1
|
Mariottini A, Boncompagni R, Cozzi D, Simonetti E, Repice AM, Damato V, Giordano M, Miele V, Nozzoli C, Massacesi L. Thymic hyperplasia after autologous hematopoietic stem cell transplantation in multiple sclerosis: a case series. Front Immunol 2024; 15:1478777. [PMID: 39654894 PMCID: PMC11625664 DOI: 10.3389/fimmu.2024.1478777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Reactivation of thymopoiesis in adult patients with autoimmune disorders treated with autologous haematopoietic stem cell transplantation (AHSCT) is supported by studies exploring immunoreconstitution. Radiological evidence of thymic hyperplasia after AHSCT was previously reported in patients with systemic sclerosis, but, to our knowledge, it has not been described in multiple sclerosis (MS), where premature thymic involution has been observed and immunosenescence might be accelerated by disease-modifying treatments (DMTs). Participants and methods monocentric case series including MS patients who performed a chest CT scan for clinical purposes after having received AHSCT (BEAM/ATG regimen) for aggressive MS failing DMTs. Chest CT exams were reviewed by a thoracic radiologist: thymic hyperplasia was defined as a rounded mass in the thymic loggia with a density around 40 Hounsfield Units (HU) and thickness >1.3 cm. Results Fifteen MS patients were included; the median time interval between AHSCT and chest CT scan was 2 (range 1-18) months. All the patients were free from new inflammatory events and DMTs over a median follow-up of 36 months (range 12-84) after AHSCT. Thymic hyperplasia was detected in 3/15 (20%) cases in an exam taken 1 to 3 months after AHSCT; all these patients were females, and aged 30 to 40 years. Lung infections and secondary autoimmunity were diagnosed in 5 and 1 cases, respectively, none of which showed thymic hyperplasia. No associations between thymic hyperplasia and clinical-demographic characteristics or post-AHSCT outcomes were observed. Conclusions Thymic hyperplasia was detected in 20% of MS patients recently treated with AHSCT. These results are consistent with previous immunological studies showing that AHSCT promotes thymus reactivation in MS patients, further supporting de-novo thymopoiesis as a cornerstone of immune reconstitution after AHSCT in this population.
Collapse
Affiliation(s)
- Alice Mariottini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Neurology II Department, University Hospital Careggi, Florence, Italy
| | - Riccardo Boncompagni
- Cell Therapy and Transfusion Medicine Unit, University Hospital Careggi, Florence, Italy
| | - Diletta Cozzi
- Department of Emergency Radiology, University Hospital Careggi, Florence, Italy
| | - Edoardo Simonetti
- Cell Therapy and Transfusion Medicine Unit, University Hospital Careggi, Florence, Italy
| | - Anna Maria Repice
- Neurology II Department, University Hospital Careggi, Florence, Italy
| | - Valentina Damato
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Neurology II Department, University Hospital Careggi, Florence, Italy
| | - Mirella Giordano
- Cell Therapy and Transfusion Medicine Unit, University Hospital Careggi, Florence, Italy
| | - Vittorio Miele
- Department of Emergency Radiology, University Hospital Careggi, Florence, Italy
| | - Chiara Nozzoli
- Cell Therapy and Transfusion Medicine Unit, University Hospital Careggi, Florence, Italy
| | - Luca Massacesi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Neurology II Department, University Hospital Careggi, Florence, Italy
| |
Collapse
|
2
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Li Z, Tian M, Wang G, Cui X, Ma J, Liu S, Shen B, Liu F, Wu K, Xiao X, Zhu C. Senotherapeutics: An emerging approach to the treatment of viral infectious diseases in the elderly. Front Cell Infect Microbiol 2023; 13:1098712. [PMID: 37065192 PMCID: PMC10094634 DOI: 10.3389/fcimb.2023.1098712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
In the context of the global COVID-19 pandemic, the phenomenon that the elderly have higher morbidity and mortality is of great concern. Existing evidence suggests that senescence and viral infection interact with each other. Viral infection can lead to the aggravation of senescence through multiple pathways, while virus-induced senescence combined with existing senescence in the elderly aggravates the severity of viral infections and promotes excessive age-related inflammation and multiple organ damage or dysfunction, ultimately resulting in higher mortality. The underlying mechanisms may involve mitochondrial dysfunction, abnormal activation of the cGAS-STING pathway and NLRP3 inflammasome, the role of pre-activated macrophages and over-recruited immune cells, and accumulation of immune cells with trained immunity. Thus, senescence-targeted drugs were shown to have positive effects on the treatment of viral infectious diseases in the elderly, which has received great attention and extensive research. Therefore, this review focused on the relationship between senescence and viral infection, as well as the significance of senotherapeutics for the treatment of viral infectious diseases.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun’e Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bingzheng Shen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Chengliang Zhu, ; Xuan Xiao,
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Chengliang Zhu, ; Xuan Xiao,
| |
Collapse
|
4
|
Huifang L, Jie G, Yi F. Neuro-immune-endocrine mechanisms with poor adherence to aromatase inhibitor therapy in breast cancer. Front Oncol 2022; 12:1054086. [PMID: 36578931 PMCID: PMC9791186 DOI: 10.3389/fonc.2022.1054086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
As the most commonly used endocrine therapy regimen for patients with hormone receptor-positive (HR+) breast cancer (BC) at present, aromatase inhibitors (AIs) reduce the risk of localized and distant recurrence, contralateral BC and secondary cancer, and prolong disease-free survival. Clinical data show that poor adherence during AI treatment is mainly attributed to muscle and joint pain, fatigue, anxiety, depression and sleep disturbances during treatment. The rapid decline of estrogen caused by AIs in a short period of time enhances sympathetic activity, activates T cells in the body, produces inflammatory factors such as tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin (IL)-17A, and promotes the occurrence of inflammation and bone loss. This article reviewed the mechanism of poor dependence on AIs in BC patients from the neuro-immuno-endocrine (NIE) perspective and provided clues for clinical intervention against poor adherence.
Collapse
Affiliation(s)
- Li Huifang
- Department of Anesthesiology, Peking University People’s Hospital, Beijing, China
| | - Gao Jie
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Feng Yi
- Department of Anesthesiology, Peking University People’s Hospital, Beijing, China,*Correspondence: Feng Yi,
| |
Collapse
|
5
|
Charlesworth CT, Hsu I, Wilkinson AC, Nakauchi H. Immunological barriers to haematopoietic stem cell gene therapy. Nat Rev Immunol 2022; 22:719-733. [PMID: 35301483 PMCID: PMC8929255 DOI: 10.1038/s41577-022-00698-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Cell and gene therapies using haematopoietic stem cells (HSCs) epitomize the transformative potential of regenerative medicine. Recent clinical successes for gene therapies involving autologous HSC transplantation (HSCT) demonstrate the potential of genetic engineering in this stem cell type for curing disease. With recent advances in CRISPR gene-editing technologies, methodologies for the ex vivo expansion of HSCs and non-genotoxic conditioning protocols, the range of clinical indications for HSC-based gene therapies is expected to significantly expand. However, substantial immunological challenges need to be overcome. These include pre-existing immunity to gene-therapy reagents, immune responses to neoantigens introduced into HSCs by genetic engineering, and unique challenges associated with next-generation and off-the-shelf HSC products. By synthesizing these factors in this Review, we hope to encourage more research to address the immunological issues associated with current and next-generation HSC-based gene therapies to help realize the full potential of this field.
Collapse
Affiliation(s)
- Carsten T Charlesworth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ian Hsu
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adam C Wilkinson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Baliu-Piqué M, Tesselaar K, Borghans JAM. Are homeostatic mechanisms aiding the reconstitution of the T-cell pool during lymphopenia in humans? Front Immunol 2022; 13:1059481. [PMID: 36483556 PMCID: PMC9723355 DOI: 10.3389/fimmu.2022.1059481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
A timely recovery of T-cell numbers following haematopoietic stem-cell transplantation (HSCT) is essential for preventing complications, such as increased risk of infection and disease relapse. In analogy to the occurrence of lymphopenia-induced proliferation in mice, T-cell dynamics in humans are thought to be homeostatically regulated in a cell density-dependent manner. The idea is that T cells divide faster and/or live longer when T-cell numbers are low, thereby helping the reconstitution of the T-cell pool. T-cell reconstitution after HSCT is, however, known to occur notoriously slowly. In fact, the evidence for the existence of homeostatic mechanisms in humans is quite ambiguous, since lymphopenia is often associated with infectious complications and immune activation, which confound the study of homeostatic regulation. This calls into question whether homeostatic mechanisms aid the reconstitution of the T-cell pool during lymphopenia in humans. Here we review the changes in T-cell dynamics in different situations of T-cell deficiency in humans, including the early development of the immune system after birth, healthy ageing, HIV infection, thymectomy and hematopoietic stem cell transplantation (HSCT). We discuss to what extent these changes in T-cell dynamics are a side-effect of increased immune activation during lymphopenia, and to what extent they truly reflect homeostatic mechanisms.
Collapse
Affiliation(s)
| | | | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
7
|
Kvinge AD, Kvammen T, Miletic H, Bindoff LA, Reikvam H. Musculoskeletal Chronic Graft versus Host Disease-A Rare Complication to Allogeneic Hematopoietic Stem Cell Transplant: A Case-Based Report and Review of the Literature. Curr Oncol 2022; 29:8415-8430. [PMID: 36354723 PMCID: PMC9689675 DOI: 10.3390/curroncol29110663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Musculoskeletal graft versus host disease (GVHD) is a rare manifestation of chronic GVHD (cGVHD) following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Left untreated, the disease can cause extensive damage to muscle tissue and joints. We describe a 62-year-old male with musculoskeletal GVHD and generalized muscle pain and stiffness. In addition, we performed a systemic literature review based on published cases of musculoskeletal GVHD between 1983 and 2019. We identified 85 cases, 62% male and 38% female with an age of 4-69 years and median age of 39 years at diagnosis. The majority of patients (72%) also had manifestations of cGVHD in at least one other organ system, most frequently the skin (52%), followed by oropharyngeal mucosa (37%), and pulmonary and gastrointestinal tract (GI tract) (21%). We conclude that, while musculoskeletal cGVHD is a rare complication of allo-HSCT, it remains a serious and debilitating risk that must be considered in patients with muscle pain, muscle weakness, joint stiffness, and tissue inflammation. Early intervention is critical for the patient's prognosis.
Collapse
Affiliation(s)
| | - Tobias Kvammen
- Institute of Clinical Science, Faculty of Medicine, University of Bergen, N-5021 Bergen, Norway
| | - Hrvoje Miletic
- Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Laurence Albert Bindoff
- Department of Neurology, Haukeland University Hospital, N-5021 Bergen, Norway
- Institute of Medical Science, Faculty of Medicine, University of Bergen, N-5021 Bergen, Norway
| | - Håkon Reikvam
- Institute of Clinical Science, Faculty of Medicine, University of Bergen, N-5021 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
- Correspondence: ; Tel.: +55-97-5000; Fax: +55-97-2950
| |
Collapse
|
8
|
Orschell CM, Wu T, Patterson AM. Impact of Age, Sex, and Genetic Diversity in Murine Models of the Hematopoietic Acute Radiation Syndrome (H-ARS) and the Delayed Effects of Acute Radiation Exposure (DEARE). CURRENT STEM CELL REPORTS 2022; 8:139-149. [PMID: 36798890 PMCID: PMC9928166 DOI: 10.1007/s40778-022-00214-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Purpose of review Malicious or accidental radiation exposure increases risk for the hematopoietic acute radiation syndrome (H-ARS) and the delayed effects of acute radiation exposure (DEARE). Radiation medical countermeasure (MCM) development relies on robust animal models reflective of all age groups and both sexes. This review details critical considerations in murine H-ARS and DEARE model development including divergent radiation responses dependent on age, sex, and genetic diversity. Recent findings Radioresistance increases with murine age from pediatrics through geriatrics. Between sexes, radioresistance is higher in male weanlings, pubescent females, and aged males, corresponding with accelerated myelopoiesis. Jackson diversity outbred (JDO) mice resemble non-human primates in radiation response for modeling human diversity. Weanlings and JDO models exhibit less DEARE than other models. Summary Highly characterized age-, sex- and diversity-conscious murine models of H-ARS and DEARE provide powerful and essential tools in MCM development for all radiation victims.
Collapse
Affiliation(s)
| | - Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Andrea M. Patterson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
9
|
The current standing of autologous haematopoietic stem cell transplantation for the treatment of multiple sclerosis. J Neurol 2022; 269:3937-3958. [PMID: 35399125 PMCID: PMC8995166 DOI: 10.1007/s00415-022-11063-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/01/2022]
Abstract
AbstractAutologous haematopoietic stem cell transplantation (aHSCT) is gaining traction as a valuable treatment option for patients affected by severe multiple sclerosis (MS), particularly the relapsing–remitting form. We describe the current literature in terms of clinical trials, observational and retrospective studies, as well as immune reconstitution following transplantation, with a focus on the conditioning regimens used for transplantation. The evidence base predominantly consists of non-randomised, uncontrolled clinical trials or data from retrospective or observational cohorts, i.e. very few randomised or controlled trials. Most often, intermediate-intensity conditioning regimens are used, with promising results from both myeloablative and lymphoablative strategies, as well as from regimens that are low and high intensity. Efficacy of transplantation, which is likely secondary to immune reconstitution and restored immune tolerance, is, therefore, not clearly dependent on the intensity of the conditioning regimen. However, the conditioning regimen may well influence the immune response to transplantation. Heterogeneity of conditioning regimens among studies hinders synthesis of the articles assessing post-aHSCT immune system changes. Factors associated with better outcomes were lower Kurtzke Expanded Disability Status Scale, relapsing–remitting MS, younger age, and shorter disease duration at baseline, which supports the guidance for patient selection proposed by the European Society for Blood and Marrow Transplantation. Interestingly, promising outcomes were described for patients with secondary progressive MS by some studies, which may be worth taking into account when considering treatment options for patients with active, progressive disease. Of note, a significant proportion of patients develop autoimmune disease following transplantation, with alemtuzumab-containing regimens associated with the highest incidence.
Collapse
|
10
|
Emery A, Moore S, Turner JE, Campbell JP. Reframing How Physical Activity Reduces The Incidence of Clinically-Diagnosed Cancers: Appraising Exercise-Induced Immuno-Modulation As An Integral Mechanism. Front Oncol 2022; 12:788113. [PMID: 35359426 PMCID: PMC8964011 DOI: 10.3389/fonc.2022.788113] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Undertaking a high volume of physical activity is associated with reduced risk of a broad range of clinically diagnosed cancers. These findings, which imply that physical activity induces physiological changes that avert or suppress neoplastic activity, are supported by preclinical intervention studies in rodents demonstrating that structured regular exercise commonly represses tumour growth. In Part 1 of this review, we summarise epidemiology and preclinical evidence linking physical activity or regular structured exercise with reduced cancer risk or tumour growth. Despite abundant evidence that physical activity commonly exerts anti-cancer effects, the mechanism(s)-of-action responsible for these beneficial outcomes is undefined and remains subject to ongoing speculation. In Part 2, we outline why altered immune regulation from physical activity - specifically to T cells - is likely an integral mechanism. We do this by first explaining how physical activity appears to modulate the cancer immunoediting process. In doing so, we highlight that augmented elimination of immunogenic cancer cells predominantly leads to the containment of cancers in a 'precancerous' or 'covert' equilibrium state, thus reducing the incidence of clinically diagnosed cancers among physically active individuals. In seeking to understand how physical activity might augment T cell function to avert cancer outgrowth, in Part 3 we appraise how physical activity affects the determinants of a successful T cell response against immunogenic cancer cells. Using the cancer immunogram as a basis for this evaluation, we assess the effects of physical activity on: (i) general T cell status in blood, (ii) T cell infiltration to tissues, (iii) presence of immune checkpoints associated with T cell exhaustion and anergy, (iv) presence of inflammatory inhibitors of T cells and (v) presence of metabolic inhibitors of T cells. The extent to which physical activity alters these determinants to reduce the risk of clinically diagnosed cancers - and whether physical activity changes these determinants in an interconnected or unrelated manner - is unresolved. Accordingly, we analyse how physical activity might alter each determinant, and we show how these changes may interconnect to explain how physical activity alters T cell regulation to prevent cancer outgrowth.
Collapse
Affiliation(s)
- Annabelle Emery
- Department for Health, University of Bath, Bath, United Kingdom
| | - Sally Moore
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James E Turner
- Department for Health, University of Bath, Bath, United Kingdom
| | - John P Campbell
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
11
|
Heck C, Steiner S, Kaebisch EM, Frentsch M, Wittenbecher F, Scheibenbogen C, Hanitsch LG, Nogai A, le Coutre P, Bullinger L, Blau IW, Na IK. CD4+ T Cell Dependent B Cell Recovery and Function After Autologous Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 12:736137. [PMID: 34659226 PMCID: PMC8519398 DOI: 10.3389/fimmu.2021.736137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction High-dose chemotherapy followed by autologous hematopoietic stem cell transplantation (auto-HSCT) represents a standard treatment regime for multiple myeloma (MM) patients. Common and potentially fatal side effects after auto-HSCT are infections due to a severely compromised immune system with hampered humoral and cellular immunity. This study delineates in depth the quantitative and functional B cell defects and investigates underlying extrinsic or intrinsic drivers. Methods Peripheral blood of MM patients undergoing high-dose chemotherapy and auto-HSCT (before high-dose chemotherapy and in early reconstitution after HSCT) was studied. Absolute numbers and distribution of B cell subsets were analyzed ex vivo using flow cytometry. Additionally, B cell function was assessed with T cell dependent (TD) and T cell independent (TI) stimulation assays, analyzing proliferation and differentiation of B cells by flow cytometry and numbers of immunoglobulin secreting cells in ELISpots. Results Quantitative B cell defects including a shift in the B cell subset distribution occurred after auto-HSCT. Functionally, these patients showed an impaired TD as well as TI B cell immune response. Individual functional responses correlated with quantitative alterations of CD19+, CD4+, memory B cells and marginal zone-like B cells. The TD B cell function could be partially restored upon stimulation with CD40L/IL-21, successfully inducing B cell proliferation and differentiation into plasmablasts and immunoglobulin secreting cells. Conclusion Quantitative and functional B cell defects contribute to the compromised immune defense in MM patients undergoing auto-HSCT. Functional recovery upon TD stimulation and correlation with CD4+ T cell numbers, indicate these as extrinsic drivers of the functional B cell defect. Observed correlations of CD4+, CD19+, memory B and MZ-like B cell numbers with the B cell function suggest that these markers should be tested as potential biomarkers in prospective studies.
Collapse
Affiliation(s)
- Clarissa Heck
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sophie Steiner
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eva M Kaebisch
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Marco Frentsch
- Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Friedrich Wittenbecher
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Leif G Hanitsch
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Axel Nogai
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp le Coutre
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Igor-Wolfgang Blau
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Il-Kang Na
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,Experimental and Clinical Research Center, Berlin, Germany
| |
Collapse
|
12
|
Sharma H, Moroni L. Recent Advancements in Regenerative Approaches for Thymus Rejuvenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100543. [PMID: 34306981 PMCID: PMC8292900 DOI: 10.1002/advs.202100543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/04/2021] [Indexed: 05/29/2023]
Abstract
The thymus plays a key role in adaptive immunity by generating a diverse population of T cells that defend the body against pathogens. Various factors from disease and toxic insults contribute to the degeneration of the thymus resulting in a fewer output of T cells. Consequently, the body is prone to a wide host of diseases and infections. In this review, first, the relevance of the thymus is discussed, followed by thymic embryological organogenesis and anatomy as well as the development and functionality of T cells. Attempts to regenerate the thymus include in vitro methods, such as forming thymic organoids aided by biofabrication techniques that are transplantable. Ex vivo methods that have shown promise in enhancing thymic regeneration are also discussed. Current regenerative technologies have not yet matched the complexity and functionality of the thymus. Therefore, emerging techniques that have shown promise and the challenges that lie ahead are explored.
Collapse
Affiliation(s)
- Himal Sharma
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityMaastricht6229 ERNetherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityMaastricht6229 ERNetherlands
| |
Collapse
|
13
|
Hashimoto D, Colet JGR, Murashima A, Fujimoto K, Ueda Y, Suzuki K, Hyuga T, Hemmi H, Kaisho T, Takahashi S, Takahama Y, Yamada G. Radiation inducible MafB gene is required for thymic regeneration. Sci Rep 2021; 11:10439. [PMID: 34001954 PMCID: PMC8129107 DOI: 10.1038/s41598-021-89836-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
The thymus facilitates mature T cell production by providing a suitable stromal microenvironment. This microenvironment is impaired by radiation and aging which lead to immune system disturbances known as thymic involution. Young adult thymus shows thymic recovery after such involution. Although various genes have been reported for thymocytes and thymic epithelial cells in such processes, the roles of stromal transcription factors in these remain incompletely understood. MafB (v-maf musculoaponeurotic fibrosarcoma oncogene homolog B) is a transcription factor expressed in thymic stroma and its expression was induced a day after radiation exposure. Hence, the roles of mesenchymal MafB in the process of thymic regeneration offers an intriguing research topic also for radiation biology. The current study investigated whether MafB plays roles in the adult thymus. MafB/green fluorescent protein knock-in mutant (MafB+/GFP) mice showed impaired thymic regeneration after the sublethal irradiation, judged by reduced thymus size, total thymocyte number and medullary complexity. Furthermore, IL4 was induced after irradiation and such induction was reduced in mutant mice. The mutants also displayed signs of accelerated age-related thymic involution. Altogether, these results suggest possible functions of MafB in the processes of thymic recovery after irradiation, and maintenance during aging.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Jose Gabriel R Colet
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan.,Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Aki Murashima
- Department of Anatomy, Iwate Medical University, Yahaba, Iwate, Japan.
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Yuko Ueda
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan
| | - Hiroaki Hemmi
- Laboratory of Immunology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan.
| |
Collapse
|
14
|
Adoptive therapy with CMV-specific cytotoxic T lymphocytes depends on baseline CD4+ immunity to mediate durable responses. Blood Adv 2021; 5:496-503. [PMID: 33496746 DOI: 10.1182/bloodadvances.2020002735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/03/2020] [Indexed: 11/20/2022] Open
Abstract
Adoptive cell therapy using cytomegalovirus (CMV)-specific cytotoxic T lymphocytes (CMV-CTLs) has demonstrated efficacy posttransplant. Despite the predicted limited engraftment of CMV-CTLs derived from third-party donors, partially matched third-party donor-derived CMV-CTLs have demonstrated similar response rates to those derived from primary hematopoietic cell transplantation donors. Little is known about the mechanisms through which adoptive cellular therapies mediate durable responses. We performed a retrospective analysis of patients receiving CMV-CTLs for treatment of CMV viremia and/or disease after allogeneic transplant between September of 2009 and January of 2018. We evaluated whether response to adoptively transferred CMV-CTLs correlated with immune reconstitution (IR), using validated CD4+ IR milestones of 50 × 106/L and 200 × 106/L. In this analysis, a cohort of 104 patients received CMV-CTLs derived from a primary transplant donor (n = 25), a third-party donor (n = 76), or both (n = 3). Response to therapy did not increase the likelihood of achieving CD4+ IR milestones at 1 (P = .53 and P > .99) or 2 months (P = .12 and P = .33). The origin of CMV-CTLs did not impact subsequent CD4+ IR. CMV-CTLs appeared to interact with host immunity in mediating responses. Recipients with a baseline CD4 >50 × 106/L had higher response to therapy (P = .02), improved overall survival (P < .001), and protection from CMV-related death (P = .002). Baseline endogenous immunity appears to improve CMV-related and overall survival in this cohort and can be an important marker at the initiation of therapy.
Collapse
|
15
|
Qiu L, Zhao Y, Yang Y, Huang H, Cai Z, He J. Thymic rebound hyperplasia post-chemotherapy mistaken as disease progression in a patient with lymphoma involving mediastinum: a case report and reflection. BMC Surg 2021; 21:38. [PMID: 33446156 PMCID: PMC7809830 DOI: 10.1186/s12893-021-01048-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background Chemotherapy can cause thymic atrophy and reduce T-cell output in cancer patients. However, the thymus in young adult patients has regenerative potential after chemotherapy, manifesting as thymic hyperplasia which can be easily mistaken as residual disease or recurrence in patients suffering lymphoma. Case presentation This study reports a case of lymphoma in a young female adult who was initially diagnosed with an anterior mediastinal mass, and was found to have soft tissue occupying the anterior mediastinum repeatedly after chemotherapy, suggesting a lymphoma residue or disease progression. From discussions by a multi-disciplinary team (MDT), the anterior mediastinal mass of the patient was considered unknown and might be thymus tissue or tumor tissue, and it was eventually identified as thymus tissue via histopathology. Conclusions The anterior mediastinal mass appearing after chemotherapy in patients with lymphoma can be considered as enlarged thymus, and such phenomenon is frequent in young adult patients who undergo chemotherapy or autologous hematopoietic stem cell transplantation. Additionally, detection of thymic output cells in peripheral blood might be a feasible approach to differentiate thymic hyperplasia from lymphoma.
Collapse
Affiliation(s)
- Lei Qiu
- Hematology & Tumor Chemotherapy Center, Zhoushan Hospital of Zhejiang Province, School of Medicine, Zhejiang University, No. 739 DingShen Road, Lincheng, New District, Zhoushan, China
| | - Yi Zhao
- Bone Marrow Transplantation Center, The First Afliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, China
| | - Yang Yang
- Bone Marrow Transplantation Center, The First Afliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Afliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Afliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Afliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, China.
| |
Collapse
|
16
|
Velardi E, Clave E, Arruda LCM, Benini F, Locatelli F, Toubert A. The role of the thymus in allogeneic bone marrow transplantation and the recovery of the peripheral T-cell compartment. Semin Immunopathol 2021; 43:101-117. [PMID: 33416938 DOI: 10.1007/s00281-020-00828-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
As the thymus represents the primary site of T-cell development, optimal thymic function is of paramount importance for the successful reconstitution of the adaptive immunity after allogeneic hematopoietic stem cell transplantation. Thymus involutes as part of the aging process and several factors, including previous chemotherapy treatments, conditioning regimen used in preparation to the allograft, occurrence of graft-versus-host disease, and steroid therapy that impair the integrity of the thymus, thus affecting its role in supporting T-cell neogenesis. Although the pathways governing its regeneration are still poorly understood, the thymus has a remarkable capacity to recover its function after damage. Measurement of both recent thymic emigrants and T-cell receptor excision circles is valuable tools to assess thymic output and gain insights on its function. In this review, we will extensively discuss available data on factors regulating thymic function after allogeneic hematopoietic stem cell transplantation, as well as the strategies and therapeutic approaches under investigation to promote thymic reconstitution and accelerate immune recovery in transplanted patients, including the use of cytokines, sex-steroid ablation, precursor T-cells, and thymus bioengineering. Although none of them is routinely used in the clinic, these approaches have the potential to enhance thymic function and immune recovery, not only in patients given an allograft but also in other conditions characterized by immune deficiencies related to a defective function of the thymus.
Collapse
Affiliation(s)
- Enrico Velardi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.
| | - Emmanuel Clave
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, F-75010, Paris, France
| | - Lucas C M Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Benini
- Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.,Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, F-75010, Paris, France.,Laboratoire d'Immunologie et d'Histocompatibilité, AP-HP, Hopital Saint-Louis, F-75010, Paris, France
| |
Collapse
|
17
|
Cuvelier P, Roux H, Couëdel-Courteille A, Dutrieux J, Naudin C, Charmeteau de Muylder B, Cheynier R, Squara P, Marullo S. Protective reactive thymus hyperplasia in COVID-19 acute respiratory distress syndrome. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:4. [PMID: 33397460 PMCID: PMC7781174 DOI: 10.1186/s13054-020-03440-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
Background Patients with COVID-19 (COVID) may develop acute respiratory distress syndrome with or without sepsis, coagulopathy and visceral damage. While chest CT scans are routinely performed in the initial assessment of patients with severe pulmonary forms, thymus involvement and reactivation have not been investigated so far. Methods In this observational study, we systematically scored the enlargement of the thymus and the lung involvement, using CT scans, in all adult patients admitted to the ICU for COVID or any other cause (control group) at one centre between March and April 2020. Initial biological investigations included nasal detection of SARS-CoV-2 ribonucleic acid by polymerase chain reaction (PCR). In a subgroup of 24 patients with different degrees of pulmonary involvement and thymus hypertrophy, plasma cytokine concentrations were measured and the export of mature T cells from the thymus was estimated simultaneously by PCR quantification of T cell receptor excision circles (TRECs). Results Eighty-seven patients were studied: 50 COVID patients and 37 controls. Non-atrophic or enlarged thymus was more commonly observed in COVID patients than in controls (66% vs. 24%, p < 0.0001). Thymus enlargement in COVID patients was associated with more extensive lung injury score on CT scans (4 [3–5] vs. 2 [1.5–4], p = 0.01), but a lower mortality rate (8.6% vs. 41.2%, p < 0.001). Other factors associated with mortality were age, lymphopaenia, high CRP and co-morbidities. COVID patients had higher concentrations of IL-7 (6.00 [3.72–9.25] vs. 2.17 [1.76–4.4] pg/mL; p = 0.04) and higher thymic production of new lymphocytes (sj/βTREC ratio = 2.88 [1.98–4.51] vs. 0.23 [0.15–0.60]; p = 0.004). Thymic production was also correlated with the CT scan thymic score (r = 0.38, p = 0.03) and inversely correlated with the number of lymphocytes (r = 0.56, p = 0.007). Conclusion In COVID patients, thymus enlargement was frequent and associated with increased T lymphocyte production, which appears to be a beneficial adaptation to virus-induced lymphopaenia. The lack of thymic activity/reactivation in older SARS-CoV-2 infected patients could contribute to a worse prognosis.![]()
Collapse
Affiliation(s)
- Pelagia Cuvelier
- Clinique Ambroise Paré, 27 bd Victor Hugo, 92200, Neuilly-sur-Seine, France
| | - Hélène Roux
- Université de Paris, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | | | - Jacques Dutrieux
- Université de Paris, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | - Cécile Naudin
- Clinique Ambroise Paré, 27 bd Victor Hugo, 92200, Neuilly-sur-Seine, France
| | | | - Rémi Cheynier
- Université de Paris, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | - Pierre Squara
- Clinique Ambroise Paré, 27 bd Victor Hugo, 92200, Neuilly-sur-Seine, France.
| | - Stefano Marullo
- Université de Paris, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| |
Collapse
|
18
|
Abstract
Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.
Collapse
|
19
|
Chen YJ, Liao YJ, Tram VTN, Lin CH, Liao KC, Liu CL. Alterations of Specific Lymphocytic Subsets with Aging and Age-Related Metabolic and Cardiovascular Diseases. Life (Basel) 2020; 10:life10100246. [PMID: 33080827 PMCID: PMC7603042 DOI: 10.3390/life10100246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023] Open
Abstract
To investigate the association of immunosenescence with aged-related morbidity in the elderly, a clinical study was conducted to analyze and compare the alterations in peripheral blood (PB) T-cell subsets among young healthy (YH) controls, elderly healthy (EH) controls, and age-matched elderly patients with metabolic diseases (E-MDs), with cardiovascular diseases (E-CVDs) or with both (E-MDs/E-CVDs). The frequencies of CD3T, CD8T and invariant natural killer T (iNKT) cells were decreased in the EH, E-MD and E-CVD cohorts, indicating a decline in defense function. Although CD4T and regulatory T (Treg) cell frequencies tended to increase with aging, they were lower in patients with E-MDs and E-CVDs. Subset analyses of T-cells consistently showed the accumulation of senescent T-cell in aging and in patients with E-MDs and E-CVDs, compared with YH volunteers. These accumulated senescent T-cells were undergoing apoptosis upon stimulation due to the replicative senescence stage of T-cells. In addition, serum levels of cytokines, including interferon (IF)-γ, transforming growth factor (TGF)-β and growth differentiation factor (GDF)-15, consistently reflected alterations in T-cell subsets. This study demonstrated that T-cell subset changes with paralleled alterations in cytokines were associated with aging and age-related pathogenesis. These altered T-cell subsets and/or cytokines can potentially serve as biomarkers for the prevention, diagnosis and treatment of age-related morbidities.
Collapse
Affiliation(s)
- Ying Jen Chen
- Division of General Internal Medicine and Geriatrics, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.J.C.); (C.H.L.); (K.C.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yi Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.J.L.); (V.T.N.T.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Van Thi Ngoc Tram
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.J.L.); (V.T.N.T.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung Hao Lin
- Division of General Internal Medicine and Geriatrics, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.J.C.); (C.H.L.); (K.C.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Kuo Chen Liao
- Division of General Internal Medicine and Geriatrics, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.J.C.); (C.H.L.); (K.C.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chao Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.J.L.); (V.T.N.T.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
20
|
Li Y, Su R, Chen J. Co-culture Systems of Drug-Treated Acute Myeloid Leukemia Cells and T Cells for In Vitro and In Vivo Study. STAR Protoc 2020; 1. [PMID: 32995754 PMCID: PMC7521668 DOI: 10.1016/j.xpro.2020.100097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A combination of immunotherapy and chemotherapy strategies could strengthen antitumor effects. This protocol elucidates a robust method via co-culturing drug pre-treated acute myeloid leukemia cells with CD3+ T cells, derived from leukoreduction system chambers, for in vitro and in vivo study. We optimized several aspects of the procedures, including timing of drug treatment, quantification of tumor cells, and approach of combination of CD3+ T cells with drug treatment in vivo. This enables the readouts of the interplay between drugs and T cells. For complete details on the use and execution of this protocol, please refer to Su et al. (2020). Generate CD3+ T cells from leukoreduction system chambers using magnetic separation Co-culture T cells with drug-pretreated fluorescently labeled tumor cells Determine T cell toxicity in the co-culture system via absolute counting beads Combine T cells and drug treatment in the xenograft mouse with luciferase-labeled AML cells
Collapse
Affiliation(s)
- Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.,Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,These authors contributed equally
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.,These authors contributed equally.,Technical Contact
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.,Lead Contact
| |
Collapse
|
21
|
Singh J, Mohtashami M, Anderson G, Zúñiga-Pflücker JC. Thymic Engraftment by in vitro-Derived Progenitor T Cells in Young and Aged Mice. Front Immunol 2020; 11:1850. [PMID: 32973763 PMCID: PMC7462002 DOI: 10.3389/fimmu.2020.01850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
T cells play a critical role in mediating antigen-specific and long-term immunity against viral and bacterial pathogens, and their development relies on the highly specialized thymic microenvironment. T cell immunodeficiency can be acquired in the form of inborn errors, or can result from perturbations to the thymus due to aging or irradiation/chemotherapy required for cancer treatment. Hematopoietic stem cell transplant (HSCT) from compatible donors is a cornerstone for the treatment of hematological malignancies and immunodeficiency. Although it can restore a functional immune system, profound impairments exist in recovery of the T cell compartment. T cells remain absent or low in number for many months after HSCT, depending on a variety of factors including the age of the recipient. While younger patients have a shorter refractory period, the prolonged T cell recovery observed in older patients can lead to a higher risk of opportunistic infections and increased predisposition to relapse. Thus, strategies for enhancing T cell recovery in aged individuals are needed to counter thymic damage induced by radiation and chemotherapy toxicities, in addition to naturally occurring age-related thymic involution. Preclinical results have shown that robust and rapid long-term thymic reconstitution can be achieved when progenitor T cells, generated in vitro from HSCs, are co-administered during HSCT. Progenitor T cells appear to rely on lymphostromal crosstalk via receptor activator of NF-κB (RANK) and RANK-ligand (RANKL) interactions, creating chemokine-rich niches within the cortex and medulla that likely favor the recruitment of bone marrow-derived thymus seeding progenitors. Here, we employed preclinical mouse models to demonstrate that in vitro-generated progenitor T cells can effectively engraft involuted aged thymuses, which could potentially improve T cell recovery. The utility of progenitor T cells for aged recipients positions them as a promising cellular therapy for immune recovery and intrathymic repair following irradiation and chemotherapy, even in a post-involution thymus.
Collapse
Affiliation(s)
| | | | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
22
|
Gaballa A, Clave E, Uhlin M, Toubert A, Arruda LCM. Evaluating Thymic Function After Human Hematopoietic Stem Cell Transplantation in the Personalized Medicine Era. Front Immunol 2020; 11:1341. [PMID: 32849495 PMCID: PMC7412601 DOI: 10.3389/fimmu.2020.01341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an effective treatment option for several malignant and non-malignant hematological diseases. The clinical outcome of this procedure relies to a large extent on optimal recovery of adaptive immunity. In this regard, the thymus plays a central role as the primary site for de novo generation of functional, diverse, and immunocompetent T-lymphocytes. The thymus is exquisitely sensitive to several insults during HSCT, including conditioning drugs, corticosteroids, infections, and graft-vs.-host disease. Impaired thymic recovery has been clearly associated with increased risk of opportunistic infections and poor clinical outcomes in HSCT recipients. Therefore, better understanding of thymic function can provide valuable information for improving HSCT outcomes. Recent data have shown that, besides gender and age, a specific single-nucleotide polymorphism affects thymopoiesis and may also influence thymic output post-HSCT, suggesting that the time of precision medicine of thymic function has arrived. Here, we review the current knowledge about thymic role in HSCT and the recent work of genetic control of human thymopoiesis. We also discuss different transplant-related factors that have been associated with impaired thymic recovery and the use of T-cell receptor excision circles (TREC) to assess thymic output, including its clinical significance. Finally, we present therapeutic strategies that could boost thymic recovery post-HSCT.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Emmanuel Clave
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis APHP, Paris, France.,Université de Paris, Paris, France
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Antoine Toubert
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis APHP, Paris, France.,Université de Paris, Paris, France
| | - Lucas C M Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Cowan JE, Takahama Y, Bhandoola A, Ohigashi I. Postnatal Involution and Counter-Involution of the Thymus. Front Immunol 2020; 11:897. [PMID: 32477366 PMCID: PMC7235445 DOI: 10.3389/fimmu.2020.00897] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/17/2020] [Indexed: 11/15/2022] Open
Abstract
Thymus involution occurs in all vertebrates. It is thought to impact on immune responses in the aged, and in other clinical circumstances such as bone marrow transplantation. Determinants of thymus growth and size are beginning to be identified. Ectopic expression of factors like cyclin D1 and Myc in thymic epithelial cells (TEC)s results in considerable increase in thymus size. These models provide useful experimental tools that allow thymus function to be understood. In future, understanding TEC-specific controllers of growth will provide new approaches to thymus regeneration.
Collapse
Affiliation(s)
- Jennifer E Cowan
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| |
Collapse
|
24
|
Frumento G, Verma K, Croft W, White A, Zuo J, Nagy Z, Kissane S, Anderson G, Moss P, Chen FE. Homeostatic Cytokines Drive Epigenetic Reprogramming of Activated T Cells into a "Naive-Memory" Phenotype. iScience 2020; 23:100989. [PMID: 32240954 PMCID: PMC7115140 DOI: 10.1016/j.isci.2020.100989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/09/2019] [Accepted: 03/11/2020] [Indexed: 11/25/2022] Open
Abstract
Primary stimulation of T cells is believed to trigger unidirectional differentiation from naive to effector and memory subsets. Here we demonstrate that IL-7 can drive the phenotypic reversion of recently differentiated human central and effector memory CD8+ T cells into a naive-like phenotype. These "naive-revertant" cells display a phenotype similar to that of previously reported stem cell memory populations and undergo rapid differentiation and functional response following secondary challenge. The chromatin landscape of reverted cells undergoes substantial epigenetic reorganization with increased accessibility for cytokine-induced mediators such as STAT and closure of BATF-dependent sites that drive terminal differentiation. Phenotypic reversion may at least partly explain the generation of "stem cell memory" CD8+ T cells and reveals cells within the phenotypically naive CD8+ T cell pool that are epigenetically primed for secondary stimulation. This information provides insight into mechanisms that support maintenance of T cell memory and may guide therapeutic manipulation of T cell differentiation.
Collapse
Affiliation(s)
- Guido Frumento
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; NHS Blood and Transplant, Birmingham, UK
| | - Kriti Verma
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Andrea White
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Zsuzsanna Nagy
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Frederick E Chen
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; NHS Blood and Transplant, Birmingham, UK; Clinical Haematology, Barts Health NHS Trust, London, UK; Blizard Institute, Queen Mary University London, London, UK.
| |
Collapse
|
25
|
Gustafson CE, Jadhav R, Cao W, Qi Q, Pegram M, Tian L, Weyand CM, Goronzy JJ. Immune cell repertoires in breast cancer patients after adjuvant chemotherapy. JCI Insight 2020; 5:134569. [PMID: 32102986 PMCID: PMC7101137 DOI: 10.1172/jci.insight.134569] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022] Open
Abstract
Adjuvant chemotherapy in breast cancer patients causes immune cell depletion at an age when the regenerative capacity is compromised. Successful regeneration requires the recovery of both quantity and quality of immune cell subsets. Although immune cell numbers rebound within a year after treatment, it is unclear whether overall compositional diversity is recovered. We investigated the regeneration of immune cell complexity by comparing peripheral blood mononuclear cells from breast cancer patients ranging from 1-5 years after chemotherapy with those of age-matched healthy controls using mass cytometry and T cell receptor sequencing. These data reveal universal changes in patients' CD4+ T cells that persisted for years and consisted of expansion of Th17-like CD4 memory populations with incomplete recovery of CD4+ naive T cells. Conversely, CD8+ T cells fully recovered within a year. Mechanisms of T cell regeneration, however, were unbiased, as CD4+ and CD8+ T cell receptor diversity remained high. Likewise, terminal differentiated effector memory cells were not expanded, indicating that regeneration was not driven by recognition of latent viruses. These data suggest that, while CD8+ T cell immunity is successfully regenerated, the CD4 compartment may be irreversibly affected. Moreover, the bias of CD4 memory toward inflammatory effector cells may impact responses to vaccination and infection.
Collapse
Affiliation(s)
- Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Rohit Jadhav
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Qian Qi
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | | | - Lu Tian
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Jorg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| |
Collapse
|
26
|
Immune Checkpoint Inhibition in Sepsis: A Phase 1b Randomized, Placebo-Controlled, Single Ascending Dose Study of Antiprogrammed Cell Death-Ligand 1 Antibody (BMS-936559). Crit Care Med 2020; 47:632-642. [PMID: 30747773 DOI: 10.1097/ccm.0000000000003685] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To assess for the first time the safety and pharmacokinetics of an antiprogrammed cell death-ligand 1 immune checkpoint inhibitor (BMS-936559; Bristol-Myers Squibb, Princeton, NJ) and its effect on immune biomarkers in participants with sepsis-associated immunosuppression. DESIGN Randomized, placebo-controlled, dose-escalation. SETTING Seven U.S. hospital ICUs. STUDY POPULATION Twenty-four participants with sepsis, organ dysfunction (hypotension, acute respiratory failure, and/or acute renal injury), and absolute lymphocyte count less than or equal to 1,100 cells/μL. INTERVENTIONS Participants received single-dose BMS-936559 (10-900 mg; n = 20) or placebo (n = 4) infusions. Primary endpoints were death and adverse events; key secondary endpoints included receptor occupancy and monocyte human leukocyte antigen-DR levels. MEASUREMENTS AND MAIN RESULTS The treated group was older (median 62 yr treated pooled vs 46 yr placebo), and a greater percentage had more than 2 organ dysfunctions (55% treated pooled vs 25% placebo); other baseline characteristics were comparable. Overall mortality was 25% (10 mg dose: 2/4; 30 mg: 2/4; 100 mg: 1/4; 300 mg: 1/4; 900 mg: 0/4; placebo: 0/4). All participants had adverse events (75% grade 1-2). Seventeen percent had a serious adverse event (3/20 treated pooled, 1/4 placebo), with none deemed drug-related. Adverse events that were potentially immune-related occurred in 54% of participants; most were grade 1-2, none required corticosteroids, and none were deemed drug-related. No significant changes in cytokine levels were observed. Full receptor occupancy was achieved for 28 days after BMS-936559 (900 mg). At the two highest doses, an apparent increase in monocyte human leukocyte antigen-DR expression (> 5,000 monoclonal antibodies/cell) was observed and persisted beyond 28 days. CONCLUSIONS In this first clinical evaluation of programmed cell death protein-1/programmed cell death-ligand 1 pathway inhibition in sepsis, BMS-936559 was well tolerated, with no evidence of drug-induced hypercytokinemia or cytokine storm, and at higher doses, some indication of restored immune status over 28 days. Further randomized trials on programmed cell death protein-1/programmed cell death-ligand 1 pathway inhibition are needed to evaluate its clinical safety and efficacy in patients with sepsis.
Collapse
|
27
|
Furler RL, Newcombe KL, Del Rio Estrada PM, Reyes-Terán G, Uittenbogaart CH, Nixon DF. Histoarchitectural Deterioration of Lymphoid Tissues in HIV-1 Infection and in Aging. AIDS Res Hum Retroviruses 2019; 35:1148-1159. [PMID: 31474115 DOI: 10.1089/aid.2019.0156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Impaired immunity is a common symptom of aging and advanced Human Immunodeficiency Virus type 1 (HIV-1) disease. In both diseases, a decline in lymphocytic function and cellularity leads to ineffective adaptive immune responses to opportunistic infections and vaccinations. Furthermore, despite sustained myeloid cellularity there is a background of chronic immune activation and a decrease in innate immune function in aging. In HIV-1 disease, myeloid cellularity is often more skewed than in normal aging, but similar chronic activation and innate immune dysfunction typically arise. Similarities between aging and HIV-1 infection have led to several investigations into HIV-1-mediated aging of the immune system. In this article, we review various studies that report alterations of leukocyte number and function during aging, and compare those alterations with those observed during progressive HIV-1 disease. We pay particular attention to changes within lymphoid tissue microenvironments and how histoarchitectural changes seen in these two diseases affect immunity. As we review various immune compartments including peripheral blood as well as primary and secondary lymphoid organs, common themes arise that help explain the decline of immunity in the elderly and in HIV-1-infected individuals with advanced disease. In both conditions, lymphoid tissues often show signs of histoarchitectural deterioration through fat accumulation and/or fibrosis. These structural changes can be attributed to a loss of communication between leukocytes and the surrounding stromal cells that produce the extracellular matrix components and growth factors necessary for cell migration, cell proliferation, and lymphoid tissue function. Despite the common general impairment of immunity in aging and HIV-1 progression, deterioration of immunity is caused by distinct mechanisms at the cellular and tissue levels in these two diseases.
Collapse
Affiliation(s)
- Robert L. Furler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Kevin L. Newcombe
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Perla M. Del Rio Estrada
- Departmento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” CDMX, Mexico DF, Mexico
| | - Gustavo Reyes-Terán
- Departmento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” CDMX, Mexico DF, Mexico
| | - Christel H. Uittenbogaart
- Department of Microbiology, Immunology and Molecular Genetics, Medicine-Pediatrics, UCLA AIDS Institute and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
28
|
Imus PH, Tsai HL, Luznik L, Fuchs EJ, Huff CA, Gladstone DE, Lowery P, Ambinder RF, Borrello IM, Swinnen LJ, Wagner-Johnston N, Gocke CB, Ali SA, Bolaños-Meade FJ, Varadhan R, Jones RJ. Haploidentical transplantation using posttransplant cyclophosphamide as GVHD prophylaxis in patients over age 70. Blood Adv 2019; 3:2608-2616. [PMID: 31492679 PMCID: PMC6737415 DOI: 10.1182/bloodadvances.2019000155] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/09/2019] [Indexed: 01/14/2023] Open
Abstract
Hematologic malignancies in older people are unlikely to be cured with chemotherapy alone. Advances in allogeneic blood or marrow transplantation (alloBMT), especially nonmyeloablative (NMA) conditioning and the use of haploidentical donors, now make this therapy available to older people; however, long-term outcomes and predictors of success are unclear. We reviewed the outcomes of 93 consecutive patients aged 70 and older (median, 72; range, 70-78), who underwent haploidentical BMT at Johns Hopkins Hospital between 1 September 2009 and 1 April 2018. All patients received NMA conditioning and posttransplantation cyclophosphamide (PTCy) as graft-versus-host disease (GVHD) prophylaxis. The 2-year overall survival was 53%, and 2-year event-free survival was 43%. The 180-day cumulative incidence (CuI) of nonrelapse mortality (NRM) was 14%, and the 2-year CuI was 27%. The 2-year CuI of relapse was 30%. Of 78 patients who were alive and had their weight recorded on day 180, weight loss predicted subsequent NRM (subdistribution hazard ratio, 1.0; 95% CI, 1-1.13; P = .048). In conclusion, haploidentical BMT with PTCy is feasible and relatively safe in septuagenarians. Although early, 6-month NRM was relatively low at 14%, but overall NRM continued to climb to 27% at 2 years, at least in part because of late deaths that appeared to be somewhat age related. Further studies to elucidate predictors of NRM are warranted.
Collapse
Affiliation(s)
| | - Hua-Ling Tsai
- Division of Biostatistics and Bioinformatics, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Leo Luznik
- Department of Hematologic Malignancy and
| | | | | | | | | | | | | | | | | | | | | | | | - Ravi Varadhan
- Division of Biostatistics and Bioinformatics, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | | |
Collapse
|
29
|
Imus PH, Blackford AL, Bettinotti M, Luznik L, Fuchs EJ, Huff CA, Gladstone DE, Ambinder RF, Borrello IM, Fuchs RJ, Swinnen LJ, Wagner-Johnston N, Gocke CB, Ali SA, Bolaños-Meade FJ, Jones RJ, Dezern AE. Severe Cytokine Release Syndrome after Haploidentical Peripheral Blood Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:2431-2437. [PMID: 31394272 DOI: 10.1016/j.bbmt.2019.07.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022]
Abstract
Inflammatory cytokines released by activated lymphocytes and innate cells in the context of cellular therapy can cause fever, vasodilatation, and end-organ damage, collectively known as cytokine release syndrome (CRS). CRS can occur after allogeneic blood or marrow transplantation, but is especially prevalent after HLA-haploidentical (haplo) peripheral blood transplantation (PBT). We reviewed charts of all patients who underwent haplo-PBT between October 1, 2013, and September 1, 2017 and graded CRS in these patients. A total of 146 consecutive patients who underwent related haplo-PBT were analyzed. CRS occurred in 130 patients (89%), with most cases of mild severity (grade 0 to 2). Severe CRS (grade 3 to 5) occurred in 25 patients (17%). In this group with severe CRS, 13 patients had encephalopathy, 12 required hemodialysis, and 11 were intubated. Death from the immediate complications of CRS occurred in 6 patients (24% of the severe CRS group and 4% of the entire haplo-PBT cohort). The cumulative probability of nonrelapse mortality (NRM) was 38% at 6 months for the patients with severe CRS and 8% (121 of 146) in patients without severe CRS. In conclusion, CRS occurs in nearly 90% of haplo-PBTs. Older haplo-PBT recipients (odds ratio [OR], 2.4; 95% confidence interval [CI], .83 to 6.75; P = .11) and those with a history of radiation therapy (OR, 3.85; 95% CI, 1.32 to 11.24; P = .01) are at increased risk of developing severe CRS. Although most recipients of haplo-PBT develop CRS, <20% experience severe complications. The development of severe CRS is associated with a significantly increased risk of NRM.
Collapse
Affiliation(s)
- Philip H Imus
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.
| | - Amanda L Blackford
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Maria Bettinotti
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Leo Luznik
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Ephraim J Fuchs
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Carol Ann Huff
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Douglas E Gladstone
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Richard F Ambinder
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Ivan M Borrello
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Robert J Fuchs
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Lode J Swinnen
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Nina Wagner-Johnston
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Christian B Gocke
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Syed Abbas Ali
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - F Javier Bolaños-Meade
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Richard J Jones
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Amy E Dezern
- Department of Hematologic Malignancy, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
30
|
Simnica D, Akyüz N, Schliffke S, Mohme M, V Wenserski L, Mährle T, Fanchi LF, Lamszus K, Binder M. T cell receptor next-generation sequencing reveals cancer-associated repertoire metrics and reconstitution after chemotherapy in patients with hematological and solid tumors. Oncoimmunology 2019; 8:e1644110. [PMID: 31646093 DOI: 10.1080/2162402x.2019.1644110] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/03/2023] Open
Abstract
The dynamics of immunoaging and the onset of immunoparesis in healthy individuals and cancer patients has been controversially discussed. Moreover, the role of chemotherapy on T cell regeneration needs further elucidation in light of novel immunotherapies that have become standard of care for many elderly cancer patients. We used next-generation immunosequencing to study T cell receptor (TCR) repertoire metrics on 346 blood samples from healthy individuals and cancer patients producing a dataset with around 8.8 million TCR reads. This analysis showed that decline of T cell diversity and increase in T cell clonality is a continuous process beginning in healthy individuals over 40 years of age. Untreated patients with both hematological and solid tumors showed blood TCR repertoires with significantly lower diversity and higher clonality as compared to healthy individuals across all decades. Loss in T cell diversity was essentially driven by a loss in richness in aging healthy individuals, while in cancer patients a loss in repertoire evenness was an additional contributing factor. Interestingly, chemotherapy did not impair the regeneration of blood TCR repertoire diversity to pre-treatment age-specific levels. Surprisingly, even patients over the age of 70 years receiving highly T cell toxic therapies reestablished their pre-treatment T cell diversity suggesting rebound thymic activity rather than recovery of T cell counts by peripheral expansion only. Taken together, these data suggest that human TCR repertoire metrics gradually deteriorate in the aging individual, but age-specific TCR metrics are restored after T cell depleting therapy even in elderly cancer patients.
Collapse
Affiliation(s)
- Donjete Simnica
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Nuray Akyüz
- Department of Oncology and Hematology, BMT with section Pneumology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Simon Schliffke
- Department of Oncology and Hematology, BMT with section Pneumology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lisa V Wenserski
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Thorben Mährle
- Department of Oncology and Hematology, BMT with section Pneumology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
31
|
Effect of homeostatic T-cell proliferation in the vaccine responsiveness against influenza in elderly people. IMMUNITY & AGEING 2019; 16:14. [PMID: 31312227 PMCID: PMC6612162 DOI: 10.1186/s12979-019-0154-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022]
Abstract
Background Seasonal influenza virus infection is a significant cause of morbimortality in the elderly. However, there is poor vaccine efficacy in this population due to immunosenescence. We aimed to explore several homeostatic parameters in the elderly that could impact influenza vaccine responsiveness. Methods Subjects (> 60 years old) who were vaccinated against influenza virus were included, and the vaccine response was measured by a haemagglutination inhibition (HAI) test. At baseline, peripheral CD4 and CD8 T-cells were phenotypically characterized. Thymic function and the levels of different inflammation-related biomarkers, including Lipopolysaccharide Binding Protein (LBP) and anti-cytomegalovirus (CMV) IgG antibodies, were also measured. Results Influenza vaccine non-responders showed a tendency of higher frequency of regulatory T-cells (Tregs) before vaccination than responders (1.49 [1.08–1.85] vs. 1.12 [0.94–1.63], respectively, p = 0.061), as well as higher expression of the proliferation marker Ki67 in Tregs and different CD4 and CD8 T-cell maturational subsets. The levels of inflammation-related biomarkers correlated with the frequencies of different proliferating T-cell subsets and with thymic function (e.g., thymic function with D-dimers, r = − 0.442, p = 0.001). Conclusions Age-related homeostatic dysregulation involving the proliferation of CD4 and CD8 T-cell subsets, including Tregs, was related to a limited responsiveness to influenza vaccination and a higher inflammatory status in a cohort of elderly people. Electronic supplementary material The online version of this article (10.1186/s12979-019-0154-y) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Abstract
Three decades of research in hematopoietic stem cell transplantation and HIV/AIDS fields have shaped a picture of immune restoration disorders. This manuscript overviews the molecular biology of interferon networks, the molecular pathogenesis of immune reconstitution inflammatory syndrome, and post-hematopoietic stem cell transplantation immune restoration disorders (IRD). It also summarizes the effects of thymic involution on T cell diversity, and the results of the assessment of diagnostic biomarkers of IRD, and tested targeted immunomodulatory treatments.
Collapse
Affiliation(s)
- Hesham Mohei
- Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Usha Kellampalli
- Department of Medicine, University of Minnesota, Minneapolis, USA
| | | |
Collapse
|
33
|
Immunotherapeutics in Multiple Myeloma: How Can Translational Mouse Models Help? JOURNAL OF ONCOLOGY 2019; 2019:2186494. [PMID: 31093282 PMCID: PMC6481018 DOI: 10.1155/2019/2186494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022]
Abstract
Multiple myeloma (MM) is usually diagnosed in older adults at the time of immunosenescence, a collection of age-related changes in the immune system that contribute to increased susceptibility to infection and cancer. The MM tumor microenvironment and cumulative chemotherapies also add to defects in immunity over the course of disease. In this review we discuss how mouse models have furthered our understanding of the immune defects caused by MM and enabled immunotherapeutics to progress to clinical trials, but also question the validity of using immunodeficient models for these purposes. Immunocompetent models, in particular the 5T series and Vk⁎MYC models, are increasingly being utilized in preclinical studies and are adding to our knowledge of not only the adaptive immune system but also how the innate system might be enhanced in anti-MM activity. Finally we discuss the concept of immune profiling to target patients who might benefit the most from immunotherapeutics, and the use of humanized mice and 3D culture systems for personalized medicine.
Collapse
|
34
|
Iio K, Kabata D, Iio R, Imai Y, Hatanaka M, Omori H, Hoshida Y, Saeki Y, Shintani A, Hamano T, Isaka Y, Ando Y. Parathyroid hormone and premature thymus ageing in patients with chronic kidney disease. Sci Rep 2019; 9:813. [PMID: 30692566 PMCID: PMC6349929 DOI: 10.1038/s41598-018-37511-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Premature immune ageing, including thymic atrophy, is observed in patients with chronic kidney disease (CKD). Parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), which are mineral and bone disorder (MBD)-related factors, affect immune cells and possibly cause thymic atrophy. We examined the cross-sectional association between thymic atrophy, evaluated as the number of CD3+CD4+CD45RA+CD31+ cells [recent thymic emigrants (RTE)/μL], and MBD-related factors [(serum PTH, FGF23, and alkaline phosphatase (ALP) level] in 125 patients with non-dialysis dependent CKD. Median estimated glomerular filtration rate (eGFR) was 17 mL/min/1.73 m2. Older age (r = −0.46), male sex (r = −0.34), lower eGFR (r = 0.27), lower serum-corrected calcium (r = 0.27), higher PTH (r = −0.36), and higher ALP level (r = −0.20) were identified as determinants of lower number of RTE. In contrast, serum concentrations of FGF23 and phosphorus were not correlated with RTE. Multivariate non-linear regression analysis indicated a negative association between serum PTH and log-transformed RTE (P = 0.030, P for non-linearity = 0.124). However, the serum levels of FGF23 and ALP were not associated with RTE. In patients with CKD, serum PTH concentrations were related to thymic atrophy which contributes to immune abnormality.
Collapse
Affiliation(s)
- Kenichiro Iio
- Department of Nephrology, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan.
| | - Daijiro Kabata
- Department of Medical Statistics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Rei Iio
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, Osaka, Japan
| | - Yosuke Imai
- Department of Nephrology, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan
| | - Masaki Hatanaka
- Department of Nephrology, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan
| | - Hiroki Omori
- Department of Nephrology, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan
| | - Yoshihiko Hoshida
- Department of Pathology, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan
| | - Yukihiko Saeki
- Department of Clinical Research, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan
| | - Ayumi Shintani
- Department of Medical Statistics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takayuki Hamano
- Department of Inter-Organ Communication Research in Kidney Disease, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yutaka Ando
- Department of Nephrology, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan
| |
Collapse
|
35
|
Xing Y, Smith MJ, Goetz CA, McElmurry RT, Parker SL, Min D, Hollander GA, Weinberg KI, Tolar J, Stefanski HE, Blazar BR. Thymic Epithelial Cell Support of Thymopoiesis Does Not Require Klotho. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3320-3328. [PMID: 30373854 PMCID: PMC6275142 DOI: 10.4049/jimmunol.1800670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022]
Abstract
Age-related thymic involution is characterized by a decrease in thymic epithelial cell (TEC) number and function parallel to a disruption in their spatial organization, resulting in defective thymocyte development and proliferation as well as peripheral T cell dysfunction. Deficiency of Klotho, an antiaging gene and modifier of fibroblast growth factor signaling, causes premature aging. To investigate the role of Klotho in accelerated age-dependent thymic involution, we conducted a comprehensive analysis of thymopoiesis and peripheral T cell homeostasis using Klotho-deficient (Kl/Kl) mice. At 8 wk of age, Kl/Kl mice displayed a severe reduction in the number of thymocytes (10-100-fold reduction), especially CD4 and CD8 double-positive cells, and a reduction of both cortical and medullary TECs. To address a cell-autonomous role for Klotho in TEC biology, we implanted neonatal thymi from Klotho-deficient and -sufficient mice into athymic hosts. Kl/Kl thymus grafts supported thymopoiesis equivalently to Klotho-sufficient thymus transplants, indicating that Klotho is not intrinsically essential for TEC support of thymopoiesis. Moreover, lethally irradiated hosts given Kl/Kl or wild-type bone marrow had normal thymocyte development and comparably reconstituted T cells, indicating that Klotho is not inherently essential for peripheral T cell reconstitution. Because Kl/Kl mice have higher levels of serum phosphorus, calcium, and vitamin D, we evaluated thymus function in Kl/Kl mice fed with a vitamin D-deprived diet. We observed that a vitamin D-deprived diet abrogated thymic involution and T cell lymphopenia in 8-wk-old Kl/Kl mice. Taken together, our data suggest that Klotho deficiency causes thymic involution via systemic effects that include high active vitamin D levels.
Collapse
Affiliation(s)
- Yan Xing
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Michelle J Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Christine A Goetz
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Ron T McElmurry
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Sarah L Parker
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Dullei Min
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medicine, Stanford University, Palo Alto, CA 94304
| | - Georg A Hollander
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland; and
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Kenneth I Weinberg
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medicine, Stanford University, Palo Alto, CA 94304
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Heather E Stefanski
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455;
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
36
|
Trovillion EM, Gloude NJ, Anderson EJ, Morris GP. Relationship of post-transplant thymopoiesis with CD4 +FoxP3 + regulatory T cell recovery associated with freedom from chronic graft versus host disease. Bone Marrow Transplant 2018; 54:917-920. [PMID: 30413809 PMCID: PMC6509012 DOI: 10.1038/s41409-018-0394-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Erin M Trovillion
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Nicholas J Gloude
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Eric J Anderson
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
37
|
Stern L, McGuire H, Avdic S, Rizzetto S, Fazekas de St Groth B, Luciani F, Slobedman B, Blyth E. Mass Cytometry for the Assessment of Immune Reconstitution After Hematopoietic Stem Cell Transplantation. Front Immunol 2018; 9:1672. [PMID: 30093901 PMCID: PMC6070614 DOI: 10.3389/fimmu.2018.01672] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Mass cytometry, or Cytometry by Time-Of-Flight, is a powerful new platform for high-dimensional single-cell analysis of the immune system. It enables the simultaneous measurement of over 40 markers on individual cells through the use of monoclonal antibodies conjugated to rare-earth heavy-metal isotopes. In contrast to the fluorochromes used in conventional flow cytometry, metal isotopes display minimal signal overlap when resolved by single-cell mass spectrometry. This review focuses on the potential of mass cytometry as a novel technology for studying immune reconstitution in allogeneic hematopoietic stem cell transplant (HSCT) recipients. Reconstitution of a healthy donor-derived immune system after HSCT involves the coordinated regeneration of innate and adaptive immune cell subsets in the recipient. Mass cytometry presents an opportunity to investigate immune reconstitution post-HSCT from a systems-level perspective, by allowing the phenotypic and functional features of multiple cell populations to be assessed simultaneously. This review explores the current knowledge of immune reconstitution in HSCT recipients and highlights recent mass cytometry studies contributing to the field.
Collapse
Affiliation(s)
- Lauren Stern
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Helen McGuire
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Selmir Avdic
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | - Barbara Fazekas de St Groth
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Fabio Luciani
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Barry Slobedman
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Emily Blyth
- University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,Blood and Marrow Transplant Unit, Westmead Hospital, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Westmead, Sydney, NSW, Australia
| |
Collapse
|
38
|
Moutuou MM, Pagé G, Zaid I, Lesage S, Guimond M. Restoring T Cell Homeostasis After Allogeneic Stem Cell Transplantation; Principal Limitations and Future Challenges. Front Immunol 2018; 9:1237. [PMID: 29967605 PMCID: PMC6015883 DOI: 10.3389/fimmu.2018.01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022] Open
Abstract
For several leukemia patients, allogeneic stem cell transplantation (allogeneic-SCT) is the unique therapeutic modality that could potentially cure their disease. Despite significant progress made in clinical management of allogeneic-SCT, acute graft-versus-host disease (aGVHD) and infectious complications remain the second and third cause of death after disease recurrence. Clinical options to restore immunocompetence after allogeneic-SCT are very limited as studies have raised awareness about the safety with regards to graft-versus-host disease (GVHD). Preclinical works are now focusing on strategies to improve thymic functions and to restore the peripheral niche that have been damaged by alloreactive T cells. In this mini review, we will provide a brief overview about the adverse effects of GVHD on the thymus and the peripheral niche and the resulting negative outcome on peripheral T cell homeostasis. Finally, we will discuss the potential relevance of coordinating our studies on thymic rejuvenation and improvement of the peripheral lymphoid niche to achieve optimal T cell regeneration in GVHD patients.
Collapse
Affiliation(s)
- Moutuaata M Moutuou
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Gabriel Pagé
- Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Intesar Zaid
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Sylvie Lesage
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Martin Guimond
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| |
Collapse
|
39
|
An in vitro system of autologous lymphocytes culture that allows the study of homeostatic proliferation mechanisms in human naive CD4 T-cells. J Transl Med 2018; 98:500-511. [PMID: 29348565 DOI: 10.1038/s41374-017-0006-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/08/2017] [Accepted: 11/20/2017] [Indexed: 11/09/2022] Open
Abstract
The size of peripheral T-cell pool is kept constant throughout life. However, a decline in lymphocyte numbers is a feature of several human disorders, in which fast and slow homeostatic proliferation play a crucial role. Several in vitro and in vivo models have been developed to study such processes. Nevertheless, self- and commensal- antigens, well-known triggers of homeostatic proliferation, have not been examined in these models. We have designed an in vitro culture of human T-cells exposed to rIL7 and autologous antigen-presenting cells (aAPC) that allows the simultaneous characterization of the different types of homeostatic proliferation. Using our model, we first confirmed that both rIL7 and aAPC are survival signals ultimately leading to homeostatic proliferation. In addition, we explored the modulation of different anti-apoptotic, proliferative, activation and homing markers during fast and slow homeostatic proliferation. Finally, different subsets of Treg were generated during homeostatic proliferation in our model. In summary, our in vitro system is able to simultaneously reproduce both types of homeostatic proliferation of human naive CD4 T-cells, and allows the characterization of these processes. Our in vitro system is a useful tool to explore specific features of human homeostatic proliferation in different human lymphopenia-related disorders and could be used as a cell therapy approach.
Collapse
|
40
|
Vizcardo R, Klemen ND, Islam SMR, Gurusamy D, Tamaoki N, Yamada D, Koseki H, Kidder BL, Yu Z, Jia L, Henning AN, Good ML, Bosch-Marce M, Maeda T, Liu C, Abdullaev Z, Pack S, Palmer DC, Stroncek DF, Ito F, Flomerfelt FA, Kruhlak MJ, Restifo NP. Generation of Tumor Antigen-Specific iPSC-Derived Thymic Emigrants Using a 3D Thymic Culture System. Cell Rep 2018; 22:3175-3190. [PMID: 29562175 PMCID: PMC5930030 DOI: 10.1016/j.celrep.2018.02.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 01/04/2023] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived T cells may provide future therapies for cancer patients, but those generated by current methods, such as the OP9/DLL1 system, have shown abnormalities that pose major barriers for clinical translation. Our data indicate that these iPSC-derived CD8 single-positive T cells are more like CD4+CD8+ double-positive T cells than mature naive T cells because they display phenotypic markers of developmental arrest and an innate-like phenotype after stimulation. We developed a 3D thymic culture system to avoid these aberrant developmental fates, generating a homogeneous subset of CD8αβ+ antigen-specific T cells, designated iPSC-derived thymic emigrants (iTEs). iTEs exhibit phenotypic and functional similarities to naive T cells both in vitro and in vivo, including the capacity for expansion, memory formation, and tumor suppression. These data illustrate the limitations of current methods and provide a tool to develop the next generation of iPSC-based antigen-specific immunotherapies.
Collapse
Affiliation(s)
- Raul Vizcardo
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Nicholas D Klemen
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - S M Rafiqul Islam
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Devikala Gurusamy
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Naritaka Tamaoki
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Daisuke Yamada
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa 230-0045, Japan
| | - Benjamin L Kidder
- Department of Oncology and Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhiya Yu
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Li Jia
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Amanda N Henning
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Meghan L Good
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Marta Bosch-Marce
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Takuya Maeda
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Zied Abdullaev
- Experimental Pathology Laboratory, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Svetlana Pack
- Experimental Pathology Laboratory, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Douglas C Palmer
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - David F Stroncek
- Department of Transfusion Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Fumito Ito
- Department of Surgical Oncology, Roswell Park Cancer Center, Buffalo, NY 14263, USA; Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Francis A Flomerfelt
- Experimental Transplantation and Immunology Branch, NIH Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Michael J Kruhlak
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nicholas P Restifo
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Massey JC, Sutton IJ, Ma DDF, Moore JJ. Regenerating Immunotolerance in Multiple Sclerosis with Autologous Hematopoietic Stem Cell Transplant. Front Immunol 2018; 9:410. [PMID: 29593711 PMCID: PMC5857574 DOI: 10.3389/fimmu.2018.00410] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system where evidence implicates an aberrant adaptive immune response in the accrual of neurological disability. The inflammatory phase of the disease responds to immunomodulation to varying degrees of efficacy; however, no therapy has been proven to arrest progression of disability. Recently, more intensive therapies, including immunoablation with autologous hematopoietic stem cell transplantation (AHSCT), have been offered as a treatment option to retard inflammatory disease, prior to patients becoming irreversibly disabled. Empirical clinical observations support the notion that the immune reconstitution (IR) that occurs following AHSCT is associated with a sustained therapeutic benefit; however, neither the pathogenesis of MS nor the mechanism by which AHSCT results in a therapeutic benefit has been clearly delineated. Although the antigenic target of the aberrant immune response in MS is not defined, accumulated data suggest that IR following AHSCT results in an immunotolerant state through deletion of pathogenic clones by a combination of direct ablation and induction of a lymphopenic state driving replicative senescence and clonal attrition. Restoration of immunoregulation is evidenced by changes in regulatory T cell populations following AHSCT and normalization of genetic signatures of immune homeostasis. Furthermore, some evidence exists that AHSCT may induce a rebooting of thymic function and regeneration of a diversified naïve T cell repertoire equipped to appropriately modulate the immune system in response to future antigenic challenge. In this review, we discuss the immunological mechanisms of IR therapies, focusing on AHSCT, as a means of recalibrating the dysfunctional immune response observed in MS.
Collapse
Affiliation(s)
- Jennifer C Massey
- Haematology and Bone Marrow Transplantation, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,Neurology, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Ian J Sutton
- Neurology, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - David D F Ma
- Haematology and Bone Marrow Transplantation, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - John J Moore
- Haematology and Bone Marrow Transplantation, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
42
|
Varda-Bloom N, Danylesko I, Shouval R, Eldror S, Lev A, Davidson J, Rosenthal E, Volchek Y, Shem-Tov N, Yerushalmi R, Shimoni A, Somech R, Nagler A. Immunological effects of nilotinib prophylaxis after allogeneic stem cell transplantation in patients with advanced chronic myeloid leukemia or philadelphia chromosome-positive acute lymphoblastic leukemia. Oncotarget 2018; 8:418-429. [PMID: 27880933 PMCID: PMC5352130 DOI: 10.18632/oncotarget.13439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/08/2016] [Indexed: 01/18/2023] Open
Abstract
Allogeneic stem cell transplantation remains the standard treatment for resistant advanced chronic myeloid leukemia and Philadelphia chromosome–positive acute lymphoblastic leukemia. Relapse is the major cause of treatment failure in both diseases. Post-allo-SCT administration of TKIs could potentially reduce relapse rates, but concerns regarding their effect on immune reconstitution have been raised. We aimed to assess immune functions of 12 advanced CML and Ph+ ALL patients who received post-allo-SCT nilotinib. Lymphocyte subpopulations and their functional activities including T-cell response to mitogens, NK cytotoxic activity and thymic function, determined by quantification of the T cell receptor (TCR) excision circles (TREC) and TCR repertoire, were evaluated at several time points, including pre-nilotib-post-allo-SCT, and up to 365 days on nilotinib treatment. NK cells were the first to recover post allo-SCT. Concomitant to nilotinib administration, total lymphocyte counts and subpopulations gradually increased. CD8 T cells were rapidly reconstituted and continued to increase until day 180 post SCT, while CD4 T cells counts were low until 180−270 days post nilotinib treatment. T-cell response to mitogenic stimulation was not inhibited by nilotinib administration. Thymic activity, measured by TREC copies and surface membrane expression of 24 different TCR Vβ families, was evident in all patients at the end of follow-up after allo-SCT and nilotinib treatment. Finally, nilotinib did not inhibit NK cytotoxic activity. In conclusion, administration of nilotinib post allo-SCT, in attempt to reduce relapse rates or progression of Ph+ ALL and CML, did not jeopardize immune reconstitution or function following transplantation.
Collapse
Affiliation(s)
- Nira Varda-Bloom
- Sheba Medical Center, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Ivetta Danylesko
- Sheba Medical Center, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Roni Shouval
- Sheba Medical Center, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Israel.,Dr. Pinchas Bornstein Talpiot Medical Leadership Program, Sheba Medical Center, Israel.,Bar-Ilan University, Ramat Gan, Israel
| | - Shiran Eldror
- Sheba Medical Center, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Atar Lev
- Sheba Medical Center, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Israel.,Pediatric Immunology Service, Jeffrey Modell Foundation, USA.,Edmond and Lily Safra Children's Hospital, Israel
| | - Jacqueline Davidson
- Sheba Medical Center, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Esther Rosenthal
- Sheba Medical Center, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yulia Volchek
- Sheba Medical Center, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Noga Shem-Tov
- Sheba Medical Center, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Ronit Yerushalmi
- Sheba Medical Center, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Avichai Shimoni
- Sheba Medical Center, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Raz Somech
- Sheba Medical Center, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Israel.,Pediatric Immunology Service, Jeffrey Modell Foundation, USA.,Edmond and Lily Safra Children's Hospital, Israel
| | - Arnon Nagler
- Sheba Medical Center, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
43
|
Dai X, Zhang D, Wang C, Wu Z, Liang C. The Pivotal Role of Thymus in Atherosclerosis Mediated by Immune and Inflammatory Response. Int J Med Sci 2018; 15:1555-1563. [PMID: 30443178 PMCID: PMC6216065 DOI: 10.7150/ijms.27238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/06/2018] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is one kind of chronic inflammatory disease, in which multiple types of immune cells or factors are involved. Data from experimental and clinical studies on atherosclerosis have confirmed the key roles of immune cells and inflammation in such process. The thymus as a key organ in T lymphocyte ontogenesis has an important role in optimizing immune system function throughout the life, and dysfunction of thymus has been proved to be associated with severity of atherosclerosis. Based on previous research, we begin with the hypothesis that low density lipoprotein or cholesterol reduces the expression of the thymus transcription factor Foxn1 via low density lipoprotein receptors on the membrane surface and low density lipoprotein receptor related proteins on the cell surface, which cause the thymus function decline or degradation. The imbalance of T cell subgroups and the decrease of naive T cells due to thymus dysfunction cause the increase or decrease in the secretion of various inflammatory factors, which in turn aggravates or inhibits atherosclerosis progression and cardiovascular events. Hence, thymus may be the pivotal role in coronary heart disease mediated by atherosclerosis and cardiovascular events and it can imply a novel treatment strategy for the clinical management of patients with atherosclerosis in addition to different commercial drugs. Modulation of immune system by inducing thymus function may be a therapeutic approach for the prevention of atherosclerosis. Purpose of this review is to summarize and discuss the recent advances about the impact of thymus function on atherosclerosis by the data from animal or human studies and the potential mechanisms.
Collapse
Affiliation(s)
- Xianliang Dai
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Cardiology, 101 Hospital of PLA, Wuxi, Jiangsu province 214041, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Chaoqun Wang
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zonggui Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
44
|
D’Attilio L, Santucci N, Bongiovanni B, Bay ML, Bottasso O. Tuberculosis, the Disrupted Immune-Endocrine Response and the Potential Thymic Repercussion As a Contributing Factor to Disease Physiopathology. Front Endocrinol (Lausanne) 2018; 9:214. [PMID: 29765355 PMCID: PMC5938357 DOI: 10.3389/fendo.2018.00214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Upon the pathogen encounter, the host seeks to ensure an adequate inflammatory reaction to combat infection but at the same time tries to prevent collateral damage, through several regulatory mechanisms, like an endocrine response involving the production of adrenal steroid hormones. Our studies show that active tuberculosis (TB) patients present an immune-endocrine imbalance characterized by an impaired cellular immunity together with increased plasma levels of cortisol, pro-inflammatory cytokines, and decreased amounts of dehydroepiandrosterone. Studies in patients undergoing specific treatment revealed that cortisol levels remained increased even after several months of initiating therapy. In addition to the well-known metabolic and immunological effects, glucocorticoids are involved in thymic cortical depletion with immature thymocytes being quite sensitive to such an effect. The thymus is a central lymphoid organ supporting thymocyte T-cell development, i.e., lineage commitment, selection events and thymic emigration. While thymic TB is an infrequent manifestation of the disease, several pieces of experimental and clinical evidence point out that the thymus can be infected by mycobacteria. Beyond this, the thymic microenvironment during TB may be also altered because of the immune-hormonal alterations. The thymus may be then an additional target of organ involvement further contributing to a deficient control of infection and disease immunopathology.
Collapse
|
45
|
Sokoya T, Steel HC, Nieuwoudt M, Rossouw TM. HIV as a Cause of Immune Activation and Immunosenescence. Mediators Inflamm 2017; 2017:6825493. [PMID: 29209103 PMCID: PMC5676471 DOI: 10.1155/2017/6825493] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Systemic immune activation has emerged as an essential component of the immunopathogenesis of HIV. It not only leads to faster disease progression, but also to accelerated decline of overall immune competence. HIV-associated immune activation is characterized by an increase in proinflammatory mediators, dysfunctional T regulatory cells, and a pattern of T-cell-senescent phenotypes similar to those seen in the elderly. These changes predispose HIV-infected persons to comorbid conditions that have been linked to immunosenescence and inflamm-ageing, such as atherosclerosis and cardiovascular disease, neurodegeneration, and cancer. In the antiretroviral treatment era, development of such non-AIDS-defining, age-related comorbidities is a major cause of morbidity and mortality. Treatment strategies aimed at curtailing persistent immune activation and inflammation may help prevent the development of these conditions. At present, the most effective strategy appears to be early antiretroviral treatment initiation. No other treatment interventions have been found effective in large-scale clinical trials, and no adjunctive treatment is currently recommended in international HIV treatment guidelines. This article reviews the role of systemic immune activation in the immunopathogenesis of HIV infection, its causes and the clinical implications linked to immunosenescence in adults, and the therapeutic interventions that have been investigated.
Collapse
Affiliation(s)
- T. Sokoya
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - H. C. Steel
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - M. Nieuwoudt
- South African Department of Science and Technology (DST)/National Research Foundation (NRF) Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch 7600, South Africa
| | - T. M. Rossouw
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
46
|
Pekalski ML, García AR, Ferreira RC, Rainbow DB, Smyth DJ, Mashar M, Brady J, Savinykh N, Dopico XC, Mahmood S, Duley S, Stevens HE, Walker NM, Cutler AJ, Waldron-Lynch F, Dunger DB, Shannon-Lowe C, Coles AJ, Jones JL, Wallace C, Todd JA, Wicker LS. Neonatal and adult recent thymic emigrants produce IL-8 and express complement receptors CR1 and CR2. JCI Insight 2017; 2:93739. [PMID: 28814669 PMCID: PMC5621870 DOI: 10.1172/jci.insight.93739] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
The maintenance of peripheral naive T lymphocytes in humans is dependent on their homeostatic division, not continuing emigration from the thymus, which undergoes involution with age. However, postthymic maintenance of naive T cells is still poorly understood. Previously we reported that recent thymic emigrants (RTEs) are contained in CD31+CD25− naive T cells as defined by their levels of signal joint T cell receptor rearrangement excision circles (sjTRECs). Here, by differential gene expression analysis followed by protein expression and functional studies, we define that the naive T cells having divided the least since thymic emigration express complement receptors (CR1 and CR2) known to bind complement C3b- and C3d-decorated microbial products and, following activation, produce IL-8 (CXCL8), a major chemoattractant for neutrophils in bacterial defense. We also observed an IL-8–producing memory T cell subpopulation coexpressing CR1 and CR2 and with a gene expression signature resembling that of RTEs. The functions of CR1 and CR2 on T cells remain to be determined, but we note that CR2 is the receptor for Epstein-Barr virus, which is a cause of T cell lymphomas and a candidate environmental factor in autoimmune disease. Complement receptors (CR1 and CR2) and IL-8 production identify T cells that have recently left the thymus.
Collapse
Affiliation(s)
- Marcin L Pekalski
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Arcadio Rubio García
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ricardo C Ferreira
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Daniel B Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Deborah J Smyth
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Meghavi Mashar
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jane Brady
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Natalia Savinykh
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Xaquin Castro Dopico
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Sumiyya Mahmood
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Simon Duley
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Helen E Stevens
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Neil M Walker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Antony J Cutler
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Frank Waldron-Lynch
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - David B Dunger
- Department of Paediatrics, MRL Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Claire Shannon-Lowe
- Institute for Immunology and Immunotherapy and Centre for Human Virology, The University of Birmingham, Birmingham, United Kingdom
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Chris Wallace
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom, and MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - John A Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Gea-Banacloche J, Komanduri KV, Carpenter P, Paczesny S, Sarantopoulos S, Young JA, El Kassar N, Le RQ, Schultz KR, Griffith LM, Savani BN, Wingard JR. National Institutes of Health Hematopoietic Cell Transplantation Late Effects Initiative: The Immune Dysregulation and Pathobiology Working Group Report. Biol Blood Marrow Transplant 2017; 23:870-881. [PMID: 27751936 PMCID: PMC5392182 DOI: 10.1016/j.bbmt.2016.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Abstract
Immune reconstitution after hematopoietic stem cell transplantation (HCT) beyond 1 year is not completely understood. Many transplant recipients who are free of graft-versus-host disease (GVHD) and not receiving any immunosuppression more than 1 year after transplantation seem to be able to mount appropriate immune responses to common pathogens and respond adequately to immunizations. However, 2 large registry studies over the last 2 decades seem to indicate that infection is a significant cause of late mortality in some patients, even in the absence of concomitant GVHD. Research on this topic is particularly challenging for several reasons. First, there are not enough long-term follow-up clinics able to measure even basic immune parameters late after HCT. Second, the correlation between laboratory measurements of immune function and infections is not well known. Third, accurate documentation of infectious episodes is notoriously difficult. Finally, it is unclear what measures can be implemented to improve the immune response in a clinically relevant way. A combination of long-term multicenter prospective studies that collect detailed infectious data and store samples as well as a national or multinational registry of clinically significant infections (eg, vaccine-preventable severe infections, opportunistic infections) could begin to address our knowledge gaps. Obtaining samples for laboratory evaluation of the immune system should be both calendar and eventdriven. Attention to detail and standardization of practices regarding prophylaxis, diagnosis, and definitions of infections would be of paramount importance to obtain clean reliable data. Laboratory studies should specifically address the neogenesis, maturation, and exhaustion of the adaptive immune system and, in particular, how these are influenced by persistent alloreactivity, inflammation, and viral infection. Ideally, some of these long-term prospective studies would collect information on long-term changes in the gut microbiome and their influence on immunity. Regarding enhancement of immune function, prospective measurement of the response to vaccines late after HCT in a variety of clinical settings should be undertaken to better understand the benefits as well as the limitations of immunizations. The role of intravenous immunoglobulin is still not well defined, and studies to address it should be encouraged.
Collapse
Affiliation(s)
- Juan Gea-Banacloche
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, Maryland.
| | - Krishna V Komanduri
- Sylvester Adult Stem Cell Transplant Program, University of Miami, Coral Gables, Florida
| | - Paul Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; University of Washington School of Medicine Pediatrics, Seattle, Washington
| | - Sophie Paczesny
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Duke University Department of Medicine and Duke Cancer Institute, Durham, North Carolina
| | - Jo-Anne Young
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Nahed El Kassar
- National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Robert Q Le
- Medical Officer, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Kirk R Schultz
- Professor of Pediatrics, UBC, Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital and Research Institute, Vancouver, Canada
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Bipin N Savani
- Long Term Transplant Clinic, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John R Wingard
- University of Florida Health Cancer Center, Gainesville, Florida; Bone Marrow Transplant Program, Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
48
|
Williams KM, Moore AR, Lucas PJ, Wang J, Bare CV, Gress RE. FLT3 ligand regulates thymic precursor cells and hematopoietic stem cells through interactions with CXCR4 and the marrow niche. Exp Hematol 2017; 52:40-49. [PMID: 28552733 DOI: 10.1016/j.exphem.2017.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 01/07/2023]
Abstract
Impaired immune reconstitution after hematopoietic stem cell transplantation (HSCT) is attributed in part to impaired thymopoiesis. Recent data suggest that precursor input may be a point of regulation for the thymus. We hypothesized that administration of FLT3 ligand (FLT3L) would enhance thymopoiesis after adoptive transfer of aged, FLT3L-treated bone marrow (BM) to aged, Lupron-treated hosts by increasing murine HSC (Lin[minus]Sca1+c-Kit+ [LSK] cells) trafficking and survival. In murine models of aged and young hosts, we show that FLT3L enhances thymopoiesis in aged, Lupron-treated hosts through increased survival and export of LSK cells via CXCR4 regulation. In addition, we elucidate an underlying mechanism of FLT3L action on BM LSK cells-FLT3L drives LSK cells into the stromal niche using Hoescht (Ho) dye perimortem. In summary, we show that FLT3L administration leads to: (1) increased LSK cells and early thymocyte progenitor precursors that can enhance thymopoiesis after transplantation and androgen withdrawal, (2) mobilization of LSK cells through downregulation of CXCR4, (3) enhanced BM stem cell survival associated with Bcl-2 upregulation, and (4) BM stem cell enrichment through increased trafficking to the BM niche. Therefore, we show a mechanism by which FLT3L activity on hematopoeitic and thymic progenitor cells may contribute to thymic recovery. These data have potential clinical relevance to enhance thymic reconstitution after cytoreductive therapy.
Collapse
Affiliation(s)
- Kirsten M Williams
- Children's Research Institute, Children's National Medical Institutes, Washington, DC.
| | - Amber R Moore
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA
| | - Philip J Lucas
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Juin Wang
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Catherine V Bare
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
49
|
Smith MJ, Reichenbach DK, Parker SL, Riddle MJ, Mitchell J, Osum KC, Mohtashami M, Stefanski HE, Fife BT, Bhandoola A, Hogquist KA, Holländer GA, Zúñiga-Pflücker JC, Tolar J, Blazar BR. T cell progenitor therapy-facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCI Insight 2017; 2:92056. [PMID: 28515359 PMCID: PMC5436538 DOI: 10.1172/jci.insight.92056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/13/2017] [Indexed: 12/12/2022] Open
Abstract
Infusion of in vitro-derived T cell progenitor (proT) therapy with hematopoietic stem cell transplant aids the recovery of the thymus damaged by total body irradiation. To understand the interaction between proTs and the thymic microenvironment, WT mice were lethally irradiated and given T cell-deficient (Rag1-/-) marrow with WT in vitro-generated proTs, limiting mature T cell development to infused proTs. ProTs within the host thymus led to a significant increase in thymic epithelial cells (TECs) by day 21 after transplant, increasing actively cycling TECs. Upon thymus egress (day 28), proT TEC effects were lost, suggesting that continued signaling from proTs is required to sustain TEC cycling and cellularity. Thymocytes increased significantly by day 21, followed by a significant improvement in mature T cell numbers in the periphery by day 35. This protective surge was temporary, receding by day 60. Double-negative 2 (DN2) proTs selectively increased thymocyte number, while DN3 proTs preferentially increased TECs and T cells in the spleen that persisted at day 60. These findings highlight the importance of the interaction between proTs and TECs in the proliferation and survival of TECs and that the maturation stage of proTs has unique effects on thymopoiesis and peripheral T cell recovery.
Collapse
Affiliation(s)
- Michelle J. Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| | - Dawn K. Reichenbach
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| | - Sarah L. Parker
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Megan J. Riddle
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason Mitchell
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kevin C. Osum
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mahmood Mohtashami
- Sunnybrook Research Institute and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Heather E. Stefanski
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Georg A. Holländer
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Paediatrics and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| |
Collapse
|
50
|
Flinn AM, Gennery AR. Treatment of Pediatric Acute Graft-versus-Host Disease-Lessons from Primary Immunodeficiency? Front Immunol 2017; 8:328. [PMID: 28377772 PMCID: PMC5359217 DOI: 10.3389/fimmu.2017.00328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/07/2017] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplant (HSCT) is used to treat increasing numbers of malignant and non-malignant disorders. Despite significant advances in improved human leukocyte antigens-typing techniques, less toxic conditioning regimens and better supportive care, resulting in improved clinical outcomes, acute graft-versus-host disease (aGvHD) continues to be a major obstacle and, although it principally involves the skin, gastrointestinal tract, and liver, the thymus is also a primary target. An important aim following HSCT is to achieve complete and durable immunoreconstitution with a diverse T-cell receptor (TCR) repertoire to recognize a broad range of pathogens providing adequate long-term adaptive T-lymphocyte immunity, essential to reduce the risk of infection, disease relapse, and secondary malignancies. Reconstitution of adaptive T-lymphocyte immunity is a lengthy and complex process which requires a functioning and structurally intact thymus responsible for the production of new naïve T-lymphocytes with a broad TCR repertoire. Damage to the thymic microenvironment, secondary to aGvHD and the effect of corticosteroid treatment, disturbs normal signaling required for thymocyte development, resulting in impaired T-lymphopoiesis and reduced thymic export. Primary immunodeficiencies, in which failure of central or peripheral tolerance is a major feature, because of intrinsic defects in hematopoietic stem cells leading to abnormal T-lymphocyte development, or defects in thymic stroma, can give insights into critical processes important for recovery from aGvHD. Extracorporeal photopheresis is a potential alternative therapy for aGvHD, which acts in an immunomodulatory fashion, through the generation of regulatory T-lymphocytes (Tregs), alteration of cytokine patterns and modulation of dendritic cells. Promoting normal central and peripheral immune tolerance, with selective downregulation of immune stimulation, could reduce aGvHD, and enable a reduction in other immunosuppression, facilitating thymic recovery, restoration of normal T-lymphocyte ontogeny, and complete immunoreconstitution with improved clinical outcome as the ability to fight infections improves and risk of secondary malignancy or relapse diminishes.
Collapse
Affiliation(s)
- Aisling M Flinn
- Medical School, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Andrew R Gennery
- Medical School, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|