1
|
Piao W, Wu L, Xiong Y, Zapas GC, Paluskievicz CM, Oakes RS, Pettit SM, Sleeth ML, Hippen KL, Schmitz J, Ivanyi P, Shetty AC, Song Y, Kong D, Lee Y, Li L, Shirkey MW, Kensiski A, Alvi A, Ho K, Saxena V, Bräsen JH, Jewell CM, Blazar BR, Abdi R, Bromberg JS. Regulatory T cells crosstalk with tumor cells and endothelium through lymphotoxin signaling. Nat Commun 2024; 15:10468. [PMID: 39622857 PMCID: PMC11612289 DOI: 10.1038/s41467-024-54874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Regulatory T cells (Tregs) with multifaceted functions suppress anti-tumor immunity by signaling surrounding cells. Here we report Tregs use the surface lymphotoxin (LT)α1β2 to preferentially stimulate LT beta receptor (LTβR) nonclassical NFκB signaling on both tumor cells and lymphatic endothelial cells (LECs) to accelerate tumor growth and metastasis. Selectively targeting LTβR nonclassical NFκB pathway inhibits tumor growth and migration in vitro. Leveraging in vivo Treg LTα1β2 interactions with LTβR on tumor cells and LECs, transfer of wild type but not LTα-/- Tregs promotes B16F10 melanoma growth and tumor cell-derived chemokines in LTβR-/- mice; and increases SOX18 and FLRT2 in lymphatic vessels of LTβR-/- melanoma. Blocking the nonclassical pathway suppresses tumor growth and lymphatic metastasis by reducing chemokine production, restricting Treg recruitment to tumors, and retaining intratumoral IFNγ+ CD8 T cells. Our data reveals that Treg LTα1β2 promotes LTβR nonclassical NFκB signaling in tumor cells and LECs providing a rational strategy to prevent Treg promoted tumor growth and metastasis.
Collapse
Affiliation(s)
- Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Long Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yanbao Xiong
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Gregory C Zapas
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Sarah M Pettit
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Margaret L Sleeth
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Keli L Hippen
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jessica Schmitz
- Institute for Pathology, Hannover Medical School, 30625, Hannover, Germany
| | - Philipp Ivanyi
- Department of Hematology and Oncology, Hannover Medical School, 30625, Hannover, Germany
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Dejun Kong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Young Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lushen Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Marina W Shirkey
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Allison Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Aamna Alvi
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kevin Ho
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jan H Bräsen
- Institute for Pathology, Hannover Medical School, 30625, Hannover, Germany
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Ransmayr B, Bal SK, Thian M, Svaton M, van de Wetering C, Hafemeister C, Segarra-Roca A, Block J, Frohne A, Krolo A, Altunbas MY, Bilgic-Eltan S, Kıykım A, Aydiner O, Kesim S, Inanir S, Karakoc-Aydiner E, Ozen A, Aba Ü, Çomak A, Tuğcu GD, Pazdzior R, Huber B, Farlik M, Kubicek S, von Bernuth H, Simonitsch-Klupp I, Rizzi M, Halbritter F, Tumanov AV, Kraakman MJ, Metin A, Castanon I, Erman B, Baris S, Boztug K. LTβR deficiency causes lymph node aplasia and impaired B cell differentiation. Sci Immunol 2024; 9:eadq8796. [PMID: 39576873 DOI: 10.1126/sciimmunol.adq8796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Secondary lymphoid organs (SLOs) provide the confined microenvironment required for stromal cells to interact with immune cells to initiate adaptive immune responses resulting in B cell differentiation. Here, we studied three patients from two families with functional hyposplenism, absence of tonsils, and complete lymph node aplasia, leading to recurrent bacterial and viral infections. We identified biallelic loss-of-function mutations in LTBR, encoding the lymphotoxin beta receptor (LTβR), primarily expressed on stromal cells. Patients with LTβR deficiency had hypogammaglobulinemia, diminished memory B cells, regulatory and follicular T helper cells, and dysregulated expression of several tumor necrosis factor family members. B cell differentiation in an ex vivo coculture system was intact, implying that the observed B cell defects were not intrinsic in nature and instead resulted from LTβR-dependent stromal cell interaction signaling critical for SLO formation. Collectively, we define a human inborn error of immunity caused primarily by a stromal defect affecting the development and function of SLOs.
Collapse
Affiliation(s)
- Bernhard Ransmayr
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sevgi Köstel Bal
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Marini Thian
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Michael Svaton
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cheryl van de Wetering
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Jana Block
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | | | - Ana Krolo
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Melek Yorgun Altunbas
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Sevgi Bilgic-Eltan
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Ayça Kıykım
- Istanbul University-Cerrahpasa, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Omer Aydiner
- Kartal Dr. Lütfi Kırdar City Hospital, Department of Radiology, Istanbul, Turkey
| | - Selin Kesim
- Marmara University, Faculty of Medicine, Department of Nuclear Medicine, Istanbul, Turkey
| | - Sabahat Inanir
- Marmara University, Faculty of Medicine, Department of Nuclear Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Ahmet Ozen
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Ümran Aba
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Aylin Çomak
- Ankara Bilkent City Hospital, Children's Hospital, Department of Nuclear Medicine, Ankara, Turkey
| | - Gökçen Dilşa Tuğcu
- Ankara Bilkent City Hospital, Children's Hospital, Department of Pediatric Pulmonology, Ankara, Turkey
| | - Robert Pazdzior
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bettina Huber
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Matthias Farlik
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité University Medicine, Berlin, Corporate Member of Free University and Humboldt University and Berlin Institute of Health, Berlin, Germany
- Labor Berlin Charité-Vivantes, Department of Immunology, Berlin, Germany
- Berlin Institute of International Health Global Health Center Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology and Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | | | - Alexei V Tumanov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michael J Kraakman
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Ayşe Metin
- Ankara Bilkent City Hospital, Children's Hospital, Department of Pediatric Immunology and Allergy, Ankara, Turkey
| | - Irinka Castanon
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Baran Erman
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Safa Baris
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- St. Anna Children's Hospital, Vienna, Austria
| |
Collapse
|
3
|
Pitts SC, Schlom J, Donahue RN. Soluble immune checkpoints: implications for cancer prognosis and response to immune checkpoint therapy and conventional therapies. J Exp Clin Cancer Res 2024; 43:155. [PMID: 38822401 PMCID: PMC11141022 DOI: 10.1186/s13046-024-03074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024] Open
Abstract
Longitudinal sampling of tumor tissue from patients with solid cancers, aside from melanoma and a few other cases, is often unfeasible, and thus may not capture the plasticity of interactions between the tumor and immune system under selective pressure of a given therapy. Peripheral blood analyses provide salient information about the human peripheral immunome while offering technical and practical advantages over traditional tumor biopsies, and should be utilized where possible alongside interrogation of the tumor. Some common blood-based biomarkers used to study the immune response include immune cell subsets, circulating tumor DNA, and protein analytes such as cytokines. With the recent explosion of immune checkpoint inhibitors (ICI) as a modality of treatment in multiple cancer types, soluble immune checkpoints have become a relevant area of investigation for peripheral immune-based biomarkers. However, the exact functions of soluble immune checkpoints and their roles in cancer for the most part remain unclear. This review discusses current literature on the production, function, and expression of nine soluble immune checkpoints - sPD-L1, sPD-1, sCTLA4, sCD80, sTIM3, sLAG3, sB7-H3, sBTLA, and sHVEM - in patients with solid tumors, and explores their role as biomarkers of response to ICI as well as to conventional therapies (chemotherapy, radiotherapy, targeted therapy, and surgery) in cancer patients.
Collapse
Affiliation(s)
- Stephanie C Pitts
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Basingab FS, Alzahrani RA, Alrofaidi AA, Barefah AS, Hammad RM, Alahdal HM, Alrahimi JS, Zaher KA, Algiraigri AH, El-Daly MM, Alkarim SA, Aldahlawi AM. Herpesvirus Entry Mediator as an Immune Checkpoint Target and a Potential Prognostic Biomarker in Myeloid and Lymphoid Leukemia. Biomolecules 2024; 14:523. [PMID: 38785930 PMCID: PMC11117912 DOI: 10.3390/biom14050523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Herpesvirus entry mediator (HVEM) is a molecular switch that can modulate immune responses against cancer. The significance of HVEM as an immune checkpoint target and a potential prognostic biomarker in malignancies is still controversial. This study aims to determine whether HVEM is an immune checkpoint target with inhibitory effects on anti-tumor CD4+ T cell responses in vitro and whether HVEM gene expression is dysregulated in patients with acute lymphocytic leukemia (ALL). HVEM gene expression in tumor cell lines and peripheral blood mononuclear cells (PBMCs) from ALL patients and healthy controls was measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Tumor cells were left untreated (control) or were treated with an HVEM blocker before co-culturing with CD4+ T cells in vitro in a carboxyfluorescein succinimidyl ester (CFSE)-dependent proliferation assay. HVEM expression was upregulated in the chronic myelogenous leukemia cell line (K562) (FC = 376.3, p = 0.086) compared with normal embryonic kidney cells (Hek293). CD4+ T cell proliferation was significantly increased in the HVEM blocker-treated K562 cells (p = 0.0033). Significant HVEM differences were detected in ALL PBMCs compared with the controls, and these were associated with newly diagnosed ALL (p = 0.0011) and relapsed/refractory (p = 0.0051) B cell ALL (p = 0.0039) patients. A significant differentiation between malignant ALL and the controls was observed in a receiver operating characteristic (ROC) curve analysis with AUC = 0.78 ± 0.092 (p = 0.014). These results indicate that HVEM is an inhibitory molecule that may serve as a target for immunotherapy and a potential ALL biomarker.
Collapse
Affiliation(s)
- Fatemah S. Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Reem A. Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Aisha A. Alrofaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Ahmed S. Barefah
- Hematology Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Rawan M. Hammad
- Hematology Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Hadil M. Alahdal
- Department of Biology, Faculty of Science, Princes Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Jehan S. Alrahimi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Kawther A. Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Ali H. Algiraigri
- Hematology Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Mai M. El-Daly
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Saleh A. Alkarim
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Embryonic Stem Cells Research Unit and Embryonic and Cancer Stem Cells Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Alia M. Aldahlawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| |
Collapse
|
5
|
Zhang N, Liu X, Qin J, Sun Y, Xiong H, Lin B, Liu K, Tan B, Zhang C, Huang C, Ren S, Liu M, Du B. LIGHT/TNFSF14 promotes CAR-T cell trafficking and cytotoxicity through reversing immunosuppressive tumor microenvironment. Mol Ther 2023; 31:2575-2590. [PMID: 37408308 PMCID: PMC10491984 DOI: 10.1016/j.ymthe.2023.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) in tumor tissues facilitate immune cell trafficking and cytotoxicity, which benefits survival and favorable responses in immune therapy. Here, we observed a high correlation of tumor necrosis factor superfamily member 14 (LIGHT) expression with TLS signature genes, which are all markers for immune cell accumulation and better prognosis, through retrieving RNA sequencing (RNA-seq) data from patients with cancer, suggesting the potential of LIGHT in reconstituting a high immune-infiltrated tumor microenvironment. Accordingly, LIGHT co-expressed chimeric antigen receptor T (LIGHT CAR-T) cells not only showed enhanced cytotoxicity and cytokine production but also improved CCL19 and CCL21 expression by surrounding cells. And the supernatant of LIGHT CAR-T cells promoted T cell migration in a paracrine manner. Furthermore, LIGHT CAR-T cells showed superior anti-tumor efficacy and improved infiltration in comparison with conventional CAR-T cells in immunodeficient NSG mice. Accordingly, murine LIGHT-OT-1 T cells normalized tumor blood vessels and enforced intratumoral lymphoid structures in C57BL/6 syngeneic tumor mouse models, implying the potential of LIGHT CAR-T in clinical application. Taken together, our data revealed a straightforward strategy to optimize trafficking and cytotoxicity of CAR-T cells by redirecting TLSs through LIGHT expression, which has great potential to expand and optimize the application of CAR-T therapy in solid tumors.
Collapse
Affiliation(s)
- Na Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; BRL Medicine, Inc, Shanghai 201109, China
| | - Xiaohong Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Juliang Qin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Sun
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hao Xiong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Boxu Lin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kexin Liu
- BRL Medicine, Inc, Shanghai 201109, China
| | - Binghe Tan
- BRL Medicine, Inc, Shanghai 201109, China
| | - Chenglin Zhang
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Chenshen Huang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
6
|
Udagawa C, Nakano MH, Yoshida T, Ohe Y, Kato K, Mushiroda T, Zembutsu H. Association between genetic variants and the risk of nivolumab-induced immune-related adverse events. Pharmacogenomics 2022; 23:887-901. [PMID: 36268685 DOI: 10.2217/pgs-2022-0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We sought to identify the variants that could predict the risk of nivolumab-induced immune-related adverse events (irAEs) in patients with cancer. Patients & methods: We enrolled 622 Japanese patients and carried out a genome-wide association study. The associations for 507 single nucleotide polymorphisms (SNPs) showing p < 0.001 were further investigated using an independent cohort. Results: In the combined analysis, possible associations were found for a total of 90 SNPs. Although no SNPs were identified to be significantly associated with nivolumab-induced irAEs, the SNP most strongly associated with nivolumab-induced irAEs was rs469490. Conclusion: This study is an important hypothesis-generating study to guide future studies in larger and/or other ethnic cohorts.
Collapse
Affiliation(s)
- Chihiro Udagawa
- Department of Genetics Medicine & services, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Mari Hara Nakano
- Division of Breast & Endocrine Surgery, Department of Surgery, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | - Teruhiko Yoshida
- Department of Genetics Medicine & services, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Science, Yokohama, 230-0045, Japan
| | - Hitoshi Zembutsu
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| |
Collapse
|
7
|
Yoo KJ, Johannes K, González LE, Patel A, Shuptrine CW, Opheim Z, Lenz K, Campbell K, Nguyen TA, Miriyala J, Smith C, McGuire A, Tsai YH, Rangwala F, de Silva S, Schreiber TH, Fromm G. LIGHT (TNFSF14) Costimulation Enhances Myeloid Cell Activation and Antitumor Immunity in the Setting of PD-1/PD-L1 and TIGIT Checkpoint Blockade. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:510-525. [PMID: 35817517 PMCID: PMC10580117 DOI: 10.4049/jimmunol.2101175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Coinhibition of TIGIT (T cell immunoreceptor with Ig and ITIM domains) and PD-1/PD-L1 (PD-1/L1) may improve response rates compared with monotherapy PD-1/L1 blockade in checkpoint naive non-small cell lung cancer with PD-L1 expression >50%. TIGIT mAbs with an effector-competent Fc can induce myeloid cell activation, and some have demonstrated effector T cell depletion, which carries a clinical liability of unknown significance. TIGIT Ab blockade translates to antitumor activity by enabling PVR signaling through CD226 (DNAM-1), which can be directly inhibited by PD-1. Furthermore, DNAM-1 is downregulated on tumor-infiltrating lymphocytes (TILs) in advanced and checkpoint inhibition-resistant cancers. Therefore, broadening clinical responses from TIGIT blockade into PD-L1low or checkpoint inhibition-resistant tumors, may be induced by immune costimulation that operates independently from PD-1/L1 inhibition. TNFSF14 (LIGHT) was identified through genomic screens, in vitro functional analysis, and immune profiling of TILs as a TNF ligand that could provide broad immune activation. Accordingly, murine and human bifunctional fusion proteins were engineered linking the extracellular domain of TIGIT to the extracellular domain of LIGHT, yielding TIGIT-Fc-LIGHT. TIGIT competitively inhibited binding to all PVR ligands. LIGHT directly activated myeloid cells through interactions with LTβR (lymphotoxin β receptor), without the requirement for a competent Fc domain to engage Fcγ receptors. LIGHT costimulated CD8+ T and NK cells through HVEM (herpes virus entry mediator A). Importantly, HVEM was more widely expressed than DNAM-1 on T memory stem cells and TILs across a range of tumor types. Taken together, the mechanisms of TIGIT-Fc-LIGHT promoted strong antitumor activity in preclinical tumor models of primary and acquired resistance to PD-1 blockade, suggesting that immune costimulation mediated by LIGHT may broaden the clinical utility of TIGIT blockade.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | | | | | | | | |
Collapse
|
8
|
Liu W, Chou TF, Garrett-Thomson SC, Seo GY, Fedorov E, Ramagopal UA, Bonanno JB, Wang Q, Kim K, Garforth SJ, Kakugawa K, Cheroutre H, Kronenberg M, Almo SC. HVEM structures and mutants reveal distinct functions of binding to LIGHT and BTLA/CD160. J Exp Med 2021; 218:e20211112. [PMID: 34709351 PMCID: PMC8558838 DOI: 10.1084/jem.20211112] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
HVEM is a TNF (tumor necrosis factor) receptor contributing to a broad range of immune functions involving diverse cell types. It interacts with a TNF ligand, LIGHT, and immunoglobulin (Ig) superfamily members BTLA and CD160. Assessing the functional impact of HVEM binding to specific ligands in different settings has been complicated by the multiple interactions of HVEM and HVEM binding partners. To dissect the molecular basis for multiple functions, we determined crystal structures that reveal the distinct HVEM surfaces that engage LIGHT or BTLA/CD160, including the human HVEM-LIGHT-CD160 ternary complex, with HVEM interacting simultaneously with both binding partners. Based on these structures, we generated mouse HVEM mutants that selectively recognized either the TNF or Ig ligands in vitro. Knockin mice expressing these muteins maintain expression of all the proteins in the HVEM network, yet they demonstrate selective functions for LIGHT in the clearance of bacteria in the intestine and for the Ig ligands in the amelioration of liver inflammation.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Crystallography, X-Ray
- Drosophila/cytology
- Drosophila/genetics
- Female
- GPI-Linked Proteins/chemistry
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/metabolism
- Mutation
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 14/chemistry
- Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
- Yersinia Infections/genetics
- Yersinia Infections/pathology
- Mice
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | - Elena Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Udupi A. Ramagopal
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | | | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, CA
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hilde Cheroutre
- La Jolla Institute for Immunology, La Jolla, CA
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
9
|
HES5-mediated repression of LIGHT transcription may contribute to apoptosis in hepatocytes. Cell Death Discov 2021; 7:308. [PMID: 34689159 PMCID: PMC8542050 DOI: 10.1038/s41420-021-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is prototypical form of metabolic syndrome and has become a global pandemic. Hepatocytes undergo apoptosis in the pathogenesis of NAFLD. We report that the lymphokine LIGHT/TNFSF14 was upregulated in the murine NAFLD livers and in hepatocytes treated with free fatty acids (palmitate, PA). LIGHT knockdown or neutralization attenuated PA-induced apoptosis of hepatocytes. Similarly, knockdown or blockade of LTβR, the receptor for LIGHT, ameliorated apoptosis in hepatocytes exposed to PA. Ingenuity pathway analysis (IPA) revealed several Notch-related transcription factors as upstream regulators of LIGHT, of which HES5 expression was downregulated paralleling LIGHT induction in the pathogenesis of NAFLD. HES5 knockdown enhanced whereas HES5 over-expression weakened LIGHT induction in hepatocytes. HES5 was found to directly bind to the LIGHT promoter and repress LIGHT transcription. Mechanistically, HES5 interacted with SIRT1 to deacetylate histone H3/H4 on the LIGHT promoter to repress LIGHT transcription. SIRT1 knockdown or inhibition offset the effect of HES5 over-expression on LIGHT transcription and hepatocyte apoptosis. In conclusion, our data unveil a novel mechanism that might contribute to excessive apoptosis in hepatocyte exposed to free fatty acids.
Collapse
|
10
|
Waker CA, Kaufman MR, Brown TL. Current State of Preeclampsia Mouse Models: Approaches, Relevance, and Standardization. Front Physiol 2021; 12:681632. [PMID: 34276401 PMCID: PMC8284253 DOI: 10.3389/fphys.2021.681632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a multisystemic, pregnancy-specific disorder and a leading cause of maternal and fetal death. PE is also associated with an increased risk for chronic morbidities later in life for mother and offspring. Abnormal placentation or placental function has been well-established as central to the genesis of PE; yet much remains to be determined about the factors involved in the development of this condition. Despite decades of investigation and many clinical trials, the only definitive treatment is parturition. To better understand the condition and identify potential targets preclinically, many approaches to simulate PE in mice have been developed and include mixed mouse strain crosses, genetic overexpression and knockout, exogenous agent administration, surgical manipulation, systemic adenoviral infection, and trophoblast-specific gene transfer. These models have been useful to investigate how biological perturbations identified in human PE are involved in the generation of PE-like symptoms and have improved the understanding of the molecular mechanisms underpinning the human condition. However, these approaches were characterized by a wide variety of physiological endpoints, which can make it difficult to compare effects across models and many of these approaches have aspects that lack physiological relevance to this human disorder and may interfere with therapeutic development. This report provides a comprehensive review of mouse models that exhibit PE-like symptoms and a proposed standardization of physiological characteristics for analysis in murine models of PE.
Collapse
Affiliation(s)
- Christopher A Waker
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R Kaufman
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
11
|
Zhou Y, Wang Y, Chen H, Xu Y, Luo Y, Deng Y, Zhang J, Shao A. Immuno-oncology: are TAM receptors in glioblastoma friends or foes? Cell Commun Signal 2021; 19:11. [PMID: 33509214 PMCID: PMC7841914 DOI: 10.1186/s12964-020-00694-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Tyro3, Axl, and Mertk (TAM) receptors are a subfamily of receptor tyrosine kinases. TAM receptors have been implicated in mediating efferocytosis, regulation of immune cells, secretion of inflammatory factors, and epithelial-to-mesenchymal transition in the tumor microenvironment, thereby serving as a critical player in tumor development and progression. The pro-carcinogenic role of TAM receptors has been widely confirmed, overexpression of TAM receptors is tied to tumor cells growth, metastasis, invasion and treatment resistance. Nonetheless, it is surprising to detect that inhibiting TAM signaling is not all beneficial in the tumor immune microenvironment. The absence of TAM receptors also affects anti-tumor immunity under certain conditions by modulating different immune cells, as the functional diversification of TAM signaling is closely related to tumor immunotherapy. Glioblastoma is the most prevalent and lethal primary brain tumor in adults. Although research regarding the crosstalk between TAM receptors and glioblastoma remains scarce, it appears likely that TAM receptors possess potential anti-tumor effects rather than portraying a total cancer-driving role in the context of glioblastoma. Accordingly, we doubt whether TAM receptors play a double-sided role in glioblastoma, and propose the Janus-faced TAM Hypothesis as a conceptual framework for comprehending the precise underlying mechanisms of TAMs. In this study, we aim to cast a spotlight on the potential multidirectional effects of TAM receptors in glioblastoma and provide a better understanding for TAM receptor-related targeted intervention. Video Abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hailong Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211126, Jiangsu, China
| | - Yi Luo
- The Second Affiliated Hospital of Zhejiang University School of Medicine (Changxing Branch), Changxing, Huzhou, 313100, Zhejiang, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
12
|
Dai S, Lv Y, Xu W, Yang Y, Liu C, Dong X, Zhang H, Prabhakar BS, Maker AV, Seth P, Wang H. Oncolytic adenovirus encoding LIGHT (TNFSF14) inhibits tumor growth via activating anti-tumor immune responses in 4T1 mouse mammary tumor model in immune competent syngeneic mice. Cancer Gene Ther 2020; 27:923-933. [PMID: 32307442 DOI: 10.1038/s41417-020-0173-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
LIGHT, also known as tumor-necrosis factor (TNF) superfamily member 14 (TNFSF14), is predominantly expressed on activated immune cells and some tumor cells. LIGHT is a pivotal regulator both for recruiting and activating immune cells in the tumor lesions. In this study, we armed human telomerase reverse transcriptase (TERT) promoter controlled oncolytic adenovirus with LIGHT to generate rAd.Light. rAd.Light effectively transduced both human and mouse breast tumor cell lines in vitro, and expressed LIGHT protein on the surface of tumor cells. Both rAd.Null, and rAd.Light could replicate in human breast cancer cells, and produced cytotoxicity to human and mouse mammary tumor cells. rAd.Light induced apoptosis resulting in tumor cell death. Using a subcutaneous model of 4T1 cells in BALB/c mice, rAd.Light was delivered intratumorally to evaluate the anti-tumor responses. Both rAd.Light and rAd.Null significantly inhibited the tumor growth, but rAd.Light produced much stronger anti-tumor effects. Histopathological analysis showed the infiltration of T lymphocytes in the tumor tissues. rAd.Light also induced stronger cellular apoptosis than rAd.Null in the tumors. Interestingly, on day 15, compared to rAd.Null, there was a significant reduction of Tregs following rAd.Light treatment. rAd.Light significantly increased Th1 cytokine interleukin (IL)-2 expression, and reduced Th2 cytokines expression, such as transforming growth factor β (TGF-β) and IL-10 in the tumors. These results suggest rAd.Light induced activation of anti-tumor immune responses. In conclusion, rAd.Light produced anti-tumor effect in a subcutaneous model of breast cancer via inducing tumor apoptosis and evoking strong anti-tumor immune responses. Therefore, rAd.Light has great promise to be developed as an effective therapeutic approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shiyun Dai
- Anhui Medical University, Hefei, 230032, Anhui, PR China
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Yun Lv
- Anhui Medical University, Hefei, 230032, Anhui, PR China
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Weidong Xu
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, IL, USA
| | - Yuefeng Yang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, IL, USA
- Department of Experimental Medical Science & Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, PR China
| | - Chao Liu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xiwen Dong
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Huan Zhang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ajay V Maker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Surgery, Division of Surgical Oncology, University of Illinois, Chicago, IL, USA
| | - Prem Seth
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, IL, USA.
| | - Hua Wang
- Anhui Medical University, Hefei, 230032, Anhui, PR China.
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| |
Collapse
|
13
|
Chesneau M, Mai HL, Danger R, Le Bot S, Nguyen TVH, Bernard J, Poullaouec C, Guerrif P, Conchon S, Giral M, Charreau B, Degauque N, Brouard S. Efficient Expansion of Human Granzyme B–Expressing B Cells with Potent Regulatory Properties. THE JOURNAL OF IMMUNOLOGY 2020; 205:2391-2401. [DOI: 10.4049/jimmunol.2000335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/10/2020] [Indexed: 01/12/2023]
|
14
|
Skeate JG, Otsmaa ME, Prins R, Fernandez DJ, Da Silva DM, Kast WM. TNFSF14: LIGHTing the Way for Effective Cancer Immunotherapy. Front Immunol 2020; 11:922. [PMID: 32499782 PMCID: PMC7243824 DOI: 10.3389/fimmu.2020.00922] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor superfamily member 14 (LIGHT) has been in pre-clinical development for over a decade and shows promise as a modality of enhancing treatment approaches in the field of cancer immunotherapy. To date, LIGHT has been used to combat cancer in multiple tumor models where it can be combined with other immunotherapy modalities to clear established solid tumors as well as treat metastatic events. When LIGHT molecules are delivered to or expressed within tumors they cause significant changes in the tumor microenvironment that are primarily driven through vascular normalization and generation of tertiary lymphoid structures. These changes can synergize with methods that induce or support anti-tumor immune responses, such as checkpoint inhibitors and/or tumor vaccines, to greatly improve immunotherapeutic strategies against cancer. While investigators have utilized multiple vectors to LIGHT-up tumor tissues, there are still improvements needed and components to be found within a human tumor microenvironment that may impede translational efforts. This review addresses the current state of this field.
Collapse
Affiliation(s)
- Joseph G Skeate
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mikk E Otsmaa
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ruben Prins
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Daniel J Fernandez
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Diane M Da Silva
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - W Martin Kast
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
15
|
Francipane MG, Han B, Lagasse E. Host Lymphotoxin-β Receptor Signaling Is Crucial for Angiogenesis of Metanephric Tissue Transplanted into Lymphoid Sites. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:252-269. [PMID: 31585070 PMCID: PMC6943804 DOI: 10.1016/j.ajpath.2019.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
The mouse lymph node (LN) can provide a niche to grow metanephric kidney to maturity. Here, we show that signaling through the lymphotoxin-β receptor (LTβR) is critical for kidney organogenesis both in the LN and the omentum. By transplanting kidney rudiments either in the LNs of mice undergoing LTβR antagonist treatment or in the omenta of Ltbr knockout (Ltbr-/-) mice, the host LTβR signals were found to be crucial for obtaining a well-vascularized kidney graft. Indeed, defective LTβR signaling correlated with decreased expression of endothelial and angiogenic markers in kidney grafts as well as structural alterations. Because the number of glomerular endothelial cells expressing the LTβR target nuclear factor κB-inducing kinase (NIK) decreased in the absence of a functional LTβR, it was speculated that an LTβR/NIK axis mediated the angiogenetic signals required for successful ectopic kidney organogenesis, given the established role of NIK in neovascularization. However, the transplantation of kidney rudiments in omenta of Nik-/- mice revealed that NIK is dispensable for ectopic kidney vascular integration and maturation. Finally, defective LTβR signaling impaired compensatory glomerular adaptation to renal mass reduction, indicating that kidney regeneration approaches, besides whole kidney reconstruction, might benefit from the presence of LTβR signals.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- McGowan Institute for Regenerative Medicine and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Ri.MED Foundation, Palermo, Italy.
| | - Bing Han
- McGowan Institute for Regenerative Medicine and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eric Lagasse
- McGowan Institute for Regenerative Medicine and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
16
|
Shi W, Shao T, Li JY, Fan DD, Lin AF, Xiang LX, Shao JZ. BTLA-HVEM Checkpoint Axis Regulates Hepatic Homeostasis and Inflammation in a ConA-Induced Hepatitis Model in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2019; 203:2425-2442. [PMID: 31562209 DOI: 10.4049/jimmunol.1900458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
The BTLA-HVEM checkpoint axis plays extensive roles in immunomodulation and diseases, including cancer and autoimmune disorders. However, the functions of this checkpoint axis in hepatitis remain limited. In this study, we explored the regulatory role of the Btla-Hvem axis in a ConA-induced hepatitis model in zebrafish. Results showed that Btla and Hvem were differentially expressed on intrahepatic Cd8+ T cells and hepatocytes. Knockdown of Btla or Hvem significantly promoted hepatic inflammation. Btla was highly expressed in Cd8+ T cells in healthy liver but was downregulated in inflamed liver, as evidenced by a disparate proportion of Cd8+Btla+ and Cd8+Btla- T cells in individuals without or with ConA stimulation. Cd8+Btla+ T cells showed minimal cytotoxicity to hepatocytes, whereas Cd8+Btla- T cells were strongly reactive. The depletion of Cd8+Btla- T cells reduced hepatitis, whereas their transfer enhanced hepatic inflammation. These observations indicate that Btla endowed Cd8+Btla+ T cells with self-tolerance, thereby preventing them from attacking hepatocytes. Btla downregulation deprived this tolerization. Mechanistically, Btla-Hvem interaction contributed to Cd8+Btla+ T cell tolerization, which was impaired by Hvem knockdown but rescued by soluble Hvem protein administration. Notably, Light was markedly upregulated on Cd8+Btla- T cells, accompanied by the transition of Cd8+Btla+Light- to Cd8+Btla-Light+ T cells during hepatitis, which could be modulated by Cd4+ T cells. Light blockade attenuated hepatitis, thereby suggesting the positive role of Light in hepatic inflammation. These findings provide insights into a previously unrecognized Btla-Hvem-Light regulatory network in hepatic homeostasis and inflammation, thus adding a new potential therapeutic intervention for hepatitis.
Collapse
Affiliation(s)
- Wei Shi
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Tong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Jiang-Yuan Li
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Dong-Dong Fan
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Ai-Fu Lin
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Li-Xin Xiang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Jian-Zhong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
17
|
Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019; 11:E628. [PMID: 31060337 PMCID: PMC6562626 DOI: 10.3390/cancers11050628] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has altered the management of human malignancies, improving outcomes in an expanding list of diseases. Breast cancer - presumably due to its perceived low immunogenicity - is a late addition to this list. Furthermore, most of the focus has been on the triple negative subtype because of its higher tumor mutational load and lymphocyte-enriched stroma, although emerging data show promise on the other breast cancer subtypes as well. To this point the clinical use of immunotherapy is limited to the inhibition of two immune checkpoints, Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4). Consistent with the complexity of the regulation of the tumor - host interactions and their lack of reliance on a single regulatory pathway, combinatory approaches have shown improved efficacy albeit at the cost of increased toxicity. Beyond those two checkpoints though, a large number of co-stimulatory or co-inhibitory molecules play major roles on tumor evasion from immunosurveillance. These molecules likely represent future targets of immunotherapy provided that the promise shown in early data is translated into improved patient survival in randomized trials. The biological role, prognostic and predictive implications regarding breast cancer and early clinical efforts on exploiting these immune-related therapeutic targets are herein reviewed.
Collapse
Affiliation(s)
- Sebastian Chrétien
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Ioannis Zerdes
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Jonas Bergh
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Alexios Matikas
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Theodoros Foukakis
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| |
Collapse
|
18
|
Meng Q, Zaidi AK, Sedy J, Bensussan A, Popkin DL. Soluble Fc-Disabled Herpes Virus Entry Mediator Augments Activation and Cytotoxicity of NK Cells by Promoting Cross-Talk between NK Cells and Monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:2057-2068. [PMID: 30770415 PMCID: PMC6424646 DOI: 10.4049/jimmunol.1801449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/20/2019] [Indexed: 11/19/2022]
Abstract
CD160 is highly expressed by NK cells and is associated with cytolytic effector activity. Herpes virus entry mediator (HVEM) activates NK cells for cytokine production and cytolytic function via CD160. Fc-fusions are a well-established class of therapeutics, where the Fc domain provides additional biological and pharmacological properties to the fusion protein including enhanced serum t 1/2 and interaction with Fc receptor-expressing immune cells. We evaluated the specific function of HVEM in regulating CD160-mediated NK cell effector function by generating a fusion of the HVEM extracellular domain with human IgG1 Fc bearing CD16-binding mutations (Fc*) resulting in HVEM-(Fc*). HVEM-(Fc*) displayed reduced binding to the Fc receptor CD16 (i.e., Fc-disabled HVEM), which limited Fc receptor-induced responses. HVEM-(Fc*) functional activity was compared with HVEM-Fc containing the wild type human IgG1 Fc. HVEM-(Fc*) treatment of NK cells and PBMCs caused greater IFN-γ production, enhanced cytotoxicity, reduced NK fratricide, and no change in CD16 expression on human NK cells compared with HVEM-Fc. HVEM-(Fc*) treatment of monocytes or PBMCs enhanced the expression level of CD80, CD83, and CD40 expression on monocytes. HVEM-(Fc*)-enhanced NK cell activation and cytotoxicity were promoted via cross-talk between NK cells and monocytes that was driven by cell-cell contact. In this study, we have shown that soluble Fc-disabled HVEM-(Fc*) augments NK cell activation, IFN-γ production, and cytotoxicity of NK cells without inducing NK cell fratricide by promoting cross-talk between NK cells and monocytes without Fc receptor-induced effects. Soluble Fc-disabled HVEM-(Fc*) may be considered as a research and potentially therapeutic reagent for modulating immune responses via sole activation of HVEM receptors.
Collapse
Affiliation(s)
- Qinglai Meng
- Institute of Biomedical Sciences, Shanxi University, Xiaodian District, Taiyuan City, Shanxi Province 030006, China
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Asifa K Zaidi
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - John Sedy
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Armand Bensussan
- INSERM UMR 976, Hôpital Saint-Louis, 75475 Paris Cedex 10, France
| | - Daniel L Popkin
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106;
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106; and
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
19
|
Herpes Simplex Virus 1 Latency and the Kinetics of Reactivation Are Regulated by a Complex Network of Interactions between the Herpesvirus Entry Mediator, Its Ligands (gD, BTLA, LIGHT, and CD160), and the Latency-Associated Transcript. J Virol 2018; 92:JVI.01451-18. [PMID: 30282707 DOI: 10.1128/jvi.01451-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
Recently, we reported that the herpesvirus entry mediator (HVEM; also called TNFRSF14 or CD270) is upregulated by the latency-associated transcript (LAT) of herpes simplex virus 1 (HSV-1) and that the absence of HVEM affects latency reactivation but not primary infection in ocularly infected mice. gD has been shown to bind to HVEM. LIGHT (TNFSF14), CD160, and BTLA (B- and T-lymphocyte attenuator) also interact with HVEM and can interfere with HSV gD binding. It was not known if LIGHT, CD160, or BTLA affected the level of latency reactivation in the trigeminal ganglia (TG) of latently infected mice. To address this issue, we ocularly infected LIGHT-/-, CD160-/-, and BTLA-/- mice with LAT(+) and LAT(-) viruses, using similarly infected wild-type (WT) and HVEM-/- mice as controls. The amount of latency, as determined by the levels of gB DNA in the TG of the LIGHT-/-, CD160-/-, and BTLA-/- mice infected with either LAT(+) or LAT(-) viruses, was lower than that in WT mice infected with LAT(+) virus and was similar in WT mice infected with LAT(-) virus. The levels of LAT RNA in HVEM-/-, LIGHT-/-, CD160-/-, and BTLA-/- mice infected with LAT(+) virus were similar and were lower than the levels of LAT RNA in WT mice. However, LIGHT-/-, CD160-/-, and BTLA-/- mice, independent of the presence of LAT, had levels of reactivation similar to those of WT mice infected with LAT(+) virus. Faster reactivation correlated with the upregulation of HVEM transcript. The LIGHT-/-, CD160-/-, and BTLA-/- mice had higher levels of HVEM expression, and this, along with the absence of BTLA, LIGHT, or CD160, may contribute to faster reactivation, while the absence of each molecule, independent of LAT, may have contributed to lower latency. This study suggests that, in the absence of competition with gD for binding to HVEM, LAT RNA is important for WT levels of latency but not for WT levels of reactivation.IMPORTANCE The effects of BTLA, LIGHT, and CD160 on latency reactivation are not known. We show here that in BTLA, LIGHT, or CD160 null mice, latency is reduced; however, HVEM expression is upregulated compared to that of WT mice, and this upregulation is associated with higher reactivation that is independent of LAT but dependent on gD expression. Thus, one of the mechanisms by which BTLA, LIGHT, and CD160 null mice enhance reactivation appears to be the increased expression of HVEM in the presence of gD. Thus, our results suggest that blockade of HVEM-LIGHT-BTLA-CD160 contributes to reduced HSV-1 latency and reactivation.
Collapse
|
20
|
Mikami Y, Takada Y, Hagihara Y, Kanai T. Innate lymphoid cells in organ fibrosis. Cytokine Growth Factor Rev 2018; 42:27-36. [PMID: 30104153 DOI: 10.1016/j.cytogfr.2018.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
Innate lymphoid cells (ILCs) are a recently identified family of lymphoid effector cells. ILCs are mainly clustered into 3 groups based on their unique cytokine profiles and transcription factors typically attributed to the subsets of T helper cells. ILCs have a critical role in the mucosal immune response through promptly responding to pathogens and producing large amount of effector cytokines of type 1, 2, or 3 responses. In addition to the role of early immune responses against infections, ILCs, particularly group 2 ILCs (ILC2), have recently gained attention for modulating remodeling and fibrosis especially in the mucosal tissues. Herein, we overview the current knowledge in this area, highlighting roles of ILCs on fibrosis in the mucosal tissues, especially focusing on the gut and lung. We also discuss some new directions for future research by extrapolating from knowledge derived from studies on Th cells.
Collapse
Affiliation(s)
- Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan.
| | - Yoshiaki Takada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Yuya Hagihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| |
Collapse
|
21
|
Maeda T, Suetake H, Odaka T, Miyadai T. Original Ligand for LTβR Is LIGHT: Insight into Evolution of the LT/LTβR System. THE JOURNAL OF IMMUNOLOGY 2018; 201:202-214. [PMID: 29769272 DOI: 10.4049/jimmunol.1700900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 04/25/2018] [Indexed: 01/23/2023]
Abstract
The lymphotoxin (LT)/LTβ receptor (LTβR) axis is crucial for the regulation of immune responses and development of lymphoid tissues in mammals. Despite the importance of this pathway, the existence and function of LT and LTβR remain obscure for nonmammalian species. In this study, we report a nonmammalian LTβR and its ligand. We demonstrate that TNF-New (TNFN), which has been considered orthologous to mammalian LT, was expressed on the cell surface as a homomer in vitro. This different protein structure indicates that TNFN is not orthologous to mammalian LTα and LTβ. Additionally, we found that LTβR was conserved in teleosts, but the soluble form of recombinant fugu LTβR did not bind to membrane TNFN under the circumstance tested. Conversely, the LTβR recombinant bound to another ligand, LIGHT, similar to that of mammals. These findings indicate that teleost LTβR is originally a LIGHT receptor. In the cytoplasmic region of fugu LTβR, recombinant fugu LTβR bound to the adaptor protein TNFR-associated factor (TRAF) 2, but little to TRAF3. This difference suggests that teleost LTβR could potentially activate the classical NF-κB pathway with a novel binding domain, but would have little ability to activate an alternative one. Collectively, our results suggested that LIGHT was the original ligand for LTβR, and that the teleost immune system lacked the LT/LTβR pathway. Acquisition of the LT ligand and TRAF binding domain after lobe-finned fish may have facilitated the sophistication of the immune system and lymphoid tissues.
Collapse
Affiliation(s)
- Tomoki Maeda
- Graduate School of Biosciences and Biotechnology, Fukui Prefectural University, Fukui 917-0003, Japan.,Japan Society for the Promotion of Science, Tokyo 102-0083, Japan; and
| | - Hiroaki Suetake
- Faculty of Marine Science and Technology, Fukui Prefectural University, Fukui 917-0003, Japan
| | - Tomoyuki Odaka
- Faculty of Marine Science and Technology, Fukui Prefectural University, Fukui 917-0003, Japan
| | - Toshiaki Miyadai
- Faculty of Marine Science and Technology, Fukui Prefectural University, Fukui 917-0003, Japan
| |
Collapse
|
22
|
Abadpour S, Halvorsen B, Sahraoui A, Korsgren O, Aukrust P, Scholz H. Interleukin-22 reverses human islet dysfunction and apoptosis triggered by hyperglycemia and LIGHT. J Mol Endocrinol 2018; 60:171-183. [PMID: 29330151 DOI: 10.1530/jme-17-0182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/11/2018] [Indexed: 01/30/2023]
Abstract
Interleukin (IL)-22 has recently been suggested as an anti-inflammatory cytokine that could protect the islet cells from inflammation- and glucose-induced toxicity. We have previously shown that the tumor necrosis factor family member, LIGHT, can impair human islet function at least partly via pro-apoptotic effects. Herein, we aimed to investigate the protective role of IL-22 on human islets exposed to the combination of hyperglycemia and LIGHT. First, we found upregulation of LIGHT receptors (LTβR and HVEM) in engrafted human islets exposed to hyperglycemia (>11 mM) for 17 days post transplantation by using a double islet transplantation mouse model as well as in human islets cultured with high glucose (HG) (20 mM glucose) + LIGHT in vitro, and this latter effect was attenuated by IL-22. The effect of HG + LIGHT impairing glucose-stimulated insulin secretion was reversed by IL-22. The harmful effect of HG + LIGHT on human islet function seemed to involve enhanced endoplasmic reticulum stress evidenced by upregulation of p-IRE1α and BiP, elevated secretion of pro-inflammatory cytokines (IL-6, IL-8, IP-10 and MCP-1) and the pro-coagulant mediator tissue factor (TF) release and apoptosis in human islets, whereas all these effects were at least partly reversed by IL-22. Our findings suggest that IL-22 could counteract the harmful effects of LIGHT/hyperglycemia on human islet cells and potentially support the strong protective effect of IL-22 on impaired islet function and survival.
Collapse
Affiliation(s)
- Shadab Abadpour
- Section for Transplant SurgeryOslo University Hospital, Oslo, Norway
- Institute for Surgical ResearchOslo University Hospital, Oslo, Norway
- Institute of Clinical MedicineUniversity of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Institute of Clinical MedicineUniversity of Oslo, Oslo, Norway
- Research Institute of Internal MedicineOslo University Hospital, Oslo, Norway
| | - Afaf Sahraoui
- Section for Transplant SurgeryOslo University Hospital, Oslo, Norway
- Institute for Surgical ResearchOslo University Hospital, Oslo, Norway
- Institute of Clinical MedicineUniversity of Oslo, Oslo, Norway
| | - Olle Korsgren
- Department of ImmunologyGenetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pål Aukrust
- Institute of Clinical MedicineUniversity of Oslo, Oslo, Norway
- Research Institute of Internal MedicineOslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious DiseasesOslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Section for Transplant SurgeryOslo University Hospital, Oslo, Norway
- Institute for Surgical ResearchOslo University Hospital, Oslo, Norway
- Institute of Clinical MedicineUniversity of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Lee EH, Kim EM, Ji KY, Park AR, Choi HR, Lee HY, Kim SM, Chung BY, Park CH, Choi HJ, Ko YH, Bai HW, Kang HS. Axl acts as a tumor suppressor by regulating LIGHT expression in T lymphoma. Oncotarget 2017; 8:20645-20655. [PMID: 28423548 PMCID: PMC5400533 DOI: 10.18632/oncotarget.15830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/01/2017] [Indexed: 01/17/2023] Open
Abstract
Axl is an oncogenic receptor tyrosine kinase that plays a role in many cancers. LIGHT (Lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpesvirus entry mediator on T cells) is a ligand that induces robust anti-tumor immunity by enhancing the recruitment and activation of effector immune cells at tumor sites. We observed that mouse EL4 and human Jurkat T lymphoma cells that stably overexpressed Axl also showed high expression of LIGHT. When Jurkat-Axl cells were treated with Gas6, a ligand for Axl, LIGHT expression was upregulated through activation of the PI3K/AKT signaling pathway and transcriptional induction by Sp1. The lytic activity of cytotoxic T lymphocytes and natural killer cells was enhanced by EL4-Axl cells. In addition, tumor volume and growth were markedly reduced due to enhanced apoptotic cell death in EL4-Axl tumor-bearing mice as compared to control mice. We also observed upregulated expression of CCL5 and its receptor, CCR5, and enhanced intratumoral infiltration of cytotoxic T lymphocytes and natural killer cells in EL4-Axl-bearing mice as compared to mock controls. These data strongly suggested that Axl exerts novel tumor suppressor effects by inducing upregulation of LIGHT in the tumor microenvironment of T lymphoma.
Collapse
Affiliation(s)
- Eun-Hee Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Insitute (KAERI), Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | - Eun-Mi Kim
- Predictive Model Research Center, Korea Institute of Toxicology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Kon-Young Ji
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju 500-757, Republic of Korea
| | - A-Reum Park
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Ha-Rim Choi
- Department of Nursing, Nambu University, Gwangsan-gu, Gwangju 506-706, Republic of Korea
| | - Hwa-Youn Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Dong-gu, Daegu 701-310, Republic of Korea
| | - Su-Man Kim
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Byung Yeoup Chung
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Insitute (KAERI), Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | - Chul-Hong Park
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Insitute (KAERI), Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | - Hyo Jin Choi
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Insitute (KAERI), Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | - Young-Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Hyoung-Woo Bai
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Insitute (KAERI), Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju 500-757, Republic of Korea
| |
Collapse
|
24
|
Zhu Q, Li N, Li F, Sang J, Deng H, Han Q, Lv Y, Li C, Liu Z. Association of LTBR polymorphisms with chronic hepatitis B virus infection and hepatitis B virus-related hepatocellular carcinoma. Int Immunopharmacol 2017; 49:126-131. [PMID: 28575727 DOI: 10.1016/j.intimp.2017.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/15/2022]
Abstract
Lymphotoxin-β receptor (LTβR) signaling is involved in hepatitis B virus (HBV) infection, hepatitis and liver carcinogenesis. However, the potential association between LTBR polymorphisms and HBV infection remains unclear. This study investigated the associations between LTBR polymorphisms and chronic HBV infection and HBV-related hepatocellular carcinoma (HCC). The study included 409 patients with chronic HBV infection, 73 HBV infection resolvers, and 197 healthy controls. Two polymorphisms rs12354 and rs3759333 were selected and genotyped by polymerase chain reaction-ligase detection reaction method. The frequencies of rs12354 genotype GT and allele T in HBV infection resolvers were significantly higher than those in patients with chronic HBV infection and healthy controls (genotype GT: 38.4% vs. 22.2% and 38.4% vs. 20.8%, P=0.004 and P=0.004, respectively; allele T: 20.5% vs. 13.1% and 20.5% vs. 12.9%, P=0.017 and P=0.028, respectively). The frequencies of rs3759333 genotypes and alleles between HBV patients, HBV infection resolvers and healthy controls had no statistical difference. The genotype and allele frequencies of rs12354 and rs3759333 had no statistical differences between chronic hepatitis B and HBV-related HCC patients. The serum LTβR levels and the overall survival rate between HBV-related HCC patients carrying different rs12354 and rs3759333 genotypes had no statistical differences. These results suggest that the LTBR rs12354 polymorphism might be associated with the spontaneous resolution of HBV infection. Additional studies with large sample size are needed to confirm and extend these findings.
Collapse
Affiliation(s)
- Qianqian Zhu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Na Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Fang Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jiao Sang
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Huan Deng
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Chunyan Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
25
|
Sabokbar A, Afrough S, Mahoney DJ, Uchihara Y, Swales C, Athanasou NA. Role of LIGHT in the pathogenesis of joint destruction in rheumatoid arthritis. World J Exp Med 2017; 7:49-57. [PMID: 28589079 PMCID: PMC5439172 DOI: 10.5493/wjem.v7.i2.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/01/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To characterise the role of substitutes for receptor-activator nuclear factor kappa-B ligand (RANKL) in rheumatoid arthritis (RA) joint destruction.
METHODS Synovial fluid (SF) macrophages isolated from the knee joint of RA patients were incubated with 25 ng/mL macrophage-colony stimulating factor (M-CSF) and 50 ng/mL LIGHT (lymphotoxin-like, exhibits inducible expression and competes with herpes simplex virus glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes) in the presence and absence of 25 ng/mL RANKL and 100 ng/mL osteoprotegerin (OPG) on glass coverslips and dentine slices. Osteoclastogenesis was assessed by the formation of multinucleated cells (MNCs) expressing tartrate-resistant acid phosphatase (TRAP) on coverslips and the extent of lacunar resorption pit formation on dentine slices. The concentration of LIGHT in RA and osteoarthritis (OA) synovial fluid was measured by an enzyme-linked immunosorbent assay (ELISA) and the expression of LIGHT in RA and OA synovium was determined by immunohistochemistry using an indirect immunoperoxidase technique.
RESULTS In cultures of RA SF macrophages treated with LIGHT and M-CSF, there was significant formation of TRAP + MNCs on coverslips and extensive lacunar resorption pit formation on dentine slices. SF-macrophage-osteoclast differentiation was not inhibited by the addition of OPG, a decoy receptor for RANKL. Resorption pits were smaller and less confluent than in RANKL-treated cultures but the overall percentage area of the dentine slice resorbed was comparable in LIGHT- and RANKL-treated cultures. LIGHT significantly stimulated RANKL-induced lacunar resorption compared with RA SF macrophages treated with either RANKL or LIGHT alone. LIGHT was strongly expressed by synovial lining cells, subintimal macrophages and endothelial cells in RA synovium and the concentration of LIGHT was much higher in RA compared with OA SF.
CONCLUSION LIGHT is highly expressed in RA synovium and SF, stimulates RANKL-independent/dependent osteoclastogenesis from SF macrophages and may contribute to marginal erosion formation.
Collapse
|
26
|
Sabokbar A, Mahoney DJ, Hemingway F, Athanasou NA. Non-Canonical (RANKL-Independent) Pathways of Osteoclast Differentiation and Their Role in Musculoskeletal Diseases. Clin Rev Allergy Immunol 2017; 51:16-26. [PMID: 26578261 DOI: 10.1007/s12016-015-8523-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Osteoclasts are multinucleated cells derived from mononuclear phagocyte precursors (monocytes, macrophages); in the canonical pathway of osteoclastogenesis, these cells fuse and differentiate to form specialised bone-resorbing osteoclasts in the presence of receptor activator for nuclear factor kappa B ligand (RANKL). Non-canonical pathways of osteoclastogenesis have been described in which several cytokines and growth factors are able to substitute for RANKL. These humoral factors can generally be divided into those which, like RANKL, are tumour necrosis family (TNF) superfamily members and those which are not; the former include TNFα lymphotoxin exhibiting inducible expression and competing with herpes simplex virus glycoprotein D for herpesvirus entry mediator, a receptor expressed by T lymphocytes (LIGHT), a proliferation inducing ligand (APRIL) and B cell activating factor (BAFF); the latter include transforming growth factor beta (TGF-β), interleukin-6 (IL-6), IL-8, IL-11, nerve growth factor (NGF), insulin-like growth factor-I (IGF-I) and IGF-II. This review summarises the evidence for these RANKL substitutes in inducing osteoclast differentiation from tissue-derived and circulating mononuclear phagocytes. It also assesses the role these factors are likely to play in promoting the pathological bone resorption seen in many inflammatory and neoplastic lesions of bone and joint including rheumatoid arthritis, aseptic implant loosening and primary and secondary tumours of bone.
Collapse
Affiliation(s)
- A Sabokbar
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - D J Mahoney
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - F Hemingway
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - N A Athanasou
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
27
|
Luo R, Liu C, Elliott SE, Wang W, Parchim N, Iriyama T, Daugherty PS, Tao L, Eltzschig HK, Blackwell SC, Sibai BM, Kellems RE, Xia Y. Transglutaminase is a Critical Link Between Inflammation and Hypertension. J Am Heart Assoc 2016; 5:JAHA.116.003730. [PMID: 27364991 PMCID: PMC5015405 DOI: 10.1161/jaha.116.003730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The pathogenesis of essential hypertension is multifactorial with different underlying mechanisms contributing to disease. We have recently shown that TNF superfamily member 14 LIGHT (an acronym for homologous to lymphotoxins, exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes, also known as TNFSF14) induces hypertension when injected into mice. Research reported here was undertaken to examine the role of transglutaminase (TGase) in LIGHT‐induced hypertension. Methods and Results Initial experiments showed that plasma and kidney TGase activity was induced by LIGHT infusion (13.91±2.92 versus 6.75±1.92 mU/mL and 19.86±3.55 versus 12.00±0.97 mU/10 μg) and was accompanied with hypertension (169±7.16 versus 117.17±11.57 mm Hg at day 14) and renal impairment (proteinuria, 61.33±23.21 versus 20.38±9.01 μg/mg; osmolality, 879.57±93.02 versus 1407.2±308.04 mmol/kg). The increase in renal TGase activity corresponded to an increase in RNA for the tissue TGase isoform, termed TG2. Pharmacologically, we showed that LIGHT‐induced hypertension and renal impairment did not occur in the presence of cystamine, a well‐known competitive inhibitor of TGase activity. Genetically, we showed that LIGHT‐mediated induction of TGase, along with hypertension and renal impairment, was dependent on interleukin‐6 and endothelial hypoxia inducible factor‐1α. We also demonstrated that interleukin‐6, endothelial hypoxia inducible factor‐1α, and TGase are required for LIGHT‐induced production of angiotensin receptor agonistic autoantibodies. Conclusions Thus, LIGHT‐induced hypertension, renal impairment, and production of angiotensin receptor agonistic autoantibodies require TGase, most likely the TG2 isoform. Our findings establish TGase as a critical link between inflammation, hypertension, and autoimmunity.
Collapse
Affiliation(s)
- Renna Luo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX Department of Nephrology, The First Xiangya Hospital of Central South University, Changsha, Hunan, PRC Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chen Liu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX
| | - Serra E Elliott
- Department of Chemical Engineering, University of California, Santa Barbara, CA
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX Department of Nephrology, The First Xiangya Hospital of Central South University, Changsha, Hunan, PRC
| | - Nicholas Parchim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX
| | - Takayuki Iriyama
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX Department of Obstetrics and Gynecology, University of Tokyo, Japan
| | - Patrick S Daugherty
- Department of Chemical Engineering, University of California, Santa Barbara, CA
| | - Lijian Tao
- Department of Nephrology, The First Xiangya Hospital of Central South University, Changsha, Hunan, PRC
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Colorado-Medical School, Denver, CO
| | - Sean C Blackwell
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Texas Health Science Center at Houston, TX
| | - Baha M Sibai
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Texas Health Science Center at Houston, TX
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX The University of Texas Graduate School of Biomedical Sciences at Houston, TX
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX The University of Texas Graduate School of Biomedical Sciences at Houston, TX
| |
Collapse
|
28
|
Okwor I, Uzonna JE. Pathways leading to interleukin-12 production and protective immunity in cutaneous leishmaniasis. Cell Immunol 2016; 309:32-36. [PMID: 27394077 DOI: 10.1016/j.cellimm.2016.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 01/16/2023]
Abstract
Leishmaniasis affects millions of people worldwide and continues to pose public health problem. There is extensive evidence supporting the critical role for IL-12 in initiating and maintaining protective immune response to Leishmania infection. Although gene deletion studies show that CD40-CD40L interaction is an important pathway for IL-12 production by antigen-presenting cells and subsequent development of protective immunity in cutaneous leishmaniasis, several studies have uncovered other pathways that could also lead to IL-12 production and immunity in the absence of intact CD40-CD40L signaling. Here, we review the literature on the role of IL-12 in the induction and maintenance of protective T cell-mediated immunity in cutaneous leishmaniasis and the different pathways leading to IL-12 production by antigen-presenting cells following Leishmania major infection.
Collapse
Affiliation(s)
- Ifeoma Okwor
- Department of Immunology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg R3E 0T5, Canada.
| | - Jude E Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg R3E 0T5, Canada
| |
Collapse
|
29
|
Serum decoy receptor 3 levels are associated with the disease activity of MPO-ANCA-associated renal vasculitis. Clin Rheumatol 2016; 35:2469-76. [DOI: 10.1007/s10067-016-3321-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/17/2016] [Accepted: 05/22/2016] [Indexed: 11/30/2022]
|
30
|
Fernandes MT, Dejardin E, dos Santos NR. Context-dependent roles for lymphotoxin-β receptor signaling in cancer development. Biochim Biophys Acta Rev Cancer 2016; 1865:204-19. [PMID: 26923876 DOI: 10.1016/j.bbcan.2016.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 12/20/2022]
Abstract
The LTα1β2 and LIGHT TNF superfamily cytokines exert pleiotropic physiological functions through the activation of their cognate lymphotoxin-β receptor (LTβR). Interestingly, since the discovery of these proteins, accumulating evidence has pinpointed a role for LTβR signaling in carcinogenesis. Early studies have shown a potential anti-tumoral role in a subset of solid cancers either by triggering apoptosis in malignant cells or by eliciting an anti-tumor immune response. However, more recent studies provided robust evidence that LTβR signaling is also involved in diverse cell-intrinsic and microenvironment-dependent pro-oncogenic mechanisms, affecting several solid and hematological malignancies. Consequently, the usefulness of LTβR signaling axis blockade has been investigated as a potential therapeutic approach for cancer. Considering the seemingly opposite roles of LTβR signaling in diverse cancer types and their key implications for therapy, we here extensively review the different mechanisms by which LTβR activation affects carcinogenesis, focusing on the diverse contexts and different models assessed.
Collapse
Affiliation(s)
- Mónica T Fernandes
- Centre for Biomedical Research (CBMR), University of Algarve, Faro 8005-139, Portugal; PhD Program in Biomedical Sciences, Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, Molecular Biology of Diseases, University of Liège, Liège 4000, Belgium
| | - Nuno R dos Santos
- Centre for Biomedical Research (CBMR), University of Algarve, Faro 8005-139, Portugal; Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto 4200, Portugal; Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto 4200, Portugal.
| |
Collapse
|
31
|
del Rio ML, Fernandez-Renedo C, Chaloin O, Scheu S, Pfeffer K, Shintani Y, Perez-Simon JA, Schneider P, Rodriguez-Barbosa JI. Immunotherapeutic targeting of LIGHT/LTβR/HVEM pathway fully recapitulates the reduced cytotoxic phenotype of LIGHT-deficient T cells. MAbs 2016; 8:478-90. [PMID: 26752542 DOI: 10.1080/19420862.2015.1132130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor (TNF)/TNF receptor (TNFR) superfamily members play essential roles in the development of the different phases of the immune response. Mouse LIGHT (TNFSF14) is a type II transmembrane protein with a C-terminus extracellular TNF homology domain (THD) that assembles in homotrimers and regulates the course of the immune responses by signaling through 2 receptors, the herpes virus entry mediator (HVEM, TNFRSF14) and the lymphotoxin β receptor (LTβR, TNFRSF3). LIGHT is a membrane-bound protein transiently expressed on activated T cells, natural killer (NK) cells and immature dendritic cells that can be proteolytically cleaved by a metalloprotease and released to the extracellular milieu. The immunotherapeutic potential of LIGHT blockade was evaluated in vivo. Administration of an antagonist of LIGHT interaction with its receptors attenuated the course of graft-versus-host reaction and recapitulated the reduced cytotoxic activity of LIGHT-deficient T cells adoptively transferred into non-irradiated semiallogeneic recipients. The lack of LIGHT expression on donor T cells or blockade of LIGHT interaction with its receptors slowed down the rate of T cell proliferation and decreased the frequency of precursor alloreactive T cells, retarding T cell differentiation toward effector T cells. The blockade of LIGHT/LTβR/HVEM pathway was associated with delayed downregulation of interleukin-7Rα and delayed upregulation of inducible costimulatory molecule expression on donor alloreactive CD8 T cells that are typical features of impaired T cell differentiation. These results expose the relevance of LIGHT/LTβR/HVEM interaction for the potential therapeutic control of the allogeneic immune responses mediated by alloreactive CD8 T cells that can contribute to prolong allograft survival.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- a Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital , Leon , Spain
| | - Carlos Fernandez-Renedo
- a Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital , Leon , Spain
| | - Olivier Chaloin
- b CNRS UPR 3572, IBMC, Immunopathologie et Chimie Thérapeutique, 15 rue René Descartes , Strasbourg , France
| | - Stefanie Scheu
- c Institute of Medical Microbiology and Hospital Hygiene, University of Duesseldorf, Universitaetsstr. 1, Geb. 22.21 , Duesseldorf , D-40225 Germany
| | - Klaus Pfeffer
- c Institute of Medical Microbiology and Hospital Hygiene, University of Duesseldorf, Universitaetsstr. 1, Geb. 22.21 , Duesseldorf , D-40225 Germany
| | - Yasushi Shintani
- d Department of International Affairs , Japan Science and Technology Agency, K´s Gobancho 7 , Gobancho Chiyoda-Ku , Tokyo , 102-0076 , Japan
| | - Jose-Antonio Perez-Simon
- e Department of Hematology , University Hospital Virgen del Rocio / Institute of Biomedicine (IBIS / CSIC) , Sevilla , Spain
| | - Pascal Schneider
- f Department of Biochemistry , University of Lausanne , 1066 Epalinges , Switzerland
| | - Jose-Ignacio Rodriguez-Barbosa
- a Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital , Leon , Spain
| |
Collapse
|
32
|
Liu C, Luo R, Elliott SE, Wang W, Parchim NF, Iriyama T, Daugherty PS, Blackwell SC, Sibai BM, Kellems RE, Xia Y. Elevated Transglutaminase Activity Triggers Angiotensin Receptor Activating Autoantibody Production and Pathophysiology of Preeclampsia. J Am Heart Assoc 2015; 4:e002323. [PMID: 26675250 PMCID: PMC4845265 DOI: 10.1161/jaha.115.002323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/07/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Preeclampsia (PE) is a life-threatening hypertensive disorder of pregnancy associated with autoantibodies, termed AT1-AA, that activate the AT1 angiotensin receptor. Although the pathogenic nature of these autoantibodies has been extensively studied, little is known about the molecular cause of their generation. METHODS AND RESULTS Here we show that tissue transglutaminase (TG2), an enzyme that conducts posttranslational modification of target proteins, directly modified the 7-amino acid (7-aa) epitope peptide that localizes to the second extracellular loop of the AT1 receptor. These findings led us to further discover that plasma transglutaminase activity was induced and contributed to the production of AT1-AA and disease development in an experimental model of PE induced by injection of LIGHT, a tumor necrosis factor superfamily member. Key features of PE were regenerated by adoptive transfer of purified IgG from LIGHT-injected pregnant mice and blocked by the 7-amino acid epitope peptide. Translating our mouse research to humans, we found that plasma transglutaminase activity was significantly elevated in PE patients and was positively correlated with AT1-AA levels and PE features. CONCLUSIONS Overall, we provide compelling mouse and human evidence that elevated transglutaminase underlies AT1-AA production in PE and highlight novel pathogenic biomarkers and innovative therapeutic possibilities for the disease.
Collapse
Affiliation(s)
- Chen Liu
- Departments of Biochemistry and Molecular BiologyThe University of Texas Health Science Center at HoustonTX
| | - Renna Luo
- Departments of Biochemistry and Molecular BiologyThe University of Texas Health Science Center at HoustonTX
- Nephrology DepartmentXiangya HospitalHunanChina
- Department of NephrologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Serra E. Elliott
- Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraCA
| | - Wei Wang
- Departments of Biochemistry and Molecular BiologyThe University of Texas Health Science Center at HoustonTX
- Nephrology DepartmentXiangya HospitalHunanChina
| | - Nicholas F. Parchim
- Departments of Biochemistry and Molecular BiologyThe University of Texas Health Science Center at HoustonTX
| | - Takayuki Iriyama
- Departments of Biochemistry and Molecular BiologyThe University of Texas Health Science Center at HoustonTX
- Department of Obstetrics and GynecologyUniversity of TokyoJapan
| | | | - Sean C. Blackwell
- Department of Obstetrics, Gynecology and Reproductive SciencesThe University of Texas Health Science Center at HoustonTX
| | - Baha M. Sibai
- Department of Obstetrics, Gynecology and Reproductive SciencesThe University of Texas Health Science Center at HoustonTX
| | - Rodney E. Kellems
- Departments of Biochemistry and Molecular BiologyThe University of Texas Health Science Center at HoustonTX
- The University of Texas Graduate School of Biomedical Sciences at HoustonTX
| | - Yang Xia
- Departments of Biochemistry and Molecular BiologyThe University of Texas Health Science Center at HoustonTX
- The University of Texas Graduate School of Biomedical Sciences at HoustonTX
- Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraCA
| |
Collapse
|
33
|
Targeted radiotherapy potentiates the cytotoxicity of a novel anti-human DR5 monoclonal antibody and the adenovirus encoding soluble TRAIL in prostate cancer. J Egypt Natl Canc Inst 2015; 27:205-15. [DOI: 10.1016/j.jnci.2015.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 11/23/2022] Open
|
34
|
Albarbar B, Dunnill C, Georgopoulos NT. Regulation of cell fate by lymphotoxin (LT) receptor signalling: Functional differences and similarities of the LT system to other TNF superfamily (TNFSF) members. Cytokine Growth Factor Rev 2015; 26:659-71. [DOI: 10.1016/j.cytogfr.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/10/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
|
35
|
Brunetti G, Rizzi R, Oranger A, Gigante I, Mori G, Taurino G, Mongelli T, Colaianni G, Di Benedetto A, Tamma R, Ingravallo G, Napoli A, Faienza MF, Mestice A, Curci P, Specchia G, Colucci S, Grano M. LIGHT/TNFSF14 increases osteoclastogenesis and decreases osteoblastogenesis in multiple myeloma-bone disease. Oncotarget 2015; 5:12950-67. [PMID: 25460501 PMCID: PMC4350341 DOI: 10.18632/oncotarget.2633] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022] Open
Abstract
LIGHT, a TNF superfamily member, is involved in T-cell homeostasis and erosive bone disease associated with rheumatoid arthritis. Herein, we investigated whether LIGHT has a role in Multiple Myeloma (MM)-bone disease. We found that LIGHT was overproduced by CD14+ monocytes, CD8+ T-cells and neutrophils of peripheral blood and bone marrow (BM) from MM-bone disease patients. We also found that LIGHT induced osteoclastogenesis and inhibited osteoblastogenesis. In cultures from healthy-donors, LIGHT induced osteoclastogenesis in RANKL-dependent and -independent manners. In the presence of a sub-optimal RANKL concentration, LIGHT and RANKL synergically stimulated osteoclast formation, through the phosphorylation of Akt, NFκB and JNK pathways. In cultures of BM samples from patients with bone disease, LIGHT inhibited the formation of CFU-F and CFU-OB as well as the expression of osteoblastic markers including collagen-I, osteocalcin and bone sialoprotein-II. LIGHT indirectly inhibited osteoblastogenesis in part through sclerostin expressed by monocytes. In conclusion, our findings for the first time provide evidence for a role of LIGHT in MM-bone disease development.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Rita Rizzi
- Department of Emergency and Organ Transplantation, Section of Hematology with Transplantation, University of Bari, Bari, Italy
| | - Angela Oranger
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Isabella Gigante
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Grazia Taurino
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Teresa Mongelli
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Graziana Colaianni
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Adriana Di Benedetto
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Roberto Tamma
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Anna Napoli
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Anna Mestice
- Department of Emergency and Organ Transplantation, Section of Hematology with Transplantation, University of Bari, Bari, Italy
| | - Paola Curci
- Department of Emergency and Organ Transplantation, Section of Hematology with Transplantation, University of Bari, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation, Section of Hematology with Transplantation, University of Bari, Bari, Italy
| | - Silvia Colucci
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Maria Grano
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| |
Collapse
|
36
|
Yeh DYW, Wu CC, Chin YP, Lu CJ, Wang YH, Chen MC. Mechanisms of human lymphotoxin beta receptor activation on upregulation of CCL5/RANTES production. Int Immunopharmacol 2015; 28:220-229. [PMID: 26096887 DOI: 10.1016/j.intimp.2015.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 11/28/2022]
Abstract
Human lymphotoxin-β receptor (LTβR), a member of the tumor necrosis factor receptor superfamily, plays an essential role in secondary lymphoid organ development, host defense, chemokine secretion, and apoptosis. In our study, LTβR activations by different stimulations were all found to induce RANTES secretion. Overexpression of LTβR or stimulation LTβR by ligands or agonistic antibody in human lung epithelial cells induced RANTES secretion However, the regulatory mechanism and the signaling cascade have not been fully elucidated. Therefore, the aim of this study was to elucidate the mechanism underlying LTβR-mediated RANTES production. Our study indicated that activation of JNK and ERK was important for the regulation of RANTES secretion. In addition, dominant negative mutants of ASK1, TAK1, and MEKK1 inhibited LTβR-induced RANTES expression. The dominant negative mutants of TRAF2, 3, and 5 also inhibited LTβR-mediated RANTES secretion. Chromatin immunoprecipitation analysis showed that LTβR activation induced the binding of c-Jun and NF-κB to the RANTES promoter. The results of this study show that LTβR activates ASK1, TAK1, and MEKK1 cascades via TRAF2, 3, and 5, resulting in the activation of JNK and ERK, which promotes the binding of c-Jun and NF-κB to the RANTES promoter, thereby increasing RANTES expression and secretion.
Collapse
Affiliation(s)
- Diana Yu-Wung Yeh
- Department of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital
| | - Chia-Chang Wu
- Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ping Chin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Jung Lu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Mei-Chieh Chen
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
37
|
Liu W, Vigdorovich V, Zhan C, Patskovsky Y, Bonanno JB, Nathenson SG, Almo SC. Increased Heterologous Protein Expression in Drosophila S2 Cells for Massive Production of Immune Ligands/Receptors and Structural Analysis of Human HVEM. Mol Biotechnol 2015. [DOI: 10.1007/s12033-015-9881-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Okwor I, Xu G, Tang H, Liang Y, Fu YX, Uzonna JE. Deficiency of CD40 Reveals an Important Role for LIGHT in Anti-Leishmania Immunity. THE JOURNAL OF IMMUNOLOGY 2015; 195:194-202. [PMID: 26026056 DOI: 10.4049/jimmunol.1401892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 05/04/2015] [Indexed: 01/19/2023]
Abstract
We previously showed that LIGHT and its receptor herpes virus entry mediator (HVEM) are important for development of optimal CD4(+) Th1 cell immunity and resistance to primary Leishmania major infection in mice. In this study, we further characterized the contributions of this molecule in dendritic cell (DC) maturation, initiation, and maintenance of primary immunity and secondary anti-Leishmania immunity. Flow-cytometric studies showed that CD8α(+) DC subset was mostly affected by HVEM-Ig and lymphotoxin β receptor-Ig treatment. LIGHT signaling is required at both the priming and the maintenance stages of primary anti-Leishmania immunity but is completely dispensable during secondary immunity in wild type mice. However, LIGHT blockade led to impaired IL-12 and IFN-γ responses and loss of resistance in healed CD40-deficient mice after L. major challenge. The protective effect of LIGHT was mediated primarily via its interaction with lymphotoxin β receptor on CD8α(+) DCs. Collectively, our results show that although LIGHT is critical for maintenance of primary Th1 response, it is dispensable during secondary anti-Leishmania immunity in the presence of functional CD40 signaling as seen in wild type mice.
Collapse
Affiliation(s)
- Ifeoma Okwor
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Guilian Xu
- Department of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Haidong Tang
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Yong Liang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Yang-Xin Fu
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Jude E Uzonna
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| |
Collapse
|
39
|
Mikami Y, Matsuzaki H, Horie M, Noguchi S, Jo T, Narumoto O, Kohyama T, Takizawa H, Nagase T, Yamauchi Y. Lymphotoxin β receptor signaling induces IL-8 production in human bronchial epithelial cells. PLoS One 2014; 9:e114791. [PMID: 25501580 PMCID: PMC4263477 DOI: 10.1371/journal.pone.0114791] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/13/2014] [Indexed: 01/06/2023] Open
Abstract
Asthma-related mortality has been decreasing due to inhaled corticosteroid use, but severe asthma remains a major clinical problem. One characteristic of severe asthma is resistance to steroid therapy, which is related to neutrophilic inflammation. Recently, the tumor necrosis factor superfamily member (TNFSF) 14/LIGHT has been recognized as a key mediator in severe asthmatic airway inflammation. However, the profiles and intracellular mechanisms of cytokine/chemokine production induced in cells by LIGHT are poorly understood. We aimed to elucidate the molecular mechanism of LIGHT-induced cytokine/chemokine production by bronchial epithelial cells. Human bronchial epithelial cells express lymphotoxin β receptor (LTβR), but not herpesvirus entry mediator, which are receptors for LIGHT. LIGHT induced various cytokines/chemokines, such as interleukin (IL)-6, oncostatin M, monocyte chemotactic protein-1, growth-regulated protein α and IL-8. Specific siRNA for LTβR attenuated IL-6 and IL-8 production by BEAS-2B and normal human bronchial epithelial cells. LIGHT activated intracellular signaling, such as mitogen-activated protein kinase and nuclear factor-κB (NF-κB) signaling. LIGHT also induced luciferase activity of NF-κB response element, but not of activator protein-1 or serum response element. Specific inhibitors of phosphorylation of extracellular signal-regulated kinase (Erk) and that of inhibitor κB attenuated IL-8 production, suggesting that LIGHT-LTβR signaling induces IL-8 production via the Erk and NF-κB pathways. LIGHT, via LTβR signaling, may contribute to exacerbation of airway neutrophilic inflammation through cytokine and chemokine production by bronchial epithelial cells.
Collapse
Affiliation(s)
- Yu Mikami
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Matsuzaki
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Noguchi
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taisuke Jo
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Narumoto
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tadashi Kohyama
- Department of Internal medicine, Teikyo University Mizonokuchi hospital, Kanagawa, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Yamauchi
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
40
|
Liu W, Zhan C, Cheng H, Kumar PR, Bonanno JB, Nathenson SG, Almo SC. Mechanistic basis for functional promiscuity in the TNF and TNF receptor superfamilies: structure of the LIGHT:DcR3 assembly. Structure 2014; 22:1252-1262. [PMID: 25087510 PMCID: PMC4163024 DOI: 10.1016/j.str.2014.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023]
Abstract
LIGHT initiates intracellular signaling via engagement of the two TNF receptors, HVEM and LTβR. In humans, LIGHT is neutralized by DcR3, a unique soluble member of the TNFR superfamily, which tightly binds LIGHT and inhibits its interactions with HVEM and LTβR. DcR3 also neutralizes two other TNF ligands, FasL and TL1A. Due to its ability to neutralize three distinct different ligands, DcR3 contributes to a wide range of biological and pathological processes, including cancer and autoimmune diseases. However, the mechanisms that support the broad specificity of DcR3 remain to be fully defined. We report the structures of LIGHT and the LIGHT:DcR3 complex, which reveal the structural basis for the DcR3-mediated neutralization of LIGHT and afford insights into DcR3 function and binding promiscuity. Based on these structures, we designed LIGHT mutants with altered affinities for DcR3 and HVEM, which may represent mechanistically informative probe reagents.
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chenyang Zhan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Huiyong Cheng
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - P Rajesh Kumar
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Stanley G Nathenson
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
41
|
Immunization with adenovirus LIGHT-engineered dendritic cells induces potent T cell responses and therapeutic immunity in HBV transgenic mice. Vaccine 2014; 32:4565-4570. [PMID: 24951859 DOI: 10.1016/j.vaccine.2014.06.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/14/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022]
Abstract
LIGHT, a TNF superfamily member (TNFSF14), is a type II transmembrane protein expressed on activated T cells and immature dendritic cells (DCs). However, the expression of LIGHT on mature DCs is down-regulated. Recent studies demonstrated that LIGHT provides potent costimulatory activity for T cells, enhancing proliferation and the production of Th1 cytokines independently of the B7-CD28 pathway. Here, we evaluated the effectiveness of peptide-pulsed DC-mediated antiviral immunity in HBV transgenic mice and the immunoadjuvant effect of LIGHT. The bone marrow-derived DCs were modified in vitro with an adenovirus (Ad) vector expressing mouse LIGHT (Ad-LIGHT), the expression of costimulatory molecules was up-regulated and the secretion of cytokines IL-12 and IFN-γ increased. LIGHT-modified DCs enhanced allostimulation for T cells in mixed lymphocyte reaction (MLR). HBV peptide-pulsed DCs elicited HBV specific CD8+ T cell response and reduced the level of HBsAg and HBV DNA in sera of HBV transgenic mice. Importantly, LIGHT-modified DCs could induce stronger antiviral immunity. These results support the concept that genetic modification of DCs with a recombinant LIGHT adenovirus vector may be a useful strategy for antiviral immunotherapy.
Collapse
|
42
|
Ślebioda TJ, Kmieć Z. Tumour necrosis factor superfamily members in the pathogenesis of inflammatory bowel disease. Mediators Inflamm 2014; 2014:325129. [PMID: 25045210 PMCID: PMC4087264 DOI: 10.1155/2014/325129] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/29/2014] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the gastrointestinal tract of unclear aetiology of which two major forms are Crohn's disease (CD) and ulcerative colitis (UC). CD and UC are immunologically distinct, although they both result from hyperactivation of proinflammatory pathways in intestines and disruption of intestinal epithelial barrier. Members of the tumour necrosis factor superfamily (TNFSF) are molecules of broad spectrum of activity, including direct disruption of intestinal epithelial barrier integrity and costimulation of proinflammatory functions of lymphocytes. Tumour necrosis factor (TNF) has a well-established pathological role in IBD which also serves as a target in IBD treatment. In this review we discuss the role of TNF and other TNFSF members, notably, TL1A, FasL, LIGHT, TRAIL, and TWEAK, in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Tomasz J. Ślebioda
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| |
Collapse
|
43
|
Thomas A, Tan J, Liu Y. Characterization of nanoparticle delivery in microcirculation using a microfluidic device. Microvasc Res 2014; 94:17-27. [PMID: 24788074 DOI: 10.1016/j.mvr.2014.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 04/03/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
Abstract
This work focuses on the characterization of particle delivery in microcirculation through a microfluidic device. In microvasculature the vessel size is comparable to that of red blood cells (RBCs) and the existence of blood cells largely influences the dispersion and binding distribution of drug loaded particles. The geometry of the microvasculature leads to non-uniform particle distribution and affects the particle binding characteristics. We perform an in vitro study in a microfluidic chip with micro vessel mimicking channels having a rectangular cross section. Various factors that influence particle distribution and delivery such as the vessel geometry, shear rate, blood cells, particle size, particle antibody density are considered in this study. Around 10% higher particle binding density is observed at bifurcation regions of the mimetic microvasculature geometry compared to straight regions. Particle binding density is found to decrease with increased shear rates. RBCs enhance particle binding for both 210 nm and 2 μm particles for shear rates between 200-1600 s(-1) studied. The particle binding density increases about 2-3 times and 6-10 times when flowing in whole blood at 25% RBC concentration compared to the pure particle case, for 210 nm and 2 μm particles respectively. With RBCs, the binding enhancement is more significant for 2 μm particles than that for 210 nm particles, which indicates an enhanced size dependent exclusion of 2 μm particles from the channel centre to the cell free layer (CFL). Increased particle antibody coating density leads to higher particle binding density for both 210 nm and 2 μm particles.
Collapse
Affiliation(s)
- Antony Thomas
- Bioengineering program, Lehigh University, Bethlehem, PA 18015, USA.
| | - Jifu Tan
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA.
| | - Yaling Liu
- Bioengineering program, Lehigh University, Bethlehem, PA 18015, USA; Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
44
|
Upadhyay V, Fu YX. Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells. Cytokine Growth Factor Rev 2014; 25:227-33. [PMID: 24411493 PMCID: PMC3999173 DOI: 10.1016/j.cytogfr.2013.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/15/2013] [Indexed: 01/02/2023]
Abstract
The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome. The role of the LT-pathway may lay the foundation for a bridge between host immune response, microbiota, and metabolic syndrome. The contribution of the LT-pathway to innate lymphoid cell function and metabolic syndrome will be visited in this review.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Committee on Immunology, University of Chicago, United States; Department of Pathology, University of Chicago, United States
| | - Yang-Xin Fu
- Committee on Immunology, University of Chicago, United States; Department of Pathology, University of Chicago, United States.
| |
Collapse
|
45
|
Wang W, Parchim NF, Iriyama T, Luo R, Zhao C, Liu C, Irani RA, Zhang W, Ning C, Zhang Y, Blackwell SC, Chen L, Tao L, Hicks MJ, Kellems RE, Xia Y. Excess LIGHT contributes to placental impairment, increased secretion of vasoactive factors, hypertension, and proteinuria in preeclampsia. Hypertension 2013; 63:595-606. [PMID: 24324043 DOI: 10.1161/hypertensionaha.113.02458] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Preeclampsia, a prevalent hypertensive disorder of pregnancy, is believed to be secondary to uteroplacental ischemia. Accumulating evidence indicates that hypoxia-independent mediators, including inflammatory cytokines and growth factors, are associated with preeclampsia, but it is unclear whether these signals directly contribute to placental damage and disease development in vivo. We report that LIGHT, a novel tumor necrosis factor superfamily member, is significantly elevated in the circulation and placentas of preeclamptic women compared with normotensive pregnant women. Injection of LIGHT into pregnant mice induced placental apoptosis, small fetuses, and key features of preeclampsia, hypertension and proteinuria. Mechanistically, using neutralizing antibodies specific for LIGHT receptors, we found that LIGHT receptors herpes virus entry mediator and lymphotoxin β receptor are required for LIGHT-induced placental impairment, small fetuses, and preeclampsia features in pregnant mice. Accordingly, we further revealed that LIGHT functions through these 2 receptors to induce secretion of soluble fms-like tyrosine kinase-1 and endothelin-1, 2 well-accepted pathogenic factors in preeclampsia, and thereby plays an important role in hypertension and proteinuria in pregnant mice. Lastly, we extended our animal findings to human studies and demonstrated that activation of LIGHT receptors resulted in increased apoptosis and elevation of soluble fms-like tyrosine kinase-1 secretion in human placental villous explants. Overall, our human and mouse studies show that LIGHT signaling is a previously unrecognized pathway responsible for placental apoptosis, elevated secretion of vasoactive factors, and subsequent maternal features of preeclampsia, and reveal new therapeutic opportunities for the management of the disease.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, TX 77030.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Migita K, Sho M, Shimada K, Yasuda S, Yamato I, Takayama T, Matsumoto S, Wakatsuki K, Hotta K, Tanaka T, Ito M, Konishi N, Nakajima Y. Significant involvement of herpesvirus entry mediator in human esophageal squamous cell carcinoma. Cancer 2013; 120:808-17. [PMID: 24249528 DOI: 10.1002/cncr.28491] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/06/2013] [Accepted: 10/28/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND Herpesvirus entry mediator (HVEM) is known to regulate immune response and to be expressed in several human malignancies. However, to the authors's knowledge, the precise role of HVEM in human cancer biology remains unknown. The objective of the current study was to clarify the clinical significance of HVEM in human esophageal squamous cell carcinoma as well as its in vivo functions. METHODS HVEM expression was evaluated in 103 patients with esophageal squamous cell carcinoma to explore its clinical relevance and prognostic value. The functions of HVEM in tumors were analyzed in vitro and in vivo using the small interfering RNA (siRNA) silencing technique. RESULTS HVEM expression was found to be significantly correlated with depth of tumor invasion and lymph node metastasis. Furthermore, it was found to be inversely correlated with tumor-infiltrating CD4(+) , CD8(+) , and CD45RO(+) lymphocytes. It is important to note that HVEM status was identified as an independent prognostic marker. HVEM gene silencing significantly inhibited cancer cell proliferation in vitro and cancer growth in vivo. This antitumor effect was associated with reduced cell proliferation activity. The effect was also correlated with the induction of CD8(+) cells and upregulation of local immune response. CONCLUSIONS HVEM plays a critical role in both tumor progression and the evasion of host antitumor immune responses, possibly through direct and indirect mechanisms. Therefore, HVEM may be a promising therapeutic target for human esophageal cancer.
Collapse
|
47
|
Wang H, Yu Z, Liu S, Liu X, Sui A, Yao R, Luo Z, Li C. Lentivirus-mediated LIGHT overexpression inhibits human colorectal carcinoma cell growth in vitro and in vivo.. Oncol Lett 2013; 6:927-932. [PMID: 24137438 PMCID: PMC3796404 DOI: 10.3892/ol.2013.1505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/11/2013] [Indexed: 01/15/2023] Open
Abstract
Human LIGHT (lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpesvirus entry mediator on T cells) is the 14th member of the tumor necrosis factor (TNF) superfamily and is therefore also known as TNFSF14. LIGHT has been proven to be a multifunctional molecule affecting cell proliferation, differentiation and a number of other biological processes, in particular, cell growth inhibition. However, the expression and molecular mechanisms of the LIGHT gene in human colorectal carcinoma cells remain largely unclear. In the present study, the LIGHT gene was overexpressed using a lentiviral expression vector in HCT116 human colorectal carcinoma cells in vitro and in vivo, in order to explore the mechanism by which the LIGHT gene inhibits cell growth and suppresses tumor formation. The results showed that the recombinant lentivirus with LIGHT overexpression inhibited the proliferative capacity of the HCT116 cells and significantly decreased the xenografted tumor volumes in nude mice. Furthermore, LIGHT treatment effectively initiated increased caspase-3 and decreased Bcl-2 activities in the HCT116 cells. This study provides a basis for the improved understanding of the role and molecular mechanisms of the LIGHT gene in human colorectal carcinoma cells and may facilitate further functional studies of LIGHT.
Collapse
Affiliation(s)
- Haibo Wang
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Molecular characterization, expression and binding activity of the cytokines TNFSF14 and its receptor LTBR in Oryctolagus cuniculus (rabbit). Mol Immunol 2013; 54:368-77. [DOI: 10.1016/j.molimm.2012.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 01/15/2023]
|
49
|
Chokdeemeeboon C, Ammarinthnukrowh P, Tongkobpetch S, Srichomtong C, Deekajorndech T, Rianthavorn P, Kingwattanakul P, Avihingsanon Y, Wright HL, Akkahat P, Hoven VP, Mekboonsonglarp W, Edwards SW, Hirankarn N, Suphapeetiporn K, Shotelersuk V. DcR3 mutations in patients with juvenile-onset systemic lupus erythematosus lead to enhanced lymphocyte proliferation. J Rheumatol 2013; 40:1316-26. [PMID: 23729807 DOI: 10.3899/jrheum.121285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Previous studies suggested a role for the death decoy receptor 3 (DcR3) in the pathogenesis of adult systemic lupus erythematosus (SLE). We investigated the role of DcR3 in juvenile-onset SLE, to identify polymorphisms that might alter the function of this protein. METHODS DcR3 was measured in the serum of 61 patients with juvenile SLE. The coding region of the DcR3 gene was sequenced in 100 juvenile and 103 adult patients with SLE, together with 500 healthy controls. RESULTS DcR3 was elevated in the serum of juvenile patients with active SLE disease (440.8 ± 169.1 pg/ml), compared to patients with inactive disease (122.6 ± 28.05 pg/ml; p = 0.0014) and controls (69.27 ± 20.23 pg/ml; p = 0.0009). DNA sequencing identified 2 novel missense mutations: c.C167T (p.T56I) in an adult SLE patient and c.C364T (p.H122Y) in a juvenile patient. Recombinant proteins containing these mutations exhibited altered binding kinetics to FasL and they significantly increased lymphocyte proliferation, compared to the wild-type protein (p < 0.05). The adult patient with SLE carrying the p.T56I mutation had significantly increased lymphocyte proliferation compared to 3 SLE controls matched for age, sex, and disease severity. CONCLUSION DcR3 may play an etiologic role in SLE through either elevated serum levels of wild-type DcR3 or normal levels of gain-of-function DcR3 proteins that increase lymphocyte proliferation.
Collapse
Affiliation(s)
- Chayanin Chokdeemeeboon
- Interdepartment of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Maña P, Liñares D, Silva DG, Fordham S, Scheu S, Pfeffer K, Staykova M, Bertram EM. LIGHT (TNFSF14/CD258) Is a Decisive Factor for Recovery from Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:154-63. [DOI: 10.4049/jimmunol.1203016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|