1
|
Shafi AM, Végvári Á, Zubarev RA, Penha-Gonçalves C. Brain endothelial cells exposure to malaria parasites links type I interferon signalling to antigen presentation, immunoproteasome activation, endothelium disruption, and cellular metabolism. Front Immunol 2023; 14:1149107. [PMID: 36993973 PMCID: PMC10042232 DOI: 10.3389/fimmu.2023.1149107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionCerebral malaria (CM) lethality is attributable to induction of brain edema induction but the cellular mechanisms involving brain microvascular endothelium in CM pathogenesis are unexplored.ResultsActivation of the STING-INFb-CXCL10 axis in brain endothelial cells (BECs) is a prominent component of the innate immune response in CM development in mouse models. Using a T cell-reporter system, we show that Type 1 IFN signaling in BECs exposed to Plasmodium berghei-infected erythrocytes (PbA-IE), functionally enhances MHC Class-I antigen presentation through gamma-interferon independent immunoproteasome activation and impacted the proteome functionally related to vesicle trafficking, protein processing/folding and antigen presentation. In vitro assays showed that Type 1 IFN signaling and immunoproteasome activation are also involved in the dysfunction of the endothelial barrier through disturbing gene expression in the Wnt/ß-catenin signaling pathway. We demonstrate that IE exposure induces a substantial increase in BECs glucose uptake while glycolysis blockade abrogates INFb secretion impairing immunoproteasome activation, antigen presentation and Wnt/ß-catenin signaling.DiscussionMetabolome analysis show that energy demand and production are markedly increased in BECs exposed to IE as revealed by enriched content in glucose and amino acid catabolites. In accordance, glycolysis blockade in vivo delayed the clinical onset of CM in mice. Together the results show that increase in glucose uptake upon IE exposure licenses Type 1 IFN signaling and subsequent immunoproteasome activation contributing to enhanced antigen presentation and impairment of endothelial barrier function. This work raises the hypothesis that Type 1 IFN signaling-immunoproteasome induction in BECs contributes to CM pathology and fatality (1) by increasing antigen presentation to cytotoxic CD8+ T cells and (2) by promoting endothelial barrier dysfunction, that likely favor brain vasogenic edema.
Collapse
Affiliation(s)
| | - Ákos Végvári
- Proteomics Biomedicum, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roman A. Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Penha-Gonçalves
- Disease Genetics, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- *Correspondence: Carlos Penha-Gonçalves,
| |
Collapse
|
2
|
Osuch S, Laskus T, Perlejewski K, Berak H, Bukowska-Ośko I, Pollak A, Zielenkiewicz M, Radkowski M, Caraballo Cortés K. CD8 + T-Cell Exhaustion Phenotype in Chronic Hepatitis C Virus Infection Is Associated With Epitope Sequence Variation. Front Immunol 2022; 13:832206. [PMID: 35386708 PMCID: PMC8977521 DOI: 10.3389/fimmu.2022.832206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Background and Aims During chronic hepatitis C virus (HCV) infection, CD8+ T-cells become functionally exhausted, undergoing progressive phenotypic changes, i.e., overexpression of “inhibitory” molecules such as PD-1 (programmed cell death protein 1) and/or Tim-3 (T-cell immunoglobulin and mucin domain-containing molecule-3). The extreme intrahost genetic diversity of HCV is a major mechanism of immune system evasion, facilitating epitope escape. The aim of the present study was to determine whether T-cell exhaustion phenotype in chronic HCV infection is related to the sequence repertoire of NS3 viral immunodominant epitopes. Methods The study population was ninety prospective patients with chronic HCV genotype 1b infection. Populations of peripheral blood CD8+ T-cells expressing PD-1/Tim-3 were assessed by multiparametric flow cytometry, including HCV-specific T-cells after magnetic-based enrichment using MHC-pentamer. Autologous epitope sequences were inferred from next-generation sequencing. The correction of sequencing errors and genetic variants reconstruction was performed using Quasirecomb. Results There was an interplay between the analyzed epitopes sequences and exhaustion phenotype of CD8+ T-cells. A predominance of NS31406 epitope sequence, representing neither prototype KLSGLGLNAV nor cross-reactive variants (KLSSLGLNAV, KLSGLGINAV or KLSALGLNAV), was associated with higher percentage of HCV-specific CD8+PD-1+Tim-3+ T-cells, P=0.0102. Variability (at least two variants) of NS31406 epitope sequence was associated with increased frequencies of global CD8+PD-1+Tim-3+ T-cells (P=0.0197) and lower frequencies of CD8+PD-1−Tim-3− T-cells (P=0.0079). In contrast, infection with NS31073 dominant variant epitope (other than prototype CVNGVCWTV) was associated with lower frequency of global CD8+PD-1+Tim-3+ T-cells (P=0.0054). Conclusions Our results indicate that PD-1/Tim-3 receptor expression is largely determined by viral epitope sequence and is evident for both HCV-specific and global CD8+ T-cells, pointing to the importance of evaluating autologous viral epitope sequences in the investigation of CD8+ T-cell exhaustion in HCV infection.
Collapse
Affiliation(s)
- Sylwia Osuch
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Laskus
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Hanna Berak
- Outpatient Clinic, Warsaw Hospital for Infectious Diseases, Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Human Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Kamila Caraballo Cortés
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Hastings KL, Green MD, Gao B, Ganey PE, Roth RA, Burleson GR. Beyond Metabolism: Role of the Immune System in Hepatic Toxicity. Int J Toxicol 2021; 39:151-164. [PMID: 32174281 DOI: 10.1177/1091581819898399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is primarily thought of as a metabolic organ; however, the liver is also an important mediator of immunological functions. Key perspectives on this emerging topic were presented in a symposium at the 2018 annual meeting of the American College of Toxicology entitled "Beyond metabolism: Role of the immune system in hepatic toxicity." Viral hepatitis is an important disease of the liver for which insufficient preventive vaccines exist. Host immune responses inadequately clear these viruses and often potentiate immunological inflammation that damages the liver. In addition, the liver is a key innate immune organ against bacterial infection. Hepatocytes and immune cells cooperatively control systemic and local bacterial infections. Conversely, bacterial infection can activate multiple types of immune cells and pathways to cause hepatocyte damage and liver injury. Finally, the immune system and specifically cytokines and drugs can interact in idiosyncratic drug-induced liver injury. This rare disease can result in a disease spectrum that ranges from mild to acute liver failure. The immune system plays a role in this disease spectrum.
Collapse
Affiliation(s)
| | | | - Bin Gao
- Laboratory of Liver Diseases, NIH, Bethesda, MD, USA
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Robert A Roth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gary R Burleson
- BRT-Burleson Research Technologies, Inc, Morrisville, NC, USA
| |
Collapse
|
4
|
Khan BA, Saifullah, Lail A, Khan S. Sub-genomic analysis of Chikungunya virus E2 mutations in Pakistani isolates potentially modulating B-cell & T-Cell immune response. Pak J Med Sci 2020; 37:93-98. [PMID: 33437257 PMCID: PMC7794161 DOI: 10.12669/pjms.37.1.3236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background & Objectives: The Chikungunya virus (CHIKV) transmitted to the humans through Aedes species of the mosquitoes. In December 2016, a severe outbreak reported from Pakistan. However, there is no vaccine or anti-viral treatment currently available so host immune response against CHIKV gained significant interest. Therefore, this study was conducted to identify the mutations in CHIKV E2 region of currently circulating Pakistani strains & determine their potential immunogenicity in Pakistani population. Methods: It was a cross sectional study in which a total of 60 CHIKV PCR positive samples were collected from Molecular Department of Pathology, Dow University of Health Sciences (DUHS), Karachi during November 2017 to February 2018. CHIKV E2 gene was amplified by PCR & sequenced. Sequences were analyzed by using bioinformatic tools followed by epitope prediction in E2 sequences by In-silico immunoinformatic approach. Results: Several single nucleotide variations (SNVs) were identified in Pakistani isolates with six novel mutations in E2 sequences. Immunoinformatic analyses showed more proteasomal sites, CTL & B-Cell epitopes in Pakistani strains with respect to S27 prototype with 69.4% population coverage against these epitopes in Pakistan. The study also identified key mutations responsible for generation of unique epitopes and HLA restriction in Pakistani isolates. The strain specific mutations revealed the current outbreak was caused by ESCA.IOL lineage of CHIKV. Conclusion: The evolution of E2 protein in Pakistani strains has increased its immunogenicity in comparison to ancestral s27 strain. The identification of most immunogenic and conserved epitopes with high population coverage has high potential to be used in vaccine development against these local strains.
Collapse
Affiliation(s)
- Bilal Ahmed Khan
- Bilal Ahmed Khan, M.Phil. Department of Biotechnology, University of Karachi, Karachi, Pakistan, Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan
| | - Saifullah
- Dr. Saifullah, Ph.D. Department of Biotechnology, University of Karachi, Karachi, Pakistan
| | - Amanullah Lail
- Dr. Amanullah Lail, FCPS. Department of Pediatrics, Dow University of Health Sciences, Karachi, Pakistan
| | - Saeed Khan
- Prof. Dr. Saeed Khan, Ph.D. Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
5
|
Wessolly M, Stephan-Falkenau S, Streubel A, Werner R, Borchert S, Griff S, Mairinger E, Walter RFH, Bauer T, Eberhardt WEE, Blum TG, Schmid KW, Kollmeier J, Mairinger T, Mairinger FD. A Novel Epitope Quality-Based Immune Escape Mechanism Reveals Patient's Suitability for Immune Checkpoint Inhibition. Cancer Manag Res 2020; 12:7881-7890. [PMID: 32922086 PMCID: PMC7457781 DOI: 10.2147/cmar.s258396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022] Open
Abstract
Background Immune checkpoint inhibition, especially the blockade of PD-1 and PD-L1, has become one of the most thriving therapeutic approaches in modern oncology. Immune evasion caused by altered tumor epitope processing (so-called processing escapes) may be one way to explain immune checkpoint inhibition therapy failure. In the present study, we aim to demonstrate the effects of processing escapes on immunotherapy outcome in NSCLC patients. Patients and Methods Whole exome sequencing data of 400 NSCLC patients (AdC and SCC) were extracted from the TCGA database. The ICB cohort was composed of primary tumor probes from 48 NSCLC patients treated with nivolumab. Mutations were identified by targeted amplicon-based sequencing including hotspots and whole exomes of 22 genes. The effect of mutations on proteasomal processing was evaluated by deep learning methods previously trained on 1260 known MHC-I ligands. Cox regression modelling was used to determine the influence on overall survival. Results In the TCGA cohort, processing escapes were associated with decreased overall survival (p= 0.0140). In the ICB cohort, patients showing processing escapes in combination with high levels of PD-L1 (n=8/48) also showed significantly decreased overall survival, independently of mutational load or PD-L1 status. Conclusion The concept of altered epitope processing may help to understand immunotherapy failure. Especially when combined with PD-L1 status, this method can be used as a biomarker to identify patients not suitable for immunotherapy.
Collapse
Affiliation(s)
- Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | | | - Anna Streubel
- Department of Tissue Diagnostics, Helios Klinikum Emil Von Behring, Berlin, Germany
| | - Robert Werner
- Department of Tissue Diagnostics, Helios Klinikum Emil Von Behring, Berlin, Germany
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Sergej Griff
- Department of Tissue Diagnostics, Helios Klinikum Emil Von Behring, Berlin, Germany
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert F H Walter
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Ruhrlandklinik, West German Lung Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Torsten Bauer
- Lungenklinik Heckeshorn, Helios Klinikum Emil Von Behring, Berlin, Germany
| | - Wilfried E E Eberhardt
- Ruhrlandklinik, West German Lung Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Medical Oncology, West German Cancer Center, University, Hospital Essen, Essen, Germany
| | - Torsten G Blum
- Lungenklinik Heckeshorn, Helios Klinikum Emil Von Behring, Berlin, Germany
| | - Kurt W Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jens Kollmeier
- Lungenklinik Heckeshorn, Helios Klinikum Emil Von Behring, Berlin, Germany
| | - Thomas Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Fabian D Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
6
|
Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci 2020; 21:ijms21165644. [PMID: 32781731 PMCID: PMC7460648 DOI: 10.3390/ijms21165644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.
Collapse
Affiliation(s)
- Janine Kemming
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Robert Thimme
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Correspondence: ; Tel.: +49-761-270-32800
| |
Collapse
|
7
|
Duru AD, Sun R, Allerbring EB, Chadderton J, Kadri N, Han X, Peqini K, Uchtenhagen H, Madhurantakam C, Pellegrino S, Sandalova T, Nygren PÅ, Turner SJ, Achour A. Tuning antiviral CD8 T-cell response via proline-altered peptide ligand vaccination. PLoS Pathog 2020; 16:e1008244. [PMID: 32365082 PMCID: PMC7224568 DOI: 10.1371/journal.ppat.1008244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/14/2020] [Accepted: 04/11/2020] [Indexed: 12/16/2022] Open
Abstract
Viral escape from CD8+ cytotoxic T lymphocyte responses correlates with disease progression and represents a significant challenge for vaccination. Here, we demonstrate that CD8+ T cell recognition of the naturally occurring MHC-I-restricted LCMV-associated immune escape variant Y4F is restored following vaccination with a proline-altered peptide ligand (APL). The APL increases MHC/peptide (pMHC) complex stability, rigidifies the peptide and facilitates T cell receptor (TCR) recognition through reduced entropy costs. Structural analyses of pMHC complexes before and after TCR binding, combined with biophysical analyses, revealed that although the TCR binds similarly to all complexes, the p3P modification alters the conformations of a very limited amount of specific MHC and peptide residues, facilitating efficient TCR recognition. This approach can be easily introduced in peptides restricted to other MHC alleles, and can be combined with currently available and future vaccination protocols in order to prevent viral immune escape.
Collapse
Affiliation(s)
- Adil Doganay Duru
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
- NSU Cell Therapy Institute & Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Eva B. Allerbring
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Jesseka Chadderton
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Australia
| | - Nadir Kadri
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Xiao Han
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Kaliroi Peqini
- DISFARM, Dipartimento di Scienze Farmaceutiche, Sezinone Chimica Generale e Organica, Università degli Studi, Milano, Italy
| | - Hannes Uchtenhagen
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Chaithanya Madhurantakam
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
- Structural and Molecular Biology Laboratory, Department of Biotechnology, TERI, School of Advanced Studies, New Delhi, India
| | - Sara Pellegrino
- DISFARM, Dipartimento di Scienze Farmaceutiche, Sezinone Chimica Generale e Organica, Università degli Studi, Milano, Italy
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Per-Åke Nygren
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Stephen J. Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Australia
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
8
|
Karimzadeh H, Kiraithe MM, Oberhardt V, Salimi Alizei E, Bockmann J, Schulze Zur Wiesch J, Budeus B, Hoffmann D, Wedemeyer H, Cornberg M, Krawczyk A, Rashidi-Alavijeh J, Rodríguez-Frías F, Casillas R, Buti M, Smedile A, Alavian SM, Heinold A, Emmerich F, Panning M, Gostick E, Price DA, Timm J, Hofmann M, Raziorrouh B, Thimme R, Protzer U, Roggendorf M, Neumann-Haefelin C. Mutations in Hepatitis D Virus Allow It to Escape Detection by CD8 + T Cells and Evolve at the Population Level. Gastroenterology 2019; 156:1820-1833. [PMID: 30768983 PMCID: PMC6486497 DOI: 10.1053/j.gastro.2019.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/16/2019] [Accepted: 02/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Hepatitis D virus (HDV) superinfection in patients with hepatitis B virus (HBV) is associated with rapid progression to liver cirrhosis and hepatocellular carcinoma. Treatment options are limited, and no vaccine is available. Although HDV-specific CD8+ T cells are thought to control the virus, little is known about which HDV epitopes are targeted by virus-specific CD8+ T cells or why these cells ultimately fail to control the infection. We aimed to define how HDV escapes the CD8+ T-cell-mediated response. METHODS We collected plasma and DNA samples from 104 patients with chronic HDV and HBV infection at medical centers in Europe and the Middle East, sequenced HDV, typed human leukocyte antigen (HLA) class I alleles from patients, and searched for polymorphisms in HDV RNA associated with specific HLA class I alleles. We predicted epitopes in HDV that would be recognized by CD8+ T cells and corresponded with the identified virus polymorphisms in patients with resolved (n = 12) or chronic (n = 13) HDV infection. RESULTS We identified 21 polymorphisms in HDV that were significantly associated with specific HLA class I alleles (P < .005). Five of these polymorphisms were found to correspond to epitopes in HDV that are recognized by CD8+ T cells; we confirmed that CD8+ T cells in culture targeted these HDV epitopes. HDV variant peptides were only partially cross-recognized by CD8+ T cells isolated from patients, indicating that the virus had escaped detection by these cells. These newly identified HDV epitopes were restricted by relatively infrequent HLA class I alleles, and they bound most frequently to HLA-B. In contrast, frequent HLA class I alleles were not associated with HDV sequence polymorphisms. CONCLUSIONS We analyzed sequences of HDV RNA and HLA class I alleles that present epitope peptides to CD8+ T cells in patients with persistent HDV infection. We identified polymorphisms in the HDV proteome that associate with HLA class I alleles. Some variant peptides in epitopes from HDV were only partially recognized by CD8+ T cells isolated from patients; these could be mutations that allow HDV to escape the immune response, resulting in persistent infection. HDV escape from the immune response was associated with uncommon HLA class I alleles, indicating that HDV evolves, at the population level, to evade recognition by common HLA class I alleles.
Collapse
Affiliation(s)
- Hadi Karimzadeh
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany; Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany; Department of Internal Medicine II, University Hospital Munich-Grosshadern, Munich, Germany
| | - Muthamia M Kiraithe
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Valerie Oberhardt
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Elahe Salimi Alizei
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Jan Bockmann
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Sites Hamburg-Lübeck-Borstel-Riems, Hannover-Braunschweig and Munich, Germany
| | - Julian Schulze Zur Wiesch
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Sites Hamburg-Lübeck-Borstel-Riems, Hannover-Braunschweig and Munich, Germany
| | - Bettina Budeus
- Department of Bioinformatics, University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Department of Bioinformatics, University of Duisburg-Essen, Essen, Germany
| | - Heiner Wedemeyer
- German Center for Infection Research (DZIF), Sites Hamburg-Lübeck-Borstel-Riems, Hannover-Braunschweig and Munich, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Markus Cornberg
- German Center for Infection Research (DZIF), Sites Hamburg-Lübeck-Borstel-Riems, Hannover-Braunschweig and Munich, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Adalbert Krawczyk
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany; Department of Infectious Diseases, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Jassin Rashidi-Alavijeh
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Francisco Rodríguez-Frías
- CIBERehd and Departments of Biochemistry/Microbiology and Hepatology, Vall d'Hebron Hospital, University Autónoma de Barcelona (UAB), Barcelona, Spain
| | - Rosario Casillas
- CIBERehd and Departments of Biochemistry/Microbiology and Hepatology, Vall d'Hebron Hospital, University Autónoma de Barcelona (UAB), Barcelona, Spain
| | - Maria Buti
- CIBERehd and Departments of Biochemistry/Microbiology and Hepatology, Vall d'Hebron Hospital, University Autónoma de Barcelona (UAB), Barcelona, Spain
| | - Antonina Smedile
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Andreas Heinold
- Institute of Transfusion Medicine, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Emmerich
- Institute for Transfusion Medicine and Gene Therapy, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jörg Timm
- Institute of Virology, Heinrich-Heine-University, University Hospital, Duesseldorf, Germany
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bijan Raziorrouh
- Department of Internal Medicine II, University Hospital Munich-Grosshadern, Munich, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), Sites Hamburg-Lübeck-Borstel-Riems, Hannover-Braunschweig and Munich, Germany
| | - Michael Roggendorf
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany; Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany; German Center for Infection Research (DZIF), Sites Hamburg-Lübeck-Borstel-Riems, Hannover-Braunschweig and Munich, Germany.
| | - Christoph Neumann-Haefelin
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Chigbu DI, Loonawat R, Sehgal M, Patel D, Jain P. Hepatitis C Virus Infection: Host⁻Virus Interaction and Mechanisms of Viral Persistence. Cells 2019; 8:cells8040376. [PMID: 31027278 PMCID: PMC6523734 DOI: 10.3390/cells8040376] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C (HCV) is a major cause of liver disease, in which a third of individuals with chronic HCV infections may develop liver cirrhosis. In a chronic HCV infection, host immune factors along with the actions of HCV proteins that promote viral persistence and dysregulation of the immune system have an impact on immunopathogenesis of HCV-induced hepatitis. The genome of HCV encodes a single polyprotein, which is translated and processed into structural and nonstructural proteins. These HCV proteins are the target of the innate and adaptive immune system of the host. Retinoic acid-inducible gene-I (RIG-I)-like receptors and Toll-like receptors are the main pattern recognition receptors that recognize HCV pathogen-associated molecular patterns. This interaction results in a downstream cascade that generates antiviral cytokines including interferons. The cytolysis of HCV-infected hepatocytes is mediated by perforin and granzyme B secreted by cytotoxic T lymphocyte (CTL) and natural killer (NK) cells, whereas noncytolytic HCV clearance is mediated by interferon gamma (IFN-γ) secreted by CTL and NK cells. A host-HCV interaction determines whether the acute phase of an HCV infection will undergo complete resolution or progress to the development of viral persistence with a consequential progression to chronic HCV infection. Furthermore, these host-HCV interactions could pose a challenge to developing an HCV vaccine. This review will focus on the role of the innate and adaptive immunity in HCV infection, the failure of the immune response to clear an HCV infection, and the factors that promote viral persistence.
Collapse
Affiliation(s)
- DeGaulle I Chigbu
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
- Pennsylvania College of Optometry at Salus University, Elkins Park, PA 19027, USA.
| | - Ronak Loonawat
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Mohit Sehgal
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Dip Patel
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| |
Collapse
|
10
|
Luxenburger H, Neumann-Haefelin C, Thimme R, Boettler T. HCV-Specific T Cell Responses During and After Chronic HCV Infection. Viruses 2018; 10:v10110645. [PMID: 30453612 PMCID: PMC6265781 DOI: 10.3390/v10110645] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV)-specific T cell responses are closely linked to the clinical course of infection. While T cell responses in self-limiting infection are typically broad and multi-specific, they display several distinct features of functional impairment in the chronic phase. Moreover, HCV readily adapts to immune pressure by developing escape mutations within epitopes targeted by T cells. Much of our current knowledge on HCV-specific T cell responses has been gathered under the assumption that this might eventually pave the way for a therapeutic vaccine. However, with the development of highly efficient direct acting antivirals (DAAs), there is less interest in the development of a therapeutic vaccine for HCV and the scope of T cell research has shifted. Indeed, the possibility to rapidly eradicate an antigen that has persisted over years or decades, and has led to T cell exhaustion and dysfunction, provides the unique opportunity to study potential T cell recovery after antigen cessation in a human in vivo setting. Findings from such studies not only improve our basic understanding of T cell immunity but may also advance immunotherapeutic approaches in cancer or chronic hepatitis B and D infection. Moreover, in order to edge closer to the WHO goal of HCV elimination by 2030, a prophylactic vaccine is clearly required. Thus, in this review, we will summarize our current knowledge on HCV-specific T cell responses and also provide an outlook on the open questions that require answers in this field.
Collapse
Affiliation(s)
- Hendrik Luxenburger
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Robert Thimme
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Tobias Boettler
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
11
|
Ebstein F, Keller M, Paschen A, Walden P, Seeger M, Bürger E, Krüger E, Schadendorf D, Kloetzel PM, Seifert U. Exposure to Melan-A/MART-126-35 tumor epitope specific CD8(+)T cells reveals immune escape by affecting the ubiquitin-proteasome system (UPS). Sci Rep 2016; 6:25208. [PMID: 27143649 PMCID: PMC4855237 DOI: 10.1038/srep25208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/12/2016] [Indexed: 01/01/2023] Open
Abstract
Efficient processing of target antigens by the ubiquitin-proteasome-system (UPS) is essential for treatment of cancers by T cell therapies. However, immune escape due to altered expression of IFN-γ-inducible components of the antigen presentation machinery and consequent inefficient processing of HLA-dependent tumor epitopes can be one important reason for failure of such therapies. Here, we show that short-term co-culture of Melan-A/MART-1 tumor antigen-expressing melanoma cells with Melan-A/MART-126-35-specific cytotoxic T lymphocytes (CTL) led to resistance against CTL-induced lysis because of impaired Melan-A/MART-126-35 epitope processing. Interestingly, deregulation of p97/VCP expression, which is an IFN-γ-independent component of the UPS and part of the ER-dependent protein degradation pathway (ERAD), was found to be essentially involved in the observed immune escape. In support, our data demonstrate that re-expression of p97/VCP in Melan-A/MART-126-35 CTL-resistant melanoma cells completely restored immune recognition by Melan-A/MART-126-35 CTL. In conclusion, our experiments show that impaired expression of IFN-γ-independent components of the UPS can exert rapid immune evasion of tumor cells and suggest that tumor antigens processed by distinct UPS degradation pathways should be simultaneously targeted in T cell therapies to restrict the likelihood of immune evasion due to impaired antigen processing.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Charité-Universitätsmedizin Berlin, Institut für Biochemie, Charité-Platz 1/ Virchowweg 6, 10117 Berlin, Germany
| | - Martin Keller
- Charité-Universitätsmedizin Berlin, Institut für Biochemie, Charité-Platz 1/ Virchowweg 6, 10117 Berlin, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital, University Duisburg-Essen and German Cancer Consortium (DKTK), Hufelandstr. 55, 45122 Essen, Germany
| | - Peter Walden
- Charité-Universitätsmedizin Berlin, Klinik für Dermatologie, Venerologie und Allergologie, Charité Platz 1, 10117 Berlin, Germany
| | - Michael Seeger
- Charité-Universitätsmedizin Berlin, Institut für Biochemie, Charité-Platz 1/ Virchowweg 6, 10117 Berlin, Germany
| | - Elke Bürger
- Charité-Universitätsmedizin Berlin, Institut für Biochemie, Charité-Platz 1/ Virchowweg 6, 10117 Berlin, Germany
| | - Elke Krüger
- Charité-Universitätsmedizin Berlin, Institut für Biochemie, Charité-Platz 1/ Virchowweg 6, 10117 Berlin, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital, University Duisburg-Essen and German Cancer Consortium (DKTK), Hufelandstr. 55, 45122 Essen, Germany
| | - Peter-M. Kloetzel
- Charité-Universitätsmedizin Berlin, Institut für Biochemie, Charité-Platz 1/ Virchowweg 6, 10117 Berlin, Germany
- Berlin Institute of Health Kapelle-Ufer 2 10117 Berlin, Germany
| | - Ulrike Seifert
- Charité-Universitätsmedizin Berlin, Institut für Biochemie, Charité-Platz 1/ Virchowweg 6, 10117 Berlin, Germany
- Institut für Molekulare und Klinische Immunologie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Leipzigerstr. 44, 39120 Magdeburg, Germany
| |
Collapse
|
12
|
Spear TT, Riley TP, Lyons GE, Callender GG, Roszkowski JJ, Wang Y, Simms PE, Scurti GM, Foley KC, Murray DC, Hellman LM, McMahan RH, Iwashima M, Garrett-Mayer E, Rosen HR, Baker BM, Nishimura MI. Hepatitis C virus-cross-reactive TCR gene-modified T cells: a model for immunotherapy against diseases with genomic instability. J Leukoc Biol 2016; 100:545-57. [PMID: 26921345 DOI: 10.1189/jlb.2a1215-561r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
A major obstacle hindering the development of effective immunity against viral infections, their associated disease, and certain cancers is their inherent genomic instability. Accumulation of mutations can alter processing and presentation of antigens recognized by antibodies and T cells that can lead to immune escape variants. Use of an agent that can intrinsically combat rapidly mutating viral or cancer-associated antigens would be quite advantageous in developing effective immunity against such disease. We propose that T cells harboring cross-reactive TCRs could serve as a therapeutic agent in these instances. With the use of hepatitis C virus, known for its genomic instability as a model for mutated antigen recognition, we demonstrate cross-reactivity against immunogenic and mutagenic nonstructural protein 3:1406-1415 and nonstructural protein 3:1073-1081 epitopes in PBL-derived, TCR-gene-modified T cells. These single TCR-engineered T cells can CD8-independently recognize naturally occurring and epidemiologically relevant mutant variants. TCR-peptide MHC modeling data allow us to rationalize how TCR structural properties accommodate recognition of certain mutated epitopes and how these substitutions impact the requirement of CD8 affinity enhancement for recognition. A better understanding of such TCRs' promiscuous behavior may allow for exploitation of these properties to develop novel, adoptive T cell-based therapies for viral infections and cancers exhibiting similar genomic instability.
Collapse
Affiliation(s)
- Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA;
| | - Timothy P Riley
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Gretchen E Lyons
- Department of Surgery, University of Chicago, Chicago, Illinois, USA; Department of Biology, Northeastern Illinois University, Chicago, Illinois, USA
| | - Glenda G Callender
- Department of Surgery, University of Chicago, Chicago, Illinois, USA; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Yuan Wang
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia E Simms
- Flow Cytometry Core Facility, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - Gina M Scurti
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - Kendra C Foley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - David C Murray
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - Lance M Hellman
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel H McMahan
- Division of Gastroenterology and Hepatology, Hepatitis C Center, and Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA; and
| | - Makio Iwashima
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hugo R Rosen
- Division of Gastroenterology and Hepatology, Hepatitis C Center, and Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA; and
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA; Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
13
|
Differential Recognition of Influenza A Viruses by M158-66 Epitope-Specific CD8+ T Cells Is Determined by Extraepitopic Amino Acid Residues. J Virol 2015; 90:1009-22. [PMID: 26537686 DOI: 10.1128/jvi.02439-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Natural influenza A virus infections elicit both virus-specific antibody and CD4(+) and CD8(+) T cell responses. Influenza A virus-specific CD8(+) cytotoxic T lymphocytes (CTLs) contribute to clearance of influenza virus infections. Viral CTL epitopes can display variation, allowing influenza A viruses to evade recognition by epitope-specific CTLs. Due to functional constraints, some epitopes, like the immunodominant HLA-A*0201-restricted matrix protein 1 (M158-66) epitope, are highly conserved between influenza A viruses regardless of their subtype or host species of origin. We hypothesized that human influenza A viruses evade recognition of this epitope by impairing antigen processing and presentation by extraepitopic amino acid substitutions. Activation of specific T cells was used as an indication of antigen presentation. Here, we show that the M158-66 epitope in the M1 protein derived from human influenza A virus was poorly recognized compared to the M1 protein derived from avian influenza A virus. Furthermore, we demonstrate that naturally occurring variations at extraepitopic amino acid residues affect CD8(+) T cell recognition of the M158-66 epitope. These data indicate that human influenza A viruses can impair recognition by M158-66-specific CTLs while retaining the conserved amino acid sequence of the epitope, which may represent a yet-unknown immune evasion strategy for influenza A viruses. This difference in recognition may have implications for the viral replication kinetics in HLA-A*0201 individuals and spread of influenza A viruses in the human population. The findings may aid the rational design of universal influenza vaccines that aim at the induction of cross-reactive virus-specific CTL responses. IMPORTANCE Influenza viruses are an important cause of acute respiratory tract infections. Natural influenza A virus infections elicit both humoral and cellular immunity. CD8(+) cytotoxic T lymphocytes (CTLs) are directed predominantly against conserved internal proteins and confer cross-protection, even against influenza A viruses of various subtypes. In some CTL epitopes, mutations occur that allow influenza A viruses to evade recognition by CTLs. However, the immunodominant HLA-A*0201-restricted M158-66 epitope does not tolerate mutations without loss of viral fitness. Here, we describe naturally occurring variations in amino acid residues outside the M158-66 epitope that influence the recognition of the epitope. These results provide novel insights into the epidemiology of influenza A viruses and their pathogenicity and may aid rational design of vaccines that aim at the induction of CTL responses.
Collapse
|
14
|
Textoris-Taube K, Keller C, Liepe J, Henklein P, Sidney J, Sette A, Kloetzel PM, Mishto M. The T210M Substitution in the HLA-a*02:01 gp100 Epitope Strongly Affects Overall Proteasomal Cleavage Site Usage and Antigen Processing. J Biol Chem 2015; 290:30417-28. [PMID: 26507656 DOI: 10.1074/jbc.m115.695189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 01/01/2023] Open
Abstract
MHC class I-restricted epitopes, which carry a tumor-specific mutation resulting in improved MHC binding affinity, are preferred T cell receptor targets in innovative adoptive T cell therapies. However, T cell therapy requires efficient generation of the selected epitope. How such mutations may affect proteasome-mediated antigen processing has so far not been studied. Therefore, we analyzed by in vitro experiments the effect on antigen processing and recognition of a T210M exchange, which previously had been introduced into the melanoma gp100209-217 tumor epitope to improve the HLA-A*02:01 binding and its immunogenicity. A quantitative analysis of the main steps of antigen processing shows that the T210M exchange affects proteasomal cleavage site usage within the mutgp100201-230 polypeptide, leading to the generation of an unique set of cleavage products. The T210M substitution qualitatively affects the proteasome-catalyzed generation of spliced and non-spliced peptides predicted to bind HLA-A or -B complexes. The T210M substitution also induces an enhanced production of the mutgp100209-217 epitope and its N-terminally extended peptides. The T210M exchange revealed no effect on ERAP1-mediated N-terminal trimming of the precursor peptides. However, mutant N-terminally extended peptides exhibited significantly increased HLA-A*02:01 binding affinity and elicited CD8(+) T cell stimulation in vitro similar to the wtgp100209-217 epitope. Thus, our experiments demonstrate that amino acid exchanges within an epitope can result in the generation of an altered peptide pool with new antigenic peptides and in a wider CD8(+) T cell response also towards N-terminally extended versions of the minimal epitope.
Collapse
Affiliation(s)
- Kathrin Textoris-Taube
- From the Institut für Biochemie, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christin Keller
- From the Institut für Biochemie, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Juliane Liepe
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, SW7 2AZ, United Kingdom, and
| | - Petra Henklein
- From the Institut für Biochemie, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | - Peter M Kloetzel
- From the Institut für Biochemie, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany,
| | - Michele Mishto
- From the Institut für Biochemie, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany,
| |
Collapse
|
15
|
Distinct Escape Pathway by Hepatitis C Virus Genotype 1a from a Dominant CD8+ T Cell Response by Selection of Altered Epitope Processing. J Virol 2015; 90:33-42. [PMID: 26446603 DOI: 10.1128/jvi.01993-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Antiviral CD8(+) T cells are a key component of the adaptive immune response against HCV, but their impact on viral control is influenced by preexisting viral variants in important target epitopes and the development of viral escape mutations. Immunodominant epitopes highly conserved across genotypes therefore are attractive for T cell based prophylactic vaccines. Here, we characterized the CD8(+) T cell response against the highly conserved HLA-B*51-restricted epitope IPFYGKAI1373-1380 located in the helicase domain of NS3 in people who inject drugs (PWID) exposed predominantly to HCV genotypes 1a and 3a. Despite this epitope being conserved in both genotypes, the corresponding CD8(+) T cell response was detected only in PWID infected with genotype 3a and HCV-RNA negative PWID, but not in PWID infected with genotype 1a. In genotype 3a, the detection of strong CD8(+) T cell responses was associated with epitope variants in the autologous virus consistent with immune escape. Analysis of viral sequences from multiple cohorts confirmed HLA-B*51-associated escape mutations inside the epitope in genotype 3a, but not in genotype 1a. Here, a distinct substitution in the N-terminal flanking region located 5 residues upstream of the epitope (S1368P; P = 0.00002) was selected in HLA-B*51-positive individuals. Functional assays revealed that the S1368P substitution impaired recognition of target cells presenting the endogenously processed epitope. The results highlight that, despite an epitope being highly conserved between two genotypes, there are major differences in the selected viral escape pathways and the corresponding T cell responses. IMPORTANCE HCV is able to evolutionary adapt to CD8(+) T cell immune pressure in multiple ways. Beyond selection of mutations inside targeted epitopes, this study demonstrates that HCV inhibits epitope processing by modification of the epitope flanking region under T cell immune pressure. Selection of a substitution five amino acids upstream of the epitope underlines that efficient antigen presentation strongly depends on its larger sequence context and that blocking of the multistep process of antigen processing by mutation is exploited also by HCV. The pathways to mutational escape of HCV are to some extent predictable but are distinct in different genotypes. Importantly, the selected escape pathway of HCV may have consequences for the destiny of antigen-specific CD8(+) T cells.
Collapse
|
16
|
Jallow S, Leligdowicz A, Kramer HB, Onyango C, Cotten M, Wright C, Whittle HC, McMichael A, Dong T, Kessler BM, Rowland-Jones SL. The presence of prolines in the flanking region of an immunodominant HIV-2 gag epitope influences the quality and quantity of the epitope generated. Eur J Immunol 2015; 45:2232-42. [PMID: 26018465 PMCID: PMC4832300 DOI: 10.1002/eji.201545451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/02/2015] [Accepted: 05/22/2015] [Indexed: 12/31/2022]
Abstract
Both the recognition of HIV‐infected cells and the immunogenicity of candidate CTL vaccines depend on the presentation of a peptide epitope at the cell surface, which in turn depends on intracellular antigen processing. Differential antigen processing maybe responsible for the differences in both the quality and the quantity of epitopes produced, influencing the immunodominance hierarchy of viral epitopes. Previously, we showed that the magnitude of the HIV‐2 gag‐specific T‐cell response is inversely correlated with plasma viral load, particularly when responses are directed against an epitope, 165DRFYKSLRA173, within the highly conserved Major Homology Region of gag‐p26. We also showed that the presence of three proline residues, at positions 119, 159 and 178 of gag‐p26, was significantly correlated with low viral load. Since this proline motif was also associated with stronger gag‐specific CTL responses, we investigated the impact of these prolines on proteasomal processing of the protective 165DRFYKSLRA173 epitope. Our data demonstrate that the 165DRFYKSLRA173 epitope is most efficiently processed from precursors that contain two flanking proline residues, found naturally in low viral‐load patients. Superior antigen processing and enhanced presentation may account for the link between infection with HIV‐2 encoding the “PPP‐gag” sequence and both strong gag‐specific CTL responses as well as lower viral load.
Collapse
Affiliation(s)
- Sabelle Jallow
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | | | - Holger B Kramer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | - Cynthia Wright
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | | | - Andrew McMichael
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | - Tao Dong
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Sarah L Rowland-Jones
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Mutational escape of CD8+ T cell epitopes: implications for prevention and therapy of persistent hepatitis virus infections. Med Microbiol Immunol 2014; 204:29-38. [PMID: 25537849 PMCID: PMC4305108 DOI: 10.1007/s00430-014-0372-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/01/2014] [Indexed: 12/16/2022]
Abstract
Over the past two decades, much has been learned about how human viruses evade T cell immunity to establish persistent infection. The lessons are particularly relevant to two hepatotropic viruses, HBV and HCV, that are very significant global public health problems. Although HCV and HBV are very different, the natural history of persistent infections with these viruses in humans shares some common features including failure of T cell immunity. During recent years, large sequence studies of HCV have characterized intra-host evolution as well as sequence diversity between hosts in great detail. Combined with studies of CD8+ T cell phenotype and function, it is now apparent that the T cell response shapes viral evolution. In turn, HCV sequence diversity influences the quality of the CD8+ T cell response and thus infection outcome. Here, we review published studies of CD8+ T cell selection pressure and mutational escape of the virus. Potential consequences for therapeutic strategies to restore T cell immunity against persistent human viruses, most notably HBV, are discussed.
Collapse
|
18
|
Holz L, Rehermann B. T cell responses in hepatitis C virus infection: historical overview and goals for future research. Antiviral Res 2014; 114:96-105. [PMID: 25433310 DOI: 10.1016/j.antiviral.2014.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/16/2014] [Accepted: 11/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV)-specific T cells are key factors in the outcome of acute HCV infection and in protective immunity. This review recapitulates the steps that immunologists have taken in the past 25years to dissect the role of T cell responses in HCV infection. It describes technical as well as disease-specific challenges that were caused by the inapparent onset of acute HCV infection, the difficulty to identify subjects who spontaneously clear HCV infection, the low frequency of HCV-specific T cells in the blood of chronically infected patients, and the lack of small animal models with intact immune systems to study virus-host interaction. The review provides a historical perspective on techniques and key findings, and identifies areas for future research.
Collapse
Affiliation(s)
- Lauren Holz
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Osna NA, Ganesan M, Donohue TM. Proteasome- and ethanol-dependent regulation of HCV-infection pathogenesis. Biomolecules 2014; 4:885-96. [PMID: 25268065 PMCID: PMC4279161 DOI: 10.3390/biom4040885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/05/2014] [Accepted: 09/16/2014] [Indexed: 02/05/2023] Open
Abstract
This paper reviews the role of the catabolism of HCV and signaling proteins in HCV protection and the involvement of ethanol in HCV-proteasome interactions. HCV specifically infects hepatocytes, and intracellularly expressed HCV proteins generate oxidative stress, which is further exacerbated by heavy drinking. The proteasome is the principal proteolytic system in cells, and its activity is sensitive to the level of cellular oxidative stress. Not only host proteins, but some HCV proteins are degraded by the proteasome, which, in turn, controls HCV propagation and is crucial for the elimination of the virus. Ubiquitylation of HCV proteins usually leads to the prevention of HCV propagation, while accumulation of undegraded viral proteins in the nuclear compartment exacerbates infection pathogenesis. Proteasome activity also regulates both innate and adaptive immunity in HCV-infected cells. In addition, the proteasome/immunoproteasome is activated by interferons, which also induce "early" and "late" interferon-sensitive genes (ISGs) with anti-viral properties. Cleaving viral proteins to peptides in professional immune antigen presenting cells and infected ("target") hepatocytes that express the MHC class I-antigenic peptide complex, the proteasome regulates the clearance of infected hepatocytes by the immune system. Alcohol exposure prevents peptide cleavage by generating metabolites that impair proteasome activity, thereby providing escape mechanisms that interfere with efficient viral clearance to promote the persistence of HCV-infection.
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA; E-Mails: , (M.G.); (T.M.D.Jr.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-402-995-3735; Fax: +1-402-449-0604
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA; E-Mails: , (M.G.); (T.M.D.Jr.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA; E-Mails: , (M.G.); (T.M.D.Jr.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
20
|
Osinusi A, Chary A, Winters MA, Naggie S, Masur H, Polis MA, Kottilil S, Holodniy M. IL28B polymorphism is not associated with HCV protease diversity in patients co-infected with HIV and HCV treated with pegylated interferon and ribavirin. J Med Virol 2012; 84:1522-7. [PMID: 22930497 PMCID: PMC3690569 DOI: 10.1002/jmv.23376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent studies have demonstrated that IL28B polymorphisms predict therapeutic responses in chronic hepatitis C virus (HCV)-treated patients; however, the effect on HCV viral diversity, particularly on the HCV protease gene, is not clear. This study sought to evaluate the effect of IL28B polymorphisms on HCV diversity at NS3/4 protease region, which may influence therapeutic response to an HCV protease inhibitor based regimen. Twenty-two patients co-infected with HIV and HCV genotype 1, treatment-naïve on stable HIV antiretroviral therapy initiating interferon-based treatment were evaluated. Plasma HCV NS3 gene diversity was analyzed by clonal analysis at baseline and end of treatment. IL28B (rs12979860) genotypes were tested for associations with virologic outcomes and diversity parameters. There was similar baseline NS3 diversity in patients with CC (favorable) genotype compared to those with CT/TT (unfavorable) genotypes. There was no significant association between IL28B genotype and baseline NS3 nucleotide p-distance, dS-dN, amino acid p-distance, or nucleotide changes. Among patients without a sustained virologic response, between baseline and follow-up there was a significant trend towards decreased diversity after treatment among patients with favorable genotype, which was not observed in unfavorable genotypes. In patients treated with peginterferon/ribavirin therapy, IL28B polymorphism was not associated with enhanced NS3 diversity at baseline. Among non-SVR patients with the less favorable genotype, there was no change in diversity after treatment. This suggests that IL28B genotype is unlikely to have a negative impact on subsequent HCV PI efficacy in patients co-infected with HIV and HCV patients who have previously failed HCV therapy.
Collapse
Affiliation(s)
- Anu Osinusi
- CMRP, SAIC-Frederick, Inc, NCI-Frederick, Frederick, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen SH, Wu HL, Kao JH, Hwang LH. Persistent hepatitis B viral replication in a FVB/N mouse model: impact of host and viral factors. PLoS One 2012; 7:e36984. [PMID: 22615863 PMCID: PMC3353969 DOI: 10.1371/journal.pone.0036984] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/11/2012] [Indexed: 01/04/2023] Open
Abstract
The mechanism underlying the chronicity of hepatitis B virus (HBV) infection has long been an interesting question. However, this mechanism remains unclear largely due to the lack of an animal model that can support persistent HBV replication and allow for the investigation of the relevant immune responses. In this study, we used hydrodynamic injection to introduce HBV replicon DNA into the livers of three different mouse strains: BALB/c, C57BL/6, and FVB/N. Interestingly, we found that an HBV clone persistently replicated in the livers of FVB/N mice for up to 50 weeks but was rapidly cleared from the livers of BALB/c and C57BL/6 mice. Flow cytometric analysis and quantitative reverse transcription PCR analysis of the mouse livers indicated that after DNA injection, FVB/N mice had few intrahepatic activated cytotoxic T lymphocytes (CTLs) and produced low levels of alanine aminotransferase, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and the CXCL9 and CXCL10 chemokines. These findings were in sharp contrast with those observed in BALB/c and C57BL/6 mice, reflecting a strong correlation between the degree of liver inflammation and viral clearance. Mutational analysis further demonstrated that a change of Asn-214 to Ser-214 in the HBV surface antigen rendered the persistent HBV clone clearable in FVB/N mice, which was accompanied by increased levels of activated CTL and upregulated expression of IFN-γ, CXCL9, and CXCL10 in the livers. These results indicate that the heterogeneity of the host factors and viral sequences may influence the immune responses against HBV. An inadequate activation of immune or inflammatory responses can lead to persistent HBV replication in vivo.
Collapse
Affiliation(s)
- Shih-Hui Chen
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Lin Wu
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lih-Hwa Hwang
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Zhang SC, Martin E, Shimada M, Godfrey SB, Fricke J, Locastro S, Lai NY, Liebesny P, Carlson JM, Brumme CJ, Ogbechie OA, Chen H, Walker BD, Brumme ZL, Kavanagh DG, Le Gall S. Aminopeptidase substrate preference affects HIV epitope presentation and predicts immune escape patterns in HIV-infected individuals. THE JOURNAL OF IMMUNOLOGY 2012; 188:5924-34. [PMID: 22586036 DOI: 10.4049/jimmunol.1200219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Viruses evade immune detection partly through immune-associated mutations. Analyses of HIV sequences derived from infected individuals have identified numerous examples of HLA-associated mutations within or adjacent to T cell epitopes, but the potential impact of most mutations on epitope production and presentation remains unclear. The multistep breakdown of proteins into epitopes includes trimming of N-extended peptides into epitopes by aminopeptidases before loading onto MHC class I molecules. Definition of sequence signatures that modulate epitope production would lead to a better understanding of factors driving viral evolution and immune escape at the population level. In this study, we identified cytosolic aminopeptidases cleavage preferences in primary cells and its impact on HIV Ag degradation into epitopes in primary human cell extracts by mass spectrometry and on epitope presentation to CTL. We observed a hierarchy of preferred amino acid cleavage by cytosolic aminopeptidases. We demonstrated that flanking mutations producing more or less cleavable motifs can increase or decrease epitope production and presentation by up to 14-fold. We found that the efficiency of epitope production correlates with cleavability of flanking residues. These in vitro findings were supported by in vivo population-level analyses of clinically derived viral sequences from 1134 antiretroviral-naive HIV-infected individuals: HLA-associated mutations immune pressures drove the selection of residues that are less cleavable by aminopeptidases predominantly at N-flanking sites, leading to reduced epitope production and immune recognition. These results underscore an important and widespread role of Ag processing mutations in HIV immune escape and identify molecular mechanisms underlying impaired epitope presentation.
Collapse
Affiliation(s)
- Shao Chong Zhang
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shoji I. Roles of the two distinct proteasome pathways in hepatitis C virus infection. World J Virol 2012; 1:44-50. [PMID: 24175210 PMCID: PMC3782266 DOI: 10.5501/wjv.v1.i2.44] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 02/22/2012] [Accepted: 03/05/2012] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) infection often causes chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The development of a HCV cell culture system enabled us to investigate its whole HCV life cycle and develop a better understanding of the pathogenesis of this virus. Post-translational modification plays a crucial role in HCV replication and in the maturation of viral particles. There is growing evidence also suggesting that the ubiquitin-proteasome pathway and the ubiquitin-independent proteasome pathway are involved in the stability control of HCV proteins. Many viruses are known to manipulate the proteasome pathways to modulate the cell cycle, inhibit apoptosis, evade the immune system, and activate cell signaling, thereby contributing to persistent infection and viral carcinogenesis. The identification of functional interactions between HCV and the proteasome pathways will therefore shed new light on the life cycle and pathogenesis of HCV. This review summarizes the current knowledge on the involvement of the ubiquitin-dependent and -independent proteasome pathways in HCV infection and discusses the roles of these two distinct mechanisms in HCV pathogenesis.
Collapse
Affiliation(s)
- Ikuo Shoji
- Ikuo Shoji, Division of Microbiology, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan
| |
Collapse
|
24
|
Escape from a dominant HLA-B*15-restricted CD8+ T cell response against hepatitis C virus requires compensatory mutations outside the epitope. J Virol 2011; 86:991-1000. [PMID: 22072759 DOI: 10.1128/jvi.05603-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antiviral CD8(+) T cells are a key component of the adaptive immune system against hepatitis C virus (HCV). For the development of immune therapies, it is essential to understand how CD8(+) T cells contribute to clearance of infection and why they fail so often. A mechanism for secondary failure is mutational escape of the virus. However, some substitutions in viral epitopes are associated with fitness costs and often require compensatory mutations. We hypothesized that compensatory mutations may point toward epitopes under particularly strong selection pressure that may be beneficial for vaccine design because of a higher genetic barrier to escape. We previously identified two HLA-B*15-restricted CD8(+) epitopes in NS5B (LLRHHNMVY(2450-2458) and SQRQKKVTF(2466-2474)), based on sequence analysis of a large HCV genotype 1b outbreak. Both epitopes are targeted in about 70% of HLA-B*15-positive individuals exposed to HCV. Reproducible selection of escape mutations was confirmed in an independent multicenter cohort in the present study. Interestingly, mutations were also selected in the epitope flanking region, suggesting that compensatory evolution may play a role. Covariation analysis of sequences from the database confirmed a significant association between escape mutations inside one of the epitopes (H2454R and M2456L) and substitutions in the epitope flanking region (S2439T and K2440Q). Functional analysis with the subgenomic replicon Con1 confirmed that the primary escape mutations impaired viral replication, while fitness was restored by the additional substitutions in the epitope flanking region. We concluded that selection of escape mutations inside an HLA-B*15 epitope requires secondary substitutions in the epitope flanking region that compensate for fitness costs.
Collapse
|
25
|
Derouazi M, Wang Y, Marlu R, Epaulard O, Mayol JF, Pasqual N, Le Gouellec A, Polack B, Toussaint B. Optimal epitope composition after antigen screening using a live bacterial delivery vector: application to TRP-2. Bioeng Bugs 2011; 1:51-60. [PMID: 21327126 DOI: 10.4161/bbug.1.1.9482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/09/2009] [Accepted: 07/09/2009] [Indexed: 01/03/2023] Open
Abstract
Immunotherapeutic approaches, based on the generation of tumor-specific cytotoxic T-lymphocytes (CTL), are currently emerging as promising strategies of anti-tumor therapy. The potential use of attenuated bacteria as engineered vectors for vaccine development offers several advantages, including the stimulation of innate immunity. We developed an attenuated live bacterial vector using the type III secretion system (TTSS) of Pseudomonas aeruginosa to deliver in vivo tumor antigens. Using an inducible and rapid expression plasmid, vaccination with several antigens of different length and epitope composition, including TRp-2, gp100 and MUC18, was evaluated against glioma tumor cells. We observed similar CTL immunity and T-cell receptor (TCR) repertoire diversity with the vaccines, TRP2(125-243), TRP2L(125-376) and TRP2S(291-376). However, only immunization with TRP2L(125-376) induced significant anti-tumor immunity. Taken together, our data indicate the importance of the epitopes composition and/or peptide length of these peptides for inducing cytotoxic T-lymphocyte (CTL) mediated immunity. Characteristics that consistently improved anti-tumor immunity include: long peptides with immunodominant and cryptic CD8(+) epitopes, and strong CD4(+) Th epitopes. Our bacterial vector is versatile, easy-to-use and quick to produce. This vector is suitable for rapid screening and evaluation of antigens of varying length and epitope composition.
Collapse
Affiliation(s)
- Madiha Derouazi
- Therex, TIMC-IMAG, CNRS Université Joseph Fourier; La Tronche, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Maman Y, Nir-Paz R, Louzoun Y. Bacteria modulate the CD8+ T cell epitope repertoire of host cytosol-exposed proteins to manipulate the host immune response. PLoS Comput Biol 2011; 7:e1002220. [PMID: 22022257 PMCID: PMC3192822 DOI: 10.1371/journal.pcbi.1002220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 08/20/2011] [Indexed: 01/09/2023] Open
Abstract
The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested.
Collapse
Affiliation(s)
- Yaakov Maman
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Ran Nir-Paz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yoram Louzoun
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
27
|
Wang JH, Pianko MJ, Ke X, Herskovic A, Hershow R, Cotler SJ, Chen W, Chen ZW, Rong L. Characterization of antigenic variants of hepatitis C virus in immune evasion. Virol J 2011; 8:377. [PMID: 21801418 PMCID: PMC3158126 DOI: 10.1186/1743-422x-8-377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/29/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Antigenic variation is an effective way by which viruses evade host immune defense leading to viral persistence. Little is known about the inhibitory mechanisms of viral variants on CD4 T cell functions. RESULTS Using sythetic peptides of a HLA-DRB1*15-restricted CD4 epitope derived from the non-structural (NS) 3 protein of hepatitis C virus (HCV) and its antigenic variants and the peripheral blood mononuclear cells (PBMC) from six HLA-DRB1*15-positive patients chronically infected with HCV and 3 healthy subjects, the in vitro immune responses and the phenotypes of CD4+CD25+ cells of chronic HCV infection were investigated. The variants resulting from single or double amino acid substitutions at the center of the core region of the Th1 peptide not only induce failed T cell activation but also simultaneously up-regulate inhibitory IL-10, CD25-TGF-β+ Th3 and CD4+IL-10+ Tr1 cells. In contrast, other variants promote differentiation of CD25+TGF-β+ Th3 suppressors that attenuate T cell proliferation. CONCLUSIONS Naturally occuring HCV antigenic mutants of a CD4 epitope can shift a protective peripheral Th1 immune response into an inhibitory Th3 and/or Tr1 response. The modulation of antigenic variants on CD4 response is efficient and extensive, and is likely critical in viral persistence in HCV infection.
Collapse
Affiliation(s)
- Jane H Wang
- Section of Hepatology, Department of Medicine, University of Illinois at Chicago, Illinois, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, the Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Illinois, USA
| | - Matthew J Pianko
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, the Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xiaogang Ke
- Section of Hepatology, Department of Medicine, University of Illinois at Chicago, Illinois, USA
| | - Alex Herskovic
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, the Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ronald Hershow
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Illinois, USA
| | - Scott J Cotler
- Section of Hepatology, Department of Medicine, University of Illinois at Chicago, Illinois, USA
| | - Weijin Chen
- Changchun Institute of Biological Products, China National Biotec Group Int. Changchun, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, University of Illinois at Chicago, Illinois, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Illinois, USA
| |
Collapse
|
28
|
The antiviral efficacy of HIV-specific CD8⁺ T-cells to a conserved epitope is heavily dependent on the infecting HIV-1 isolate. PLoS Pathog 2011; 7:e1001341. [PMID: 21589893 PMCID: PMC3093356 DOI: 10.1371/journal.ppat.1001341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 04/11/2011] [Indexed: 01/03/2023] Open
Abstract
A major challenge to developing a successful HIV vaccine is the vast diversity of viral sequences, yet it is generally assumed that an epitope conserved between different strains will be recognised by responding T-cells. We examined whether an invariant HLA-B8 restricted Nef90–97 epitope FL8 shared between five high titre viruses and eight recombinant vaccinia viruses expressing Nef from different viral isolates (clades A–H) could activate antiviral activity in FL8-specific cytotoxic T-lymphocytes (CTL). Surprisingly, despite epitope conservation, we found that CTL antiviral efficacy is dependent on the infecting viral isolate. Only 23% of Nef proteins, expressed by HIV-1 isolates or as recombinant vaccinia-Nef, were optimally recognised by CTL. Recognition of the HIV-1 isolates by CTL was independent of clade-grouping but correlated with virus-specific polymorphisms in the epitope flanking region, which altered immunoproteasomal cleavage resulting in enhanced or impaired epitope generation. The finding that the majority of virus isolates failed to present this conserved epitope highlights the importance of viral variance in CTL epitope flanking regions on the efficiency of antigen processing, which has been considerably underestimated previously. This has important implications for future vaccine design strategies since efficient presentation of conserved viral epitopes is necessary to promote enhanced anti-viral immune responses. One of the greatest challenges to developing an effective HIV vaccine is the ability of HIV to rapidly alter its viral sequence. Such variation in viral sequence enables the virus to frequently evade recognition by the host immune system. To counteract this problem, there has been increasing interest in developing HIV vaccines that target T-cell responses to the regions of the virus that are highly conserved between strains of HIV. However, previous studies have focused on identifying amino acid variation predominantly within a single viral isolate, or have focused on classical within-epitope escape mutation. Our study assessed T-cell recognition of a conserved epitope shared by a total of 13 HIV strains. Strikingly, we show that only a small proportion of the viral strains were effectively recognised and targeted by the T-cells. In contrast, differences in amino acid sequence in the region flanking the epitope impaired the intracellular processing and presentation of epitope in the majority of HIV strains tested. Thus, our findings highlight that a large proportion of HIV strains may evade epitope-specific T-cell recognition despite absolute epitope conservation. This has important implications for both vaccine design and evaluation of vaccine efficacy.
Collapse
|
29
|
Ashfaq UA, Javed T, Rehman S, Nawaz Z, Riazuddin S. An overview of HCV molecular biology, replication and immune responses. Virol J 2011; 8:161. [PMID: 21477382 PMCID: PMC3086852 DOI: 10.1186/1743-422x-8-161] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/11/2011] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) causes acute and chronic hepatitis which can eventually lead to permanent liver damage, hepatocellular carcinoma and death. Currently, there is no vaccine available for prevention of HCV infection due to high degree of strain variation. The current treatment of care, Pegylated interferon α in combination with ribavirin is costly, has significant side effects and fails to cure about half of all infections. In this review, we summarize molecular virology, replication and immune responses against HCV and discussed how HCV escape from adaptive and humoral immune responses. This advance knowledge will be helpful for development of vaccine against HCV and discovery of new medicines both from synthetic chemistry and natural sources.
Collapse
Affiliation(s)
- Usman A Ashfaq
- Division of Molecular Medicine, National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | | | | | | | | |
Collapse
|
30
|
The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell Mol Life Sci 2011; 68:1491-502. [PMID: 21387144 PMCID: PMC3071949 DOI: 10.1007/s00018-011-0657-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 02/07/2023]
Abstract
The ubiquitin–proteasome system (UPS) degrades intracellular proteins into peptide fragments that can be presented by major histocompatibility complex (MHC) class I molecules. While the UPS is functional in all mammalian cells, its subunit composition differs depending on cell type and stimuli received. Thus, cells of the hematopoietic lineage and cells exposed to (pro)inflammatory cytokines express three proteasome immunosubunits, which form the catalytic centers of immunoproteasomes, and the proteasome activator PA28. Cortical thymic epithelial cells express a thymus-specific proteasome subunit that induces the assembly of thymoproteasomes. We here review new developments regarding the role of these different proteasome components in MHC class I antigen processing, T cell repertoire selection and CD8 T cell responses. We further discuss recently discovered functions of proteasomes in peptide splicing, lymphocyte survival and the regulation of cytokine production and inflammatory responses.
Collapse
|
31
|
Cell type-specific proteasomal processing of HIV-1 Gag-p24 results in an altered epitope repertoire. J Virol 2010; 85:1541-53. [PMID: 21106750 DOI: 10.1128/jvi.01790-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Proteasomes are critical for the processing of antigens for presentation through the major histocompatibility complex (MHC) class I pathway. HIV-1 Gag protein is a component of several experimental HIV-1 vaccines. Therefore, understanding the processing of HIV-1 Gag protein and the resulting epitope repertoire is essential. Purified proteasomes from mature dendritic cells (DC) and activated CD4(+) T cells from the same volunteer were used to cleave full-length Gag-p24 protein, and the resulting peptide fragments were identified by mass spectrometry. Distinct proteasomal degradation patterns and peptide fragments were unique to either mature DC or activated CD4(+) T cells. Almost half of the peptides generated were cell type specific. Two additional differences were observed in the peptides identified from the two cell types. These were in the HLA-B35-Px epitope and the HLA-B27-KK10 epitope. These epitopes have been linked to HIV-1 disease progression. Our results suggest that the source of generation of precursor MHC class I epitopes may be a critical factor for the induction of relevant epitope-specific cytotoxic T cells.
Collapse
|
32
|
Zhang Y, Liu Y, Moxley KM, Golden-Mason L, Hughes MG, Liu T, Heemskerk MHM, Rosen HR, Nishimura MI. Transduction of human T cells with a novel T-cell receptor confers anti-HCV reactivity. PLoS Pathog 2010; 6:e1001018. [PMID: 20686664 PMCID: PMC2912399 DOI: 10.1371/journal.ppat.1001018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 06/25/2010] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C Virus (HCV) is a major public health concern, with no effective vaccines currently available and 3% of the world's population being infected. Despite the existence of both B- and T-cell immunity in HCV-infected patients, chronic viral infection and HCV-related malignancies progress. Here we report the identification of a novel HCV TCR from an HLA-A2-restricted, HCV NS3:1073-1081-reactive CTL clone isolated from a patient with chronic HCV infection. We characterized this HCV TCR by expressing it in human T cells and analyzed the function of the resulting HCV TCR-transduced cells. Our results indicate that both the HCV TCR-transduced CD4(+) and CD8(+) T cells recognized the HCV NS3:1073-1081 peptide-loaded targets and HCV(+) hepatocellular carcinoma cells (HCC) in a polyfunctional manner with cytokine (IFN-gamma, IL-2, and TNF-alpha) production as well as cytotoxicity. Tumor cell recognition by HCV TCR transduced CD8(-) Jurkat cells and CD4(+) PBL-derived T cells indicated this TCR was CD8-independent, a property consistent with other high affinity TCRs. HCV TCR-transduced T cells may be promising for the treatment of patients with chronic HCV infections.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Yeuying Liu
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Kelly M. Moxley
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Lucy Golden-Mason
- Division of Gastroenterology & Hepatology, Hepatitis C Center & Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, United States of America
| | - Michael G. Hughes
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Tongxin Liu
- Division of Transplantation, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| | - Mirjam H. M. Heemskerk
- Laboratory of Experimental Hematology, Department of Hematology, Leiden University Medical Center Leiden, the Netherlands
| | - Hugo R. Rosen
- Division of Gastroenterology & Hepatology, Hepatitis C Center & Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, United States of America
| | - Michael I. Nishimura
- Division of General Surgery, Department of Surgery, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, United States of America
| |
Collapse
|
33
|
Abstract
Hepatitis C virus (HCV) infects over 170 million people worldwide and is a leading cause of cirrhosis and hepatocellular carcinoma. Approximately 20% [corrected] of those acutely infected clear the infection, whereas the remaining 80% [corrected] progress to chronic infection. Hepatitis C thus provides a model in which successful and unsuccessful responses can be compared to better understand the human response to viral infection. Our laboratory studies the strategies by which HCV evades the adaptive immune response. This review describes the impact of viral mutation on T cell recognition, the role of cell surface inhibitory receptors in recognition of HCV, and the development of antibodies that neutralize HCV infection. Understanding what constitutes an effective immune response in the control of HCV may enable the development of prophylactic and therapeutic vaccines for HCV and other chronic viral infections.
Collapse
Affiliation(s)
| | - Andrea L. Cox
- Address: Rangos Building, Suite 536; 855 N. Wolfe St, Baltimore, MD 21205. Phone: 410-502-2715. Fax: 410-614-7564.
| |
Collapse
|
34
|
Wang S, Buchli R, Schiller J, Gao J, VanGundy RS, Hildebrand WH, Eckels DD. Natural epitope variants of the hepatitis C virus impair cytotoxic T lymphocyte activity. World J Gastroenterol 2010; 16:1953-69. [PMID: 20419832 PMCID: PMC2860072 DOI: 10.3748/wjg.v16.i16.1953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To understand how interactions between hepatitis C virus (HCV) and the host’s immune system might lead to viral persistence or effective elimination of HCV.
METHODS: Nucleotides 3519-3935 of the non-structural 3 (NS3) region were amplified by using reverse transcription polymerase chain reaction (PCR). PCR products of the HCV NS3 regions were integrated into a PCR® T7TOPO® TA vector and then sequenced in both directions using an automated DNA sequencer. Relative major histocompatibility complex binding levels of wild-type and variant peptides were performed by fluorescence polarization-based peptide competition assays. Peptides with wild type and variant sequences of NS3 were synthesized locally using F-moc chemistry and purified by high-performance liquid chromatography. Specific cytotoxic T lymphocytes (CTLs) clones toward HCV NS3 wild-type peptides were generated through limiting dilution cloning. The CTL clones specifically recognizing HCV NS3 wild-type peptides were tested by tetramer staining and flow cytometry. Cytolytic activity of CTL clones was measured using target cells labeled with the fluorescence enhancing ligand, DELFIA EuTDA.
RESULTS: The pattern of natural variants within three human leukocyte antigen (HLA)-A2-restricted NS3 epitopes has been examined in one patient with chronic HCV infection at 12, 28 and 63 mo post-infection. Results obtained may provide convincing evidence of immune selection pressure for all epitopes investigated. Statistical analysis of the extensive sequence variation found within these NS3 epitopes favors a Darwinian selection model of variant viruses. Mutations within the epitopes coincided with the decline of CTL responses, and peptide-binding studies suggested a significant impact of the mutation on T cell recognition rather than peptide presentation by HLA molecules. While most variants were either not recognized or elicited low responses, such could antagonize CTL responses to target cells pulsed with wild-type peptides.
CONCLUSION: Cross-recognition of CTL epitopes from wild-type and naturally-occurring HCV variants may lead to impaired immune responses and ultimately contribute to viral persistence.
Collapse
|
35
|
Mutation or loss of Wilms' tumor gene 1 (WT1) are not major reasons for immune escape in patients with AML receiving WT1 peptide vaccination. J Transl Med 2010; 8:5. [PMID: 20092642 PMCID: PMC2844374 DOI: 10.1186/1479-5876-8-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/21/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Efficacy of cancer vaccines may be limited due to immune escape mechanisms like loss or mutation of target antigens. Here, we analyzed 10 HLA-A2 positive patients with acute myeloid leukemia (AML) for loss or mutations of the WT1 epitope or epitope flanking sequences that may abolish proper T cell recognition or epitope presentation. METHODS All patients had been enrolled in a WT1 peptide phase II vaccination trial (NCT00153582) and ultimately progressed despite induction of a WT1 specific T cell response. Blood and bone marrow samples prior to vaccination and during progression were analyzed for mRNA expression level of WT1. Base exchanges within the epitope sequence or flanking regions (10 amino acids N- and C-terminal of the epitope) were assessed with melting point analysis and sequencing. HLA class I expression and WT1 protein expression was analyzed by flow cytometry. RESULTS Only in one patient, downregulation of WT1 mRNA by 1 log and loss of WT1 detection on protein level at time of disease progression was observed. No mutation leading to a base exchange within the epitope sequence or epitope flanking sequences could be detected in any patient. Further, no loss of HLA class I expression on leukemic blasts was observed. CONCLUSION Defects in antigen presentation caused by loss or mutation of WT1 or downregulation of HLA molecules are not the major basis for escape from the immune response induced by WT1 peptide vaccination.
Collapse
|
36
|
Irausquin SJ, Hughes AL. Conflicting selection pressures target the NS3 protein in hepatitis C virus genotypes 1a and 1b. Virus Res 2009; 147:202-7. [PMID: 19896990 DOI: 10.1016/j.virusres.2009.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/28/2009] [Accepted: 11/02/2009] [Indexed: 01/06/2023]
Abstract
Analysis of complete polyprotein-encoding sequences of the two most prevalent genotypes of hepatitis C virus (HCV-1a and HCV-1b) revealed evidence of abundant, slightly deleterious nonsynonymous variants subject to ongoing purifying selection. In the case of both HCV-1a and HCV-1b, the NS3 protein demonstrated a high incidence of forward-and-backward or parallel nonsynonymous changes in CTL epitopes as measured by the phylogenetic consistency index. These results imply that certain nonsynonymous mutations have occurred frequently throughout the HCV-1a and HCV-1b phylogenies in the codons encoding the epitopes in NS3. This pattern is best explained by the frequent re-occurrence of the same set of escape mutations in CTL epitopes of NS3, which are selectively favored within hosts presenting the class I major histocompatability complex molecule, but subject to purifying selection in the population at large. This pattern was more pronounced in HCV-1b than in HCV-1a, suggesting that there may be differences between the two genotypes with respect to NS3's interaction with host immune recognition.
Collapse
|
37
|
You J, Zhuang L, Zhang YF, Chen HY, Sriplung H, Geater A, Chongsuvivatwong V, Piratvisuth T, McNeil E, Yu L, Tang BZ, Huang JH. Peripheral T-lymphocyte subpopulations in different clinical stages of chronic HBV infection correlate with HBV load. World J Gastroenterol 2009; 15:3382-93. [PMID: 19610139 PMCID: PMC2712899 DOI: 10.3748/wjg.15.3382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/24/2009] [Accepted: 05/31/2009] [Indexed: 02/06/2023] Open
Abstract
AIM To characterize the peripheral T-cell subpopulation profiles and their correlation with hepatitis B virus (HBV) replication in different clinical stages of chronic HBV infection. METHODS A total of 422 patients with chronic HBV infection were enrolled in this study. The patients were divided into three stages: immune-tolerant stage, immune active stage, and immune-inactive carrier stage. Composition of peripheral T-cell subpopulations was determined by flow cytometry. HBV markers were detected by enzyme-linked immunosorbent assay. Serum HBV DNA load was assessed by quantitative real-time polymerase chain reaction. RESULTS CD8(+) T-cells were significantly higher in patients at the immune-tolerant stage than in patients at the immune-active and -inactive carrier stages (36.87 +/- 7.58 vs 34.37 +/- 9.07, 36.87 +/- 7.58 vs 28.09 +/- 5.64, P < 0.001). The peripheral blood in patients at the immune-tolerant and immune active stages contained more CD8(+) T-cells than CD4(+) T-cells (36.87 +/- 7.58 vs 30.23 +/- 6.35, 34.37 +/- 9.07 vs 30.92 +/- 7.40, P < 0.01), whereas the peripheral blood in patients at the immune-inactive carrier stage and in normal controls contained less CD8(+) T-cells than CD4(+) T-cells (28.09 +/- 5.64 vs 36.85 +/- 6.06, 24.02 +/- 4.35 vs 38.94 +/- 3.39, P < 0.01). ANOVA linear trend test showed that CD8(+) T-cells were significantly increased in patients with a high viral load (39.41 +/- 7.36, 33.83 +/- 7.50, 31.81 +/- 5.95 and 26.89 +/- 5.71, P < 0.001), while CD4(+) T-cells were significantly increased in patients with a low HBV DNA load (37.45 +/- 6.14, 33.33 +/- 5.61, 31.58 +/- 6.99 and 27.56 +/- 5.49, P < 0.001). Multiple regression analysis displayed that log copies of HBV DNA still maintained its highly significant coefficients for T-cell subpopulations, and was the strongest predictors for variations in CD3(+), CD4(+) and CD8(+) cells and CD4(+)/CD8(+) ratio after adjustment for age at HBV-infection, maternal HBV-infection status, presence of hepatitis B e antigen and HBV mutation. CONCLUSION Differences in peripheral T-cell subpopulation profiles can be found in different clinical stages of chronic HBV infection. T-cell impairment is significantly associated with HBV load.
Collapse
|
38
|
Rehermann B. Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J Clin Invest 2009; 119:1745-54. [PMID: 19587449 DOI: 10.1172/jci39133] [Citation(s) in RCA: 407] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since the identification of the hepatitis C virus (HCV) 20 years ago, much progress has been made in our understanding of its life cycle and interaction with the host immune system. Much has been learned from HCV itself, which, via decades of coevolution, gained an intricate knowledge of host innate and adaptive immune responses and developed sophisticated ways to preempt, subvert, and antagonize them. This review discusses the clinical, virological, and immunological features of acute and chronic hepatitis C and the role of the immune response in spontaneous and treatment-induced HCV clearance.
Collapse
Affiliation(s)
- Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH/DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Abstract
HCV infection is an important cause of liver disease worldwide-nearly 80% of infected patients develop chronic liver disease, which leads to the development of liver cirrhosis and hepatocellular carcinoma. The ability of HCV to persist within a host is believed to be related to the numerous mechanisms by which it evades the immune response of the host. These mechanisms can be divided into defensive and offensive strategies. Examples of defensive mechanisms include replication within enclosed structures, which provides protection from the host's antiviral defenses, genetic diversity created by inaccurate replication, which yields mutants resistant to the cell's antiviral strategies, and association of the virion with protective lipoproteins. Offensive mechanisms include virally encoded proteins and other factors that disrupt the ability of the host cells to detect the virus and downregulate its ability to respond to interferon, impair innate immune defense mechanisms and alter T-cell responses, and prevent the development of an effective B-cell-mediated humoral response. Greater understanding of these viral survival strategies will ultimately translate into more effective antiviral therapies and better prognosis for patients.
Collapse
Affiliation(s)
- Ella H Sklan
- Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
40
|
Abstract
Alcoholic patients have a high incidence of hepatitis C virus (HCV) infection. Alcohol consumption enhances the severity of the HCV disease course and worsens the outcome of chronic hepatitis C. The accumulation of virally infected cells in the liver is related to the HCV-induced inability of the immune system to recognize infected cells and to develop the immune responses. This review covers the effects of HCV proteins and ethanol on major histocompatibility complex (MHC) class I- and class II-restricted antigen presentation. Here, we discuss the liver which functions as an immune privilege organ; factors, which affect cleavage and loading of antigenic peptides onto MHC class I and class II in hepatocytes and dendritic cells, and the modulating effects of ethanol and HCV on antigen presentation by liver cells. Altered antigen presentation in the liver limits the ability of the immune system to clear HCV and infected cells and contributes to disease progression. HCV by itself affects dendritic cell function, switching their cytokine profile to the suppressive phenotype of interleukin-10 (IL-10) and transforming growth factor beta (TGFβ) predominance, preventing cell maturation and allostimulation capacity. The synergistic action of ethanol with HCV results in the suppression of MHC class II-restricted antigen presentation. In addition, ethanol metabolism and HCV proteins reduce proteasome function and interferon signaling, thereby suppressing the generation of peptides for MHC class I-restricted antigen presentation. Collectively, ethanol exposure further impairs antigen presentation in HCV-infected liver cells, which may provide a partial explanation for exacerbations and the poor outcome of HCV infection in alcoholics.
Collapse
|
41
|
Yerly D, Heckerman D, Allen T, Suscovich TJ, Jojic N, Kadie C, Pichler WJ, Cerny A, Brander C. Design, expression, and processing of epitomized hepatitis C virus-encoded CTL epitopes. THE JOURNAL OF IMMUNOLOGY 2009; 181:6361-70. [PMID: 18941227 DOI: 10.4049/jimmunol.181.9.6361] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hepatitis C virus (HCV) vaccine efficacy may crucially depend on immunogen length and coverage of viral sequence diversity. However, covering a considerable proportion of the circulating viral sequence variants would likely require long immunogens, which for the conserved portions of the viral genome, would contain unnecessarily redundant sequence information. In this study, we present the design and in vitro performance analysis of a novel "epitome" approach that compresses frequent immune targets of the cellular immune response against HCV into a shorter immunogen sequence. Compression of immunological information is achieved by partial overlapping shared sequence motifs between individual epitopes. At the same time, sequence diversity coverage is provided by taking advantage of emerging cross-reactivity patterns among epitope variants so that epitope variants associated with the broadest variant cross-recognition are preferentially included. The processing and presentation analysis of specific epitopes included in such a compressed, in vitro-expressed HCV epitome indicated effective processing of a majority of tested epitopes, although re-presentation of some epitopes may require refined sequence design. Together, the present study establishes the epitome approach as a potential powerful tool for vaccine immunogen design, especially suitable for the induction of cellular immune responses against highly variable pathogens.
Collapse
Affiliation(s)
- Daniel Yerly
- Clinic for Rheumatology and Clinical Immunology, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rutebemberwa A, Ray SC, Astemborski J, Levine J, Liu L, Dowd KA, Clute S, Wang C, Korman A, Sette A, Sidney J, Pardoll DM, Cox AL. High-programmed death-1 levels on hepatitis C virus-specific T cells during acute infection are associated with viral persistence and require preservation of cognate antigen during chronic infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:8215-25. [PMID: 19050238 PMCID: PMC2773824 DOI: 10.4049/jimmunol.181.12.8215] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) is an important human pathogen that represents a model for chronic infection given that the majority of infected individuals fail to clear the infection despite generation of virus-specific T cell responses during the period of acute infection. Although viral sequence evolution at targeted MHC class I-restricted epitopes represents one mechanism for immune escape in HCV, many targeted epitopes remain intact under circumstances of viral persistence. To explore alternative mechanisms of HCV immune evasion, we analyzed patterns of expression of a major inhibitory receptor on T cells, programmed death-1 (PD-1), from the time of initial infection and correlated these with HCV RNA levels, outcome of infection, and sequence escape within the targeted epitope. We show that the level of PD-1 expression in early HCV infection is significantly higher on HCV-specific T cells from subjects who progress to chronic HCV infection than from those who clear infection. This correlation is independent of HCV RNA levels, compatible with the notion that high PD-1 expression on HCV-specific CD8 T cells during acute infection inhibits viral clearance. Viral escape during persistent infection is associated with reduction in PD-1 levels on the surface of HCV-specific T cells, supporting the necessity of ongoing antigenic stimulation of T cells for maintenance of PD-1 expression. These results support the idea that PD-1 expression on T cells specific for nonescaped epitopes contributes to viral persistence and suggest that PD-1 blockade may alter the outcome of HCV infection.
Collapse
MESH Headings
- Acute Disease
- Adult
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Viral/immunology
- Apoptosis Regulatory Proteins/biosynthesis
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Hepacivirus/genetics
- Hepacivirus/immunology
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Humans
- Mutation
- Programmed Cell Death 1 Receptor
- Prospective Studies
- RNA, Viral/genetics
- RNA, Viral/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- Viral Load
- Virus Latency/genetics
- Virus Latency/immunology
Collapse
Affiliation(s)
- Alleluiah Rutebemberwa
- Department of Medicine, Johns Hopkins Medical Institutions, 855 N Wolfe Street. Suite 530, Baltimore, Maryland 21205, USA
| | - Stuart C. Ray
- Department of Medicine, Johns Hopkins Medical Institutions, 855 N Wolfe Street. Suite 530, Baltimore, Maryland 21205, USA
- Department of Oncology, Johns Hopkins Medical Institutions, 855 N Wolfe Street. Suite 530, Baltimore, Maryland 21205, USA
| | - Jacquie Astemborski
- Department of Medicine, Johns Hopkins Medical Institutions, 855 N Wolfe Street. Suite 530, Baltimore, Maryland 21205, USA
- Department of Epidemiology, Johns Hopkins Medical Institutions, 855 N Wolfe Street. Suite 530, Baltimore, Maryland 21205, USA
| | - Jordana Levine
- Department of Medicine, Johns Hopkins Medical Institutions, 855 N Wolfe Street. Suite 530, Baltimore, Maryland 21205, USA
| | - Lin Liu
- Department of Medicine, Johns Hopkins Medical Institutions, 855 N Wolfe Street. Suite 530, Baltimore, Maryland 21205, USA
- Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China 400038
| | - Kimberly A. Dowd
- Department of Medicine, Johns Hopkins Medical Institutions, 855 N Wolfe Street. Suite 530, Baltimore, Maryland 21205, USA
| | - Shalyn Clute
- Medarex Incorporated, 521 Cottonwood Drive, Milpitas, CA 95035, USA
| | - Changyu Wang
- Medarex Incorporated, 521 Cottonwood Drive, Milpitas, CA 95035, USA
| | - Alan Korman
- Medarex Incorporated, 521 Cottonwood Drive, Milpitas, CA 95035, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive San Diego, California 92121
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive San Diego, California 92121
| | - Drew M. Pardoll
- Department of Oncology, Johns Hopkins Medical Institutions, 855 N Wolfe Street. Suite 530, Baltimore, Maryland 21205, USA
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins Medical Institutions, 855 N Wolfe Street. Suite 530, Baltimore, Maryland 21205, USA
- Department of Oncology, Johns Hopkins Medical Institutions, 855 N Wolfe Street. Suite 530, Baltimore, Maryland 21205, USA
| |
Collapse
|
43
|
Wolfl M, Rutebemberwa A, Mosbruger T, Mao Q, Li H, Netski D, Ray SC, Pardoll D, Sidney J, Sette A, Allen T, Kuntzen T, Kavanagh DG, Kuball J, Greenberg PD, Cox AL. Hepatitis C virus immune escape via exploitation of a hole in the T cell repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6435-46. [PMID: 18941234 PMCID: PMC2742502 DOI: 10.4049/jimmunol.181.9.6435] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) infection frequently persists despite eliciting substantial virus-specific immune responses. Thus, HCV infection provides a setting in which to investigate mechanisms of immune escape that allow for viral persistence. Viral amino acid substitutions resulting in decreased MHC binding or impaired Ag processing of T cell epitopes reduce Ag density on the cell surface, permitting evasion of T cell responses in chronic viral infection. Substitutions in viral epitopes that alter TCR contact residues frequently result in escape, but via unclear mechanisms because such substitutions do not reduce surface presentation of peptide-MHC complexes and would be expected to prime T cells with new specificities. We demonstrate that a known in vivo HCV mutation involving a TCR contact residue significantly diminishes T cell recognition and, in contrast to the original sequence, fails to effectively prime naive T cells. This mutant epitope thus escapes de novo immune recognition because there are few highly specific cognate TCR among the primary human T cell repertoire. This example is the first on viral immune escape via exploitation of a "hole" in the T cell repertoire, and may represent an important general mechanism of viral persistence.
Collapse
Affiliation(s)
- Matthias Wolfl
- Department of Fred Hutchinson Cancer Research Center 1100 Fairview Ave North D3-100 Seattle, Washington 98109
| | - Alleluiah Rutebemberwa
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Timothy Mosbruger
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Qing Mao
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China 400038
| | - Hongmei Li
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Dale Netski
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Stuart C. Ray
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Oncology, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Drew Pardoll
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Oncology, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - John Sidney
- Department of La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive San Diego, California 92121
| | - Alessandro Sette
- Department of La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive San Diego, California 92121
| | - Todd Allen
- Department of Partners AIDS Research Center, 13th Street, Bldg 149, Charlestown, Massachusetts 02129
| | - Thomas Kuntzen
- Department of Partners AIDS Research Center, 13th Street, Bldg 149, Charlestown, Massachusetts 02129
| | - Daniel G. Kavanagh
- Department of Partners AIDS Research Center, 13th Street, Bldg 149, Charlestown, Massachusetts 02129
| | - Jurgen Kuball
- Department of Fred Hutchinson Cancer Research Center 1100 Fairview Ave North D3-100 Seattle, Washington 98109
| | - Philip D. Greenberg
- Department of Fred Hutchinson Cancer Research Center 1100 Fairview Ave North D3-100 Seattle, Washington 98109
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Oncology, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| |
Collapse
|
44
|
Butler NS, Theodossis A, Webb AI, Nastovska R, Ramarathinam SH, Dunstone MA, Rossjohn J, Purcell AW, Perlman S. Prevention of cytotoxic T cell escape using a heteroclitic subdominant viral T cell determinant. PLoS Pathog 2008; 4:e1000186. [PMID: 18949029 PMCID: PMC2563037 DOI: 10.1371/journal.ppat.1000186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/24/2008] [Indexed: 01/07/2023] Open
Abstract
High affinity antigen-specific T cells play a critical role during protective immune responses. Epitope enhancement can elicit more potent T cell responses and can subsequently lead to a stronger memory pool; however, the molecular basis of such enhancement is unclear. We used the consensus peptide-binding motif for the Major Histocompatibility Complex molecule H-2K(b) to design a heteroclitic version of the mouse hepatitis virus-specific subdominant S598 determinant. We demonstrate that a single amino acid substitution at a secondary anchor residue (Q to Y at position 3) increased the stability of the engineered determinant in complex with H-2K(b). The structural basis for this enhanced stability was associated with local alterations in the pMHC conformation as a result of the Q to Y substitution. Recombinant viruses encoding this engineered determinant primed CTL responses that also reacted to the wildtype epitope with significantly higher functional avidity, and protected against selection of virus mutated at a second CTL determinant and consequent disease progression in persistently infected mice. Collectively, our findings provide a basis for the enhanced immunogenicity of an engineered determinant that will serve as a template for guiding the development of heteroclitic T cell determinants with applications in prevention of CTL escape in chronic viral infections as well as in tumor immunity.
Collapse
Affiliation(s)
- Noah S. Butler
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Immunology Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
| | - Alex Theodossis
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Andrew I. Webb
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Roza Nastovska
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Sri Harsha Ramarathinam
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michelle A. Dunstone
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AWP); (SP)
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (AWP); (SP)
| |
Collapse
|
45
|
Host ethnicity and virus genotype shape the hepatitis B virus-specific T-cell repertoire. J Virol 2008; 82:10986-97. [PMID: 18799575 DOI: 10.1128/jvi.01124-08] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Repertoire composition, quantity, and qualitative functional ability are the parameters that define virus-specific T-cell responses and are linked with their potential to control infection. We took advantage of the segregation of different hepatitis B virus (HBV) genotypes in geographically and genetically distinct host populations to directly analyze the impact that host and virus variables exert on these virus-specific T-cell parameters. T-cell responses against the entire HBV proteome were analyzed in a total of 109 HBV-infected subjects of distinct ethnicities (47 of Chinese origin and 62 of Caucasian origin). We demonstrate that HBV-specific T-cell quantity is determined by the virological and clinical profiles of the patients, which outweigh any influence of race or viral diversity. In contrast, HBV-specific T-cell repertoires are divergent in the two ethnic groups, with T-cell epitopes frequently found in Caucasian patients seldom detected in Chinese patients. In conclusion, we provide a direct biological evaluation of the impact that host and virus variables exert on virus-specific T-cell responses. The discordance between HBV-specific CD8 T-cell repertoires present in Caucasian and Chinese subjects shows the ability of HLA micropolymorphisms to diversify T-cell responses and has implications for the rational development of therapeutic and prophylactic vaccines for worldwide use.
Collapse
|
46
|
Stable cytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viral fitness. PLoS Pathog 2008; 4:e1000143. [PMID: 18773115 PMCID: PMC2518852 DOI: 10.1371/journal.ppat.1000143] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 08/07/2008] [Indexed: 01/07/2023] Open
Abstract
Mechanisms by which hepatitis C virus (HCV) evades cellular immunity to establish persistence in chronically infected individuals are not clear. Mutations in human leukocyte antigen (HLA) class I-restricted epitopes targeted by CD8(+) T cells are associated with persistence, but the extent to which these mutations affect viral fitness is not fully understood. Previous work showed that the HCV quasispecies in a persistently infected chimpanzee accumulated multiple mutations in numerous class I epitopes over a period of 7 years. During the acute phase of infection, one representative epitope in the C-terminal region of the NS3/4A helicase, NS3(1629-1637), displayed multiple serial amino acid substitutions in major histocompatibility complex (MHC) anchor and T cell receptor (TCR) contact residues. Only one of these amino acid substitutions at position 9 (P9) of the epitope was stable in the quasispecies. We therefore assessed the effect of each mutation observed during in vivo infection on viral fitness and T cell responses using an HCV subgenomic replicon system and a recently developed in vitro infectious virus cell culture model. Mutation of a position 7 (P7) TCR-contact residue, I1635T, expectedly ablated the T cell response without affecting viral RNA replication or virion production. In contrast, two mutations at the P9 MHC-anchor residue abrogated antigen-specific T cell responses, but additionally decreased viral RNA replication and virion production. The first escape mutation, L1637P, detected in vivo only transiently at 3 mo after infection, decreased viral production, and reverted to the parental sequence in vitro. The second P9 variant, L1637S, which was stable in vivo through 7 years of follow-up, evaded the antigen-specific T cell response and did not revert in vitro despite being less optimal in virion production compared to the parental virus. These studies suggest that HCV escape mutants emerging early in infection are not necessarily stable, but are eventually replaced with variants that achieve a balance between immune evasion and fitness for replication.
Collapse
|
47
|
Irausquin SJ, Hughes AL. Distinctive pattern of sequence polymorphism in the NS3 protein of hepatitis C virus type 1b reflects conflicting evolutionary pressures. J Gen Virol 2008; 89:1921-1929. [PMID: 18632963 DOI: 10.1099/vir.0.2008/000992-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Analysis of complete polyprotein-encoding sequences of hepatitis C virus genotype 1b (HCV-1b) showed evidence not only of past purifying selection but also of abundant slightly deleterious non-synonymous variants subject to ongoing purifying selection. The NS3 protein (with protease and NTPase/helicase activity) revealed less evidence of purifying selection acting on the cytotoxic T cells (CTL) epitopes than did the other proteins, whereas outside the CTL epitopes NS3 was more conserved than the other proteins. Moreover, NS3 showed a high incidence of forward-and-backward or parallel non-synonymous changes in CTL epitopes, as measured by the consistency index across the phylogeny of HCV-1b genomes computed at non-singleton non-synonymous polymorphic sites. This result implies that certain non-synonymous mutations have recurred frequently throughout the phylogeny in the codons encoding the epitopes in NS3. This pattern is most easily explained by the frequent re-occurrence of the same set of escape mutations in CTL epitopes of NS3, which are selectively favoured within hosts expressing the presenting class I major histocompatibility complex molecule, but are subject to purifying selection at the population level. The fact that this pattern is most strikingly observed in the case of NS3 suggests that the evolutionary conflict between immune escape and functional constraint on the protein is more acute in the case of NS3 than any of the other proteins of HCV-1b.
Collapse
Affiliation(s)
| | - Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
48
|
Evidence for protection against chronic hepatitis C virus infection in chimpanzees by immunization with replicating recombinant vaccinia virus. J Virol 2008; 82:10896-905. [PMID: 18753204 DOI: 10.1128/jvi.01179-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Given the failures of nonreplicating vaccines against chronic hepatitis C virus (HCV) infection, we hypothesized that a replicating viral vector may provide protective immunity. Four chimpanzees were immunized transdermally twice with recombinant vaccinia viruses (rVV) expressing HCV genes. After challenge with 24 50% chimpanzee infective doses of homologous HCV, the two control animals that had received only the parental VV developed chronic HCV infection. All four immunized animals resolved HCV infection. The difference in the rate of chronicity between the immunized and the control animals was close to statistical significance (P = 0.067). Immunized animals developed vigorous gamma interferon enzyme-linked immunospot responses and moderate proliferative responses. To investigate cross-genotype protection, the immunized recovered chimpanzees were challenged with a pool of six major HCV genotypes. During the acute phase after the multigenotype challenge, all animals had high-titer viremia in which genotype 4 dominated (87%), followed by genotype 5 (13%). However, after fluctuating low-level viremia, the viremia finally turned negative or persisted at very low levels. This study suggests the potential efficacy of replicating recombinant vaccinia virus-based immunization against chronic HCV infection.
Collapse
|
49
|
Ishii S, Koziel MJ. Immune responses during acute and chronic infection with hepatitis C virus. Clin Immunol 2008; 128:133-47. [PMID: 18514579 DOI: 10.1016/j.clim.2008.03.525] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/27/2008] [Accepted: 03/27/2008] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) induces persistent infection and causes chronic liver disease in most infected patients. Vigorous HCV-specific CD4+ and CD8+ T cell responses against HCV multiple epitopes are necessary for spontaneous viral clearance during the acute phase, but the virus appears to have multiple strategies to evade these defenses. There are relatively few studies on the role of immune responses during the chronic phase of infection. CD4+ T cell responses appear to protect against liver injury and may be important to clearance during interferon and ribavirin based therapy. Classic cytotoxic T cells (CTL) may primarily damage the liver in chronic HCV, but there may be subpopulations of T cells that protect against liver inflammation. Resolution of these outstanding questions is important to the development of a prophylactic vaccine as well as improving therapeutic options for those with chronic infection.
Collapse
Affiliation(s)
- Shigeaki Ishii
- Infectious Disease Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
50
|
Le Gall S, Stamegna P, Walker BD. Portable flanking sequences modulate CTL epitope processing. J Clin Invest 2008; 117:3563-75. [PMID: 17975674 DOI: 10.1172/jci32047] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 09/05/2007] [Indexed: 02/05/2023] Open
Abstract
Peptide presentation is critical for immune recognition of pathogen-infected cells by CD8+ T lymphocytes. Although a limited number of immunodominant peptide epitopes are consistently observed in diseases such as HIV-1 infection, the relationship between immunodominance and antigen processing in humans is largely unknown. Here, we have demonstrated that endogenous processing and presentation of a human immunodominant HIV-1 epitope is more efficient than that of a subdominant epitope. Furthermore, we have shown that the regions flanking the immunodominant epitope constitute a portable motif that increases the production and antigenicity of otherwise subdominant epitopes. We used a novel in vitro degradation assay involving cytosolic extracts as well as endogenous intracellular processing assays to examine 2 well-characterized HIV-1 Gag overlapping epitopes presented by the same HLA class I allele, one of which is consistently immunodominant and the other subdominant in infected persons. The kinetics and products of degradation of HIV-1 Gag favored the production of peptides encompassing the immunodominant epitope and destruction of the subdominant one. Notably, cytosolic digestion experiments revealed flanking residues proximal to the immunodominant epitope that increased the production and antigenicity of otherwise subdominant epitopes. Furthermore, specific point mutations in these portable flanking sequences modulated the production and antigenicity of epitopes. Such portable epitope processing determinants provide what we believe is a novel approach to optimizing CTL responses elicited by vaccine vectors.
Collapse
Affiliation(s)
- Sylvie Le Gall
- Partners AIDS Research Center and Howard Hughes Medical Institute, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts 02129, USA.
| | | | | |
Collapse
|