1
|
Kalimullina T, Sachdeva R, Pawar K, Cao S, Marwaha A, Liu J, Plunet W, Squair J, West CR, Tetzlaff W, Krassioukov AV. Neuroprotective agents ineffective in mitigating autonomic dysreflexia following experimental spinal cord injury. Exp Neurol 2024; 382:114993. [PMID: 39393671 DOI: 10.1016/j.expneurol.2024.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND AND OBJECTIVES Loss of supraspinal cardiovascular control and secondary damage following spinal cord injury (SCI) lead to cardiovascular dysfunction, where autonomic dysreflexia (AD), triggered by stimuli below the injury, can cause uncontrolled blood pressure (BP) surges, posing severe health risks such as stroke and seizures. While anti-inflammatory neuroprotective agents have been studied for motor recovery, their impact on cardiovascular function remains under investigated. The objective was to assess the efficacy of four clinically approved neuroprotective agents in promoting cardiovascular recovery following SCI. METHODS Male Wistar rats received contusion at the third thoracic spinal segment (T3). Fluoxetine, Glyburide, Valproic acid, and Indomethacin were first administered at 1 h or 6 h post-SCI, and every 12 h for two weeks thereafter. Four weeks following SCI, hemodynamics were measured at rest and during colorectal distension. Locomotor function was assessed prior to SCI and weekly for four weeks after SCI, using the Basso-Beattie-Bresnahan (BBB) locomotor scale. Quantitative comparisons of lesion area were performed. RESULTS Contrary to the published literature, Indomethacin and Valproic acid resulted in high morbidity and mortality rates 60 % and 40 % respectively) within 2-3 days of administration. Fluoxetine, and Glyburide were well-tolerated. There were no differences in change in systolic BP with colorectal distension compared to control i.e., all experimental groups experienced severe episodes of AD [F(6, 67) = 0.94, p = 0.47]. There was no significant difference in BBB scores in any experimental group compared to control [F(18, 252) = 0.3, p = 0.99]. No between-group differences were observed in tissue sparing at the lesion epicentre [F(6, 422) = 6.98, p = 0.29]. DISCUSSION Despite promising beneficial effect reported in previous studies, none of the drugs demonstrated improvement in cardiovascular or motor function. Indomethacin and Valproic acid exhibited unexpected high mortality at doses deemed safe in the literature. This emphasizes the necessity for reproducibility studies in pre-clinical research and underscores the importance of publishing null findings to guide future investigations.
Collapse
Affiliation(s)
- Tamila Kalimullina
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada.
| | - Kiran Pawar
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada
| | - Steven Cao
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Arshdeep Marwaha
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Ward Plunet
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Jordan Squair
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Christopher R West
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Cell & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada; GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, Canada.
| |
Collapse
|
2
|
Xu GY, Maskey M, Wu Z, Yang Q. Timed sulfonylurea modulation improves locomotor and sensory dysfunction following spinal cord injury. Front Pharmacol 2024; 15:1440198. [PMID: 39148545 PMCID: PMC11324438 DOI: 10.3389/fphar.2024.1440198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024] Open
Abstract
Traumatic spinal cord injury (SCI) results in immediate tissue necrosis and delayed secondary expansion of neurological damage, often resulting in lifelong paralysis, neurosensory dysfunction, and chronic pain. Progressive hemorrhagic necrosis (PHN) and excessive excitation are the main sources of secondary neural injury. Recent approaches to attenuate PHN by glibenclamide can improve locomotor function after SCI. However, use of glibenclamide can exacerbate development of SCI-induced chronic pain by inhibiting KATP channels to increase neuronal excitation and glial activation. In this study, we explored a treatment strategy involving administration of glibenclamide, which suppresses PHN, and diazoxide, which protects against neuronal excitation and inflammation, at different time intervals following spinal cord contusion. Our goal was to determine whether this combined approach enhances both sensory and motor function. Contusive SCI was induced at spinal segment T10 in adult rats. We found that KATP channels opener, diazoxide, decreased the hyperexcitability of primary sensory neurons after SCI by electrophysiology. Timed application of glibenclamide and diazoxide following contusion significantly improved locomotor function and mitigated development of SCI-induced chronic pain, as shown by behavioral evidence. Finally, we found that timed application of glibenclamide and diazoxide attenuates the inflammatory activity in the spinal cord and increases the survival of spinal matters following SCI. These preclinical studies introduce a promising potential treatment strategy to address SCI-induced dysfunction.
Collapse
Affiliation(s)
- Guo-Ying Xu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Manjit Maskey
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Zizhen Wu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Qing Yang
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
3
|
Morishita K, Nakashima H, Machino M, Ito S, Segi N, Miyairi Y, Morita Y, Imagama S. Adenosine triphosphate release inhibitors targeting pannexin1 improve recovery after spinal cord injury. NAGOYA JOURNAL OF MEDICAL SCIENCE 2024; 86:392-406. [PMID: 39355370 PMCID: PMC11439608 DOI: 10.18999/nagjms.86.3.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/08/2023] [Indexed: 10/03/2024]
Abstract
Traumatic spinal cord injury is characterized by immediate and irreversible tissue loss at the lesion site and secondary tissue damage. Secondary injuries should, in principle, be preventable, although no effective treatment options currently exist for patients with acute spinal cord injury. Traumatized tissues release excessive amounts of adenosine triphosphate and activate the P2X purinoceptor 7/pannexin1 complex, which is associated with secondary injury. We investigated the neuroprotective effects of the blue dye Brilliant Blue FCF, a selective inhibitor of P2X purinoceptor 7/pannexin1 that is approved for use as a food coloring, by comparing it with Brilliant Blue G, a P2X7 purinoceptor antagonist, and carbenoxolone, which attenuates P2X purinoceptor 7/pannexin1 function, in a rat spinal cord injury model. Brilliant Blue FCF administered early after spinal cord injury reduced spinal cord anatomical damage and improved motor recovery without apparent toxicity. Brilliant Blue G had the highest effect on this neurological recovery, with Brilliant Blue FCF and carbenoxolone having comparable improvement. Furthermore, Brilliant Blue FCF administration reduced local astrocytic and microglial activation and neutrophil infiltration, and no differences in these histological effects were observed between compounds. Thus, Brilliant Blue FCF protects spinal cord neurons after spinal cord injury and suppresses local inflammatory responses as well as Brilliant Blue G and carbenoxolone.
Collapse
Affiliation(s)
- Kazuaki Morishita
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Nakashima
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Machino
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sadayuki Ito
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Segi
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Miyairi
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Morita
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Imagama
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
4
|
Baroudi M, Rezk A, Daher M, Balmaceno-Criss M, Gregoryczyk JG, Sharma Y, McDonald CL, Diebo BG, Daniels AH. Management of traumatic spinal cord injury: A current concepts review of contemporary and future treatment. Injury 2024; 55:111472. [PMID: 38460480 DOI: 10.1016/j.injury.2024.111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/11/2024]
Abstract
Spinal Cord Injury (SCI) is a condition leading to inflammation, edema, and dysfunction of the spinal cord, most commonly due to trauma, tumor, infection, or vascular disturbance. Symptoms include sensory and motor loss starting at the level of injury; the extent of damage depends on injury severity as detailed in the ASIA score. In the acute setting, maintaining mean arterial pressure (MAP) higher than 85 mmHg for up to 7 days following injury is preferred; although caution must be exercised when using vasopressors such as phenylephrine due to serious side effects such as pulmonary edema and death. Decompression surgery (DS) may theoretically relieve edema and reduce intraspinal pressure, although timing of surgery remains a matter of debate. Methylprednisolone (MP) is currently used due to its ability to reduce inflammation but more recent studies question its clinical benefits, especially with inconsistency in recommending it nationally and internationally. The choice of MP is further complicated by conflicting evidence for optimal timing to initiate treatment, and by the reported observation that higher doses are correlated with increased risk of complications. Thyrotropin-releasing hormone may be beneficial in less severe injuries. Finally, this review discusses many options currently being researched and have shown promising pre-clinical results.
Collapse
Affiliation(s)
- Makeen Baroudi
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Anna Rezk
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mohammad Daher
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mariah Balmaceno-Criss
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jerzy George Gregoryczyk
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Yatharth Sharma
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Christopher L McDonald
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bassel G Diebo
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alan H Daniels
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Harmon JN, Hyde JE, Jensen DE, D'cessare EC, Odarenko AA, Bruce MF, Khaing ZZ. Quantifying injury expansion in the cervical spinal cord with intravital ultrafast contrast-enhanced ultrasound imaging. Exp Neurol 2024; 374:114681. [PMID: 38199511 PMCID: PMC10922898 DOI: 10.1016/j.expneurol.2024.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury is characterized by hemodynamic disruption at the injury epicenter and hypoperfusion in the penumbra, resulting in progressive ischemia and cell death. This degenerative secondary injury process has been well-described, though mostly using ex vivo or depth-limited optical imaging techniques. Intravital contrast-enhanced ultrasound enables longitudinal, quantitative evaluation of anatomical and hemodynamic changes in vivo through the entire spinal parenchyma. Here, we used ultrasound imaging to visualize and quantify subacute injury expansion (through 72 h post-injury) in a rodent cervical contusion model. Significant intraparenchymal hematoma expansion was observed through 72 h post-injury (1.86 ± 0.17-fold change from acute, p < 0.05), while the volume of the ischemic deficit largely increased within 24 h post-injury (2.24 ± 0.27-fold, p < 0.05). Histology corroborated these findings; increased apoptosis, tissue and vessel loss, and sustained tissue hypoxia were observed at 72 h post-injury. Vascular resistance was significantly elevated in the remaining perfused tissue, likely due in part to deformation of the central sulcal artery nearest to the lesion site. In conjunction, substantial hyperemia was observed in all perilesional areas examined except the ipsilesional gray matter. This study demonstrates the utility of longitudinal ultrasound imaging as a quantitative tool for tracking injury progression in vivo.
Collapse
Affiliation(s)
- Jennifer N Harmon
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Jeffrey E Hyde
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Dylan E Jensen
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Emma C D'cessare
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Anton A Odarenko
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Matthew F Bruce
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA.
| | - Zin Z Khaing
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| |
Collapse
|
6
|
Lee J, Hahm SC, Yoo H, Yoon YW, Kim J. Protection of the Vascular System by Polyethylene Glycol Reduces Secondary Injury Following Spinal Cord Injury in Rats. Tissue Eng Regen Med 2023; 20:1191-1204. [PMID: 37698812 PMCID: PMC10646076 DOI: 10.1007/s13770-023-00566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Polyethylene glycol (PEG) is a hydrophilic polymer, which has been known to have a neuroprotective effect by sealing the ruptured cell membrane, but PEG effects on the vascular systems and its underlying mechanisms remain unclear. Here, we showed the neuroprotective effect of PEG by preventing damage to the vascular system. METHODS A spinal contusion was made at the T11 segment in male Sprague-Dawley rats. PEG was injected into the subdural space immediately after SCI. Vascular permeability was assessed for 24 h after SCI using intraperitoneally injected Evans blue dye. Junctional complexes were stained with CD31 and ZO-1. Infarct size was analyzed using triphenyltetrazolium chloride, and blood vessels were counted in the epicenter. Behavioral tests for motor and sensory function were performed for 6 weeks. And then the tissue-sparing area was assessed. RESULTS Immediately applied PEG significantly reduced the vascular permeability at 6, 12, and 24 h after SCI when it compared to saline, and infarct size was also reduced at 0, 6, and 24 h after SCI. In addition, a great number of blood vessels were observed in PEG group at 6 and 24 h after SCI compared to those of the saline group. The PEG group also showed a significant improvement in motor function. And tissue-sparing areas in the PEG were greater than those of the saline group. CONCLUSION The present results provide preclinical evidence for the neuroprotective effects of PEG as a promising therapeutic agent for reducing secondary injury following SCI through vascular protection.
Collapse
Affiliation(s)
- Jinseung Lee
- Rehabilitation Science Program, Department of Health Science, Graduate School, Korea University, Seoul, 02841, Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, 02841, Korea
- Department of Physical Therapy, Undergraduate School, Korea University College of Health Science, Anam-dong, Sungbuk-gu, Seoul, 02841, Korea
| | - Suk-Chan Hahm
- Graduate School of Integrative Medicine, CHA University, Seongnam, 13488, Korea
| | - Heayeon Yoo
- Rehabilitation Science Program, Department of Health Science, Graduate School, Korea University, Seoul, 02841, Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, 02841, Korea
| | - Young Wook Yoon
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Korea
| | - Junesun Kim
- Rehabilitation Science Program, Department of Health Science, Graduate School, Korea University, Seoul, 02841, Korea.
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, 02841, Korea.
- Department of Physical Therapy, Undergraduate School, Korea University College of Health Science, Anam-dong, Sungbuk-gu, Seoul, 02841, Korea.
- Department of Health and Environmental Science, Undergraduate School, Korea University College of Health Science, Seoul, 02841, Korea.
| |
Collapse
|
7
|
Guha L, Singh N, Kumar H. Different Ways to Die: Cell Death Pathways and Their Association With Spinal Cord Injury. Neurospine 2023; 20:430-448. [PMID: 37401061 PMCID: PMC10323345 DOI: 10.14245/ns.2244976.488] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 07/22/2023] Open
Abstract
Cell death is a systematic/nonsystematic process of cessation of normal morphology and functional properties of the cell to replace and recycle old cells with new also promoting inflammation in some cases. It is a complicated process comprising multiple pathways. Some are well-explored, and others have just begun to be. The research on appropriate control of cell death pathways after acute and chronic damage of neuronal cells is being widely researched today due to the lack of regeneration and recovering potential of a neuronal cell after sustaining damage and the inability to control the direction of neuronal growth. In the progression and onset of various neurological diseases, impairments in programmed cell death signaling processes, like necroptosis, apoptosis, ferroptosis, pyroptosis, and pathways directly or indirectly linked, like autophagy as in nonprogrammed necrosis, are observed. Spinal cord injury (SCI) involves the temporary or permanent disruption of motor activities due to the death of a neuronal and glial cell in the spinal cord accompanied by axonal degeneration. Recent years have seen a significant increase in research on the intricate biochemical interactions that occur after a SCI. Different cell death pathways may significantly impact the subsequent damage processes that lead to the eventual neurological deficiency after an injury to the spinal cord. A better knowledge of the molecular basis of the involved cell death pathways might help enhance neuronal and glial survival and neurological deficits, promoting a curative path for SCI.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Nidhi Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
8
|
Aarabi B, Neal CJ, Hersh DS, Harrop JS, Fehlings MG, Toups EG, Guest JD, Ugiliweneza B, Akhtar-Danesh N, Kurpad SN, Grossman RG. Mortality in ASIA Impairment Scale grade A to D Patients With Odontoid Fracture and Magnetic Resonance Imaging Evidence of Spinal Cord Injury. Neurotrauma Rep 2023; 4:375-383. [PMID: 37350794 PMCID: PMC10282967 DOI: 10.1089/neur.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Odontoid fractures are common, often presenting in the elderly after a fall and infrequently associated with traumatic spinal cord injury (tSCI). The goal of this study was to analyze predictors of mortality and neurological outcome when odontoid fractures were associated with signal change on magnetic resonance imaging (MRI) at admission. Over an 18-year period (2001-2019), 33 patients with odontoid fractures and documented tSCI on MRI were identified. Mean age was 65.3 years (standard deviation [SD] = 17.2), and 21 patients were male. The mechanism of injury was falls in 25 patients, motor vehicle accidents in 5, and other causes in 3. Mean Injury Severity Score (ISS) was 40.5 (SD = 30.2), Glasgow Coma Scale (GCS) score was 13 (SD = 3.4), and American Spinal Injury Association (ASIA) motor score (AMS) was 51.6 (SD = 42.7). ASIA Impairment Scale (AIS) grade was A, B, C, and D in 9, 2, 3, and 19 patients, respectively. Mean intramedullary lesion length was 32.3 mm (SD = 18.6). The odontoid peg was displaced ventral or dorsal in 15 patients. Twenty patients had surgical intervention: anterior odontoid screw fixation in 7 and posterior spinal fusion in 13. Eleven (33.3%) patients died in this series: withdrawal of medical care in 5; anoxic brain injury in 4; and failure of critical care management in 2. Univariate logistic regression indicated that GCS score (p < 0.014), AMS (p < 0.002), AIS grade (p < 0.002), and ISS (p < 0.009) were risk factors for mortality. Multi-variate regression analysis indicated that only AMS (p < 0.002) had a significant relationship with mortality when odontoid fracture was associated with tSCI (odds ratio, 0.963; 95% confidence interval, 0.941-0.986).
Collapse
Affiliation(s)
- Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher J. Neal
- Department of Neurosurgery, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - David S. Hersh
- Division of Neurosurgery, Connecticut Children's, Hartford, Connecticut, USA
| | - James S. Harrop
- Department of Neurosurgery, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth G. Toups
- Department of Neurosurgery, University of Texas, Houston at Methodist Hospital, Houston, Texas, USA
| | - James D. Guest
- Department of Neurological Surgery, the Miami Project to Cure Paralysis, Miami, Florida, USA
| | - Beatrice Ugiliweneza
- Department of Neurosurgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| | - Noori Akhtar-Danesh
- School of Nursing and Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Robert G. Grossman
- Department of Neurosurgery, University of Texas, Houston at Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
9
|
Smith NJ, Doody NE, Štěpánková K, Fuller M, Ichiyama RM, Kwok JCF, Egginton S. Spatiotemporal microvascular changes following contusive spinal cord injury. Front Neuroanat 2023; 17:1152131. [PMID: 37025098 PMCID: PMC10070689 DOI: 10.3389/fnana.2023.1152131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Microvascular integrity is disrupted following spinal cord injury (SCI) by both primary and secondary insults. Changes to neuronal structures are well documented, but little is known about how the capillaries change and recover following injury. Spatiotemporal morphological information is required to explore potential treatments targeting the microvasculature post-SCI to improve functional recovery. Sprague-Dawley rats were given a T10 moderate/severe (200 kDyn) contusion injury and were perfuse-fixed at days 2, 5, 15, and 45 post-injury. Unbiased stereology following immunohistochemistry in four areas (ventral and dorsal grey and white matter) across seven spinal segments (n = 4 for each group) was used to calculate microvessel density, surface area, and areal density. In intact sham spinal cords, average microvessel density across the thoracic spinal cord was: ventral grey matter: 571 ± 45 mm-2, dorsal grey matter: 484 ± 33 mm-2, ventral white matter: 90 ± 8 mm-2, dorsal white matter: 88 ± 7 mm-2. Post-SCI, acute microvascular disruption was evident, particularly at the injury epicentre, and spreading three spinal segments rostrally and caudally. Damage was most severe in grey matter at the injury epicentre (T10) and T11. Reductions in all morphological parameters (95-99% at day 2 post-SCI) implied vessel regression and/or collapse acutely. Transmission electron microscopy (TEM) revealed disturbed aspects of neurovascular unit fine structure at day 2 post-SCI (n = 2 per group) at T10 and T11. TEM demonstrated a more diffuse and disrupted basement membrane and wider intercellular clefts at day 2, suggesting a more permeable blood spinal cord barrier and microvessel remodelling. Some evidence of angiogenesis was seen during recovery from days 2 to 45, indicated by increased vessel density, surface area, and areal density at day 45. These novel results show that the spinal cord microvasculature is highly adaptive following SCI, even at chronic stages and up to three spinal segments from the injury epicentre. Multiple measures of gross and fine capillary structure from acute to chronic time points provide insight into microvascular remodelling post-SCI. We have identified key vascular treatment targets, namely stabilising damaged capillaries and replacing destroyed vessels, which may be used to improve functional outcomes following SCI in the future.
Collapse
Affiliation(s)
- Nicole J. Smith
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Natalie E. Doody
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Kateřina Štěpánková
- Centre for Reconstructive Neuroscience, Czech Academy of Sciences, Prague, Czechia
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Fuller
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Jessica C. F. Kwok
- Centre for Reconstructive Neuroscience, Czech Academy of Sciences, Prague, Czechia
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
10
|
Ma P, Huang N, Tang J, Zhou Z, Xu J, Chen Y, Zhang M, Huang Q, Cheng Y. The TRPM4 channel inhibitor 9-phenanthrol alleviates cerebral edema after traumatic brain injury in rats. Front Pharmacol 2023; 14:1098228. [PMID: 36865920 PMCID: PMC9971592 DOI: 10.3389/fphar.2023.1098228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Cerebral edema (CE) exerts an important effect on brain injury after traumatic brain injury (TBI). Upregulation of transient receptor potential melastatin 4 (TRPM4) in vascular endothelial cells (ECs) results in damage to capillaries and the blood-brain barrier (BBB), which is critical for the development of CE. Many studies have shown that 9-phenanthrol (9-PH) effectively inhibits TRPM4. The current study aimed to investigate the effect of 9-PH on reducing CE after TBI. In this experiment, we observed that 9-PH markedly reduced brain water content, BBB disruption, proliferation of microglia and astrocytes, neutrophil infiltration, neuronal apoptosis and neurobehavioral deficits. At the molecular level, 9-PH significantly inhibited the protein expression of TRPM4 and MMP-9, alleviated the expression of apoptosis-related molecules and inflammatory cytokines, such as Bax, TNF-α and IL-6, near injured tissue, and diminished serum SUR1 and TRPM4 levels. Mechanistically, treatment with 9-PH inhibited activation of the PI3K/AKT/NF-kB signaling pathway, which was reported to be involved in the expression of MMP-9. Taken together, the results of this study indicate that 9-PH effectively reduces CE and alleviates secondary brain injury partly through the following possible mechanisms: ①9-PH inhibits TRPM4-mediated Na + influx and reduces cytotoxic CE; ②9-PH hinders the expression and activity of MMP-9 by inhibiting the TRPM4 channel and decreases disruption of the BBB, thereby preventing vasogenic cerebral edema. ③9-PH reduces further inflammatory and apoptotic damage to tissues.
Collapse
Affiliation(s)
- Ping Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zunjie Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Chen
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maoxin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Qin Huang, ; Yuan Cheng,
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Qin Huang, ; Yuan Cheng,
| |
Collapse
|
11
|
Khaing ZZ, Chen JY, Safarians G, Ezubeik S, Pedroncelli N, Duquette RD, Prasse T, Seidlits SK. Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:3824. [PMID: 36835233 PMCID: PMC9960771 DOI: 10.3390/ijms24043824] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spinal cord injury (SCI) often causes loss of sensory and motor function resulting in a significant reduction in quality of life for patients. Currently, no therapies are available that can repair spinal cord tissue. After the primary SCI, an acute inflammatory response induces further tissue damage in a process known as secondary injury. Targeting secondary injury to prevent additional tissue damage during the acute and subacute phases of SCI represents a promising strategy to improve patient outcomes. Here, we review clinical trials of neuroprotective therapeutics expected to mitigate secondary injury, focusing primarily on those in the last decade. The strategies discussed are broadly categorized as acute-phase procedural/surgical interventions, systemically delivered pharmacological agents, and cell-based therapies. In addition, we summarize the potential for combinatorial therapies and considerations.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sohib Ezubeik
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca D. Duquette
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tobias Prasse
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Orthopedics and Trauma Surgery, University of Cologne, 50931 Cologne, Germany
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Cummings J, Wu YL, Dixon CE, Henchir J, Simard JM, Panigrahy A, Kochanek PM, Jha RM, Aneja RK. Abcc8 (sulfonylurea receptor-1) knockout mice exhibit reduced axonal injury, cytotoxic edema and cognitive dysfunction vs. wild-type in a cecal ligation and puncture model of sepsis. J Neuroinflammation 2023; 20:12. [PMID: 36681815 PMCID: PMC9862964 DOI: 10.1186/s12974-023-02692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Sepsis-associated brain injury (SABI) is characterized by an acute deterioration of mental status resulting in cognitive impairment and acquisition of new and persistent functional limitations in sepsis survivors. Previously, we reported that septic mice had evidence of axonal injury, robust microglial activation, and cytotoxic edema in the cerebral cortex, thalamus, and hippocampus in the absence of blood-brain barrier disruption. A key conceptual advance in the field was identification of sulfonylurea receptor 1 (SUR1), a member of the adenosine triphosphate (ATP)-binding cassette protein superfamily, that associates with the transient receptor potential melastatin 4 (TRPM4) cation channel to play a crucial role in cerebral edema development. Therefore, we hypothesized that knockout (KO) of Abcc8 (Sur1 gene) is associated with a decrease in microglial activation, cerebral edema, and improved neurobehavioral outcomes in a murine cecal ligation and puncture (CLP) model of sepsis. Sepsis was induced in 4-6-week-old Abcc8 KO and wild-type (WT) littermate control male mice by CLP. We used immunohistochemistry to define neuropathology and microglial activation along with parallel studies using magnetic resonance imaging, focusing on cerebral edema on days 1 and 4 after CLP. Abcc8 KO mice exhibited a decrease in axonal injury and cytotoxic edema vs. WT on day 1. Abcc8 KO mice also had decreased microglial activation in the cerebral cortex vs. WT. These findings were associated with improved spatial memory on days 7-8 after CLP. Our study challenges a key concept in sepsis and suggests that brain injury may not occur merely as an extension of systemic inflammation. We advance the field further and demonstrate that deletion of the SUR1 gene ameliorates CNS pathobiology in sepsis including edema, axonal injury, neuroinflammation, and behavioral deficits. Benefits conferred by Abcc8 KO in the murine CLP model warrant studies of pharmacological Abcc8 inhibition as a new potential therapeutic strategy for SABI.
Collapse
Affiliation(s)
- Jessica Cummings
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Yijen L. Wu
- grid.21925.3d0000 0004 1936 9000Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - C. Edward Dixon
- grid.21925.3d0000 0004 1936 9000Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Jeremy Henchir
- grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - J. Marc Simard
- grid.411024.20000 0001 2175 4264Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD USA
| | - Ashok Panigrahy
- grid.239553.b0000 0000 9753 0008Division of Pediatric Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Patrick M. Kochanek
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Ruchira M. Jha
- grid.427785.b0000 0001 0664 3531Barrow Neurological Institute, Phoenix, AZ USA
| | - Rajesh K. Aneja
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine and Pediatrics, School of Medicine, Faculty Pavilion Building, University of Pittsburgh, 2nd Floor, Suite 2112, 4401 Penn Ave, Pittsburgh, PA 15224 USA
| |
Collapse
|
13
|
Almeida F, Marques S, Santos A, Prins C, Cardoso F, Heringer L, Mendonça H, Martinez A. Molecular approaches for spinal cord injury treatment. Neural Regen Res 2023; 18:23-30. [PMID: 35799504 PMCID: PMC9241396 DOI: 10.4103/1673-5374.344830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Injuries to the spinal cord result in permanent disabilities that limit daily life activities. The main reasons for these poor outcomes are the limited regenerative capacity of central neurons and the inhibitory milieu that is established upon traumatic injuries. Despite decades of research, there is still no efficient treatment for spinal cord injury. Many strategies are tested in preclinical studies that focus on ameliorating the functional outcomes after spinal cord injury. Among these, molecular compounds are currently being used for neurological recovery, with promising results. These molecules target the axon collapsed growth cone, the inhibitory microenvironment, the survival of neurons and glial cells, and the re-establishment of lost connections. In this review we focused on molecules that are being used, either in preclinical or clinical studies, to treat spinal cord injuries, such as drugs, growth and neurotrophic factors, enzymes, and purines. The mechanisms of action of these molecules are discussed, considering traumatic spinal cord injury in rodents and humans.
Collapse
|
14
|
Malomo T, Allard Brown A, Bale K, Yung A, Kozlowski P, Heran M, Streijger F, Kwon BK. Quantifying Intraparenchymal Hemorrhage after Traumatic Spinal Cord Injury: A Review of Methodology. J Neurotrauma 2022; 39:1603-1635. [PMID: 35538847 DOI: 10.1089/neu.2021.0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intraparenchymal hemorrhage (IPH) after a traumatic injury has been associated with poor neurological outcomes. Although IPH may result from the initial mechanical trauma, the blood and its breakdown products have potentially deleterious effects. Further, the degree of IPH has been correlated with injury severity and the extent of subsequent recovery. Therefore, accurate evaluation and quantification of IPH following traumatic spinal cord injury (SCI) is important to define treatments' effects on IPH progression and secondary neuronal injury. Imaging modalities, such as magnetic resonance imaging (MRI) and ultrasound (US), have been explored by researchers for the detection and quantification of IPH following SCI. Both quantitative and semiquantitative MRI and US measurements have been applied to objectively assess IPH following SCI, but the optimal methods for doing so are not well established. Studies in animal SCI models (rodent and porcine) have explored US and histological techniques in evaluating SCI and have demonstrated the potential to detect and quantify IPH. Newer techniques using machine learning algorithms (such as convolutional neural networks [CNN]) have also been studied to calculate IPH volume and have yielded promising results. Despite long-standing recognition of the potential pathological significance of IPH within the spinal cord, quantifying IPH with MRI or US is a relatively new area of research. Further studies are warranted to investigate their potential use. Here, we review the different and emerging quantitative MRI, US, and histological approaches used to detect and quantify IPH following SCI.
Collapse
Affiliation(s)
- Toluyemi Malomo
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aysha Allard Brown
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirsten Bale
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Yung
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manraj Heran
- Department of Radiology, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, and Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms232213833. [PMID: 36430308 PMCID: PMC9698625 DOI: 10.3390/ijms232213833] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.
Collapse
Affiliation(s)
- Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
16
|
He Y, Chang Y, Peng Y, Zhu J, Liu K, Chen J, Wu Y, Ji Z, Lin Z, Wang S, Gupta S, Zang N, Pan S, Huang K. Glibenclamide Directly Prevents Neuroinflammation by Targeting SUR1-TRPM4-Mediated NLRP3 Inflammasome Activation In Microglia. Mol Neurobiol 2022; 59:6590-6607. [PMID: 35972671 DOI: 10.1007/s12035-022-02998-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
Glibenclamide (GLB) reduces brain edema and improves neurological outcome in animal experiments and preliminary clinical studies. Recent studies also suggested a strong anti-inflammatory effect of GLB, via inhibiting nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation. However, it remains unknown whether the anti-inflammatory effect of GLB is independent of its role in preventing brain edema, and how GLB inhibits the NLRP3 inflammasome is not fully understood. Sprague-Dawley male rats underwent 10-min asphyxial cardiac arrest and cardiopulmonary resuscitation or sham-operation. The Trpm4 siRNA and GLB were injected to block sulfonylurea receptor 1-transient receptor potential M4 (SUR1-TRPM4) channel in rats. Western blotting, quantitative real-time polymerase chain reaction, behavioral analysis, and histological examination were used to evaluate the role of GLB in preventing NLRP3-mediated neuroinflammation through inhibiting SUR1-TRPM4, and corresponding neuroprotective effect. To further explore the underlying mechanism, BV2 cells were subjected to lipopolysaccharides, or oxygen-glucose deprivation/reperfusion. Here, in rat model of cardiac arrest with brain edema combined with neuroinflammation, GLB significantly alleviated neurocognitive deficit and neuropathological damage, via the inhibition of microglial NLRP3 inflammasome activation by blocking SUR1-TRPM4. Of note, the above effects of GLB could be achieved by knockdown of Trpm4. In vitro under circumstance of eliminating distractions from brain edema, SUR1-TRPM4 and NLRP3 inflammasome were also activated in BV2 cells subjected to lipopolysaccharides, or oxygen-glucose deprivation/reperfusion, which could be blocked by GLB or 9-phenanthrol, a TRPM4 inhibitor. Importantly, activation of SUR1-TRPM4 in BV2 cells required the P2X7 receptor-mediated Ca2+ influx, which in turn magnified the K+ efflux via the Na+ influx-driven opening of K+ channels, leading to the NLRP3 inflammasome activation. These findings suggest that GLB has a direct anti-inflammatory neuroprotective effect independent of its role in preventing brain edema, through inhibition of SUR1-TRPM4 which amplifies K+ efflux and promotes NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yihua He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Yuqin Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Juan Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Kewei Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Jiancong Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Zhenzhou Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Shengnan Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Sohan Gupta
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Nailiang Zang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China.
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China.
| |
Collapse
|
17
|
Colaço D, Bickle J, Walters B. When should researchers cite study differences in response to a failure to replicate? BIOLOGY & PHILOSOPHY 2022; 37:39. [PMID: 36092533 PMCID: PMC9438886 DOI: 10.1007/s10539-022-09873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Scientists often respond to failures to replicate by citing differences between the experimental components of an original study and those of its attempted replication. In this paper, we investigate these purported mismatch explanations. We assess a body of failures to replicate in neuroscience studies on spinal cord injury. We argue that a defensible mismatch explanation is one where (1) a mismatch of components is a difference maker for a mismatch of outcomes, and (2) the components are relevantly different in the follow-up study, given the scope of the original study. With this account, we argue that not all differences between studies are meaningful, even if they are difference makers. As our examples show, focusing only on these differences results in disregarding the representativeness of the original experiment's components and the scope of its outcomes, undercutting other epistemic aims, such as translation, in the process.
Collapse
Affiliation(s)
- David Colaço
- Munich Center for Mathematical Philosophy, LMU Munich, Munich, Germany
| | - John Bickle
- Department of Philosophy and Religion, Mississippi State University, Starkville, USA
- Department of Advanced Biomedical Education, University of Mississippi Medical Center, Jackson, USA
| | - Bradley Walters
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, USA
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, USA
| |
Collapse
|
18
|
Sarkar A, Kim KT, Tsymbalyuk O, Keledjian K, Wilhelmy BE, Sherani NA, Jia X, Gerzanich V, Simard JM. A Direct Comparison of Physical Versus Dihydrocapsaicin-Induced Hypothermia in a Rat Model of Traumatic Spinal Cord Injury. Ther Hypothermia Temp Manag 2022; 12:90-102. [PMID: 35675523 PMCID: PMC9231662 DOI: 10.1089/ther.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological condition with no effective treatment. Hypothermia induced by physical means (cold fluid) is established as an effective therapy in animal models of SCI, but its clinical translation to humans is hampered by several constraints. Hypothermia induced pharmacologically may be noninferior or superior to physically induced hypothermia for rapid, convenient systemic temperature reduction, but it has not been investigated previously in animal models of SCI. We used a rat model of SCI to compare outcomes in three groups: (1) normothermic controls; (2) hypothermia induced by conventional physical means; (3) hypothermia induced by intravenous (IV) dihydrocapsaicin (DHC). Male rats underwent unilateral lower cervical SCI and were treated after a 4-hour delay with physical cooling or IV DHC (∼0.60 mg/kg total) cooling (both 33.0 ± 1.0°C) lasting 4 hours; controls were kept normothermic. Telemetry was used to monitor temperature and heart rate during and after treatments. In two separate experiments, one ending at 48 hours, the other at 6 weeks, “blinded” investigators evaluated rats in the three groups for neurological function followed by histopathological evaluation of spinal cord tissues. DHC reliably induced systemic cooling to 32–33°C. At both the time points examined, the two modes of hypothermia yielded similar improvements in neurological function and lesion size compared with normothermic controls. Our results indicate that DHC-induced hypothermia may be comparable with physical hypothermia in efficacy, but more clinically feasible to administer than physical hypothermia.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kevin T Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bradley E Wilhelmy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nageen A Sherani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J Marc Simard
- Department of Neurosurgery, Pathology and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Ferdowsi S, Abdolmaleki A, Asadi A, Zahri S. Glibenclamide promoted functional recovery following sciatic nerve injury in male Wistar rats. Fundam Clin Pharmacol 2022; 36:966-975. [PMID: 35524424 DOI: 10.1111/fcp.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022]
Abstract
The impact of peripheral nerve damage on a patient's quality of life is severe. The most frequent peripheral nerve crush damage is a sciatic nerve injury. Previous research has shown that glibenclamide (GB) has neuroprotective properties in a variety of oxidative stress-related disorders, including Alzheimer and Parkinson. The goal of this study was to see how GB affected nerve regeneration and improved function of the sciatic nerve in a rat model following a crush injury. We evaluated motor function, sensory recovery, gene expression, and histomorphometry following damage at different time points. Additionally, we assessed atrophy in the gastrocnemius muscle using histology and mass ratio analyses. Our results suggest that 2, 4, 6, and 8 weeks following glibenclamide therapy, promotes the recovery of motor and sensory function in the injured site. Following glibenclamid injection, the mRNA levels of neurotrophic factors (NGF and BDNF) are raised. According to histomorphometry assessment, glibenclamide injection also increased the number of myelinated fibers while decreasing their thickness. These results showed that glibenclamide therapy by decreasing the proinflammatory and oxidant factors may enhance the nerve regeneration. It is clear that more research is needed to confirm these findings.
Collapse
Affiliation(s)
- Sevin Ferdowsi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Bioinformatics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saber Zahri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
20
|
A glibenclamide-sensitive TRPM4-mediated component of CA1 excitatory postsynaptic potentials appears in experimental autoimmune encephalomyelitis. Sci Rep 2022; 12:6000. [PMID: 35397639 PMCID: PMC8994783 DOI: 10.1038/s41598-022-09875-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/16/2022] [Indexed: 12/29/2022] Open
Abstract
The transient receptor potential melastatin 4 (TRPM4) channel contributes to disease severity in the murine experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and to neuronal cell death in models of excitotoxicity and traumatic brain injury. As TRPM4 is activated by intracellular calcium and conducts monovalent cations, we hypothesized that TRPM4 may contribute to and boost excitatory synaptic transmission in CA1 pyramidal neurons of the hippocampus. Using single-spine calcium imaging and electrophysiology, we found no effect of the TRPM4 antagonists 9-phenanthrol and glibenclamide on synaptic transmission in hippocampal slices from healthy mice. In contrast, glibenclamide but not 9-phenanthrol reduced excitatory synaptic potentials in slices from EAE mice, an effect that was absent in slices from EAE mice lacking TRPM4. We conclude that TRPM4 plays little role in basal hippocampal synaptic transmission, but a glibenclamide-sensitive TRPM4-mediated contribution to excitatory postsynaptic responses is upregulated at the acute phase of EAE.
Collapse
|
21
|
Stokum JA, Chryssikos T, Shea P, Olexa J, Schwartzbauer GT, Aarabi B. Letter: Ultrasound in Traumatic Spinal Cord Injury: A Wide-Open Field. Neurosurgery 2022; 90:e110-e111. [PMID: 35175245 DOI: 10.1227/neu.0000000000001866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
22
|
Yang CH, Quan ZX, Wang GJ, He T, Chen ZY, Li QC, Yang J, Wang Q. Elevated intraspinal pressure in traumatic spinal cord injury is a promising therapeutic target. Neural Regen Res 2022; 17:1703-1710. [PMID: 35017417 PMCID: PMC8820714 DOI: 10.4103/1673-5374.332203] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The currently recommended management for acute traumatic spinal cord injury aims to reduce the incidence of secondary injury and promote functional recovery. Elevated intraspinal pressure (ISP) likely plays an important role in the processes involved in secondary spinal cord injury, and should not be overlooked. However, the factors and detailed time course contributing to elevated ISP and its impact on pathophysiology after traumatic spinal cord injury have not been reviewed in the literature. Here, we review the etiology and progression of elevated ISP, as well as potential therapeutic measures that target elevated ISP. Elevated ISP is a time-dependent process that is mainly caused by hemorrhage, edema, and blood-spinal cord barrier destruction and peaks at 3 days after traumatic spinal cord injury. Duraplasty and hypertonic saline may be promising treatments for reducing ISP within this time window. Other potential treatments such as decompression, spinal cord incision, hemostasis, and methylprednisolone treatment require further validation.
Collapse
Affiliation(s)
- Chao-Hua Yang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province; Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng-Xue Quan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gao-Ju Wang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tao He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Yu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiao-Chu Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Yang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qing Wang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
23
|
Luo D, Li X, Hou Y, Hou Y, Luan J, Weng J, Zhan J, Lin D. Sodium tanshinone IIA sulfonate promotes spinal cord injury repair by inhibiting blood spinal cord barrier disruption in vitro and in vivo. Drug Dev Res 2021; 83:669-679. [PMID: 34842291 DOI: 10.1002/ddr.21898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) leads to microvascular damage and the destruction of the blood spinal cord barrier (BSCB), which can progress into secondary injuries, such as apoptosis and necrosis of neurons and glia, culminating in permanent neurological deficits. BSCB restoration is the primary goal of SCI therapy, although very few drugs can repair damaged barrier structure and permeability. Sodium tanshinone IIA sulfonate (STS) is commonly used to treat cardiovascular disease. However, the therapeutic effects of STS on damaged BSCB during the early stage of SCI remain uncertain. Therefore, we exposed spinal cord microvascular endothelial cells to H2 O2 and treated them with different doses of STS. In addition to protecting the cells from H2 O2 -induced apoptosis, STS also reduced cellular permeability. In the in vivo model of SCI, STS reduced BSCB permeability, relieved tissue edema and hemorrhage, suppressed MMP activation and prevented the loss of tight junction and adherens junction proteins. Our findings indicate that STS treatment promotes SCI recovery, and should be investigated further as a drug candidate against traumatic SCI.
Collapse
Affiliation(s)
- Dan Luo
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Li
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonghui Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiyao Luan
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Second College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxian Weng
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiheng Zhan
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingkun Lin
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Jha RM, Rani A, Desai SM, Raikwar S, Mihaljevic S, Munoz-Casabella A, Kochanek PM, Catapano J, Winkler E, Citerio G, Hemphill JC, Kimberly WT, Narayan R, Sahuquillo J, Sheth KN, Simard JM. Sulfonylurea Receptor 1 in Central Nervous System Injury: An Updated Review. Int J Mol Sci 2021; 22:11899. [PMID: 34769328 PMCID: PMC8584331 DOI: 10.3390/ijms222111899] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfonylurea receptor 1 (SUR1) is a member of the adenosine triphosphate (ATP)-binding cassette (ABC) protein superfamily, encoded by Abcc8, and is recognized as a key mediator of central nervous system (CNS) cellular swelling via the transient receptor potential melastatin 4 (TRPM4) channel. Discovered approximately 20 years ago, this channel is normally absent in the CNS but is transcriptionally upregulated after CNS injury. A comprehensive review on the pathophysiology and role of SUR1 in the CNS was published in 2012. Since then, the breadth and depth of understanding of the involvement of this channel in secondary injury has undergone exponential growth: SUR1-TRPM4 inhibition has been shown to decrease cerebral edema and hemorrhage progression in multiple preclinical models as well as in early clinical studies across a range of CNS diseases including ischemic stroke, traumatic brain injury, cardiac arrest, subarachnoid hemorrhage, spinal cord injury, intracerebral hemorrhage, multiple sclerosis, encephalitis, neuromalignancies, pain, liver failure, status epilepticus, retinopathies and HIV-associated neurocognitive disorder. Given these substantial developments, combined with the timeliness of ongoing clinical trials of SUR1 inhibition, now, another decade later, we review advances pertaining to SUR1-TRPM4 pathobiology in this spectrum of CNS disease-providing an overview of the journey from patch-clamp experiments to phase III trials.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Shashvat M. Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Amanda Munoz-Casabella
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Ethan Winkler
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy;
- Neurointensive Care Unit, Department of Neuroscience, San Gerardo Hospital, ASST—Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Raj Narayan
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY 11549, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain;
- Neurotraumatology and Neurosurgery Research Unit, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Department of Neurosurgery, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
25
|
Jha RM, Raikwar SP, Mihaljevic S, Casabella AM, Catapano JS, Rani A, Desai S, Gerzanich V, Simard JM. Emerging therapeutic targets for cerebral edema. Expert Opin Ther Targets 2021; 25:917-938. [PMID: 34844502 PMCID: PMC9196113 DOI: 10.1080/14728222.2021.2010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sudhanshu P. Raikwar
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sandra Mihaljevic
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Joshua S. Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Anupama Rani
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Shashvat Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
26
|
Lale Ataei M, Karimipour M, Shahabi P, Pashaei-Asl R, Ebrahimie E, Pashaiasl M. The Restorative Effect of Human Amniotic Fluid Stem Cells on Spinal Cord Injury. Cells 2021; 10:cells10102565. [PMID: 34685545 PMCID: PMC8534241 DOI: 10.3390/cells10102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition within the neural system which is clinically manifested by sensory-motor dysfunction, leading, in some cases, to neural paralysis for the rest of the patient’s life. In the current study, mesenchymal stem cells (MSCs) were isolated from the human amniotic fluid, in order to study their juxtacrine and paracrine activities. Flow cytometry analysis was performed to identify the MSCs. A conditioned medium (CM) was collected to measure the level of BDNF, IL-1β, and IL-6 proteins using the ELISA assay. Following the SCI induction, MSCs and CM were injected into the lesion site, and also CM was infused intraperitoneally in the different groups. Two weeks after SCI induction, the spinal cord samples were examined to evaluate the expression of the doublecortin (DCX) and glial fibrillary acid protein (GFAP) markers using immunofluorescence staining. The MSCs’ phenotype was confirmed upon the expression and un-expression of the related CD markers. Our results show that MSCs increased the expression level of the DCX and decreased the level of the GFAP relative to the injury group (p < 0.001). Additionally, the CM promoted the DCX expression rate (p < 0.001) and decreased the GFAP expression rate (p < 0.01) as compared with the injury group. Noteworthily, the restorative potential of the MSCs was higher than that of the CM (p < 0.01). Large-scale meta-analysis of transcriptomic data highlighted PAK5, ST8SIA3, and NRXN1 as positively coexpressed genes with DCX. These genes are involved in neuroactive ligand–receptor interaction. Overall, our data revealed that both therapeutic interventions could promote the regeneration and restoration of the damaged neural tissue by increasing the rate of neuroblasts and decreasing the astrocytes.
Collapse
Affiliation(s)
- Maryam Lale Ataei
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Roghiyeh Pashaei-Asl
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1417653911, Iran;
| | - Esmaeil Ebrahimie
- School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia;
- Genomics Research Platform, Research & Industry Engagement, La Trobe University, Melbourne, VIC 3086, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Maryam Pashaiasl
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz 5166614766, Iran
- Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Correspondence: ; Tel.: +98-41-33348573
| |
Collapse
|
27
|
Li Z, Wang Q, Hu H, Zheng W, Gao C. Research advances of biomaterials-based microenvironment-regulation therapies for repair and regeneration of spinal cord injury. Biomed Mater 2021; 16. [PMID: 34384071 DOI: 10.1088/1748-605x/ac1d3c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Traumatic spinal cord injury (SCI) usually results in restricted behaviour recovery and even life-changing paralysis, accompanied with numerous complications. Pathologically, the initial injuries trigger a series of secondary injuries, leading to an expansion of lesion site, a mass of neuron loss, and eventual failure of endogenous axon regeneration. As the advances rapidly spring up in regenerative medicine and tissue engineering biomaterials, regulation of these secondary injuries becomes possible, shedding a light on normal functional restoration. The successful tissue regeneration lies in proper regulation of the inflammatory microenvironment, including the inflammatory immune cells and inflammatory factors that lead to oxidative stress, inhibitory glial scar and neuroexcitatory toxicity. Specifically, the approaches based on microenvironment-regulating biomaterials have shown great promise in the repair and regeneration of SCI. In this review, the pathological inflammatory microenvironments of SCI are discussed, followed by the introduction of microenvironment-regulating biomaterials in terms of their impressive therapeutic effect in attenuation of secondary inflammation and promotion of axon regrowth. With the emphasis on regulating secondary events, the biomaterials for SCI treatment will become promising for clinical applications.
Collapse
Affiliation(s)
- Ziming Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiaoxuan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China.,Dr Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
28
|
Zhang Y, Al Mamun A, Yuan Y, Lu Q, Xiong J, Yang S, Wu C, Wu Y, Wang J. Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol Med Rep 2021; 23:417. [PMID: 33846780 PMCID: PMC8025476 DOI: 10.3892/mmr.2021.12056] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most debilitating of all the traumatic conditions that afflict individuals. For a number of years, extensive studies have been conducted to clarify the molecular mechanisms of SCI. Experimental and clinical studies have indicated that two phases, primary damage and secondary damage, are involved in SCI. The initial mechanical damage is caused by local impairment of the spinal cord. In addition, the fundamental mechanisms are associated with hyperflexion, hyperextension, axial loading and rotation. By contrast, secondary injury mechanisms are led by systemic and cellular factors, which may also be initiated by the primary injury. Although significant advances in supportive care have improved clinical outcomes in recent years, a number of studies continue to explore specific pharmacological therapies to minimize SCI. The present review summarized some important pathophysiologic mechanisms that are involved in SCI and focused on several pharmacological and non‑pharmacological therapies, which have either been previously investigated or have a potential in the management of this debilitating injury in the near future.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Abdullah Al Mamun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yuan Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Qi Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shulin Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
| | - Chengbiao Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
29
|
Kang KR, Kim J, Ryu B, Lee SG, Oh MS, Baek J, Ren X, Canavero S, Kim CY, Chung HM. BAPTA, a calcium chelator, neuroprotects injured neurons in vitro and promotes motor recovery after spinal cord transection in vivo. CNS Neurosci Ther 2021; 27:919-929. [PMID: 33942993 PMCID: PMC8265943 DOI: 10.1111/cns.13651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/25/2021] [Accepted: 04/11/2021] [Indexed: 12/27/2022] Open
Abstract
Aim Despite animal evidence of a role of calcium in the pathogenesis of spinal cord injury, several studies conducted in the past found calcium blockade ineffective. However, those studies involved oral or parenteral administration of Ca++ antagonists. We hypothesized that Ca++ blockade might be effective with local/immediate application (LIA) at the time of neural injury. Methods In this study, we assessed the effects of LIA of BAPTA (1,2‐bis (o‐aminophenoxy) ethane‐N, N, N′, N'‐tetraacetic acid), a cell‐permeable highly selective Ca++ chelator, after spinal cord transection (SCT) in mice over 4 weeks. Effects of BAPTA were assessed behaviorally and with immunohistochemistry. Concurrently, BAPTA was submitted for the first time to multimodality assessment in an in vitro model of neural damage as a possible spinal neuroprotectant. Results We demonstrate that BAPTA alleviates neuronal apoptosis caused by physical damage by inhibition of neuronal apoptosis and reactive oxygen species (ROS) generation. This translates to enhanced preservation of electrophysiological function and superior behavioral recovery. Conclusion This study shows for the first time that local/immediate application of Ca++ chelator BAPTA is strongly neuroprotective after severe spinal cord injury.
Collapse
Affiliation(s)
- Kyu-Ree Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Jin Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Bokyeong Ryu
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Min-Seok Oh
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Jieun Baek
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Xiaoping Ren
- Department of Orthopedics, Ruikang Hospital, Nanning, China.,GICUP-Global Initiative to Cure Paralysis, Columbus, Ohio, USA
| | - Sergio Canavero
- GICUP-Global Initiative to Cure Paralysis, Columbus, Ohio, USA.,HEAVEN/GEMINI International Collaborative Group, Turin, Italy
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea.,GICUP-Global Initiative to Cure Paralysis, Columbus, Ohio, USA.,Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
30
|
Morse LR, Field-Fote EC, Contreras-Vidal J, Noble-Haeusslein LJ, Rodreick M, Shields RK, Sofroniew M, Wudlick R, Zanca JM. Meeting Proceedings for SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research. J Neurotrauma 2021; 38:1251-1266. [PMID: 33353467 DOI: 10.1089/neu.2020.7174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The spinal cord injury (SCI) research community has experienced great advances in discovery research, technology development, and promising clinical interventions in the past decade. To build upon these advances and maximize the benefit to persons with SCI, the National Institutes of Health (NIH) hosted a conference February 12-13, 2019 titled "SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research." The purpose of the conference was to bring together a broad range of stakeholders, including researchers, clinicians and healthcare professionals, persons with SCI, industry partners, regulators, and funding agency representatives to break down existing communication silos. Invited speakers were asked to summarize the state of the science, assess areas of technological and community readiness, and build collaborations that could change the trajectory of research and clinical options for people with SCI. In this report, we summarize the state of the science in each of five key domains and identify the gaps in the scientific literature that need to be addressed to move the field forward.
Collapse
Affiliation(s)
- Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Edelle C Field-Fote
- Shepherd Center, Atlanta, Georgia, USA.,Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jose Contreras-Vidal
- Laboratory for Non-Invasive Brain Machine Interfaces, NSF IUCRC BRAIN, Cullen College of Engineering, University of Houston, Houston, Texas, USA
| | - Linda J Noble-Haeusslein
- Departments of Neurology and Psychology and the Institute of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | | | - Richard K Shields
- Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michael Sofroniew
- Department of Neurobiology, University of California, Los Angeles, California, USA
| | - Robert Wudlick
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Jeanne M Zanca
- Spinal Cord Injury Research, Kessler Foundation, West Orange, New Jersey, USA.,Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | |
Collapse
|
31
|
Aarabi B, Akhtar-Danesh N, Simard JM, Chryssikos T, Shanmuganathan K, Olexa J, Sansur CA, Crandall KM, Wessell AP, Cannarsa G, Sharma A, Lomangino CD, Boulter J, Scarboro M, Oliver J, Ahmed AK, Wenger N, Serra R, Shea P, Schwartzbauer GT. Efficacy of Early (≤ 24 Hours), Late (25-72 Hours), and Delayed (>72 Hours) Surgery with Magnetic Resonance Imaging-Confirmed Decompression in American Spinal Injury Association Impairment Scale Grades C and D Acute Traumatic Central Cord Syndrome Caused by Spinal Stenosis. J Neurotrauma 2021; 38:2073-2083. [PMID: 33726507 PMCID: PMC8309437 DOI: 10.1089/neu.2021.0040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The therapeutic significance of timing of decompression in acute traumatic central cord syndrome (ATCCS) caused by spinal stenosis remains unsettled. We retrospectively examined a homogenous cohort of patients with ATCCS and magnetic resonance imaging (MRI) evidence of post-treatment spinal cord decompression to determine whether timing of decompression played a significant role in American Spinal Injury Association (ASIA) motor score (AMS) 6 months following trauma. We used the t test, analysis of variance, Pearson correlation coefficient, and multiple regression for statistical analysis. During a 19-year period, 101 patients with ATCCS, admission ASIA Impairment Scale (AIS) grades C and D, and an admission AMS of ≤95 were surgically decompressed. Twenty-four of 101 patients had an AIS grade C injury. Eighty-two patients were males, the mean age of patients was 57.9 years, and 69 patients had had a fall. AMS at admission was 68.3 (standard deviation [SD] 23.4); upper extremities (UE) 28.6 (SD 14.7), and lower extremities (LE) 41.0 (SD 12.7). AMS at the latest follow-up was 93.1 (SD 12.8), UE 45.4 (SD 7.6), and LE 47.9 (SD 6.6). Mean number of stenotic segments was 2.8, mean canal compromise was 38.6% (SD 8.7%), and mean intramedullary lesion length (IMLL) was 23 mm (SD 11). Thirty-six of 101 patients had decompression within 24 h, 38 patients had decompression between 25 and 72 h, and 27 patients had decompression >72 h after injury. Demographics, etiology, AMS, AIS grade, morphometry, lesion length, surgical technique, steroid protocol, and follow-up AMS were not statistically different between groups treated at different times. We analyzed the effect size of timing of decompression categorically and in a continuous fashion. There was no significant effect of the timing of decompression on follow-up AMS. Only AMS at admission determined AMS at follow-up (coefficient = 0.31; 95% confidence interval [CI]:0.21; p = 0.001). We conclude that timing of decompression in ATCCS caused by spinal stenosis has little bearing on ultimate AMS at follow-up.
Collapse
Affiliation(s)
- Bizhan Aarabi
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA.,R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Noori Akhtar-Danesh
- School of Nursing and Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - J Marc Simard
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy Chryssikos
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Joshua Olexa
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Charles A Sansur
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kenneth M Crandall
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aaron P Wessell
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gregory Cannarsa
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ashish Sharma
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cara D Lomangino
- R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jason Boulter
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Maureen Scarboro
- R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey Oliver
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Abdul Kareem Ahmed
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nicole Wenger
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Riccardo Serra
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Phelan Shea
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gary T Schwartzbauer
- Department of Neurosurgery and University of Maryland School of Medicine, Baltimore, Maryland, USA.,R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Berdugo M, Delaunay K, Naud MC, Guegan J, Moulin A, Savoldelli M, Picard E, Radet L, Jonet L, Djerada Z, Gozalo C, Daruich A, Beltrand J, Jeanny JC, Kermorvant-Duchemin E, Crisanti P, Polak M, Behar-Cohen F. The antidiabetic drug glibenclamide exerts direct retinal neuroprotection. Transl Res 2021; 229:83-99. [PMID: 33080394 DOI: 10.1016/j.trsl.2020.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 02/03/2023]
Abstract
Sulfonylureas, widely used as hypoglycemic agents in adults with type 2 diabetes, have neuroprotective effects in preclinical models of central nervous system injury, and in children with neuropsychomotor impairments linked to neonatal diabetes secondary to ATP-sensitive potassium channel mutations. In the human and rodent retina, we show that the glibenclamide-activated channel sulfonylurea receptor 1 (SUR1) is expressed in the retina and enriched in the macula; we also show that it colocalizes with the potassium channel Kir6.2, and with the cation channel transporter TRPM4. Glibenclamide (glyburide), administered at doses that did not decrease the glycemia, or injected directly into the eye, protected the structure and the function of the retina in various models of retinal injury that recapitulate the pathogenic neurodegenerative events in the diabetic retina. The downregulation of SUR1 using a siRNA suppressed the neuroprotective effects of glibenclamide on excitotoxic stress-induced cell death. The glibenclamide effects include the transcriptional regulation of antioxidant and neuroprotective genes. Ocular glibenclamide could be repurposed for diabetic retinopathy.
Collapse
Affiliation(s)
- Marianne Berdugo
- Université de Paris, Faculté de Santé, Paris, France; Inserm UMRS 1138, Team 17: Physiopathology of Ocular Diseases-Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Kimberley Delaunay
- Université de Paris, Faculté de Santé, Paris, France; Inserm UMRS 1138, Team 17: Physiopathology of Ocular Diseases-Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Marie-Christine Naud
- Université de Paris, Faculté de Santé, Paris, France; Inserm UMRS 1138, Team 17: Physiopathology of Ocular Diseases-Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Justine Guegan
- iCONICS Corefacility, ICM Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Alexandre Moulin
- Department of Ophthalmology of University of Lausanne, Jules Gonin Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Michèle Savoldelli
- Université de Paris, Faculté de Santé, Paris, France; Inserm UMRS 1138, Team 17: Physiopathology of Ocular Diseases-Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France
| | - Emilie Picard
- Université de Paris, Faculté de Santé, Paris, France; Inserm UMRS 1138, Team 17: Physiopathology of Ocular Diseases-Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Lolita Radet
- Université de Paris, Faculté de Santé, Paris, France; Inserm UMRS 1138, Team 17: Physiopathology of Ocular Diseases-Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Laurent Jonet
- Université de Paris, Faculté de Santé, Paris, France; Inserm UMRS 1138, Team 17: Physiopathology of Ocular Diseases-Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Zoubir Djerada
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Maison Blanche, centre hospitalier et universitaire de Reims, Reims, France
| | - Claire Gozalo
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Maison Blanche, centre hospitalier et universitaire de Reims, Reims, France
| | - Alejandra Daruich
- Université de Paris, Faculté de Santé, Paris, France; Inserm UMRS 1138, Team 17: Physiopathology of Ocular Diseases-Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; AP-HP, Service d'Ophtalmologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Jacques Beltrand
- Université de Paris, Faculté de Santé, Paris, France; AP-HP, Service d'Endocrinologie, Gynécologie et Diabétologie Pédiatriques, Hôpital Universitaire Necker-Enfants Malades, Paris, France; Inserm U1016, Institut Cochin, Paris, France; Inserm UMR 1163, Institut Imagine, Université de Paris, Paris, France
| | - Jean-Claude Jeanny
- Université de Paris, Faculté de Santé, Paris, France; Inserm UMRS 1138, Team 17: Physiopathology of Ocular Diseases-Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Elsa Kermorvant-Duchemin
- Université de Paris, Faculté de Santé, Paris, France; Inserm UMRS 1138, Team 17: Physiopathology of Ocular Diseases-Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France; AP-HP, Service de Néonatalogie, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Patricia Crisanti
- Université de Paris, Faculté de Santé, Paris, France; Inserm UMRS 1138, Team 17: Physiopathology of Ocular Diseases-Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Michel Polak
- Université de Paris, Faculté de Santé, Paris, France; AP-HP, Service d'Endocrinologie, Gynécologie et Diabétologie Pédiatriques, Hôpital Universitaire Necker-Enfants Malades, Paris, France; Inserm U1016, Institut Cochin, Paris, France; Inserm UMR 1163, Institut Imagine, Université de Paris, Paris, France
| | - Francine Behar-Cohen
- Université de Paris, Faculté de Santé, Paris, France; Inserm UMRS 1138, Team 17: Physiopathology of Ocular Diseases-Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; AP-HP, OphtalmoPôle, Hôpital Cochin, Paris, France.
| |
Collapse
|
33
|
Pergakis M, Badjatia N, Simard JM. An update on the pharmacological management and prevention of cerebral edema: current therapeutic strategies. Expert Opin Pharmacother 2021; 22:1025-1037. [PMID: 33467932 DOI: 10.1080/14656566.2021.1876663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Cerebral edema is a common complication of multiple neurological diseases and is a strong predictor of outcome, especially in traumatic brain injury and large hemispheric infarction.Areas Covered: Traditional and current treatments of cerebral edema include treatment with osmotherapy or decompressive craniectomy at the time of clinical deterioration. The authors discuss preclinical and clinical models of a variety of neurological disease states that have identified receptors, ion transporters, and channels involved in the development of cerebral edema as well as modulation of these receptors with promising agents.Expert opinion: Further study is needed on the safety and efficacy of the agents discussed. IV glibenclamide has shown promise in preclinical and clinical trials of cerebral edema in large hemispheric infarct and traumatic brain injury. Consideration of underlying pathophysiology and pharmacodynamics is vital, as the synergistic use of agents has the potential to drastically mitigate cerebral edema and secondary brain injury thusly transforming our treatment paradigms.
Collapse
Affiliation(s)
- Melissa Pergakis
- Program in Trauma Department of Neurology University of Maryland School of Medicine,Baltimore MD USA
| | - Neeraj Badjatia
- Program in Trauma Department of Neurology University of Maryland School of Medicine,Baltimore MD USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Aarabi B, Albrecht JS, Simard JM, Chryssikos T, Schwartzbauer G, Sansur CA, Crandall K, Gertner M, Howie B, Wessell A, Cannarsa G, Caffes N, Oliver J, Shanmuganathan K, Olexa J, Lomangino CD, Scarboro M. Trends in Demographics and Markers of Injury Severity in Traumatic Cervical Spinal Cord Injury. J Neurotrauma 2021; 38:756-764. [PMID: 33353454 DOI: 10.1089/neu.2020.7415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over the past four decades, there have been progressive changes in the epidemiology of traumatic spinal cord injury (tSCI). We assessed trends in demographic and injury-related variables in traumatic cervical spinal cord injury (tCSCI) patients over an 18-year period at a single Level I trauma center. We included all magnetic resonance imaging-confirmed tCSCI patients ≥15 years of age for years 2001-2018. Among 1420 patients, 78.3% were male with a mean age 51.5 years. Etiology included falls (46.9%), motor vehicle collisions (MVCs; 34.2%), and sports injuries (10.9%). Median American Spinal Injury Association (ASIA) Motor Score (AMS) was 44, complete tCSCI was noted in 29.6% of patients, fracture dislocations were noted in 44.7%, and median intramedullary lesion length (IMLL) was 30.8 mm (complete injuries 56.3 mm and incomplete injuries 27.4 mm). Over the study period, mean age and proportion of falls increased (p < 0.001) whereas proportion attributable to MVCs and sports injuries decreased (p < 0.001). Incomplete injuries, AMS, and the proportion of patients with no fracture dislocations increased whereas complete injuries decreased significantly. IMLL declined (p = 0.17) and proportion with hematomyelia did not change significantly. In adjusted regression models, increase in age and decreases in prevalence of MVC mechanism and complete injuries over time remained statistically significant. Changes in demographic and injury-related characteristics of tCSCI patients over time may help explain the observed improvement in outcomes. Further, improved clinical outcomes and drop in IMLL may reflect improvements in initial risk assessment and pre-hospital management, advances in healthcare delivery, and preventive measures including public education.
Collapse
Affiliation(s)
- Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer S Albrecht
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy Chryssikos
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gary Schwartzbauer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Charles A Sansur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kenneth Crandall
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Melanie Gertner
- Maryland Institute for EMS Systems, Baltimore, Maryland, USA
| | | | - Aaron Wessell
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gregory Cannarsa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nick Caffes
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey Oliver
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Joshua Olexa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cara Diaz Lomangino
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Maureen Scarboro
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Liu C, Xie J, Sun S, Li H, Li T, Jiang C, Chen X, Wang J, Le A, Wang J, Li Z, Wang J, Wang W. Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment in Acute Ischemic Stroke. Cell Mol Neurobiol 2020; 42:621-646. [PMID: 33125600 DOI: 10.1007/s10571-020-00985-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Hemorrhagic transformation (HT) is a common complication after thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) in ischemic stroke. In this article, recent research progress of HT in vivo and in vitro studies was reviewed. We have discussed new potential mechanisms and possible experimental models of HT development, as well as possible biomarkers and treatment methods. Meanwhile, we compared and analyzed rodent models, large animal models and in vitro BBB models of HT, and the limitations of these models were discussed. The molecular mechanism of HT was investigated in terms of BBB disruption, rt-PA neurotoxicity and the effect of neuroinflammation, matrix metalloproteinases, reactive oxygen species. The clinical features to predict HT were represented including blood biomarkers and clinical factors. Recent progress in neuroprotective strategies to improve HT after stroke treated with rt-PA is outlined. Further efforts need to be made to reduce the risk of HT after rt-PA therapy and improve the clinical prognosis of patients with ischemic stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shanshan Sun
- Department of Ultrasound Imaging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hui Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tianyu Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Junmin Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Anh Le
- Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jiarui Wang
- The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhanfei Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China.
| | - Wei Wang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
36
|
Sodium Tanshinone IIA Silate Exerts Microcirculation Protective Effects against Spinal Cord Injury In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3949575. [PMID: 33101588 PMCID: PMC7568160 DOI: 10.1155/2020/3949575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/10/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Spinal cord microcirculation involves functioning endothelial cells at the blood spinal cord barrier (BSCB) and maintains normal functioning of spinal cord neurons, axons, and glial cells. Protection of both the function and integrity of endothelial cells as well as the prevention of BSCB disruption may be a strong strategy for the treatment of spinal cord injury (SCI) cases. Sodium Tanshinone IIA silate (STS) is used for the treatment of coronary heart disease and improves microcirculation. Whether STS exhibits protective effects for SCI microcirculation is not yet clear. The purpose of this study is to investigate the protective effects of STS on oxygen-glucose deprivation- (OGD-) induced injury of spinal cord endothelial cells (SCMECs) in vitro and to explore effects on BSCB and neurovascular protection in vivo. SCMECs were treated with various concentrations of STS (1 μM, 3 μM, and 10 μM) for 24 h with or without OGD-induction. Cell viability, tube formation, migration, and expression of Notch signaling pathway components were evaluated. Histopathological evaluation (H&E), Nissl staining, BSCB permeability, and the expression levels of von Willebrand Factor (vWF), CD31, NeuN, and Notch signaling pathway components were analyzed. STS was found to improve SCMEC functions and reduce inflammatory mediators after OGD. STS also relieved histopathological damage, increased zonula occludens-1 (ZO-1), inhibited BSCB permeability, rescued microvessels, protected motor neuromas, and improved functional recovery in a SCI model. Moreover, we uncovered that the Notch signaling pathway plays an important role during these processes. These results indicated that STS protects microcirculation in SCI, which may be used as a therapeutic strategy for SCI in the future.
Collapse
|
37
|
Zhang X, Jing Y, Qin C, Liu C, Yang D, Gao F, Yang M, Du L, Li J. Mechanical stress regulates autophagic flux to affect apoptosis after spinal cord injury. J Cell Mol Med 2020; 24:12765-12776. [PMID: 32945105 PMCID: PMC7686991 DOI: 10.1111/jcmm.15863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/28/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Increased mechanical stress after spinal cord injury (SCI) expands the scope of nerve tissue damage and exacerbates nerve function defects. Surgical decompression after SCI is a conventional therapeutic strategy and has been proven to have neuroprotective effects. However, the mechanisms of the interaction between mechanical stress and neurons are currently unknown. In this study, we monitored intramedullary pressure (IMP) and investigated the therapeutic benefit of decompression (including durotomy and piotomy) after injury and its underlying mechanisms in SCI. We found that decreased IMP promotes the generation and degradation of LC3 II, promotes the degradation of p62 and enhances autophagic flux to alleviate apoptosis. The lysosomal dysfunction was reduced after decompression. Piotomy was better than durotomy for the histological repair of spinal cord tissue after SCI. However, the autophagy‐lysosomal pathway inhibitor chloroquine (CQ) partially reversed the apoptosis inhibition caused by piotomy after SCI, and the structural damage was also aggravated after CQ administration. An antibody microarray analysis showed that decompression may reverse the up‐regulated abundance of p‐PI3K, p‐AKT and p‐mTOR caused by SCI. Our findings may contribute to a better understanding of the mechanism of decompression and the effects of mechanical stress on autophagy after SCI.
Collapse
Affiliation(s)
- Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yingli Jing
- China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.,Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Changbin Liu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Beijing, China
| | - Degang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
38
|
Jeffery ND, Olby NJ, Moore SA. Clinical Trial Design-A Review-With Emphasis on Acute Intervertebral Disc Herniation. Front Vet Sci 2020; 7:583. [PMID: 33134333 PMCID: PMC7512142 DOI: 10.3389/fvets.2020.00583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
There is a clear need for new methods of treatment of acute disc herniation in dogs, most obviously to address the permanent loss of function that can arise because of the associated spinal cord injury. Clinical trials form the optimal method to introduce new therapies into everyday clinical practice because they are a reliable source of unbiased evidence of effectiveness. Although many designs are available, parallel cohort trials are most widely applicable to acute disc herniation in dogs. In this review another key trial design decision—that between pragmatic and explanatory approaches—is highlighted and used as a theme to illustrate the close relationship between trial objective and design. Acute disc herniation, and acute spinal cord injury, is common in dogs and there is a multitude of candidate interventions that could be trialed. Most current obstacles to large-scale clinical trials in dogs can be overcome by collaboration and cooperation amongst interested veterinarians.
Collapse
Affiliation(s)
- Nick D Jeffery
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Sarah A Moore
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
39
|
Zhou K, Liu Y, Zhao Z, Wang Y, Huang L, Chai R, Li G, Jiang T. ABCC8 mRNA expression is an independent prognostic factor for glioma and can predict chemosensitivity. Sci Rep 2020; 10:12682. [PMID: 32728190 PMCID: PMC7391768 DOI: 10.1038/s41598-020-69676-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Glioma is the most common primary intracranial tumor and is associated with very low survival rates. The development of reliable biomarkers can help to elucidate the molecular mechanisms involved in glioma development. Here the expression of ABCC8 mRNA, clinical characteristics, and survival information based on 1893 glioma samples from four independent databases were analyzed. The expression patterns of ABCC8 mRNA were compared by a Chi square test. The overall survival rate of gliomas was evaluated according to the expression level of ABCC8 mRNA. The prognostic value of this marker in gliomas was tested using Cox single factor and multi factor regression analyses. We found patients with low WHO grade, oligodendrocytoma, low molecular grade, IDH mutation, and 1p19q combined deletion had high ABCC8 mRNA expression. The patients with high expression of ABCC8 mRNA had longer survival. ABCC8 mRNA expression was a new independent prognostic index for glioma. Temozolomide chemotherapy was an independent index to prolong overall survival in high ABCC8 mRNA expression glioma patients, whereas in patients with low expression, there was no significant difference. So ABCC8 mRNA expression could be an independent prognostic indicator for glioma patients and could predict the sensitivity of glioma to temozolomide.
Collapse
Affiliation(s)
- Kaijia Zhou
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Yanwei Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Yinyuan Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Lijie Huang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Ruichao Chai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
40
|
Andjelkovic AV, Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF. Modeling blood-brain barrier pathology in cerebrovascular disease in vitro: current and future paradigms. Fluids Barriers CNS 2020; 17:44. [PMID: 32677965 PMCID: PMC7367394 DOI: 10.1186/s12987-020-00202-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The complexity of the blood-brain barrier (BBB) and neurovascular unit (NVU) was and still is a challenge to bridge. A highly selective, restrictive and dynamic barrier, formed at the interface of blood and brain, the BBB is a "gatekeeper" and guardian of brain homeostasis and it also acts as a "sensor" of pathological events in blood and brain. The majority of brain and cerebrovascular pathologies are associated with BBB dysfunction, where changes at the BBB can lead to or support disease development. Thus, an ultimate goal of BBB research is to develop competent and highly translational models to understand mechanisms of BBB/NVU pathology and enable discovery and development of therapeutic strategies to improve vascular health and for the efficient delivery of drugs. This review article focuses on the progress being made to model BBB injury in cerebrovascular diseases in vitro.
Collapse
Affiliation(s)
- Anuska V Andjelkovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.
| | - Svetlana M Stamatovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Chelsea M Phillips
- Graduate Program in Neuroscience, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriela Martinez-Revollar
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Caillé F, Gervais P, Auvity S, Coulon C, Marie S, Tournier N, Kuhnast B. Automated two-step manufacturing of [11C]glyburide radiopharmaceutical for PET imaging in humans. Nucl Med Biol 2020; 84-85:20-27. [DOI: 10.1016/j.nucmedbio.2019.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 12/25/2022]
|
42
|
Shanmuganathan K, Zhuo J, Bodanapally UK, Kuladeep S, Aarabi B, Adams J, Miller C, Gullapallie RP, Menakar J. Comparison of Acute Diffusion Tensor Imaging and Conventional Magnetic Resonance Parameters in Predicting Long-Term Outcome after Blunt Cervical Spinal Cord Injury. J Neurotrauma 2020; 37:458-465. [DOI: 10.1089/neu.2019.6394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Uttam K. Bodanapally
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sudini Kuladeep
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jason Adams
- Department of Rehabilitation Services, University of Maryland School of Medicine, Baltimore, Maryland
| | - Catriona Miller
- Aeromedical Research Department, U.S. Air Force School of Aerospace Medicine, Center for the Sustainment of Trauma and Readiness Skills, Baltimore, Maryland
| | - Rao P. Gullapallie
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jay Menakar
- R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
43
|
Aarabi B, Akhtar-Danesh N, Chryssikos T, Shanmuganathan K, Schwartzbauer GT, Simard JM, Olexa J, Sansur CA, Crandall KM, Mushlin H, Kole MJ, Le EJ, Wessell AP, Pratt N, Cannarsa G, Lomangino C, Scarboro M, Aresco C, Oliver J, Caffes N, Carbine S, Mori K. Efficacy of Ultra-Early (< 12 h), Early (12-24 h), and Late (>24-138.5 h) Surgery with Magnetic Resonance Imaging-Confirmed Decompression in American Spinal Injury Association Impairment Scale Grades A, B, and C Cervical Spinal Cord Injury. J Neurotrauma 2020; 37:448-457. [PMID: 31310155 PMCID: PMC6978784 DOI: 10.1089/neu.2019.6606] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In cervical traumatic spinal cord injury (TSCI), the therapeutic effect of timing of surgery on neurological recovery remains uncertain. Additionally, the relationship between extent of decompression, imaging biomarker evidence of injury severity, and outcome is incompletely understood. We investigated the effect of timing of decompression on long-term neurological outcome in patients with complete spinal cord decompression confirmed on postoperative magnetic resonance imaging (MRI). American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade conversion was determined in 72 AIS grades A, B, and C patients 6 months after confirmed decompression. Thirty-two patients underwent decompressive surgery ultra-early (< 12 h), 25 underwent decompressive surgery early (12-24 h), and 15 underwent decompressive surgery late (> 24-138.5 h) after injury. Age, gender, injury mechanism, intramedullary lesion length (IMLL) on MRI, admission ASIA motor score, and surgical technique were not statistically different among groups. Motor complete patients (p = 0.009) and those with fracture dislocations (p = 0.01) tended to be operated on earlier. Improvement of one grade or more was present in 55.6% of AIS grade A, 60.9% of AIS grade B, and 86.4% of AIS grade C patients. Admission AIS motor score (p = 0.0004) and pre-operative IMLL (p = 0.00001) were the strongest predictors of neurological outcome. AIS grade improvement occurred in 65.6%, 60%, and 80% of patients who underwent decompression ultra-early, early, and late, respectively (p = 0.424). Multiple regression analysis revealed that IMLL was the only significant variable predictive of AIS grade conversion to a better grade (odds ratio, 0.908; confidence interval [CI], 0.862-0.957; p < 0.001). We conclude that in patients with post-operative MRI confirmation of complete decompression following cervical TSCI, pre-operative IMLL, not the timing of surgery, determines long-term neurological outcome.
Collapse
Affiliation(s)
- Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
- R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Noori Akhtar-Danesh
- School of Nursing and Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Timothy Chryssikos
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Gary T. Schwartzbauer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
- R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joshua Olexa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Charles A. Sansur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenneth M. Crandall
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Harry Mushlin
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Matthew J. Kole
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Elizabeth J. Le
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Aaron P. Wessell
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Nathan Pratt
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gregory Cannarsa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Cara Lomangino
- R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maureen Scarboro
- R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Carla Aresco
- R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jeffrey Oliver
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Nicholas Caffes
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephen Carbine
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kanami Mori
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
Jha RM, Bell J, Citerio G, Hemphill JC, Kimberly WT, Narayan RK, Sahuquillo J, Sheth KN, Simard JM. Role of Sulfonylurea Receptor 1 and Glibenclamide in Traumatic Brain Injury: A Review of the Evidence. Int J Mol Sci 2020; 21:E409. [PMID: 31936452 PMCID: PMC7013742 DOI: 10.3390/ijms21020409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral edema and contusion expansion are major determinants of morbidity and mortality after TBI. Current treatment options are reactive, suboptimal and associated with significant side effects. First discovered in models of focal cerebral ischemia, there is increasing evidence that the sulfonylurea receptor 1 (SUR1)-Transient receptor potential melastatin 4 (TRPM4) channel plays a key role in these critical secondary injury processes after TBI. Targeted SUR1-TRPM4 channel inhibition with glibenclamide has been shown to reduce edema and progression of hemorrhage, particularly in preclinical models of contusional TBI. Results from small clinical trials evaluating glibenclamide in TBI have been encouraging. A Phase-2 study evaluating the safety and efficacy of intravenous glibenclamide (BIIB093) in brain contusion is actively enrolling subjects. In this comprehensive narrative review, we summarize the molecular basis of SUR1-TRPM4 related pathology and discuss TBI-specific expression patterns, biomarker potential, genetic variation, preclinical experiments, and clinical studies evaluating the utility of treatment with glibenclamide in this disease.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | | | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20121 Milan, Italy;
- Anaesthesia and Intensive Care, San Gerardo and Desio Hospitals, ASST-Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94110, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02108, USA;
| | - Raj K. Narayan
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d′Hebron Research Institute (VHIR), 08001 Barcelona, Spain;
- Department of Neurosurgery, Universitat Autònoma de Barcelona (UAB), 08001 Barcelona, Spain
- Department of Neurosurgery, Vall d′Hebron University Hospital, 08001 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale University School of Medicine, New Haven, CT 06501, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
45
|
Pergakis M, Badjatia N, Chaturvedi S, Cronin CA, Kimberly WT, Sheth KN, Simard JM. BIIB093 (IV glibenclamide): an investigational compound for the prevention and treatment of severe cerebral edema. Expert Opin Investig Drugs 2019; 28:1031-1040. [PMID: 31623469 DOI: 10.1080/13543784.2019.1681967] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Brain swelling due to edema formation is a major cause of neurological deterioration and death in patients with large hemispheric infarction (LHI) and severe traumatic brain injury (TBI), especially contusion-TBI. Preclinical studies have shown that SUR1-TRPM4 channels play a critical role in edema formation and brain swelling in LHI and TBI. Glibenclamide, a sulfonylurea drug and potent inhibitor of SUR1-TRPM4, was reformulated for intravenous injection, known as BIIB093.Areas covered: We discuss the findings from Phase 2 clinical trials of BIIB093 in patients with LHI (GAMES-Pilot and GAMES-RP) and from a small Phase 2 clinical trial in patients with TBI. For the GAMES trials, we review data on objective biological variables, adjudicated edema-related endpoints, functional outcomes, and mortality which, despite missing the primary endpoint, supported the initiation of a Phase 3 trial in LHI (CHARM). For the TBI trial, we review data on MRI measures of edema and the initiation of a Phase 2 trial in contusion-TBI (ASTRAL).Expert opinion: Emerging clinical data show that BIIB093 has the potential to transform our management of patients with LHI, contusion-TBI and other conditions in which swelling leads to neurological deterioration and death.
Collapse
Affiliation(s)
- Melissa Pergakis
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seemant Chaturvedi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carolyn A Cronin
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin N Sheth
- Division of Neurocritical Care, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Strain MM, Hook MA, Reynolds JD, Huang YJ, Henwood MK, Grau JW. A brief period of moderate noxious stimulation induces hemorrhage and impairs locomotor recovery after spinal cord injury. Physiol Behav 2019; 212:112695. [PMID: 31647990 DOI: 10.1016/j.physbeh.2019.112695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
Spinal cord injury (SCI) is often accompanied by additional tissue damage (polytrauma) that provides a source of pain input. Our studies suggest that this pain input may be detrimental to long-term recovery. In a rodent model, we have shown that engaging pain (nociceptive) fibers caudal to a lower thoracic contusion SCI impairs recovery of locomotor function and increases tissue loss (secondary injury) and hemorrhage at the site of injury. In these studies, nociceptive fibers were activated using intermittent electrical stimulation. The stimulation parameters were derived from earlier studies demonstrating that 6 min of noxious stimulation, at an intensity (1.5 mA) that engages unmyelinated C (pain) fibers, induces a form of maladaptive plasticity within the lumbosacral spinal cord. We hypothesized that both shorter bouts of nociceptive input and lower intensities of stimulation will decrease locomotor function and increase spinal cord hemorrhage when rats have a spinal cord contusion. To test this, the present study exposed rats to electrical stimulation 24 h after a moderate lower thoracic contusion SCI. One group of rats received 1.5 mA stimulation for 0, 14.4, 72, or 180 s. Another group received six minutes of stimulation at 0, 0.17, 0.5, and 1.5 mA. Just 72 s of stimulation induced an acute disruption in motor performance, increased hemorrhage, and undermined the recovery of locomotor function. Likewise, less intense (0.5 mA) stimulation produced an acute disruption in motor performance, fueled hemorrhage, and impaired long-term recovery. The results imply that a brief period of moderate pain input can trigger hemorrhage after SCI and undermine long-term recovery. This highlights the importance of managing nociceptive signals after concurrent peripheral and central nervous system injuries.
Collapse
Affiliation(s)
- Misty M Strain
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Michelle A Hook
- Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Joshua D Reynolds
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Yung-Jen Huang
- ChemPartner, 998 Halei Rd., Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, 201203 China
| | - Melissa K Henwood
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
47
|
Minnema AJ, Mehta A, Boling WW, Schwab J, Simard JM, Farhadi HF. SCING-Spinal Cord Injury Neuroprotection with Glyburide: a pilot, open-label, multicentre, prospective evaluation of oral glyburide in patients with acute traumatic spinal cord injury in the USA. BMJ Open 2019; 9:e031329. [PMID: 31601596 PMCID: PMC6797422 DOI: 10.1136/bmjopen-2019-031329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Acute traumatic spinal cord injury (tSCI) is a devastating neurological disorder with no pharmacological neuroprotective strategy proven effective to date. Progressive haemorrhagic necrosis (PHN) represents an increasingly well-characterised mechanism of secondary injury after tSCI that negatively impacts neurological outcomes following acute tSCI. Preclinical studies evaluating the use of the Food and Drug Administration-approved sulfonylurea receptor 1-transient receptor potential melastatin 4 channel blocker glyburide in rodent models have shown reduced secondary microhaemorrhage formation and the absence of capillary fragmentation, the pathological hallmark of PHN. METHODS AND ANALYSIS In this initial phase multicentre open-label pilot study, we propose to enrol 10 patients with acute cervical tSCI to primarily assess the feasibility, and safety of receiving oral glyburide within 8 hours of injury. Secondary objectives include pharmacokinetics and preliminary evaluations on neurological recovery as well as blood and MRI-based injury biomarkers. Analysis will be performed using the descriptive and non-parametric statistics. ETHICS AND DISSEMINATION Glyburide has been shown as an effective neuroprotective agent in preclinical tSCI models and in the treatment of ischaemic stroke with the additional risk of a hypoglycaemic response. Given the ongoing secondary injury and the traumatic hyperglycaemic stress response seen in patients with tSCI, glyburide; thus, offers an appealing neuroprotective strategy to supplement standard of care treatment. The study protocol was approved by the Ohio State University Biomedical Institutional Review Board. The protocol was amended in February 2017 with changes related to study feasibility and patient recruitment. Specifically, the route of administration was changed to the oral form to allow for streamlined and rapid drug administration, and the injury-to-drug time window was extended to 8 hours in an effort to further enhance enrolment. Participants or legally authorised representatives are informed about the trial and its anticipated risks orally and in written form using an approved informed consent form prior to inclusion. The findings of this study will be disseminated to the participants and to academic peers through scientific conferences and peer-reviewed journal publications. TRIAL REGISTRATION NUMBERS NCT02524379 and 2014H0335.
Collapse
Affiliation(s)
- Amy Janelle Minnema
- Department of Neurological Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - A Mehta
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Warren W Boling
- Department of Neurological Surgery, Loma Linda University, Loma Linda, California, USA
| | - Jan Schwab
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - J Marc Simard
- Department of Neurological Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - H Francis Farhadi
- Department of Neurological Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
48
|
Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun 2019; 10:3879. [PMID: 31462640 PMCID: PMC6713740 DOI: 10.1038/s41467-019-11707-7] [Citation(s) in RCA: 396] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/25/2019] [Indexed: 02/08/2023] Open
Abstract
Traumatic spinal cord injury results in severe and irreversible loss of function. The injury triggers a complex cascade of inflammatory and pathological processes, culminating in formation of a scar. While traditionally referred to as a glial scar, the spinal injury scar in fact comprises multiple cellular and extracellular components. This multidimensional nature should be considered when aiming to understand the role of scarring in limiting tissue repair and recovery. In this Review we discuss recent advances in understanding the composition and phenotypic characteristics of the spinal injury scar, the oversimplification of defining the scar in binary terms as good or bad, and the development of therapeutic approaches to target scar components to enable improved functional outcome after spinal cord injury.
Collapse
Affiliation(s)
- Elizabeth J Bradbury
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK.
| | - Emily R Burnside
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK
| |
Collapse
|
49
|
Eisenberg HM, Shenton ME, Pasternak O, Simard JM, Okonkwo DO, Aldrich C, He F, Jain S, Hayman EG. Magnetic Resonance Imaging Pilot Study of Intravenous Glyburide in Traumatic Brain Injury. J Neurotrauma 2019; 37:185-193. [PMID: 31354055 PMCID: PMC6921286 DOI: 10.1089/neu.2019.6538] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pre-clinical studies of traumatic brain injury (TBI) show that glyburide reduces edema and hemorrhagic progression of contusions. We conducted a small Phase II, three-institution, randomized placebo-controlled trial of subjects with TBI to assess the safety and efficacy of intravenous (IV) glyburide. Twenty-eight subjects were randomized and underwent a 72-h infusion of IV glyburide or placebo, beginning within 10 h of trauma. Of the 28 subjects, 25 had Glasgow Coma Scale (GCS) scores of 6-10, and 14 had contusions. There were no differences in adverse events (AEs) or severe adverse events (ASEs) between groups. The magnetic resonance imaging (MRI) percent change at 72-168 h from screening/baseline was compared between the glyburide and placebo groups. Analysis of contusions (7 per group) showed that lesion volumes (hemorrhage plus edema) increased 1036% with placebo versus 136% with glyburide (p = 0.15), and that hemorrhage volumes increased 11.6% with placebo but decreased 29.6% with glyburide (p = 0.62). Three diffusion MRI measures of edema were quantified: mean diffusivity (MD), free water (FW), and tissue MD (MDt), corresponding to overall, extracellular, and intracellular water, respectively. The percent change with time for each measure was compared in lesions (n = 14) versus uninjured white matter (n = 24) in subjects receiving placebo (n = 20) or glyburide (n = 18). For placebo, the percent change in lesions for all three measures was significantly different compared with uninjured white matter (analysis of variance [ANOVA], p < 0.02), consistent with worsening of edema in untreated contusions. In contrast, for glyburide, the percent change in lesions for all three measures was not significantly different compared with uninjured white matter. Further study of IV glyburide in contusion TBI is warranted.
Collapse
Affiliation(s)
- Howard M Eisenberg
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Martha E Shenton
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Research and Development, VA Boston Healthcare System, Brockton Division, Brockton, Massachusetts
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christina Aldrich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Feng He
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Sonia Jain
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Erik G Hayman
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
50
|
Pukos N, Goodus MT, Sahinkaya FR, McTigue DM. Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: What do we know and what still needs to be unwrapped? Glia 2019; 67:2178-2202. [PMID: 31444938 DOI: 10.1002/glia.23702] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) affects over 17,000 individuals in the United States per year, resulting in sudden motor, sensory and autonomic impairments below the level of injury. These deficits may be due at least in part to the loss of oligodendrocytes and demyelination of spared axons as it leads to slowed or blocked conduction through the lesion site. It has long been accepted that progenitor cells form new oligodendrocytes after SCI, resulting in the acute formation of new myelin on demyelinated axons. However, the chronicity of demyelination and the functional significance of remyelination remain contentious. Here we review work examining demyelination and remyelination after SCI as well as the current understanding of oligodendrocyte lineage cell responses to spinal trauma, including the surprisingly long-lasting response of NG2+ oligodendrocyte progenitor cells (OPCs) to proliferate and differentiate into new myelinating oligodendrocytes for months after SCI. OPCs are highly sensitive to microenvironmental changes, and therefore respond to the ever-changing post-SCI milieu, including influx of blood, monocytes and neutrophils; activation of microglia and macrophages; changes in cytokines, chemokines and growth factors such as ciliary neurotrophic factor and fibroblast growth factor-2; glutamate excitotoxicity; and axon degeneration and sprouting. We discuss how these changes relate to spontaneous oligodendrogenesis and remyelination, the evidence for and against demyelination being an important clinical problem and if remyelination contributes to motor recovery.
Collapse
Affiliation(s)
- Nicole Pukos
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio.,Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio
| | - Matthew T Goodus
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio
| | - Fatma R Sahinkaya
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio
| | - Dana M McTigue
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio
| |
Collapse
|