1
|
Kawai T, Matsuo M, Takakusagi Y, Saito K, Hyodo F, Devasahayam N, Matsumoto S, Kishimoto S, Yasui H, Yamamoto K, Krishna MC. Continuous monitoring of postirradiation reoxygenation and cycling hypoxia using electron paramagnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4783. [PMID: 35661282 PMCID: PMC9482554 DOI: 10.1002/nbm.4783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Reoxygenation has a significant impact on the tumor response to radiotherapy. With developments in radiotherapy technology, the relevance of the reoxygenation phenomenon in treatment efficacy has been a topic of interest. Evaluating the reoxygenation in the tumor microenvironment throughout the course of radiation therapy is important in developing effective treatment strategies. In the current study, we used electron paramagnetic resonance imaging (EPRI) to directly map and quantify the partial oxygen pressure (pO2 ) in tumor tissues. Human colorectal cancer cell lines, HT29 and HCT116, were used to induce tumor growth in female athymic nude mice. Tumors were irradiated with 3, 10, or 20 Gy using an x-ray irradiator. Prior to each EPRI scan, magnetic resonance imaging (MRI) was performed to obtain T2-weighted anatomical images for reference. The differences in the mean pO2 were determined through two-tailed Student's t-test and one-way analysis of variance. The median pO2 60 min after irradiation was found to be lower in HCT116 than in HT29 (9.1 ± 1.5 vs. 14.0 ± 1.0 mmHg, p = 0.045). There was a tendency for delayed and incomplete recovery of pO2 in the HT29 tumor when a higher dose of irradiation (10 and 20 Gy) was applied. Moreover, there was a dose-dependent increase in the hypoxic areas (pO2 < 10 mmHg) 2 and 24 h after irradiation in all groups. In addition, an area that showed pO2 fluctuation between hypoxia and normoxia (pO2 > 10 mmHg) was also identified surrounding the region with stable hypoxia, and it slightly enlarged after recovery from acute hypoxia. In conclusion, we demonstrated the reoxygenation phenomenon in an in vivo xenograft model study using EPRI. These findings may lead to new knowledge regarding the reoxygenation process and possibilities of a new radiation therapy concept, namely, reoxygenation-based radiation therapy.
Collapse
Affiliation(s)
- Tatsuya Kawai
- Radiation Oncology BranchNational Cancer InstituteBethesdaMarylandUSA
- Department of RadiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Masayuki Matsuo
- Radiation Biology BranchNational Cancer InstituteBethesdaMarylandUSA
- Department of RadiologyGifu UniversityGifuJapan
| | - Yoichi Takakusagi
- Radiation Biology BranchNational Cancer InstituteBethesdaMarylandUSA
- Institute for Quantum Life ScienceNational Institutes for Quantum Science and TechnologyChiba‐cityJapan
| | - Keita Saito
- Radiation Biology BranchNational Cancer InstituteBethesdaMarylandUSA
| | - Fuminori Hyodo
- Radiation Biology BranchNational Cancer InstituteBethesdaMarylandUSA
- Department of Radiology, Frontier Science for ImagingGifu UniversityGifuJapan
| | | | - Shingo Matsumoto
- Radiation Biology BranchNational Cancer InstituteBethesdaMarylandUSA
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and TechnologyHokkaido UniversityHokkaidoJapan
| | - Shun Kishimoto
- Radiation Biology BranchNational Cancer InstituteBethesdaMarylandUSA
| | - Hironobu Yasui
- Radiation Biology BranchNational Cancer InstituteBethesdaMarylandUSA
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary MedicineHokkaido UniversityHokkaidoJapan
| | | | - Murali C. Krishna
- Radiation Biology BranchNational Cancer InstituteBethesdaMarylandUSA
| |
Collapse
|
2
|
Matsumoto KI, Mitchell JB, Krishna MC. Multimodal Functional Imaging for Cancer/Tumor Microenvironments Based on MRI, EPRI, and PET. Molecules 2021; 26:1614. [PMID: 33799481 PMCID: PMC8002164 DOI: 10.3390/molecules26061614] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
Radiation therapy is one of the main modalities to treat cancer/tumor. The response to radiation therapy, however, can be influenced by physiological and/or pathological conditions in the target tissues, especially by the low partial oxygen pressure and altered redox status in cancer/tumor tissues. Visualizing such cancer/tumor patho-physiological microenvironment would be a useful not only for planning radiotherapy but also to detect cancer/tumor in an earlier stage. Tumor hypoxia could be sensed by positron emission tomography (PET), electron paramagnetic resonance (EPR) oxygen mapping, and in vivo dynamic nuclear polarization (DNP) MRI. Tissue oxygenation could be visualized on a real-time basis by blood oxygen level dependent (BOLD) and/or tissue oxygen level dependent (TOLD) MRI signal. EPR imaging (EPRI) and/or T1-weighted MRI techniques can visualize tissue redox status non-invasively based on paramagnetic and diamagnetic conversions of nitroxyl radical contrast agent. 13C-DNP MRI can visualize glycometabolism of tumor/cancer tissues. Accurate co-registration of those multimodal images could make mechanisms of drug and/or relation of resulted biological effects clear. A multimodal instrument, such as PET-MRI, may have another possibility to link multiple functions. Functional imaging techniques individually developed to date have been converged on the concept of theranostics.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA;
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA;
| |
Collapse
|
3
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
4
|
Taguchi A, DeVience S, Driesschaert B, Khramtsov VV, Hirata H. In vitro simultaneous mapping of the partial pressure of oxygen, pH and inorganic phosphate using electron paramagnetic resonance. Analyst 2020; 145:3236-3244. [PMID: 32134072 DOI: 10.1039/d0an00168f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The partial pressure of oxygen (pO2) and the extracellular pH in the tumour microenvironment are essential parameters for understanding the physiological state of a solid tumour. Also, phosphate-containing metabolites are involved in energy metabolism, and interstitial inorganic phosphate (Pi) is an informative marker for tumour growth. This article describes the simultaneous mapping of pO2, pH and Pi using 750 MHz continuous-wave (CW) electron paramagnetic resonance (EPR) and a multifunctional probe, monophosphonated trityl radical p1TAM-D. The concept was demonstrated by acquiring three-dimensional (3D) maps of pO2, pH and Pi for multiple solution samples. This was made possible by combining a multifunctional radical probe, fast CW-EPR spectral acquisition, four-dimensional (4D) spectral-spatial image reconstruction, and spectral fitting. The experimental results of mapping pO2, pH and Pi suggest that the concept of simultaneous mapping using EPR is potentially applicable for the multifunctional measurements of a mouse tumour model.
Collapse
Affiliation(s)
- Akihiro Taguchi
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan
| | | | | | | | | |
Collapse
|
5
|
Naz S, Kishimoto S, Mitchell JB, Krishna MC. Imaging Metabolic Processes to Predict Radiation Responses. Semin Radiat Oncol 2019; 29:81-89. [PMID: 30573188 DOI: 10.1016/j.semradonc.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aberrant vasculature in the tumor microenvironment creates hypoxic zones, poor perfusion, and high interstitial fluid pressure. Also, the tumor cell metabolic phenotype utilizes the aerobic glycolytic pathways for energy source and generation of cell mass. These physiologic and metabolic phenotypes in solid tumors are amenable for molecular imaging techniques to extract imaging biomarkers such as pO2 and enzyme kinetics reflecting glycolysis. The imaging biomarkers have value in diagnostic and prognostic purposes. Additionally, they can be used to guide choices for tailored treatment regimens. Electron paramagnetic resonance imaging for pO2 imaging and 13C magnetic resonance imaging with hyperpolarized 13C probes such as 13C-labeled pyruvate have shown significant potential in characterizing the tumor microenvironment physiologically and metabolically.
Collapse
Affiliation(s)
- Sarwat Naz
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD.
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
6
|
Pursley R, Enomoto A, Wu H, Brender JR, Pohida T, Subramanian S, Krishna MC, Devasahayam N. Towards reduction of SAR in scaling up in vivo pulsed EPR imaging to larger objects. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 299:42-48. [PMID: 30579225 PMCID: PMC6753525 DOI: 10.1016/j.jmr.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
An excessive RF power requirement is one of the main obstacles in the clinical translation of EPR imaging. The radio frequency (RF) pulses used in EPR imaging to excite electron spins must be very short to match their fast relaxation. With traditional pulse schemes and ninety degree flip angles, this can lead to either unsafe specific absorption rate (SAR) levels or unfeasibly long repetition times. In spectroscopy experiments, it has been shown that stochastic excitation and correlation detection can reduce the power while maintaining sensitivity but have yet to be applied to imaging experiments. Stochastic excitation is implemented using a pseudo-random phase modulation of the input stimulus. Using a crossed coil resonator assembly comprised of an outer saddle coil and an inner surface coil, it was possible to obtain a minimum isolation of ∼50 dB across a 12 MHz bandwidth. An incident peak RF power of 5 mW was used to excite the system. The low background signal obtained from this resonator allowed us to generate images with 32 dB (>1000:1) signal-to-noise ratio (SNR) while exciting with a traditional pulse sequence in a phantom containing the solid paramagnetic probe NMP-TCNQ (N-methyl pyridinium tetracyanoquinodimethane). Using two different stochastic excitation schemes, we were able to achieve a greater than 4-fold increase in SNR at the same peak power and number of averages, compared to single pulse excitation. This procedure allowed imaging at significantly lower RF power levels than used in conventional EPR imaging system configurations. Similar techniques may enable clinical applications for EPR imaging by facilitating the use of larger RF coils while maintaining a safe SAR level.
Collapse
Affiliation(s)
- Randall Pursley
- Signal Processing and Instrumentation Section, Computational Bioscience and Engineering Laboratory, Office of Intramural Research, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Ayano Enomoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States; Department of Biophysical Chemistry, Nagasaki International University, Japan
| | - Haitao Wu
- Image Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Thomas Pohida
- Signal Processing and Instrumentation Section, Computational Bioscience and Engineering Laboratory, Office of Intramural Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Sankaran Subramanian
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States; Indian Institute of Technology, Madras, Chennai, India
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
7
|
Komarov DA, Ichikawa Y, Yamamoto K, Stewart NJ, Matsumoto S, Yasui H, Kirilyuk IA, Khramtsov VV, Inanami O, Hirata H. In Vivo Extracellular pH Mapping of Tumors Using Electron Paramagnetic Resonance. Anal Chem 2018; 90:13938-13945. [PMID: 30372035 DOI: 10.1021/acs.analchem.8b03328] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An electron paramagnetic resonance (EPR)-based method for noninvasive three-dimensional extracellular pH mapping was developed using a pH-sensitive nitroxyl radical as an exogenous paramagnetic probe. Fast projection scanning with a constant magnetic field sweep enabled the acquisition of four-dimensional (3D spatial +1D spectral) EPR images within 7.5 min. Three-dimensional maps of pH were reconstructed by processing the pH-dependent spectral information on the images. To demonstrate the proposed method of pH mapping, the progress of extracellular acidosis in tumor-bearing mouse legs was studied. Furthermore, extracellular pH mapping was used to visualize the spatial distribution of acidification in different tumor xenograft mouse models of human-derived pancreatic ductal adenocarcinoma cells. The proposed EPR-based pH mapping method enabled quantitative visualization of regional changes in extracellular pH associated with altered tumor metabolism.
Collapse
Affiliation(s)
- Denis A Komarov
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Yuki Ichikawa
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Kumiko Yamamoto
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine , Hokkaido University , North 18, West 9 , Kita-ku, Sapporo , 060-0818 , Japan
| | - Neil J Stewart
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science , Hokkaido University , North 15, West 7 , Kita-ku,Sapporo , 060-0815 , Japan
| | - Igor A Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry , 9, Ac. Lavrentieva Ave. , Novosibirsk , 630090 , Russia
| | - Valery V Khramtsov
- Department of Biochemistry and In Vivo Multifunctional Magnetic Resonance Center , West Virginia University, Robert C. Byrd Health Sciences Center , 1 Medical Center Drive , Morgantown , West Virginia 26506 , United States
| | - Osamu Inanami
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine , Hokkaido University , North 18, West 9 , Kita-ku, Sapporo , 060-0818 , Japan
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| |
Collapse
|
8
|
Takakusagi Y, Naz S, Takakusagi K, Ishima M, Murata H, Ohta K, Miura M, Sugawara F, Sakaguchi K, Kishimoto S, Munasinghe JP, Mitchell JB, Krishna MC. A Multimodal Molecular Imaging Study Evaluates Pharmacological Alteration of the Tumor Microenvironment to Improve Radiation Response. Cancer Res 2018; 78:6828-6837. [PMID: 30301838 DOI: 10.1158/0008-5472.can-18-1654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/03/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
: Hypoxic zones in solid tumors contribute to radioresistance, and pharmacologic agents that increase tumor oxygenation prior to radiation, including antiangiogenic drugs, can enhance treatment response to radiotherapy. Although such strategies have been applied, imaging assessments of tumor oxygenation to identify an optimum time window for radiotherapy have not been fully explored. In this study, we investigated the effects of α-sulfoquinovosylacyl-1,3-propanediol (SQAP or CG-0321; a synthetic derivative of an antiangiogenic agent) on the tumor microenvironment in terms of oxygen partial pressure (pO2), oxyhemoglobin saturation (sO2), blood perfusion, and microvessel density using electron paramagnetic resonance imaging, photoacoustic imaging, dynamic contrast-enhanced MRI with Gd-DTPA injection, and T2*-weighted imaging with ultrasmall superparamagnetic iron oxide (USPIO) contrast. SCCVII and A549 tumors were grown by injecting tumor cells into the hind legs of mice. Five days of daily radiation (2 Gy) combined with intravenous injection of SQAP (2 mg/kg) 30 minutes prior to irradiation significantly delayed growth of tumor xenografts. Three days of daily treatment improved tumor oxygenation and decreased tumor microvascular density on T2*-weighted images with USPIO, suggesting vascular normalization. Acute effects of SQAP on tumor oxygenation were examined by pO2, sO2, and Gd-DTPA contrast-enhanced imaging. SQAP treatment improved perfusion and tumor pO2 (ΔpO2: 3.1 ± 1.0 mmHg) and was accompanied by decreased sO2 (20%-30% decrease) in SCCVII implants 20-30 minutes after SQAP administration. These results provide evidence that SQAP transiently enhanced tumor oxygenation by facilitating oxygen dissociation from oxyhemoglobin and improving tumor perfusion. Therefore, SQAP-mediated sensitization to radiation in vivo can be attributed to increased tumor oxygenation. SIGNIFICANCE: A multimodal molecular imaging study evaluates pharmacological alteration of the tumor microenvironment to improve radiation response.
Collapse
Affiliation(s)
- Yoichi Takakusagi
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Sarwat Naz
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Kaori Takakusagi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland
| | | | | | | | - Masahiko Miura
- Department of Oral Radiation Oncology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumio Sugawara
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Kengo Sakaguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jeeva P Munasinghe
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
9
|
Matsumoto S, Kishimoto S, Saito K, Takakusagi Y, Munasinghe JP, Devasahayam N, Hart CP, Gillies RJ, Mitchell JB, Krishna MC. Metabolic and Physiologic Imaging Biomarkers of the Tumor Microenvironment Predict Treatment Outcome with Radiation or a Hypoxia-Activated Prodrug in Mice. Cancer Res 2018; 78:3783-3792. [PMID: 29792309 PMCID: PMC8092078 DOI: 10.1158/0008-5472.can-18-0491] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/05/2018] [Accepted: 05/18/2018] [Indexed: 01/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by hypoxic niches that lead to treatment resistance. Therefore, studies of tumor oxygenation and metabolic profiling should contribute to improved treatment strategies. Here, we define two imaging biomarkers that predict differences in tumor response to therapy: (i) partial oxygen pressure (pO2), measured by EPR imaging; and (ii) [1-13C] pyruvate metabolism rate, measured by hyperpolarized 13C MRI. Three human PDAC xenografts with varying treatment sensitivity (Hs766t, MiaPaCa2, and Su.86.86) were grown in mice. The median pO2 of the mature Hs766t, MiaPaCa2, and Su.86.86 tumors was 9.1 ± 1.7, 11.1 ± 2.2, and 17.6 ± 2.6 mm Hg, and the rate of pyruvate-to-lactate conversion was 2.72 ± 0.48, 2.28 ± 0.26, and 1.98 ± 0.51 per minute, respectively (n = 6, each). These results are in agreement with steady-state data of matabolites quantified by mass spectroscopy and histologic analysis, indicating glycolytic and hypoxia profile in Hs766t, MiaPaca2, and Su.86.86 tumors. Fractionated radiotherapy (5 Gy × 5) resulted in a tumor growth delay of 16.7 ± 1.6 and 18.0 ± 2.7 days in MiaPaca2 and Su.86.86 tumors, respectively, compared with 6.3 ± 2.7 days in hypoxic Hs766t tumors. Treatment with gemcitabine, a first-line chemotherapeutic agent, or the hypoxia-activated prodrug TH-302 was more effective against Hs766t tumors (20.0 ± 3.5 and 25.0 ± 7.7 days increase in survival time, respectively) than MiaPaCa2 (2.7 ± 0.4 and 6.7 ± 0.7 days) and Su.86.86 (4.7 ± 0.6 and 0.7 ± 0.6 days) tumors. Collectively, these results demonstrate the ability of molecular imaging biomarkers to predict the response of PDAC to treatment with radiotherapy and TH-302.Significance: pO2 imaging data and clinically available metabolic imaging data provide useful insight into predicting the treatment efficacy of chemotherapy, radiation, and a hypoxia-activated prodrug as monotherapies and combination therapies in PDAC tumor xenograft models. Cancer Res; 78(14); 3783-92. ©2018 AACR.
Collapse
Affiliation(s)
- Shingo Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
- JST, PREST, Saitama, Japan
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yoichi Takakusagi
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jeeva P Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | | | - Robert J Gillies
- Department of Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
10
|
Yasui H, Kawai T, Matsumoto S, Saito K, Devasahayam N, Mitchell JB, Camphausen K, Inanami O, Krishna MC. Quantitative imaging of pO 2 in orthotopic murine gliomas: hypoxia correlates with resistance to radiation. Free Radic Res 2018; 51:861-871. [PMID: 29076398 DOI: 10.1080/10715762.2017.1388506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hypoxia is considered one of the microenvironmental factors associated with the malignant nature of glioblastoma. Thus, evaluating intratumoural distribution of hypoxia would be useful for therapeutic planning as well as assessment of its effectiveness during the therapy. Electron paramagnetic resonance imaging (EPRI) is an imaging technique which can generate quantitative maps of oxygen in vivo using the exogenous paramagnetic compound, triarylmethyl and monitoring its line broadening caused by oxygen. In this study, the feasibility of EPRI for assessment of oxygen distribution in the glioblastoma using orthotopic U87 and U251 xenograft model is examined. Heterogeneous distribution of pO2 between 0 and 50 mmHg was observed throughout the tumours except for the normal brain tissue. U251 glioblastoma was more likely to exhibit hypoxia than U87 for comparable tumour size (median pO2; 29.7 and 18.2 mmHg, p = .028, in U87 and U251, respectively). The area with pO2 under 10 mmHg on the EPR oximetry (HF10) showed a good correlation with pimonidazole staining among tumours with evaluated size. In subcutaneous xenograft model, irradiation was relatively less effective for U251 compared with U87. In conclusion, EPRI is a feasible method to evaluate oxygen distribution in the brain tumour.
Collapse
Affiliation(s)
- Hironobu Yasui
- a Central Institute of Isotope Science, Hokkaido University , Sapporo , Japan
| | - Tatsuya Kawai
- b Radiation Oncology Branch , Center for Cancer Research, National Cancer Institute, National Health Institutes , Bethesda , MD , USA
| | - Shingo Matsumoto
- c Division of Bioengineering and Bioinformatics , Graduate School of Information Science and Technology, Hokkaido University , Sapporo , Japan
| | - Keita Saito
- d Radiation Biology Branch , Center for Cancer Research, National Cancer Institute, National Health Institutes , Bethesda , MD , USA
| | - Nallathamby Devasahayam
- d Radiation Biology Branch , Center for Cancer Research, National Cancer Institute, National Health Institutes , Bethesda , MD , USA
| | - James B Mitchell
- d Radiation Biology Branch , Center for Cancer Research, National Cancer Institute, National Health Institutes , Bethesda , MD , USA
| | - Kevin Camphausen
- b Radiation Oncology Branch , Center for Cancer Research, National Cancer Institute, National Health Institutes , Bethesda , MD , USA
| | - Osamu Inanami
- e Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Murali C Krishna
- d Radiation Biology Branch , Center for Cancer Research, National Cancer Institute, National Health Institutes , Bethesda , MD , USA
| |
Collapse
|
11
|
Kishimoto S, Krishna MC, Khramtsov VV, Utsumi H, Lurie DJ. In Vivo Application of Proton-Electron Double-Resonance Imaging. Antioxid Redox Signal 2018; 28:1345-1364. [PMID: 28990406 PMCID: PMC5910041 DOI: 10.1089/ars.2017.7341] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/05/2017] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE Proton-electron double-resonance imaging (PEDRI) employs electron paramagnetic resonance irradiation with low-field magnetic resonance imaging so that the electron spin polarization is transferred to nearby protons, resulting in higher signals. PEDRI provides information about free radical distribution and, indirectly, about the local microenvironment such as partial pressure of oxygen (pO2), tissue permeability, redox status, and acid-base balance. Recent Advances: Local acid-base balance can be imaged by exploiting the different resonance frequency of radical probes between R and RH+ forms. Redox status can also be imaged by using the loss of radical-related signal after reduction. These methods require optimized radical probes and pulse sequences. CRITICAL ISSUES High-power radio frequency irradiation is needed for optimum signal enhancement, which may be harmful to living tissue by unwanted heat deposition. Free radical probes differ depending on the purpose of PEDRI. Some probes are less effective for enhancing signal than others, which can reduce image quality. It is so far not possible to image endogenous radicals by PEDRI because low concentrations and broad line widths of the radicals lead to negligible signal enhancement. FUTURE DIRECTIONS PEDRI has similarities with electron paramagnetic resonance imaging (EPRI) because both techniques observe the EPR signal, directly in the case of EPRI and indirectly with PEDRI. PEDRI provides information that is vital to research on homeostasis, development of diseases, or treatment responses in vivo. It is expected that the development of new EPR techniques will give insights into novel PEDRI applications and vice versa. Antioxid. Redox Signal. 28, 1345-1364.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia
| | - Hideo Utsumi
- School of Pharmaceutical Sciences, The University of Shizuoka, Shizuoka, Japan
| | - David J. Lurie
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
12
|
Kishimoto S, Matsumoto KI, Saito K, Enomoto A, Matsumoto S, Mitchell JB, Devasahayam N, Krishna MC. Pulsed Electron Paramagnetic Resonance Imaging: Applications in the Studies of Tumor Physiology. Antioxid Redox Signal 2018; 28:1378-1393. [PMID: 29130334 PMCID: PMC5910045 DOI: 10.1089/ars.2017.7391] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Electron paramagnetic resonance imaging (EPRI) is capable of generating images of tissue oxygenation using exogenous paramagnetic probes such as trityl radicals or nitroxyl radicals. The spatial distribution of the paramagnetic probe can be generated using magnetic field gradients as in magnetic resonance imaging and, from its spectral features, spatial maps of oxygen can be obtained from live objects. In this review, two methods of signal acquisition and image formation/reconstruction are described. The probes used and its application to study tumor physiology and monitor treatment response with chemotherapy drugs in mouse models of human cancer are summarized. Recent Advances: By implementing phase encoding/Fourier reconstruction in EPRI in time domain mode, the frequency contribution to the spatial resolution was avoided and images with improved spatial resolution were obtained. The EPRI-generated pO2 maps in tumor were useful to detect and evaluate the effects of various antitumor therapies on tumor physiology. Coregistration with other imaging modalities provided a better understanding of hypoxia-related alteration in physiology. CRITICAL ISSUES The high radiofrequency (RF) power of EPR irradiation and toxicity profile of radical probes are the main obstacles for clinical application. The improvement of RF low power pulse sequences may allow for clinical translation. FUTURE DIRECTIONS Pulsed EPR oximetry can be a powerful tool to research various diseases involving hypoxia such as cancer, ischemic heart diseases, stroke, and diabetes. With appropriate paramagnetic probes, it can also be applied for various other purposes such as detecting local acid-base balance or oxidative stress. Antioxid. Redox Signal. 28, 1378-1393.
Collapse
Affiliation(s)
- Shun Kishimoto
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Ken-Ichiro Matsumoto
- 2 Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, Chiba, Japan
| | - Keita Saito
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Ayano Enomoto
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Shingo Matsumoto
- 3 Division of Bioengineering and Bioinformatics, Hokkaido University , Sapporo, Japan
| | - James B Mitchell
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Nallathamby Devasahayam
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Murali C Krishna
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
13
|
Matsuo M, Kawai T, Kishimoto S, Saito K, Munasinghe J, Devasahayam N, Mitchell JB, Krishna MC. Co-imaging of the tumor oxygenation and metabolism using electron paramagnetic resonance imaging and 13-C hyperpolarized magnetic resonance imaging before and after irradiation. Oncotarget 2018; 9:25089-25100. [PMID: 29861855 PMCID: PMC5982751 DOI: 10.18632/oncotarget.25317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/02/2018] [Indexed: 01/18/2023] Open
Abstract
To examine the relationship between local oxygen partial pressure and energy metabolism in the tumor, electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) with hyperpolarized [1-13C] pyruvate were performed. SCCVII and HT29 solid tumors implanted in the mouse leg were imaged by EPRI using OX063, a paramagnetic probe and 13C-MRI using hyperpolarized [1-13C] pyruvate. Local partial oxygen pressure and pyruvate metabolism in the two tumor implants were examined. The effect of a single dose of 5-Gy irradiation on the pO2 and metabolism was also investigated by sequential imaging of EPRI and 13C-MRI in HT29 tumors. A phantom study using tubes filled with different concentration of [1-13C] pyruvate, [1-13C] lactate, and OX063 at different levels of oxygen confirmed the validity of this sequential imaging of EPRI and hyperpolarized 13C-MRI. In vivo studies revealed SCCVII tumor had a significantly larger hypoxic fraction (pO2 < 8 mmHg) compared to HT29 tumor. The flux of pyruvate-to-lactate conversion was also higher in SCCVII than HT29. The lactate-to-pyruvate ratio in hypoxic regions (pO2 < 8 mmHg) 24 hours after 5-Gy irradiation was significantly higher than those without irradiation (0.76 vs. 0.36) in HT29 tumor. The in vitro study showed an increase in extracellular acidification rate after irradiation. In conclusion, co-imaging of pO2 and pyruvate-to-lactate conversion kinetics successfully showed the local metabolic changes especially in hypoxic area induced by radiation therapy.
Collapse
Affiliation(s)
- Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Radiology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Tatsuya Kawai
- Radiation Oncology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeeva Munasinghe
- MRI Research Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Scroggins BT, Matsuo M, White AO, Saito K, Munasinghe JP, Sourbier C, Yamamoto K, Diaz V, Takakusagi Y, Ichikawa K, Mitchell JB, Krishna MC, Citrin DE. Hyperpolarized [1- 13C]-Pyruvate Magnetic Resonance Spectroscopic Imaging of Prostate Cancer In Vivo Predicts Efficacy of Targeting the Warburg Effect. Clin Cancer Res 2018; 24:3137-3148. [PMID: 29599412 DOI: 10.1158/1078-0432.ccr-17-1957] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/02/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
Purpose: To evaluate the potential of hyperpolarized [1-13C]-pyruvate magnetic resonance spectroscopic imaging (MRSI) of prostate cancer as a predictive biomarker for targeting the Warburg effect.Experimental Design: Two human prostate cancer cell lines (DU145 and PC3) were grown as xenografts. The conversion of pyruvate to lactate in xenografts was measured with hyperpolarized [1-13C]-pyruvate MRSI after systemic delivery of [1-13C] pyruvic acid. Steady-state metabolomic analysis of xenograft tumors was performed with mass spectrometry and steady-state lactate concentrations were measured with proton (1H) MRS. Perfusion and oxygenation of xenografts were measured with electron paramagnetic resonance (EPR) imaging with OX063. Tumor growth was assessed after lactate dehydrogenase (LDH) inhibition with FX-11 (42 μg/mouse/day for 5 days × 2 weekly cycles). Lactate production, pyruvate uptake, extracellular acidification rates, and oxygen consumption of the prostate cancer cell lines were analyzed in vitro LDH activity was assessed in tumor homogenates.Results: DU145 tumors demonstrated an enhanced conversion of pyruvate to lactate with hyperpolarized [1-13C]-pyruvate MRSI compared with PC3 and a corresponding greater sensitivity to LDH inhibition. No difference was observed between PC3 and DU145 xenografts in steady-state measures of pyruvate fermentation, oxygenation, or perfusion. The two cell lines exhibited similar sensitivity to FX-11 in vitro LDH activity correlated to FX-11 sensitivity.Conclusions: Hyperpolarized [1-13C]-pyruvate MRSI of prostate cancer predicts efficacy of targeting the Warburg effect. Clin Cancer Res; 24(13); 3137-48. ©2018 AACR.
Collapse
Affiliation(s)
- Bradley T Scroggins
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jeeva P Munasinghe
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Vivian Diaz
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Yoichi Takakusagi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhiro Ichikawa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
15
|
Amida T, Nakaoka R, Komarov DA, Yamamoto K, Inanami O, Matsumoto S, Hirata H. A 750-MHz Electronically Tunable Resonator Using Microstrip Line Couplers for Electron Paramagnetic Resonance Imaging of a Mouse Tumor-Bearing Leg. IEEE Trans Biomed Eng 2017; 65:1124-1132. [PMID: 28841547 DOI: 10.1109/tbme.2017.2743232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The purpose of this work was to develop an electronically tunable resonator operating at 750 MHz for continuous-wave electron paramagnetic resonance (CW-EPR) imaging of a mouse tumor-bearing leg. METHODS The resonator had a multi-coil parallel-gap structure with a sample space of 16 mm in diameter and 20 mm in length. Microstrip line couplers were used in conjunction with varactor diodes to enable resonance frequency adjustment and to reduce the nonlinear effects of the varactor diodes. The resonator was modeled by the finite-element method and a microwave circuit simulation was performed to clarify its radiofrequency characteristics. RESULTS A tunable resonator was evaluated in terms of its resonance frequency, tunable frequency band, and conversion efficiency of the RF magnetic field. The developed resonator provided a tunable frequency band of 4 MHz at a central frequency of 747 MHz and a conversion efficiency of 34 μT/W1/2. To demonstrate the application of this tunable resonator to EPR imaging, three-dimensional EPR images of a sample solution and a mouse tumor-bearing leg were obtained. CONCLUSION The developed tunable resonator satisfied our initial requirements for in vivo EPR imaging and may be able to be further improved using the present finite-element and circuit models if any problems arise during future practical applications. SIGNIFICANCE This work may help to promote EPR imaging of tumor-bearing mice in cancer-related studies.
Collapse
|
16
|
Kubota H, Komarov DA, Yasui H, Matsumoto S, Inanami O, Kirilyuk IA, Khramtsov VV, Hirata H. Feasibility of in vivo three-dimensional T 2* mapping using dicarboxy-PROXYL and CW-EPR-based single-point imaging. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 30:291-298. [PMID: 28063096 DOI: 10.1007/s10334-016-0606-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The aim of this study was to demonstrate the feasibility of in vivo three-dimensional (3D) relaxation time T 2* mapping of a dicarboxy-PROXYL radical using continuous-wave electron paramagnetic resonance (CW-EPR) imaging. MATERIALS AND METHODS Isotopically substituted dicarboxy-PROXYL radicals, 3,4-dicarboxy-2,2,5,5-tetra(2H3)methylpyrrolidin-(3,4-2H2)-(1-15N)-1-oxyl (2H,15N-DCP) and 3,4-dicarboxy-2,2,5,5-tetra(2H3)methylpyrrolidin-(3,4-2H2)-1-oxyl (2H-DCP), were used in the study. A clonogenic cell survival assay was performed with the 2H-DCP radical using squamous cell carcinoma (SCC VII) cells. The time course of EPR signal intensities of intravenously injected 2H,15N-DCP and 2H-DCP radicals were determined in tumor-bearing hind legs of mice (C3H/HeJ, male, n = 5). CW-EPR-based single-point imaging (SPI) was performed for 3D T 2* mapping. RESULTS 2H-DCP radical did not exhibit cytotoxicity at concentrations below 10 mM. The in vivo half-life of 2H,15N-DCP in tumor tissues was 24.7 ± 2.9 min (mean ± standard deviation [SD], n = 5). The in vivo time course of the EPR signal intensity of the 2H,15N-DCP radical showed a plateau of 10.2 ± 1.2 min (mean ± SD) where the EPR signal intensity remained at more than 90% of the maximum intensity. During the plateau, in vivo 3D T 2* maps with 2H,15N-DCP were obtained from tumor-bearing hind legs, with a total acquisition time of 7.5 min. CONCLUSION EPR signals of 2H,15N-DCP persisted long enough after bolus intravenous injection to conduct in vivo 3D T 2* mapping with CW-EPR-based SPI.
Collapse
Affiliation(s)
- Harue Kubota
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Denis A Komarov
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, 060-0815, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Igor A Kirilyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9, Ac. Lavrentieva Ave., Novosibirsk, 630090, Russia
| | - Valery V Khramtsov
- Department of Biochemistry, West Virginia University, Robert C. Byrd Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan.
| |
Collapse
|
17
|
Legenzov EA, Muralidharan S, Woodcock LB, Eaton GR, Eaton SS, Rosen GM, Kao JPY. Designing Molecular Probes To Prolong Intracellular Retention: Application to Nitroxide Spin Probes. Bioconjug Chem 2016; 27:2923-2930. [PMID: 27998079 DOI: 10.1021/acs.bioconjchem.6b00595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Targeted delivery of molecular probes into cells enables cellular imaging through optical and magnetic modalities. Probe molecules that are well retained by cells can accumulate to higher intracellular concentrations, and thus increase the signal-to-noise ratio of, and widen the temporal window for, imaging. Here we synthesize a paramagnetic spin probe bearing six ionic functional groups and show that it has long intracellular half-life (>12 h) and exceptional biostability in living cells. We demonstrate that judicious incorporation of ionic substituents on probe molecules systematically increases intracellular retention time, and should therefore be beneficial to imaging experiments.
Collapse
Affiliation(s)
- Eric A Legenzov
- Center for Biomedical Engineering & Technology, and Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Sukumaran Muralidharan
- Center for Biomedical Engineering & Technology, and Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Lukas B Woodcock
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Gerald M Rosen
- Department of Pharmaceutical Sciences, School of Pharmacy, and Center for Biomedical Engineering & Technology, School of Medicine, University of Maryland , Baltimore, Maryland 21201, United States
| | - Joseph P Y Kao
- Center for Biomedical Engineering & Technology, and Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| |
Collapse
|
18
|
Dhimitruka I, Alzarie YA, Hemann C, Samouilov A, Zweier JL. Trityl radicals in perfluorocarbon emulsions as stable, sensitive, and biocompatible oximetry probes. Bioorg Med Chem Lett 2016; 26:5685-5688. [PMID: 27836400 DOI: 10.1016/j.bmcl.2016.10.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
EPR oximetry with the use of trityl radicals can enable sensitive O2 measurement in biological cells and tissues. However, in vitro cellular and in vivo biological applications are limited by rapid trityl probe degradation or biological clearance and the need to enhance probe O2 sensitivity. We synthesized novel perfluorocarbon (PFC) emulsions, ∼200nm droplet size, containing esterified perchlorinated triphenyl methyl (PTM) radicals dispersed in physiological aqueous buffers. These formulations exhibit excellent EPR signal stability, over 20-fold greater than free PTM probes, with high oxygen sensitivity ∼17mG/mmHg enabling pO2 measurement in aqueous solutions or cell suspensions with sensitivity >0.5mmHg. Thus, PFC-PTM probes hold great promise to enable combined O2 delivery and sensing as needed to restore or enhance tissue oxygenation in disease.
Collapse
Affiliation(s)
- Ilirian Dhimitruka
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yasmin Alsayed Alzarie
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Craig Hemann
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Alexandre Samouilov
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jay L Zweier
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Biller JR, Mitchell DG, Tseytlin M, Elajaili H, Rinard GA, Quine RW, Eaton SS, Eaton GR. Rapid Scan Electron Paramagnetic Resonance Opens New Avenues for Imaging Physiologically Important Parameters In Vivo. J Vis Exp 2016. [PMID: 27768025 DOI: 10.3791/54068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We demonstrate a superior method of 2D spectral-spatial imaging of stable radical reporter molecules at 250 MHz using rapid-scan electron-paramagnetic-resonance (RS-EPR), which can provide quantitative information under in vivo conditions on oxygen concentration, pH, redox status and concentration of signaling molecules (i.e., OH•, NO•). The RS-EPR technique has a higher sensitivity, improved spatial resolution (1 mm), and shorter acquisition time in comparison to the standard continuous wave (CW) technique. A variety of phantom configurations have been tested, with spatial resolution varying from 1 to 6 mm, and spectral width of the reporter molecules ranging from 16 µT (160 mG) to 5 mT (50 G). A cross-loop bimodal resonator decouples excitation and detection, reducing the noise, while the rapid scan effect allows more power to be input to the spin system before saturation, increasing the EPR signal. This leads to a substantially higher signal-to-noise ratio than in conventional CW EPR experiments.
Collapse
Affiliation(s)
- Joshua R Biller
- Department of Chemistry and Biochemistry, University of Denver; Magnetic Imaging Group, Applied Physics Division, Physical Measurements Laboratory, National Institute of Standards and Technology
| | | | - Mark Tseytlin
- Department of Radiology, Geisel School of Medicine, Dartmouth University; Department of Biochemistry, West Virginia University
| | - Hanan Elajaili
- Department of Chemistry and Biochemistry, University of Denver
| | - George A Rinard
- Department of Electrical and Computer Engineering, University of Denver
| | | | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver;
| |
Collapse
|
20
|
Sandulache VC, Chen Y, Skinner HD, Lu T, Feng L, Court LE, Myers JN, Meyn RE, Fuller CD, Bankson JA, Lai SY. Acute Tumor Lactate Perturbations as a Biomarker of Genotoxic Stress: Development of a Biochemical Model. Mol Cancer Ther 2015; 14:2901-8. [PMID: 26376962 DOI: 10.1158/1535-7163.mct-15-0217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/07/2015] [Indexed: 12/15/2022]
Abstract
Ionizing radiation is the primary nonsurgical treatment modality for solid tumors. Its effectiveness is impacted by temporal constraints such as fractionation, hypoxia, and development of radioresistant clones. Biomarkers of acute radiation response are essential to developing more effective clinical algorithms. We hypothesized that acute perturbations in tumor lactate levels act as a surrogate marker of radiation response. In vitro experiments were carried out using validated human-derived cell lines from three histologies: anaplastic thyroid carcinoma (ATC), head and neck squamous cell carcinoma (HNSCC), and papillary thyroid carcinoma (PTC). Cellular metabolic activity was measured using standard biochemical assays. In vivo validation was performed using both an orthotopic and a flank derivative of a previously established ATC xenograft murine model. Irradiation of cells and tumors triggered a rapid, dose-dependent, transient decrease in lactate levels that was reversed by free radical scavengers. Acute lactate perturbations following irradiation could identify hypoxic conditions and correlated with hypoxia-induced radioresistance. Mutant TP53 cells and cells in which p53 activity was abrogated (shRNA) demonstrated a blunted lactate response to irradiation, consistent with a radioresistant phenotype. Lactate measurements therefore rapidly detected both induced (i.e., hypoxia) and intrinsic (i.e., mutTP53-driven) radioresistance. We conclude that lactate is a quantitative biomarker of acute genotoxic stress, with a temporal resolution that can inform clinical decision making. Combined with the spatial resolution of newly developed metabolic imaging platforms, this biomarker could lead to the development of truly individualized treatment strategies.
Collapse
Affiliation(s)
- Vlad C Sandulache
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas. Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yunyun Chen
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heath D Skinner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tongtong Lu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lei Feng
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laurence E Court
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond E Meyn
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen Y Lai
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
21
|
Bluff JE, Reynolds S, Metcalf S, Alizadeh T, Kazan SM, Bucur A, Wholey EG, Bibby BAS, Williams L, Paley MN, Tozer GM. Measurement of the acute metabolic response to hypoxia in rat tumours in vivo using magnetic resonance spectroscopy and hyperpolarised pyruvate. Radiother Oncol 2015; 116:392-9. [PMID: 25824978 PMCID: PMC4612449 DOI: 10.1016/j.radonc.2015.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 03/03/2015] [Accepted: 03/08/2015] [Indexed: 12/11/2022]
Abstract
Purpose To estimate the rate constant for pyruvate to lactate conversion in tumours in response to a hypoxic challenge, using hyperpolarised 13C1-pyruvate and magnetic resonance spectroscopy. Methods and materials Hypoxic inspired gas was used to manipulate rat P22 fibrosarcoma oxygen tension (pO2), confirmed by luminescence decay of oxygen-sensitive probes. Hyperpolarised 13C1-pyruvate was injected into the femoral vein of anaesthetised rats and slice-localised 13C magnetic resonance (MR) spectra acquired. Spectral integral versus time curves for pyruvate and lactate were fitted to a precursor-product model to estimate the rate constant for tumour conversion of pyruvate to lactate (kpl). Mean arterial blood pressure (MABP) and oxygen tension (ArtpO2) were monitored. Pyruvate and lactate concentrations were measured in freeze-clamped tumours. Results MABP, ArtpO2 and tumour pO2 decreased significantly during hypoxia. kpl increased significantly (p < 0.01) from 0.029 ± 0.002 s−1 to 0.049 ± 0.006 s−1 (mean ± SEM) when animals breathing air were switched to hypoxic conditions, whereas pyruvate and lactate concentrations were minimally affected by hypoxia. Both ArtpO2 and MABP influenced the estimate of kpl, with a strong negative correlation between kpl and the product of ArtpO2 and MABP under hypoxia. Conclusion The rate constant for pyruvate to lactate conversion, kpl, responds significantly to a rapid reduction in tumour oxygenation.
Collapse
Affiliation(s)
- Joanne E Bluff
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Steven Reynolds
- Academic Unit of Radiology, Department of Cardiovascular Science, University of Sheffield, UK.
| | - Stephen Metcalf
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Tooba Alizadeh
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Samira M Kazan
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Adriana Bucur
- Academic Unit of Radiology, Department of Cardiovascular Science, University of Sheffield, UK
| | - Emily G Wholey
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Becky A S Bibby
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Leigh Williams
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Martyn N Paley
- Academic Unit of Radiology, Department of Cardiovascular Science, University of Sheffield, UK
| | - Gillian M Tozer
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| |
Collapse
|
22
|
Saito K, Matsumoto S, Takakusagi Y, Matsuo M, Morris HD, Lizak MJ, Munasinghe JP, Devasahayam N, Subramanian S, Mitchell JB, Krishna MC. 13C-MR Spectroscopic Imaging with Hyperpolarized [1-13C]pyruvate Detects Early Response to Radiotherapy in SCC Tumors and HT-29 Tumors. Clin Cancer Res 2015; 21:5073-81. [PMID: 25673698 DOI: 10.1158/1078-0432.ccr-14-1717] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/24/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE X-ray irradiation of tumors causes diverse effects on the tumor microenvironment, including metabolism. Recent developments of hyperpolarized (13)C-MRI enabled detecting metabolic changes in tumors using a tracer [1-(13)C]pyruvate, which participates in important bioenergetic processes that are altered in cancers. Here, we investigated the effects of X-ray irradiation on pyruvate metabolism in squamous cell carcinoma (SCCVII) and colon cancer (HT-29) using hyperpolarized (13)C-MRI. EXPERIMENTAL DESIGN SCCVII and HT-29 tumors were grown by injecting tumor cells into the hind legs of mice. [1-(13)C]pyruvate was hyperpolarized and injected intravenously into tumor-bearing mice, and (13)C-MR signals were acquired using a 4.7 T scanner. RESULTS [1-(13)C]pyruvate and [1-(13)C]lactate were detected in the tumor-bearing legs immediately after hyperpolarized [1-(13)C]pyruvate administration. The [1-(13)C]lactate to [1-(13)C]pyruvate ratio (Lac/Pyr) increased as the tumors grew in nonirradiated SCCVII tumors. The increase in Lac/Pyr was suppressed modestly with a single 10 Gy of irradiation, but it significantly decreased by further irradiation (10 Gy × 3). Similar results were obtained in HT-29; Lac/Pyr significantly dropped with fractionated 30 Gy irradiation. Independent ex vivo measurements revealed that the lactate dehydrogenase (LDH) activity and protein level were significantly smaller in the irradiated SCCVII tumors compared with the nonirradiated tumors, indicating that a decrease in LDH activity was one of the main factors responsible for the decrease of Lac/Pyr observed on (13)C-MRI. CONCLUSIONS Robust changes of Lac/Pyr observed in the HT-29 after the radiation suggested that lactate conversion from pyruvate monitored with hyperpolarized (13)C-MRI could be useful for the evaluation of early response to radiotherapy. See related commentary by Lai et al., p. 4996.
Collapse
Affiliation(s)
- Keita Saito
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shingo Matsumoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Yoichi Takakusagi
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - H Douglas Morris
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Martin J Lizak
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Jeeva P Munasinghe
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | | | - Sankaran Subramanian
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
23
|
Magnetic resonance imaging of the tumor microenvironment in radiotherapy: perfusion, hypoxia, and metabolism. Semin Radiat Oncol 2015; 24:210-7. [PMID: 24931096 DOI: 10.1016/j.semradonc.2014.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment is characterized by hypoxia, low pH, and high interstitial fluid pressure. Hypoxic regions in tumors with low partial pressure of oxygen (pO2) levels can result in resistance to radiotherapy, thus causing local failure. Therefore, it would be desirable to noninvasively measure pO2 levels in the tumor before, during, and after treatment to better customize therapy and follow treatment response. Several techniques used in preclinical and clinical studies to obtain the pO2 status of tissue, such as dynamic contrast-enhanced magnetic resonance imaging, blood oxygen level-dependent imaging, and electron paramagnetic resonance imaging, are reviewed. Furthermore, the ability to hyperpolarize specific metabolic substrates that are isotopically labeled with (13)C coupled with magnetic resonance spectroscopy enables noninvasive imaging of tissue metabolism, such as glycolysis.
Collapse
|
24
|
Rajaram N, Reesor AF, Mulvey CS, Frees AE, Ramanujam N. Non-invasive, simultaneous quantification of vascular oxygenation and glucose uptake in tissue. PLoS One 2015; 10:e0117132. [PMID: 25635865 PMCID: PMC4311991 DOI: 10.1371/journal.pone.0117132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022] Open
Abstract
We report the development of non-invasive, fiber-based diffuse optical spectroscopy for simultaneously quantifying vascular oxygenation (SO2) and glucose uptake in solid tumors in vivo. Glucose uptake was measured using a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Quantification of label-free SO2 and 2-NBDG-fluorescence-based glucose uptake 60 minutes after administration of the tracer (2-NBDG60) was performed using computational models of light-tissue interaction. This study was carried out on normal tissue and 4T1 and 4T07 murine mammary tumor xenografts in vivo. Injection of 2-NBDG did not cause a significant change in optical measurements of SO2, demonstrating its suitability as a functional reporter of tumor glucose uptake. Correction of measured 2-NBDG-fluorescence for the effects of absorption and scattering significantly improved contrast between tumor and normal tissue. The 4T1 and 4T07 tumors showed significantly decreased SO2, and 4T1 tumors demonstrated increased 2-NBDG60 compared with normal tissue (60 minutes after the administration of 2-NBDG when perfusion-mediated effects have cleared). 2-NBDG-fluorescence was found to be highly sensitive to food deprivation-induced reduction in blood glucose levels, demonstrating that this endpoint is indeed sensitive to glycolytic demand. 2-NBDG60 was also found to be linearly related to dose, underscoring the importance of calibrating for dose when comparing across animals or experiments. 4T1 tumors demonstrated an inverse relationship between 2-NBDG60 and SO2 that was consistent with the Pasteur effect, particularly when exposed to hypoxic gas breathing. Our results illustrate the potential of optical spectroscopy to provide valuable information about the metabolic status of tumors, with important implications for cancer prognosis.
Collapse
Affiliation(s)
- Narasimhan Rajaram
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| | - Andrew F. Reesor
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Christine S. Mulvey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Amy E. Frees
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
25
|
Pyruvate sensitizes pancreatic tumors to hypoxia-activated prodrug TH-302. Cancer Metab 2015; 3:2. [PMID: 25635223 PMCID: PMC4310189 DOI: 10.1186/s40170-014-0026-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/24/2014] [Indexed: 12/14/2022] Open
Abstract
Background Hypoxic niches in solid tumors harbor therapy-resistant cells. Hypoxia-activated prodrugs (HAPs) have been designed to overcome this resistance and, to date, have begun to show clinical efficacy. However, clinical HAPs activity could be improved. In this study, we sought to identify non-pharmacological methods to acutely exacerbate tumor hypoxia to increase TH-302 activity in pancreatic ductal adenocarcinoma (PDAC) tumor models. Results Three human PDAC cell lines with varying sensitivity to TH-302 (Hs766t > MiaPaCa-2 > SU.86.86) were used to establish PDAC xenograft models. PDAC cells were metabolically profiled in vitro and in vivo using the Seahorse XF system and hyperpolarized 13C pyruvate MRI, respectively, in addition to quantitative immunohistochemistry. The effect of exogenous pyruvate on tumor oxygenation was determined using electroparamagnetic resonance (EPR) oxygen imaging. Hs766t and MiaPaCa-2 cells exhibited a glycolytic phenotype in comparison to TH-302 resistant line SU.86.86. Supporting this observation is a higher lactate/pyruvate ratio in Hs766t and MiaPaCa xenografts as observed during hyperpolarized pyruvate MRI studies in vivo. Coincidentally, response to exogenous pyruvate both in vitro (Seahorse oxygen consumption) and in vivo (EPR oxygen imaging) was greatest in Hs766t and MiaPaCa models, possibly due to a higher mitochondrial reserve capacity. Changes in oxygen consumption and in vivo hypoxic status to pyruvate were limited in the SU.86.86 model. Combination therapy of pyruvate plus TH-302 in vivo significantly decreased tumor growth and increased survival in the MiaPaCa model and improved survival in Hs766t tumors. Conclusions Using metabolic profiling, functional imaging, and computational modeling, we show improved TH-302 activity by transiently increasing tumor hypoxia metabolically with exogenous pyruvate. Additionally, this work identified a set of biomarkers that may be used clinically to predict which tumors will be most responsive to pyruvate + TH-302 combination therapy. The results of this study support the concept that acute increases in tumor hypoxia can be beneficial for improving the clinical efficacy of HAPs and can positively impact the future treatment of PDAC and other cancers. Electronic supplementary material The online version of this article (doi:10.1186/s40170-014-0026-z) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Walsh JC, Lebedev A, Aten E, Madsen K, Marciano L, Kolb HC. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal 2014; 21:1516-54. [PMID: 24512032 PMCID: PMC4159937 DOI: 10.1089/ars.2013.5378] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tumor hypoxia is a well-established biological phenomenon that affects the curability of solid tumors, regardless of treatment modality. Especially for head and neck cancer patients, tumor hypoxia is linked to poor patient outcomes. Given the biological problems associated with tumor hypoxia, the goal for clinicians has been to identify moderately to severely hypoxic tumors for differential treatment strategies. The "gold standard" for detecting and characterizing of tumor hypoxia are the invasive polarographic electrodes. Several less invasive hypoxia assessment techniques have also shown promise for hypoxia assessment. The widespread incorporation of hypoxia information in clinical tumor assessment is severely impeded by several factors, including regulatory hurdles and unclear correlation with potential treatment decisions. There is now an acute need for approved diagnostic technologies for determining the hypoxia status of cancer lesions, as it would enable clinical development of personalized, hypoxia-based therapies, which will ultimately improve outcomes. A number of different techniques for assessing tumor hypoxia have evolved to replace polarographic pO2 measurements for assessing tumor hypoxia. Several of these modalities, either individually or in combination with other imaging techniques, provide functional and physiological information of tumor hypoxia that can significantly improve the course of treatment. The assessment of tumor hypoxia will be valuable to radiation oncologists, surgeons, and biotechnology and pharmaceutical companies who are engaged in developing hypoxia-based therapies or treatment strategies.
Collapse
Affiliation(s)
- Joseph C Walsh
- 1 Siemens Molecular Imaging, Inc. , Culver City, California
| | | | | | | | | | | |
Collapse
|
27
|
Takakusagi Y, Matsumoto S, Saito K, Matsuo M, Kishimoto S, Wojtkowiak JW, DeGraff W, Kesarwala AH, Choudhuri R, Devasahayam N, Subramanian S, Munasinghe JP, Gillies RJ, Mitchell JB, Hart CP, Krishna MC. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302. PLoS One 2014; 9:e107995. [PMID: 25254649 PMCID: PMC4177858 DOI: 10.1371/journal.pone.0107995] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/18/2014] [Indexed: 01/15/2023] Open
Abstract
Background TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. Methodology/Results The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and invivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500–1500 mm3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼550 mm3), significantly delayed tumor growth. Conclusions/Significance Our invitro and invivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.
Collapse
Affiliation(s)
- Yoichi Takakusagi
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Shingo Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jonathan W. Wojtkowiak
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - William DeGraff
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Aparna H. Kesarwala
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Rajani Choudhuri
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sankaran Subramanian
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jeeva P. Munasinghe
- National Institute of Neurological Diseases and Stroke, Bethesda, Maryland, United States of America
| | - Robert J. Gillies
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Charles P. Hart
- Threshold Pharmaceuticals, South San Francisco, California, United States of America
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Matsumoto S, Saito K, Takakusagi Y, Matsuo M, Munasinghe JP, Morris HD, Lizak MJ, Merkle H, Yasukawa K, Devasahayam N, Suburamanian S, Mitchell JB, Krishna MC. In vivo imaging of tumor physiological, metabolic, and redox changes in response to the anti-angiogenic agent sunitinib: longitudinal assessment to identify transient vascular renormalization. Antioxid Redox Signal 2014; 21:1145-55. [PMID: 24597714 PMCID: PMC4142786 DOI: 10.1089/ars.2013.5725] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS The tumor microenvironment is characterized by a highly reducing redox status, a low pH, and hypoxia. Anti-angiogenic therapies for solid tumors frequently function in two steps: the transient normalization of structurally and functionally aberrant tumor blood vessels with increased blood perfusion, followed by the pruning of tumor blood vessels and the resultant cessation of nutrients and oxygen delivery required for tumor growth. Conventional anatomic or vascular imaging is impractical or insufficient to distinguish between the two steps of tumor response to anti-angiogenic therapies. Here, we investigated whether the noninvasive imaging of the tumor redox state and energy metabolism could be used to characterize anti-angiogenic drug-induced transient vascular normalization. RESULTS Daily treatment of squamous cell carcinoma (SCCVII) tumor-bearing mice with the multi-tyrosine kinase inhibitor sunitinib resulted in a rapid decrease in tumor microvessel density and the suppression of tumor growth. Tumor pO2 imaging by electron paramagnetic resonance imaging showed a transient increase in tumor oxygenation after 2-4 days of sunitinib treatment, implying improved tumor perfusion. During this window of vascular normalization, magnetic resonance imaging of the redox status using an exogenously administered nitroxide probe and hyperpolarized (13)C MRI of the metabolic flux of pyruvate/lactate couple revealed an oxidative shift in tumor redox status. INNOVATION Redox-sensitive metabolic couples can serve as noninvasive surrogate markers to identify the vascular normalization window in tumors with imaging techniques. CONCLUSION A multimodal imaging approach to characterize physiological, metabolic, and redox changes in tumors is useful to distinguish between the different stages of anti-angiogenic treatment.
Collapse
Affiliation(s)
- Shingo Matsumoto
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
SIGNIFICANCE Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. RECENT ADVANCES Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed. CRITICAL ISSUES In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies. FUTURE DIRECTIONS A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices.
Collapse
Affiliation(s)
- Chen-Ting Lee
- 1 Department of Radiation Oncology, Duke University Medical Center , Durham, North Carolina
| | | | | |
Collapse
|
30
|
Biller JR, Tseitlin M, Quine RW, Rinard GA, Weismiller HA, Elajaili H, Rosen GM, Kao JPY, Eaton SS, Eaton GR. Imaging of nitroxides at 250MHz using rapid-scan electron paramagnetic resonance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 242:162-8. [PMID: 24650729 PMCID: PMC4081024 DOI: 10.1016/j.jmr.2014.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 05/12/2023]
Abstract
Projections for 2D spectral-spatial images were obtained by continuous wave and rapid-scan electron paramagnetic resonance using a bimodal cross-loop resonator at 251MHz. The phantom consisted of three 4mm tubes containing different (15)N,(2)H-substituted nitroxides. Rapid-scan and continuous wave images were obtained with 5min total acquisition times. For comparison, images also were obtained with 29s acquisition time for rapid scan and 15min for continuous wave. Relative to continuous wave projections obtained for the same data acquisition time, rapid-scan projections had significantly less low-frequency noise and substantially higher signal-to-noise at higher gradients. Because of the improved image quality for the same data acquisition time, linewidths could be determined more accurately from the rapid-scan images than from the continuous wave images.
Collapse
Affiliation(s)
- Joshua R Biller
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States; Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208, United States
| | - Mark Tseitlin
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States; Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208, United States
| | - Richard W Quine
- Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208, United States; School of Engineering and Computer Science, University of Denver, Denver, CO 80208, United States
| | - George A Rinard
- Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208, United States; School of Engineering and Computer Science, University of Denver, Denver, CO 80208, United States
| | - Hilary A Weismiller
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States; Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208, United States
| | - Hanan Elajaili
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States; Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208, United States
| | - Gerald M Rosen
- Center for Biomedical Engineering and Technology, University of Maryland, School of Medicine, Baltimore, MD 21201, United States; Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, United States
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, University of Maryland, School of Medicine, Baltimore, MD 21201, United States; Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States; Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States; Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208, United States.
| |
Collapse
|
31
|
Johnson DH, Ahmad R, He G, Samouilov A, Zweier JL. Compressed sensing of spatial electron paramagnetic resonance imaging. Magn Reson Med 2013; 72:893-901. [PMID: 24123102 DOI: 10.1002/mrm.24966] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/26/2013] [Accepted: 09/03/2013] [Indexed: 12/20/2022]
Abstract
PURPOSE To improve image quality and reduce data requirements for spatial electron paramagnetic resonance imaging (EPRI) by developing a novel reconstruction approach using compressed sensing (CS). METHODS EPRI is posed as an optimization problem, which is solved using regularized least-squares with sparsity promoting penalty terms, consisting of the l1 norms of the image itself and the total variation of the image. Pseudo-random sampling was employed to facilitate recovery of the sparse signal. The reconstruction was compared with the traditional filtered back-projection reconstruction for simulations, phantoms, isolated rat hearts, and mouse gastrointestinal (GI) tracts labeled with paramagnetic probes. RESULTS A combination of pseudo-random sampling and CS was able to generate high-fidelity EPR images at high acceleration rates. For three-dimensional (3D) phantom imaging, CS-based EPRI showed little visual degradation at nine-fold acceleration. In rat heart datasets, CS-based EPRI produced high quality images with eight-fold acceleration. A high resolution mouse GI tract reconstruction demonstrated a visual improvement in spatial resolution and a doubling in signal-to-noise ratio (SNR). CONCLUSION A novel 3D EPRI reconstruction using compressed sensing was developed and offers superior SNR and reduced artifacts from highly undersampled data.
Collapse
Affiliation(s)
- David H Johnson
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|
32
|
Krishna MC, Matsumoto S, Saito K, Matsuo M, Mitchell JB, Ardenkjaer-Larsen JH. Magnetic resonance imaging of tumor oxygenation and metabolic profile. Acta Oncol 2013; 52:1248-56. [PMID: 23957619 DOI: 10.3109/0284186x.2013.819118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor microenvironment is distinct from normal tissue as a result of abnormal vascular network characterized by hypoxia, low pH, high interstitial fluid pressure and elevated glycolytic activity. This poses a barrier to treatments including radiation therapy and chemotherapy. Imaging methods which can characterize such features non-invasively and repeatedly will be of significant value in planning treatment as well as monitoring response to treatment. The three techniques based on magnetic resonance imaging (MRI) are reviewed here. Tumor pO2 can be measured by two MRI methods requiring an exogenous contrast agent: electron paramagnetic resonance imaging (EPRI) and Overhauser magnetic resonance imaging (OMRI). Tumor metabolic profile can be assessed by a third method, hyperpolarized metabolic MR, based on injection of hyperpolarized biological molecules labeled with (13)C or (15)N and MR spectroscopic imaging. Imaging pO2 in tumors is now a robust pre-clinical imaging modality with potential for implementation clinically. Pre-clinical studies and an initial clinical study with hyperpolarized metabolic MR have been successful and suggest that the method may be part of image-guided radiotherapy to select patients for tailored individual treatment regimens.
Collapse
Affiliation(s)
- Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, Maryland , USA
| | | | | | | | | | | |
Collapse
|
33
|
Redler G, Barth ED, Bauer KS, Kao JPY, Rosen GM, Halpern HJ. In vivo electron paramagnetic resonance imaging of differential tumor targeting using cis-3,4-di(acetoxymethoxycarbonyl)-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl. Magn Reson Med 2013; 71:1650-6. [PMID: 23776127 DOI: 10.1002/mrm.24813] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/27/2013] [Accepted: 04/26/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE Electron paramagnetic resonance spectroscopy promises quantitative images of important physiologic markers of animal tumors and normal tissues, such as pO(2), pH, and thiol redox status. These parameters of tissue function are conveniently reported by tailored nitroxides. For defining tumor physiology, it is vital that nitroxides are selectively localized in tumors relative to normal tissue. Furthermore, these paramagnetic species should be specifically taken up by cells of the tumor, thereby reporting on both the site of tumor formation and the physiological status of the tissue. This study investigates the tumor localization of the novel nitroxide, cis-3,4-di(acetoxymethoxycarbonyl)-2,2,5,5-tetramethyl-1-pyrrolidin-yloxyl 3 relative to the corresponding di-acid 4. METHODS We obtained images of nitroxide 3 infused intravenously into C3H mice bearing 0.5-cm(3) FSa fibrosarcoma on the leg, and compared these with images of similar tumors infused with nitroxide 4. RESULTS The ratio of spectral intensity from within the tumor-bearing region to that of normal tissue was higher in the mice injected with 3 relative to 4. CONCLUSION This establishes the possibility of tumor imaging with a nitroxide with intracellular distribution and provides the basis for EPR images of animal models to investigate the relationship between crucial aspects of tumor microenvironment and malignancy and its response to therapy.
Collapse
Affiliation(s)
- Gage Redler
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA; Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
34
|
Zhong J, Sakaki M, Okada H, Ahrens ET. In vivo intracellular oxygen dynamics in murine brain glioma and immunotherapeutic response of cytotoxic T cells observed by fluorine-19 magnetic resonance imaging. PLoS One 2013; 8:e59479. [PMID: 23667419 PMCID: PMC3648573 DOI: 10.1371/journal.pone.0059479] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 02/14/2013] [Indexed: 12/31/2022] Open
Abstract
Noninvasive biomarkers of anti-tumoral efficacy are of great importance to the development of therapeutic agents. Tumor oxygenation has been shown to be an important indicator of therapeutic response. We report the use of intracellular labeling of tumor cells with perfluorocarbon (PFC) molecules, combined with quantitative ¹⁹F spin-lattice relaxation rate (R₁) measurements, to assay tumor cell oxygen dynamics in situ. In a murine central nervous system (CNS) GL261 glioma model, we visualized the impact of Pmel-1 cytotoxic T cell immunotherapy, delivered intravenously, on intracellular tumor oxygen levels. GL261 glioma cells were labeled ex vivo with PFC and inoculated into the mouse striatum. The R₁ of ¹⁹F labeled cells was measured using localized single-voxel magnetic resonance spectroscopy, and the absolute intracellular partial pressure of oxygen (pO₂) was ascertained. Three days after tumor implantation, mice were treated with 2×10⁷ cytotoxic T cells intravenously. At day five, a transient spike in pO₂ was observed indicating an influx of T cells into the CNS and putative tumor cell apoptosis. Immunohistochemistry and quantitative flow cytometry analysis confirmed that the pO₂ was causally related to the T cells infiltration. Surprisingly, the pO₂ spike was detected even though few (∼4×10⁴) T cells actually ingress into the CNS and with minimal tumor shrinkage. These results indicate the high sensitivity of this approach and its utility as a non-invasive surrogate biomarker of anti-cancer immunotherapeutic response in preclinical models.
Collapse
Affiliation(s)
- Jia Zhong
- Department of Biological Sciences and Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Masashi Sakaki
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Hideho Okada
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Eric T. Ahrens
- Department of Biological Sciences and Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
35
|
Matsumoto S, Saito K, Yasui H, Morris HD, Munasinghe JP, Lizak M, Merkle H, Ardenkjaer-Larsen JH, Choudhuri R, Devasahayam N, Subramanian S, Koretsky AP, Mitchell JB, Krishna MC. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as noninvasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate. Magn Reson Med 2013; 69:1443-50. [PMID: 22692861 PMCID: PMC3479339 DOI: 10.1002/mrm.24355] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 12/15/2022]
Abstract
The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate blocks glycolysis pathway by inhibiting hypoxia inducible enzymes and enhanced cytotoxicity of 3-bromopyruvate under hypoxic conditions has been reported in vitro. However, the efficacy of 3-bromopyruvate was substantially attenuated in hypoxic tumor regions (pO2<10 mmHg) in vivo using squamous cell carcinoma (SCCVII)-bearing mouse model. Metabolic MRI studies using hyperpolarized 13C-labeled pyruvate showed that monocarboxylate transporter-1 is the major transporter for pyruvate and the analog 3-bromopyruvate in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of monocarboxylate transporter-1 in vivo. Expression of monocarboxylate transporter-1 was enhanced in moderately hypoxic (8-15 mmHg) tumor regions but down regulated in severely hypoxic (<5 mmHg) tumor regions. These results emphasize the importance of noninvasive imaging biomarkers to confirm the action of hypoxia-activated drugs.
Collapse
Affiliation(s)
- Shingo Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Hironobu Yasui
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - H. Douglas Morris
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, MD, USA
| | - Jeeva P. Munasinghe
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, MD, USA
| | - Martin Lizak
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, MD, USA
| | - Hellmut Merkle
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, MD, USA
| | | | - Rajani Choudhuri
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sankaran Subramanian
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alan P. Koretsky
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, MD, USA
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
36
|
Abstract
Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII) by electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500–750 mm3) and measurements of tumor pO2 and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO2 levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO2<10 mm Hg) in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.
Collapse
|
37
|
Subramanian S, Chandramouli GVR, McMillan A, Gullapalli RP, Devasahayam N, Mitchell JB, Matsumoto S, Krishna MC. Evaluation of partial k-space strategies to speed up time-domain EPR imaging. Magn Reson Med 2012; 70:745-53. [PMID: 23045171 DOI: 10.1002/mrm.24508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/16/2012] [Accepted: 09/04/2012] [Indexed: 12/13/2022]
Abstract
Narrow-line spin probes derived from the trityl radical have led to the development of fast in vivo time-domain EPR imaging. Pure phase-encoding imaging modalities based on the single-point imaging scheme have demonstrated the feasibility of three-dimensional oximetric images with functional information in minutes. In this article, we explore techniques to improve the temporal resolution and circumvent the relatively short biological half-lives of trityl probes using partial k-space strategies. There are two main approaches: one involves the use of the Hermitian character of the k-space by which only part of the k-space is measured and the unmeasured part is generated using the Hermitian symmetry. This approach is limited in success by the accuracy of numerical estimate of the phase roll in the k-space that corrupts the Hermiticy. The other approach is to measure only a judicially chosen reduced region of k-space (a centrosymmetric ellipsoid region) that more or less accounts for >70% of the k-space energy. Both of these aspects were explored in Fourier transform-EPR imaging with a doubling of scan speed demonstrated by considering ellipsoid geometry of the k-space. Partial k-space strategies help improve the temporal resolution in studying fast dynamics of functional aspects in vivo with infused spin probes.
Collapse
Affiliation(s)
- Sankaran Subramanian
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Subramanian S, Devasahayam N, Matsumoto S, Saito K, Mitchell JB, Krishna MC. Echo-based Single Point Imaging (ESPI): a novel pulsed EPR imaging modality for high spatial resolution and quantitative oximetry. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 218:105-114. [PMID: 22578561 PMCID: PMC8391073 DOI: 10.1016/j.jmr.2012.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 05/26/2023]
Abstract
A novel time-domain spectroscopic EPR imaging approach, that is a unique combination of already known techniques, is described. The first one is multi-gradient Single Point Imaging involving pure phase-encoding where the oximetry is based on T(2)(∗). Line width derived from T(2)(∗) is subject to susceptibility effects and therefore needs system-dependent line width calibrations. The second approach utilizes the conventional 90°-τ-180° Spin-Echo pulse sequence where the images are obtained by the filtered back-projection after FT of the echoes collected under frequency-encoding gradients. The spatially resolved oximetry information is derived from a set of T(2)-weighted images. The back-projection images suffer susceptibility artifacts with resolution determined by T(2)(∗), but the oximetry based on T(2) is quite reliable. The current approach combines Single Point Imaging and the Spin-Echo procedure to take advantage the enhanced spatial resolution associated with the former and the T(2) dependent contrast of the latter. Pairs of images are derived choosing two time points located at identical time intervals on either side of the 180° pulse. The refocusing pulse being exactly in the middle of the two points ensures that artifacts associated with susceptibility and field inhomogeneities are eliminated. In addition, the net phase accumulated by the two time points being identical results in identical field of views, thus avoiding the zoom-in effect as a function delay in regular SPI and the associated interpolation requirements employed in T(2)(∗)-weighted oximetry. The end result is superior image resolution and reliable oximetry. In spite of the fact that projection-reconstruction methods require less number of measurements compared to SPI, the enormous advantage in SNR of the SPI procedure makes the echo-based SPI equally efficient in terms of measurement time. The Fourier reconstruction, line width independent resolution and the true T(2)-weighting make this novel procedure very attractive for in vivo EPR imaging of tissue oxygen quantitatively.
Collapse
Affiliation(s)
- Sankaran Subramanian
- Radiation Biology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kauppinen RA, Peet AC. Using magnetic resonance imaging and spectroscopy in cancer diagnostics and monitoring: preclinical and clinical approaches. Cancer Biol Ther 2012; 12:665-79. [PMID: 22004946 DOI: 10.4161/cbt.12.8.18137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nuclear Magnetic Resonance (MR) based imaging has become an integrated domain in today's oncology research and clinical management of cancer patients. MR is a unique imaging modality among numerous other imaging modalities by providing access to anatomical, physiological, biochemical and molecular details of tumour with excellent spatial and temporal resolutions. In this review we will cover established and investigational MR imaging (MRI) and MR spectroscopy (MRS) techniques used for cancer imaging and demonstrate wealth of information on tumour biology and clinical applications MR techniques offer for oncology research both in preclinical and clinical settings. Emphasis is given not only to the variety of information which may be obtained but also the complementary nature of the techniques. This ability to determine tumour type, grade, invasiveness, degree of hypoxia, microvacular characteristics, and metabolite phenotype, has already profoundly transformed oncology research and patient management. It is evident from the data reviewed that MR techniques will play a key role in uncovering molecular fingerprints of cancer, developing targeted treatment strategies and assessing responsiveness to treatment for personalized patient management, thereby allowing rapid translation of imaging research conclusions into the benefit of clinical oncology.
Collapse
|
40
|
Krishna MC, Matsumoto S, Yasui H, Saito K, Devasahayam N, Subramanian S, Mitchell JB. Electron Paramagnetic Resonance Imaging of Tumor pO2. Radiat Res 2012; 177:376-86. [DOI: 10.1667/rr2622.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Perles-Barbacaru TA, Procissi D, Demyanenko AV, Jacobs RE. Quantitative pharmacologic MRI in mice. NMR IN BIOMEDICINE 2012; 25:498-505. [PMID: 21793079 PMCID: PMC3292675 DOI: 10.1002/nbm.1760] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 05/03/2011] [Accepted: 05/19/2011] [Indexed: 05/31/2023]
Abstract
Pharmacologic MRI (phMRI) uses functional MRI techniques to provide a noninvasive in vivo measurement of the hemodynamic effects of drugs. The cerebral blood volume change (ΔCBV) serves as a surrogate for neuronal activity via neurovascular coupling mechanisms. By assessing the location and time course of brain activity in mouse mutant studies, phMRI can provide valuable insights into how different behavioral phenotypes are expressed in deferring brain activity response to drug challenge. In this report, we evaluate the utility of three different intravascular ultrasmall superparamagnetic iron oxide (USPIO) contrast agents for phMRI using a gradient-echo technique, with temporal resolution of one min at high magnetic field. The tissue half-life of the USPIOs was studied using a nonlinear detrending model. The three USPIOs are candidates for CBV weighted phMRI experiments, with r(2)/r(1) ratios ≥ 20 and apparent half-lives ≥ 1.5 h at the described doses. An echo-time of about 10 ms or longer results in a functional contrast to noise ratio (fCNR) > 75 after USPIO injection, with negligible decrease between 1.5-2 h. phMRI experiments were conducted at 7 T using cocaine as a psychotropic substance and acetazolamide, a global vasodilator, as a positive control. Cocaine acts as a dopamine-serotonin-norepinephrine reuptake inhibitor, increasing extracellular concentrations of these neurotransmitters, and thus increasing dopaminergic, serotonergic and noradrenergic neurotransmission. phMRI results showed that CBV was reduced in the normal mouse brain after cocaine challenge, with the largest effects in the nucleus accumbens, whereas after acetazolamide, blood volume was increased in both cerebral and extracerebral tissue.
Collapse
Affiliation(s)
| | - Daniel Procissi
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Andrey V. Demyanenko
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Russell E. Jacobs
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
42
|
Hosny NA, Lee DA, Knight MM. Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:016007. [PMID: 22352657 DOI: 10.1117/1.jbo.17.1.016007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.
Collapse
Affiliation(s)
- Neveen A Hosny
- University of London, School of Engineering and Materials Science, Queen Mary, London, United Kingdom, E1 4NS.
| | | | | |
Collapse
|
43
|
Davis RM, Mitchell JB, Krishna MC. Nitroxides as cancer imaging agents. Anticancer Agents Med Chem 2011; 11:347-58. [PMID: 21434855 DOI: 10.2174/187152011795677526] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/09/2011] [Indexed: 01/13/2023]
Abstract
Nitroxides are low molecular weight (150-400 Da) superoxide dismutase mimics that exhibit antioxidant, radical scavenging, and radioprotective activity. Additionally, the paramagnetic nature of nitroxides makes them viable as both spin probes for electron paramagnetic resonance imaging as well as contrast agents for magnetic resonance imaging. These imaging techniques enable in vivo monitoring of nitroxide metabolism. In biological systems, nitroxide metabolism occurs predominantly via reduction of the nitroxide to a hydroxylamine. The rate of nitroxide reduction can increase or decrease due to either oxidative stress, suggesting that nitroxides can provide an imaging-based assay of tissue redox status. The current review briefly summarizes the potential clinical applications of nitroxides, and focuses on the biochemical and tumor microenvironmental factors that affect the rate of nitroxide reduction. The potential therapeutic applications and bio-reduction mechanisms are discussed in the context of their relevance to oncology.
Collapse
Affiliation(s)
- Ryan M Davis
- Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
44
|
Saito K, Matsumoto S, Devasahayam N, Subramanian S, Munasinghe JP, Morris HD, Lizak MJ, Ardenkjaer-Larsen JH, Mitchell JB, Krishna MC. Transient decrease in tumor oxygenation after intravenous administration of pyruvate. Magn Reson Med 2011; 67:801-7. [PMID: 22006570 DOI: 10.1002/mrm.23065] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/04/2011] [Accepted: 05/31/2011] [Indexed: 01/14/2023]
Abstract
MRI using hyperpolarized (13) C-labeled pyruvate is a promising tool to biochemically profile tumors and monitor their response to therapy. This technique requires injection of pyruvate into tumor-bearing animals. Pyruvate is an endogenous entity but the influence of exogenously injected bolus doses of pyruvate on tumor microenvironment is not well understood. In this study, the effect of injecting a bolus of pyruvate on tumor oxygen status was investigated. EPR oxygen imaging revealed that the partial pressure of oxygen (pO(2)) in squamous cell carcinoma implanted in mice decreased significantly 30 min after [1-(13) C]pyruvate injection, but recovered to preinjection levels after 5 h. Dynamic contrast-enhanced-MRI studies showed that, at the dose of pyruvate used, no changes in tumor perfusion were noticed. Immunohistochemical analysis of hypoxic marker pimonidazole independently verified that the squamous cell carcinoma tumor transiently became more hypoxic by pyruvate injection. Efficacy of radiotherapy was suppressed when X-irradiation was delivered during the period of pyruvate-induced transient hypoxia. These results suggest importance of taking into account the transient decrease in tumor pO(2) after pyruvate injection in hyperpolarized (13) C MRI, because tumor oxygen status is an important factor in determining outcomes of therapies.
Collapse
Affiliation(s)
- Keita Saito
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1002, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Matsumoto S, Batra S, Saito K, Yasui H, Choudhuri R, Gadisetti C, Subramanian S, Devasahayam N, Munasinghe JP, Mitchell JB, Krishna MC. Antiangiogenic agent sunitinib transiently increases tumor oxygenation and suppresses cycling hypoxia. Cancer Res 2011; 71:6350-9. [PMID: 21878530 DOI: 10.1158/0008-5472.can-11-2025] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structural and functional abnormalities in tumor blood vessels impact the delivery of oxygen and nutrients to solid tumors, resulting in chronic and cycling hypoxia. Although chronically hypoxic regions exhibit treatment resistance, more recently it has been shown that cycling hypoxic regions acquire prosurvival pathways. Angiogenesis inhibitors have been shown to transiently normalize the tumor vasculatures and enhance tumor response to treatments. However, the effect of antiangiogenic therapy on cycling tumor hypoxia remains unknown. Using electron paramagnetic resonance imaging and MRI in tumor-bearing mice, we have examined the vascular renormalization process by longitudinally mapping tumor partial pressure of oxygen (pO(2)) and microvessel density during treatments with a multi-tyrosine kinase inhibitor sunitinib. Transient improvement in tumor oxygenation was visualized by electron paramagnetic resonance imaging 2 to 4 days following antiangiogenic treatments, accompanied by a 45% decrease in microvessel density. Radiation treatment during this time period of improved oxygenation by antiangiogenic therapy resulted in a synergistic delay in tumor growth. In addition, dynamic oxygen imaging obtained every 3 minutes was conducted to distinguish tumor regions with chronic and cycling hypoxia. Sunitinib treatment suppressed the extent of temporal fluctuations in tumor pO(2) during the vascular normalization window, resulting in the decrease of cycling tumor hypoxia. Overall, the findings suggest that longitudinal and noninvasive monitoring of tumor pO(2) makes it possible to identify a window of vascular renormalization to maximize the effects of combination therapy with antiangiogenic drugs.
Collapse
Affiliation(s)
- Shingo Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P. Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2011; 2:49. [PMID: 21904528 PMCID: PMC3161244 DOI: 10.3389/fphar.2011.00049] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/05/2011] [Indexed: 12/21/2022] Open
Abstract
CANCER IS A METABOLIC DISEASE AND THE SOLUTION OF TWO METABOLIC EQUATIONS: to produce energy with limited resources and to fulfill the biosynthetic needs of proliferating cells. Both equations are solved when glycolysis is uncoupled from oxidative phosphorylation in the tricarboxylic acid cycle, a process known as the glycolytic switch. This review addresses in a comprehensive manner the main molecular events accounting for high-rate glycolysis in cancer. It starts from modulation of the Pasteur Effect allowing short-term adaptation to hypoxia, highlights the key role exerted by the hypoxia-inducible transcription factor HIF-1 in long-term adaptation to hypoxia, and summarizes the current knowledge concerning the necessary involvement of aerobic glycolysis (the Warburg effect) in cancer cell proliferation. Based on the many observations positioning glycolysis as a central player in malignancy, the most advanced anticancer treatments targeting tumor glycolysis are briefly reviewed.
Collapse
Affiliation(s)
- Paolo E Porporato
- Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, University of Louvain Medical School Brussels, Belgium
| | | | | | | | | |
Collapse
|
47
|
Seifi P, Epel B, Sundramoorthy SV, Mailer C, Halpern HJ. Frequency bandwidth extension by use of multiple Zeeman field offsets for electron spin-echo EPR oxygen imaging of large objects. Med Phys 2011; 38:3062-8. [PMID: 21815379 DOI: 10.1118/1.3590365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors' aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique. METHODS The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom. RESULTS For the phantom used in this study, transverse relaxation (T(2e)) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T(2e) images. CONCLUSIONS The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique.
Collapse
Affiliation(s)
- Payam Seifi
- Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
48
|
Shin CS, Dunnam CR, Borbat PP, Dzikovski B, Barth ED, Halpern HJ, Freed JH. ESR Microscopy for Biological and Biomedical Applications. NANOSCIENCE AND NANOTECHNOLOGY LETTERS (PRINT) 2011; 3:561-567. [PMID: 21984955 PMCID: PMC3188420 DOI: 10.1166/nnl.2011.1206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report on electron-spin resonance microscopy (ESRM) providing sub-micron resolution (~700nm) with a high spin concentration sample, i.e. lithium phthalocyanine (LiPc) crystal. For biomedical applications of our ESRM, we have imaged samples containing rat basophilic leukemia (RBL) cells as well as cancerous tissue samples with a resolution of several microns using a water soluble spin probe, Trityl_OX063_d24. Phantom samples with the nitroxide spin label, (15)N PDT, were also imaged to demonstrate that nitroxides, which are commonly used as spin labels, may also be used for ESRM applications. ESRM tissue imaging would therefore be valuable for diagnostic or therapeutic purposes. Also, ESRM can be used to study the motility or the metabolism of cells in various environments. With further modification and/or improvement of imaging probe and spectrometer instrumentation sub-micron biological images should be obtainable, thereby providing a useful tool for various biomedical applications.
Collapse
Affiliation(s)
- C. S. Shin
- National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
- Dept of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - C. R. Dunnam
- National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
- Dept of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - P. P. Borbat
- National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
- Dept of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - B. Dzikovski
- National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
- Dept of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - E. D. Barth
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - H. J. Halpern
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - J. H. Freed
- National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
- Dept of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
49
|
Cromer Berman SM, Walczak P, Bulte JWM. Tracking stem cells using magnetic nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:343-55. [PMID: 21472999 DOI: 10.1002/wnan.140] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stem cell therapies offer great promise for many diseases, especially those without current effective treatments. It is believed that noninvasive imaging techniques, which offer the ability to track the status of cells after transplantation, will expedite progress in this field and help to achieve maximized therapeutic effect. Today's biomedical imaging technology allows for real-time, noninvasive monitoring of grafted stem cells including their biodistribution, migration, survival, and differentiation, with magnetic resonance imaging (MRI) of nanoparticle-labeled cells being one of the most commonly used techniques. Among the advantages of MR cell tracking are its high spatial resolution, no exposure to ionizing radiation, and clinical applicability. In order to track cells by MRI, the cells need to be labeled with magnetic nanoparticles, for which many types exist. There are several cellular labeling techniques available, including simple incubation, use of transfection agents, magnetoelectroporation, and magnetosonoporation. In this overview article, we will review the use of different magnetic nanoparticles and discuss how these particles can be used to track the distribution of transplanted cells in different organ systems. Caveats and limitations inherent to the tracking of nanoparticle-labeled stem cells are also discussed.
Collapse
Affiliation(s)
- Stacey M Cromer Berman
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
50
|
Schwartz DL, Bankson J, Bidaut L, He Y, Williams R, Lemos R, Thitai AK, Oh J, Volgin A, Soghomonyan S, Yeh HH, Nishii R, Mukhopadhay U, Alauddin M, Mushkudiani I, Kuno N, Krishnan S, Bornman W, Lai SY, Powis G, Hazle J, Gelovani J. HIF-1-dependent stromal adaptation to ischemia mediates in vivo tumor radiation resistance. Mol Cancer Res 2011; 9:259-70. [PMID: 21364021 DOI: 10.1158/1541-7786.mcr-10-0469] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Hypoxia-inducible factor 1 (HIF-1) promotes cancer cell survival and tumor progression. The specific role played by HIF-1 and tumor-stromal interactions toward determining tumor resistance to radiation treatment remains undefined. We applied a multimodality preclinical imaging platform to mechanistically characterize tumor response to radiation, with a focus on HIF-1-dependent resistance pathways. METHODS C6 glioma and HN5 human squamous carcinoma cells were stably transfected with a dual HIF-1 signaling reporter construct (dxHRE-tk/eGFP-cmvRed2XPRT). Reporter cells were serially interrogated in vitro before and after irradiation as monolayer and multicellular spheroid cultures and as subcutaneous xenografts in nu/nu mice. RESULTS In vitro, single-dose irradiation of C6 and HN5 reporter cells modestly impacted HIF-1 signaling in normoxic monolayers and inhibited HIF-1 signaling in maturing spheroids. In contrast, irradiation of C6 or HN5 reporter xenografts with 8 Gy in vivo elicited marked upregulation of HIF-1 signaling and downstream proangiogenic signaling at 48 hours which preceded recovery of tumor growth. In situ ultrasound imaging and dynamic contrast-enhanced (DCE) MRI indicated that HIF-1 signaling followed acute disruption of stromal vascular function. High-resolution positron emission tomography and dual-contrast DCE-MRI of immobilized dorsal skin window tumors confirmed postradiotherapy HIF-1 signaling to spatiotemporally coincide with impaired stromal vascular function. Targeted disruption of HIF-1 signaling established this pathway to be a determinant of tumor radioresistance. CONCLUSIONS Our results illustrate that tumor radioresistance is mediated by a capacity to compensate for stromal vascular disruption through HIF-1-dependent proangiogenic signaling and that clinically relevant vascular imaging techniques can spatially define mechanisms associated with tumor irradiation.
Collapse
Affiliation(s)
- David L Schwartz
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|