinal inflammatory T cells, whereas either agonist alone shows no effect. These observations establish precedent that members of two distinct receptor superfamilies can interact via a previously unrecognized mechanism, and reveal a paradigm of GPCR transregulation that is relevant to IBD and possibly other disease processes.
Collapse
|
35
|
Hodges K, Gill R. Infectious diarrhea: Cellular and molecular mechanisms. Gut Microbes 2010; 1:4-21. [PMID: 21327112 PMCID: PMC3035144 DOI: 10.4161/gmic.1.1.11036] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/15/2009] [Accepted: 12/28/2009] [Indexed: 02/03/2023] Open
Abstract
Diarrhea caused by enteric infections is a major factor in morbidity and mortality worldwide. An estimated 2-4 billion episodes of infectious diarrhea occur each year and are especially prevalent in infants. This review highlights the cellular and molecular mechanisms underlying diarrhea associated with the three classes of infectious agents, i.e., bacteria, viruses and parasites. Several bacterial pathogens have been chosen as model organisms, including Vibrio cholerae as a classical example of secretory diarrhea, Clostridium difficile and Shigella species as agents of inflammatory diarrhea and selected strains of pathogenic Escherichia coli (E. coli) to discuss the recent advances in alteration of epithelial ion absorption. Many of the recent studies addressing epithelial ion transport and barrier function have been carried out using viruses and parasites. Here, we focus on the rapidly developing field of viral diarrhea including rotavirus, norovirus and astrovirus infections. Finally we discuss Giardia lamblia and Entamoeba histolytica as examples of parasitic diarrhea. Parasites have a greater complexity than the other pathogens and are capable of creating molecules similar to those produced by the host, such as serotonin and PGE(2). The underlying mechanisms of infectious diarrhea discussed include alterations in ion transport and tight junctions as well as the virulence factors, which alter these processes either through direct effects or indirectly through inflammation and neurotransmitters.
Collapse
|
36
|
Mastrantonio CMAP. Modification of Cytokine Networks Induced in the Host by Intestinal Bacteria Producing Exotoxins. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/089106000750060413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Gross K, Karagiannides I, Thomou T, Koon HW, Bowe C, Kim H, Giorgadze N, Tchkonia T, Pirtskhalava T, Kirkland JL, Pothoulakis C. Substance P promotes expansion of human mesenteric preadipocytes through proliferative and antiapoptotic pathways. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1012-9. [PMID: 19282377 PMCID: PMC2696212 DOI: 10.1152/ajpgi.90351.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
White adipose tissue is intimately involved in the regulation of immunity and inflammation. We reported that human mesenteric preadipocytes express the substance P (SP)-mediated neurokinin-1 receptor (NK-1R), which signals proinflammatory responses. Here we tested the hypothesis that SP promotes proliferation and survival of human mesenteric preadipocytes and investigated responsible mechanism(s). Preadipocytes were isolated from mesenteric fat biopsies during gastric bypass surgery. Proliferative and antiapoptotic responses were delineated in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), bromodeoxyuridine (BrdU), caspase-3, and TUNEL assays, as well as Western immunoanalysis. SP (10(-7) M) increased MTS and proliferation (BrdU) and time dependently (15-30 min) induced Akt, EGF receptor, IGF receptor, integrin alphaVbeta3, phosphatidylinositol 3-kinase, and PKC-theta phosphorylation. Furthermore, pharmacological antagonism of Akt and PKC-theta activation significantly attenuated SP-induced preadipocyte proliferation. Exposure of preadipocytes to the proapoptotic Fas ligand (FasL, 100 microM) resulted in nuclear DNA fragmentation (TUNEL assay), as well as increased cleaved poly (ADP-ribose) polymerase, cleaved caspase-7, and caspase-3 expression. Cotreatment with SP almost completely abolished these responses in a NK-1R-dependent fashion. SP (10(-7) M) also time dependently stimulated expression 4E binding protein 1 and phosphorylation of p70 S6 kinase, which increased protein translation efficiency. SP increases preadipocyte viability, reduces apoptosis, and stimulates proliferation, possibly via cell cycle upregulation and increased protein translation efficiency. SP-induced proliferative and antiapoptotic pathways in fat depots may contribute to development of the creeping fat and inflammation characteristic of Crohn's disease.
Collapse
Affiliation(s)
- Kara Gross
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Iordanes Karagiannides
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Thomas Thomou
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Hon Wai Koon
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Collin Bowe
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Ho Kim
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Nino Giorgadze
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Tamara Tchkonia
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Tamara Pirtskhalava
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - James L. Kirkland
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Charalabos Pothoulakis
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; Columbia University Medical Center, Department of Pediatrics, New York, New York; and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
38
|
Kokkotou E, Espinoza DO, Torres D, Karagiannides I, Kosteletos S, Savidge T, O’Brien M, Pothoulakis C. Melanin-concentrating hormone (MCH) modulates C difficile toxin A-mediated enteritis in mice. Gut 2009; 58:34-40. [PMID: 18824554 PMCID: PMC3058236 DOI: 10.1136/gut.2008.155341] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Melanin-concentrating hormone (MCH) is a hypothalamic orexigenic neuropeptide that regulates energy balance. However, the distribution of MCH and its receptor MCHR1 in tissues other than brain suggested additional, as yet unappreciated, roles for this neuropeptide. Based on previous paradigms and the presence of MCH in the intestine as well as in immune cells, its potential role in gut innate immune responses was examined. METHODS In human intestinal xenografts grown in mice, changes in the expression of MCH and its receptors following treatment with Clostridium difficile toxin A, the causative agent of antibiotic-associated diarrhoea in hospitalised patients, were examined. In colonocytes, the effect of C difficile toxin A treatment on MCHR1 expression, and of MCH on interleukin 8 (IL8) expression was examined. MCH-deficient mice and immunoneutralisation approaches were used to examine the role of MCH in the pathogenesis of C difficile toxin A-mediated acute enteritis. RESULTS Upregulation of MCH and MCHR1 expression was found in the human intestinal xenograft model, and of MCHR1 in colonocytes following exposure to toxin A. Treatment of colonocytes with MCH resulted in IL8 transcriptional upregulation, implying a link between MCH and inflammatory pathways. In further support of this view, MCH-deficient mice developed attenuated toxin A-mediated intestinal inflammation and secretion, as did wild-type mice treated with an antibody against MCH or MCHR1. CONCLUSION These findings signify MCH as a mediator of C difficile-associated enteritis and possibly of additional gut pathogens. MCH may mediate its proinflammatory effects at least in part by acting on epithelial cells in the intestine.
Collapse
Affiliation(s)
- E Kokkotou
- Division of Gastroenterology, Dana 501, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | - D O Espinoza
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - D Torres
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - I Karagiannides
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - S Kosteletos
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - T Savidge
- Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - M O’Brien
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - C Pothoulakis
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA, Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Bhatia M, Sidhapuriwala JN, Ng SW, Tamizhselvi R, Moochhala SM. Pro-inflammatory effects of hydrogen sulphide on substance P in caerulein-induced acute pancreatitis. J Cell Mol Med 2008; 12:580-90. [PMID: 18419599 PMCID: PMC3822545 DOI: 10.1111/j.1582-4934.2007.00131.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulphide (H2S), a novel gasotransmitter, has been recognized to play an important role in inflammation. Cystathionine-γ-lyase (CSE) is a major H2S synthesizing enzyme in the cardiovascular system and DL-propargylglycine (PAG) is an irreversible inhibitor of CSE. Substance P (SP), a product of preprotachykinin-A (PPT-A) gene, is a well-known pro-inflammatory mediator which acts principally through the neurokinin-1 receptor (NK-1R). We have shown an association between H2S and SP in pulmonary inflammation as well as a pro-inflammatory role of H2S and SP in acute pancreatitis. The present study was aimed to investigate the interplay between pro-inflammatory effects of H2S and SP in a murine model of caerulein-induced acute pancreatitis. Acute pancreatitis was induced in mice by 10 hourly intraperitoneal injections of caerulein (50 (g/kg). PAG (100 mg/kg, i.p.) was administered either 1 hr before (prophylactic) or 1 hr after (therapeutic) the first caerulein injection. PAG, given prophylactically as well as therapeutically, significantly reduced plasma H2S levels and pancreatic H2S synthesizing activities as well as SP concentrations in plasma, pancreas and lung compared with caerulein-induced acute pancreatitis. Furthermore, prophylactic as well as therapeutic administration of PAG significantly reduced PPT-A mRNA expression and NK-1R mRNA expression in both pancreas and lung when compared with caerulein-induced acute pancreatitis. These results suggest that the pro-inflammatory effects of H2S may be mediated by SP-NK-1R pathway in acute pancreatitis.
Collapse
Affiliation(s)
- Madhav Bhatia
- Department of Pharmacology and Cardiovascular Biology Research Group, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
40
|
Interleukin-12 (IL-12) and IL-23 induction of substance p synthesis in murine T cells and macrophages is subject to IL-10 and transforming growth factor beta regulation. Infect Immun 2008; 76:3651-6. [PMID: 18505813 DOI: 10.1128/iai.00358-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Substance P is a tachykinin that enhances pathways of inflammation. Leukocytes at sites of intestinal inflammation make substance P. This study explored the role of interleukin-12 (IL-12), IL-23, and the regulatory cytokines IL-10 and transforming growth factor beta (TGF-beta) in controlling leukocyte substance P production. In murine schistosomiasis, it was found that IL-12 and IL-23 drive substance P gene expression and peptide synthesis in murine splenic T cells and macrophages, respectively. Cytokine induction of substance P synthesis both in T cells and in macrophages depends on intracellular NF-kappaB activation and is Stat4 independent. IL-10 inhibits T-cell substance P production, while TGF-beta blocks macrophage substance P expression. Intestinal macrophages also produce substance P, subject mostly to IL-23 and TGF-beta regulation. Hemokinin is another tachykinin with homology to substance P. Macrophages and T cells make hemokinin, but hemokinin production is not subject to IL-12 or IL-23 regulation.
Collapse
|
41
|
Barreto ARF, Cavalcante IC, Castro MV, Junqueira AFTA, Vale MR, Ribeiro RA, Souza MHLP, Brito GAC. Fucoidin prevents Clostridium difficile toxin-A-induced ileal enteritis in mice. Dig Dis Sci 2008; 53:990-6. [PMID: 17805968 DOI: 10.1007/s10620-007-9957-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 08/01/2007] [Indexed: 12/18/2022]
Abstract
Recent reports suggest increased incidence and severity of Clostridium difficile-associated diseases. These facts have raised the need for additional clarification of pathogenesis and for a search for new therapeutic strategies. This study evaluated the effects of the polysaccharide fucoidin, an L-selectin blocker, on toxin-A-induced mouse enteritis. Fucoidin (25 mg/kg) or saline (0.1 ml) were injected systemically (ocular plexus) 5 min prior to local challenge with toxin A (5 microg/ileal loop) or phosphate-buffered saline (PBS). Intestinal fluid volume/length and ileal loop weight/length ratios were calculated 3 h later. Ileal tissues were collected for histopathology and measurement of myeloperoxidase and adenosine deaminase activity. Fucoidin significantly (P < 0.05) prevented the toxin-A-induced increase in weight/length and volume/length ratios and reduced mucosal disruption, as shown in histopathology. Fucoidin also significantly (P < 0.05) reduced toxin-A-induced myeloperoxidase and adenosine deaminase activities. In conclusion, fucoidin reduces tissue injury and inflammation in toxin-A-induced mouse enteritis.
Collapse
Affiliation(s)
- A R F Barreto
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, sn, Fortaleza, CE CEP 60.416-030, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang J, Qiu X, Kulkarni A, Hauer-Jensen M. Calcitonin gene-related peptide and substance P regulate the intestinal radiation response. Clin Cancer Res 2007; 12:4112-8. [PMID: 16818712 DOI: 10.1158/1078-0432.ccr-06-0592] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Intestinal toxicity is important in the therapeutic use of radiation as well as in nontherapeutic radiation exposure scenarios. Enteric sensory nerves are critical for mucosal homeostasis and for an appropriate response to injury. This study assessed the role of the two major neuropeptides released by sensory nerves, calcitonin gene-related peptide (CGRP) and substance P, in the intestinal radiation response. EXPERIMENTAL DESIGN Male rats received full-length CGRP, CGRP antagonist (CGRP(8-37)), a modified substance P peptide (GR73632), a small-molecule substance P receptor antagonist (neurokinin-1 receptor antagonist, SR140333), or vehicle for 2 weeks after localized X irradiation of a 4-cm loop of small bowel. Structural, cellular, and molecular aspects of the intestinal radiation response were assessed. RESULTS Intestinal CGRP and substance P transcript levels increased after irradiation. Multivariate analysis showed that CGRP and SR140333 ameliorated and CGRP(8-37) and GR73632 exacerbated intestinal radiation injury. Univariate analysis revealed increased radiation injury score, bowel wall thickening, and collagen III deposition after treatment with CGRP(8-37), whereas SR140333 ameliorated radiation injury score, loss of mucosal surface area, collagen III deposition, and mucosal inflammation. CONCLUSIONS The two major neuropeptides released by sensory neurons, CGRP and substance P, are overexpressed after irradiation and have opposing effects during development of intestinal radiation injury. Systematic studies to assess CGRP agonists and/or neurokinin-1 receptor blockers as protectors against intestinal toxicity during radiation therapy and after nontherapeutic radiation exposure are warranted.
Collapse
Affiliation(s)
- Junru Wang
- Arkansas Cancer Research Center, Little Rock, Arkansas 72205, USA
| | | | | | | |
Collapse
|
43
|
Wang J, Hauer-Jensen M. Neuroimmune interactions: potential target for mitigating or treating intestinal radiation injury. Br J Radiol 2007; 80 Spec No 1:S41-8. [PMID: 17704325 DOI: 10.1259/bjr/33057885] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intestinal radiation injury is characterized by breakdown of the epithelial barrier and mucosal inflammation. In addition to replicative and apoptotic cell death, radiation also induces changes in cellular function, as well as alterations secondary to tissue injury. The recognition of these "non-cytocidal" radiation effects has enhanced the understanding of normal tissue radiation toxicity, thus allowing an integrated systems biology-based approach to modulating radiation responses and providing a mechanistic rationale for interventions to mitigate or treat radiation injuries. The enteric nervous system regulates intestinal motility, blood flow and enterocyte function. The enteric nervous system also plays a central role in maintaining the physiological state of the intestinal mucosa and in coordinating inflammatory and fibroproliferative processes. The afferent component of the enteric nervous system, in addition to relaying sensory information, also exerts important effector functions and contributes critically to preserving mucosal integrity. Interactions between afferent nerves, mast cells as well as other cells of the resident mucosal immune system serve to maintain mucosal homeostasis and to ensure an appropriate response to injury. Notably, enteric sensory neurons regulate the activation threshold of mast cells by secreting substance P, calcitonin gene-related peptide and other neuropeptides, whereas mast cells signal to enteric nerves by the release of histamine, nerve growth factor and other mediators. This article reviews how enteric neurons interact with mast cells and other immune cells to regulate the intestinal radiation response and how these interactions may be modified to mitigate intestinal radiation toxicity. These data are not only applicable to radiation therapy, but also to intestinal injury in a radiological terrorism scenario.
Collapse
Affiliation(s)
- J Wang
- Department of Surgery, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | | |
Collapse
|
44
|
Affiliation(s)
- Adam J Moeser
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | |
Collapse
|
45
|
Moss AC, Anton P, Savidge T, Newman P, Cheifetz AS, Gay J, Paraschos S, Winter MW, Moyer MP, Karalis K, Kokkotou E, Pothoulakis C. Urocortin II mediates pro-inflammatory effects in human colonocytes via corticotropin-releasing hormone receptor 2alpha. Gut 2007; 56:1210-7. [PMID: 17412781 PMCID: PMC1954994 DOI: 10.1136/gut.2006.110668] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Urocortin II (UcnII) is a neuropeptide that binds with high affinity to the corticotropin-releasing hormone receptor 2 (CRHR2) in peripheral tissues. UcnII is synthesised in the intestine, but its role in human intestinal inflammation is largely unknown. METHODS Responses of human colonic epithelial cells expressing CRHR2 to stimulation by UcnII were measured using ELISA, western blot analysis, real-time reverse transcription-PCR (RT-PCR) and interleukin (IL)8 promoter activity. Expression levels of CRHR2 and UcnII in human colitis were determined by immunofluorescence and real-time RT-PCR in mucosal biopsies from patients with Crohn's and ulcerative colitis, and in human intestinal xenografts after exposure to Clostridium difficile toxin A. RESULTS It is reported here that expression of CRHR2 mRNA and protein in human colonic epithelial cells (HT-29) are increased by exposure to C difficile toxin A or tumour necrosis factor (TNF)alpha. Stimulation of non-transformed NCM460 colonocytes overexpressing CRHR2alpha receptor with UcnII resulted in a time- and concentration-dependent increase in IL8 production. UcnII stimulation also led to activation of nuclear factor-kappaB (NF-kappaB) and mitogen-acivated protein (MAP) kinase in these cells, as evidenced by degradation of IkappaBalpha and phosphorylation of the p65 subunit of NF-kappaB and extracellularly regulated kinase (ERK) 1/2. Furthermore, expression of UcnII and CRHR2 mRNA was increased in mucosal samples of patients with inflammatory bowel disease, and after exposure of human intestinal xenografts to C difficile toxin A. CONCLUSIONS These results suggest that UcnII has pro-inflammatory effects in human intestinal cells via the CRHR2alpha receptor and may play an important role in the pathophysiology of colitis in humans.
Collapse
Affiliation(s)
- Alan C Moss
- Gastrointestinal Neuropeptide Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cottrell GS, Amadesi S, Pikios S, Camerer E, Willardsen JA, Murphy BR, Caughey GH, Wolters PJ, Coughlin SR, Peterson A, Knecht W, Pothoulakis C, Bunnett NW, Grady EF. Protease-activated receptor 2, dipeptidyl peptidase I, and proteases mediate Clostridium difficile toxin A enteritis. Gastroenterology 2007; 132:2422-37. [PMID: 17570216 PMCID: PMC2366898 DOI: 10.1053/j.gastro.2007.03.101] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 03/15/2007] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS We studied the role of protease-activated receptor 2 (PAR(2)) and its activating enzymes, trypsins and tryptase, in Clostridium difficile toxin A (TxA)-induced enteritis. METHODS We injected TxA into ileal loops in PAR(2) or dipeptidyl peptidase I (DPPI) knockout mice or in wild-type mice pretreated with tryptase inhibitors (FUT-175 or MPI-0442352) or soybean trypsin inhibitor. We examined the effect of TxA on expression and activity of PAR(2) and trypsin IV messenger RNA in the ileum and cultured colonocytes. We injected activating peptide (AP), trypsins, tryptase, and p23 in wild-type mice, some pretreated with the neurokinin 1 receptor antagonist SR140333. RESULTS TxA increased fluid secretion, myeloperoxidase activity in fluid and tissue, and histologic damage. PAR(2) deletion decreased TxA-induced ileitis, reduced luminal fluid secretion by 20%, decreased tissue and fluid myeloperoxidase by 50%, and diminished epithelial damage, edema, and neutrophil infiltration. DPPI deletion reduced secretion by 20% and fluid myeloperoxidase by 55%. In wild-type mice, FUT-175 or MPI-0442352 inhibited secretion by 24%-28% and tissue and fluid myeloperoxidase by 31%-71%. Soybean trypsin inhibitor reduced secretion to background levels and tissue myeloperoxidase by up to 50%. TxA increased expression of PAR(2) and trypsin IV in enterocytes and colonocytes and caused a 2-fold increase in Ca(2+) responses to PAR(2) AP. AP, tryptase, and trypsin isozymes (trypsin I/II, trypsin IV, p23) caused ileitis. SR140333 prevented AP-induced ileitis. CONCLUSIONS PAR(2) and its activators are proinflammatory in TxA-induced enteritis. TxA stimulates existing PAR(2) and up-regulates PAR(2) and activating proteases, and PAR(2) causes inflammation by neurogenic mechanisms.
Collapse
Affiliation(s)
- Graeme S Cottrell
- Center for the Neurobiology of Digestive Disease, Department of Surgery, University of California, San Francisco, San Francisco, California 94143-0660, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sun J, Ramnath RD, Bhatia M. Neuropeptide substance P upregulates chemokine and chemokine receptor expression in primary mouse neutrophils. Am J Physiol Cell Physiol 2007; 293:C696-704. [PMID: 17494633 DOI: 10.1152/ajpcell.00060.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Neuropeptides play an important role in the active communication between the nervous and immune systems. Substance P (SP) is a prominent neuropeptide involved in neurogenic inflammation and has been reported to exert various proinflammatory actions on inflammatory leukocytes including neutrophils. The present study further investigated the modulatory effect of SP (1 muM) on chemokine production and chemokine receptor expression in primary mouse neutrophils. Our results showed that SP primed neutrophils for chemotactic responses not only to the CXC chemokine macrophage inflammatory protein (MIP)-2/CXCL2 but also to the CC chemokine MIP-1alpha/CCL3. The activating effect of SP on neutrophils was further evidenced by upregulation of the CD11b integrin, the activation marker of neutrophils. SP induced both the mRNA and protein expression of the chemokines MIP-1alpha/CCL3 and MIP-2/CXCL2 in neutrophils and upregulated the chemokine receptors CC chemokine receptor (CCR)-1 and CXC chemokine receptor (CXCR)-2. This stimulatory effect on chemokine and chemokine receptor expression in neutrophils was further found to be neurokinin-1 receptor (NK-1R) specific. Pretreatment with selective NK-1R antagonists inhibited SP-triggered activation of neutrophils and chemokine and chemokine receptor upregulation. Moreover, SP-induced chemokine upregulation was NF-kappaB dependent. SP time dependently induced NF-kappaB p65 binding activity, IkappaBalpha degradation, and NF-kappaB p65 nuclear translocation in neutrophils. Inhibition of NF-kappaB activation with its inhibitor Bay11-7082 (10 muM) abolished SP-induced NF-kappaB binding activity and upregulation of MIP-1alpha/CCL3 and MIP-2/CXCL2 in neutrophils. Together, these results suggest that SP exerts a direct stimulatory effect on the expression of chemokines and chemokine receptors in mouse neutrophils. The effect is NK-1R mediated, involving NF-kappaB activation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Biphenyl Compounds/pharmacology
- CD11b Antigen/biosynthesis
- Cells, Cultured
- Chemokine CCL3
- Chemokine CCL4
- Chemokine CXCL2
- Chemokines/biosynthesis
- Chemokines/genetics
- Chemokines/pharmacology
- Chemokines, CC/biosynthesis
- Chemotaxis, Leukocyte/drug effects
- Dose-Response Relationship, Drug
- I-kappa B Proteins/metabolism
- Inflammation/immunology
- Inflammation/metabolism
- Macrophage Inflammatory Proteins/biosynthesis
- Male
- Mice
- Neuroimmunomodulation
- Neutrophils/drug effects
- Neutrophils/metabolism
- Nitriles/pharmacology
- RNA, Messenger/biosynthesis
- Receptors, CCR1
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/genetics
- Receptors, Interleukin-8B/biosynthesis
- Receptors, Neurokinin-1/drug effects
- Receptors, Neurokinin-1/metabolism
- Recombinant Proteins/metabolism
- Signal Transduction/drug effects
- Substance P/metabolism
- Substance P/pharmacology
- Sulfones/pharmacology
- Transcription Factor RelA/antagonists & inhibitors
- Transcription Factor RelA/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Jia Sun
- Dept of Pharmacology, National University of Singapore, Yong Loo Lin School of Medicine, Centre for Life Sciences, Singapore
| | | | | |
Collapse
|
48
|
Wood JD. Effects of bacteria on the enteric nervous system: implications for the irritable bowel syndrome. J Clin Gastroenterol 2007; 41 Suppl 1:S7-19. [PMID: 17438418 DOI: 10.1097/mcg.0b013e31802f1331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A unified scenario emerges when it is considered that a major impact of stress on the intestinal tract is reflected by symptoms reminiscent of the diarrhea-predominant form of irritable bowel syndrome. Cramping abdominal pain, fecal urgency, and explosive watery diarrhea are hallmarks not only of diarrhea-predominant irritable bowel syndrome, but also of infectious enteritis, radiation-induced enteritis, and food allergy. The scenario starts with stress-induced compromise of the intestinal mucosal barrier and continues with microorganisms or other sensitizing agents crossing the barrier and being intercepted by enteric mast cells. Mast cells signal the presence of the agent to the enteric nervous system (ie, the brain-in-the-gut), which uses one of the specialized programs from its library of programs to remove the "threat." This is accomplished by stimulating mucosal secretion, which flushes the threatening agent into the lumen and maintains it in suspension. The secretory response then becomes linked to powerful propulsive motility, which propels the secretions together with the offending agent rapidly in the anal direction. Cramping abdominal pain accompanies the strong propulsive contractions. Urgency is experienced when arrival of the large bolus of liquid distends the recto-sigmoid region and reflexly opens the internal anal sphincter, with continence protection now provided only by central reflexes that contract the puborectalis and external anal sphincter muscles. Sensory information arriving in the brain from receptors in the rapidly distending recto-sigmoid accounts for the conscious sensation of urgency and might exacerbate the individual's emotional stress. The symptom of explosive watery diarrhea becomes self-explanatory in this scenario.
Collapse
Affiliation(s)
- Jackie D Wood
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Public Health, 1645 Neil Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
49
|
Michalski CW, Autschbach F, Selvaggi F, Shi X, Di Mola FF, Roggo A, Müller MW, Di Sebastiano P, Büchler MW, Giese T, Friess H. Increase in substance P precursor mRNA in noninflamed small-bowel sections in patients with Crohn's disease. Am J Surg 2007; 193:476-81. [PMID: 17368292 DOI: 10.1016/j.amjsurg.2006.08.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 08/31/2006] [Accepted: 08/31/2006] [Indexed: 11/20/2022]
Abstract
BACKGROUND Neuropeptides, such as substance P (SP), are mediators of neurogenic inflammation and play an important role in inflammatory disorders. To further investigate the role of the SP pathway in inflammatory bowel disease (IBD), we analyzed the following in normal intestinal tissue specimens and in tissue specimens from patients with Crohn's disease (CD) and ulcerative colitis (UC): neurokinin receptor-1 (NK-1R); its isoforms (NK-1R-L and NK-1R-S); its ligand SP, encoded by preprotachykinin-A (PPT-A); and the SP-degradation enzyme, neutral endopeptidase (NEP). METHODS Real-time quantitative reverse transcription-polymerase chain reaction was used to simultaneously determine the expression of NK-1R-L, NK-1R-S, and PPT-A. Protein levels of NK-1R and NEP were determined by immunoblot analysis. RESULTS In noninflamed small-bowel tissue samples of CD patients, PPT-A mRNA expression was significantly increased, whereas there was no difference between inflamed or noninflamed UC and normal intestinal tissue samples. Examining subgroups of diverse intestinal segments from CD and UC samples with various levels of inflammation revealed no differences in NK-1R-L and NK-1R-S mRNA expression, whereas there was a tendency toward overall lower NK-1R-S mRNA copy numbers. Immunoblot analysis showed upregulation of NK-1R protein levels in cases of IBD, with more pronounced enhancement in cases of CD than in UC. For NEP, there were no differences in protein levels in normal, CD, and UC intestinal tissues. COMMENTS These observations suggest a contribution of SP and its receptor, NK-1R, in the local inflammatory reaction in IBD and particularly in ileal CD. Moreover, significant upregulation of PPT-A mRNA in the noninflamed ileum of these patients suggests an influence of inflamed intestines on their healthy counterparts.
Collapse
Affiliation(s)
- Christoph W Michalski
- Department of General Surgery, University of Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The investigative evidence and emerging concepts in neurogastroenterology implicate dysfunctions at the levels of the enteric and central nervous systems as underlying causes of the prominent symptoms of many of the functional gastrointestinal disorders. Neurogastroenterological research aims for improved understanding of the physiology and pathophysiology of the digestive subsystems from which the arrays of functional symptoms emerge. The key subsystems for defecation-related symptoms and visceral hyper-sensitivity are the intestinal secretory glands, the musculature and the nervous system that controls and integrates their activity. Abdominal pain and discomfort arising from these systems adds the dimension of sensory neurophysiology. This review details current concepts for the underlying pathophysiology in terms of the physiology of intestinal secretion, motility, nervous control, sensing function, immuno-neural communication and the brain-gut axis.
Collapse
|