1
|
Duong VT, Lee D, Kim YH, Oh SO. Functional role of UNC13D in immune diseases and its therapeutic applications. Front Immunol 2024; 15:1460882. [PMID: 39469717 PMCID: PMC11513310 DOI: 10.3389/fimmu.2024.1460882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
UNC13 family (also known as Munc13) proteins are evolutionarily conserved proteins involved in the rapid and regulated secretion of vesicles, including synaptic vesicles and cytotoxic granules. Fast and regulated secretion at the neuronal and immunological synapses requires multiple steps, from the biogenesis of vesicles to membrane fusion, and a complex array of proteins for each step. Defects at these steps can lead to various genetic disorders. Recent studies have shown multiple roles of UNC13D in the secretion of cytotoxic granules by immune cells. Here, the molecular structure and detailed roles of UNC13D in the biogenesis, tethering, and priming of cytotoxic vesicles and in endoplasmic reticulum are summarized. Moreover, its association with immune diseases, including familial hemophagocytic lymphohistiocytosis type 3, macrophage activation syndrome, juvenile idiopathic arthritis, and autoimmune lymphoproliferative syndrome, is reviewed. Finally, the therapeutic application of CRISPR/Cas9-based gene therapy for genetic diseases is introduced.
Collapse
Affiliation(s)
- Van-Thanh Duong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
2
|
Chiang SCC, Covill LE, Tesi B, Campbell TM, Schlums H, Nejati-Zendegani J, Mördrup K, Wood S, Theorell J, Sekine T, Al-Herz W, Akar HH, Belen FB, Chan MY, Devecioglu O, Aksu T, Ifversen M, Malinowska I, Sabel M, Unal E, Unal S, Introne WJ, Krzewski K, Gilmour KC, Ehl S, Ljunggren HG, Nordenskjöld M, Horne A, Henter JI, Meeths M, Bryceson YT. Efficacy of T-cell assays for the diagnosis of primary defects in cytotoxic lymphocyte exocytosis. Blood 2024; 144:873-887. [PMID: 38958468 PMCID: PMC11375501 DOI: 10.1182/blood.2024024499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
ABSTRACT Primary hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disorder associated with autosomal recessive variants in genes required for perforin-mediated lymphocyte cytotoxicity. A rapid diagnosis is crucial for successful treatment. Although defective cytotoxic T lymphocyte (CTL) function causes pathogenesis, quantification of natural killer (NK)-cell exocytosis triggered by K562 target cells currently represents a standard diagnostic procedure for primary HLH. We have prospectively evaluated different lymphocyte exocytosis assays in 213 patients referred for evaluation for suspected HLH and related hyperinflammatory syndromes. A total of 138 patients received a molecular diagnosis consistent with primary HLH. Assessment of Fc receptor-triggered NK-cell and T-cell receptor (TCR)-triggered CTL exocytosis displayed higher sensitivity and improved specificity for the diagnosis of primary HLH than routine K562 cell-based assays, with these assays combined providing a sensitivity of 100% and specificity of 98.3%. By comparison, NK-cell exocytosis after K562 target cell stimulation displayed a higher interindividual variability, in part explained by differences in NK-cell differentiation or large functional reductions after shipment. We thus recommend combined analysis of TCR-triggered CTL and Fc receptor-triggered NK-cell exocytosis for the diagnosis of patients with suspected familial HLH or atypical manifestations of congenital defects in lymphocyte exocytosis.
Collapse
MESH Headings
- Humans
- Exocytosis
- T-Lymphocytes, Cytotoxic/immunology
- Lymphohistiocytosis, Hemophagocytic/diagnosis
- Lymphohistiocytosis, Hemophagocytic/immunology
- Lymphohistiocytosis, Hemophagocytic/genetics
- Lymphohistiocytosis, Hemophagocytic/pathology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Adolescent
- Child
- Adult
- Female
- K562 Cells
- Male
- Child, Preschool
- Middle Aged
- Infant
- Young Adult
- Aged
- Sensitivity and Specificity
- Prospective Studies
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Samuel C C Chiang
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Laura E Covill
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Tessa M Campbell
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Heinrich Schlums
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jelve Nejati-Zendegani
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Karina Mördrup
- Unit of Pediatric Rheumatology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie Wood
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jakob Theorell
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Takuya Sekine
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Himmet Haluk Akar
- Department of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fatma Burcu Belen
- Department of Pediatrics, Baskent University Medical Faculty, Ankara, Turkey
| | - Mei Yoke Chan
- Haematology/Oncology Service, Department of Paediatric Subspecialties, Kandang Kerbau Women's and Children's Hospital, Singapore, Singapore
| | - Omer Devecioglu
- Department of Pediatric Hematology-Oncology, Istanbul Medical School, Istanbul, Turkey
| | - Tekin Aksu
- Division of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| | - Marianne Ifversen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Iwona Malinowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Magnus Sabel
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Ekrem Unal
- Faculty of Health Sciences, Medical Point Hospital, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Sule Unal
- Division of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| | - Wendy J Introne
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Kimberly C Gilmour
- Immunology, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Gustaf Ljunggren
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - AnnaCarin Horne
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Marie Meeths
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T Bryceson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Canny SP, Stanaway IB, Holton SE, Mitchem M, O'Rourke AR, Pribitzer S, Baxter SK, Wurfel MM, Malhotra U, Buckner JH, Bhatraju PK, Morrell ED, Speake C, Mikacenic C, Hamerman JA. Identification of biomarkers for COVID-19 associated secondary hemophagocytic lymphohistiocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607855. [PMID: 39185173 PMCID: PMC11343163 DOI: 10.1101/2024.08.13.607855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
OBJECTIVES We aimed to define and validate novel biomarkers that could identify individuals with COVID-19 associated secondary hemophagocytic lymphohistiocytosis (sHLH) and to test whether fatalities due to COVID-19 in the presence of sHLH were associated with specific defects in the immune system. DESIGN In two cohorts of adult patients presenting with COVID-19 in 2020 and 2021, clinical lab values and serum proteomics were assessed. Subjects identified as having sHLH were compared to those with COVID-19 without sHLH. Eight deceased patients defined as COVID-sHLH underwent genomic sequencing in order to identify variants in immune-related genes. SETTING Two tertiary care hospitals in Seattle, Washington (Virginia Mason Medical Center and Harborview Medical Center). PATIENTS 186 patients with COVID-19. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Nine percent of enrolled COVID-19 subjects met our defined criteria for sHLH. Using broad serum proteomic approaches (O-link and SomaScan), we identified three biomarkers for COVID-19 associated sHLH (soluble PD-L1, TNF-R1, and IL-18BP), supporting a role for proteins previously associated with other forms of sHLH (IL-18BP and sTNF-R1). We also identified novel biomarkers and pathways of COVID-sHLH, including sPD-L1 and the syntaxin pathway. We detected variants in several genes involved in immune responses in individuals with COVID-sHLH, including in DOCK8 and in TMPRSS15, suggesting that genetic alterations in immune-related genes may contribute to hyperinflammation and fatal outcomes in COVID-19. CONCLUSIONS Biomarkers of COVID-19 associated sHLH, such as soluble PD-L1, and pathways, such as the syntaxin pathway, and variants in immune genes in these individuals, suggest critical roles for the immune response in driving sHLH in the context of COVID-19.
Collapse
Affiliation(s)
- Susan P Canny
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Ian B Stanaway
- Kidney Research Institute and Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA
| | - Sarah E Holton
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Mallorie Mitchem
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Allison R O'Rourke
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
| | - Stephan Pribitzer
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA
| | - Sarah K Baxter
- Department of Pediatrics, University of Washington, Seattle, WA
- Sonoma Biotherapeutics, Seattle, WA
| | - Mark M Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Uma Malhotra
- Department of Infectious Disease, Virginia Mason Medical Center, Seattle, WA
- Department of Medicine, Section of Infectious Diseases, University of Washington, Seattle, WA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| | - Pavan K Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Eric D Morrell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA
| | - Carmen Mikacenic
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Jessica A Hamerman
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
4
|
Kögl T, Chang HF, Staniek J, Chiang SC, Thoulass G, Lao J, Weißert K, Dettmer-Monaco V, Geiger K, Manna PT, Beziat V, Momenilandi M, Tu SM, Keppler SJ, Pattu V, Wolf P, Kupferschmid L, Tholen S, Covill LE, Ebert K, Straub T, Groß M, Gather R, Engel H, Salzer U, Schell C, Maier S, Lehmberg K, Cornu TI, Pircher H, Shahrooei M, Parvaneh N, Elling R, Rizzi M, Bryceson YT, Ehl S, Aichele P, Ammann S. Patients and mice with deficiency in the SNARE protein SYNTAXIN-11 have a secondary B cell defect. J Exp Med 2024; 221:e20221122. [PMID: 38722309 PMCID: PMC11082451 DOI: 10.1084/jem.20221122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
SYNTAXIN-11 (STX11) is a SNARE protein that mediates the fusion of cytotoxic granules with the plasma membrane at the immunological synapses of CD8 T or NK cells. Autosomal recessive inheritance of deleterious STX11 variants impairs cytotoxic granule exocytosis, causing familial hemophagocytic lymphohistiocytosis type 4 (FHL-4). In several FHL-4 patients, we also observed hypogammaglobulinemia, elevated frequencies of naive B cells, and increased double-negative DN2:DN1 B cell ratios, indicating a hitherto unrecognized role of STX11 in humoral immunity. Detailed analysis of Stx11-deficient mice revealed impaired CD4 T cell help for B cells, associated with disrupted germinal center formation, reduced isotype class switching, and low antibody avidity. Mechanistically, Stx11-/- CD4 T cells exhibit impaired membrane fusion leading to reduced CD107a and CD40L surface mobilization and diminished IL-2 and IL-10 secretion. Our findings highlight a critical role of STX11 in SNARE-mediated membrane trafficking and vesicle exocytosis in CD4 T cells, important for successful CD4 T cell-B cell interactions. Deficiency in STX11 impairs CD4 T cell-dependent B cell differentiation and humoral responses.
Collapse
Affiliation(s)
- Tamara Kögl
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Hsin-Fang Chang
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Julian Staniek
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
| | - Samuel C.C. Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, and Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gudrun Thoulass
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Jessica Lao
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Kristoffer Weißert
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Viviane Dettmer-Monaco
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Kerstin Geiger
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Paul T. Manna
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Vivien Beziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Szu-Min Tu
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Selina J. Keppler
- Division of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Varsha Pattu
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Philipp Wolf
- Department of Urology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Laurence Kupferschmid
- Institute of Medical Microbiology and Hygiene, University Medical Center, Freiburg, Germany
| | - Stefan Tholen
- Department of Pathology, Institute of Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Laura E. Covill
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Karolina Ebert
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Tobias Straub
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Miriam Groß
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ruth Gather
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Helena Engel
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ulrich Salzer
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Department of Pathology, Institute of Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Sarah Maier
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana I. Cornu
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Mohammad Shahrooei
- Department of Microbiology, Immunology, and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
- Dr. Shahrooei Laboratory, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Roland Elling
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty for Medicine, Center for Pediatrics and Adolescent Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Clinical Immunology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Yenan T. Bryceson
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Stephan Ehl
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Peter Aichele
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Sandra Ammann
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Alradhi SI, Almanjomi F, Alamr F, Alwakid I, Alrashidi M, Alkhelaif M. Clinical Presentations, Diagnosis, and Genetic Features of Hemophagocytic Lymphohistiocytosis: A Single Institutional Experience With the Saudi Population. Cureus 2024; 16:e61879. [PMID: 38978926 PMCID: PMC11228410 DOI: 10.7759/cureus.61879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Background Hemophagocytic lymphohistiocytosis (HLH) is an uncommon, potentially fatal condition caused by high immune activation. The present study aimed to identify the clinical manifestations, geographic distribution, and associated pathogenic genetic mutations of HLH in Saudi Arabia. Method A retrospective cross-sectional study was conducted at King Fahad Medical City (KFMC), with a total of 59 patients diagnosed with HLH in the period between 2006 and 2018. All genetic results and clinical and biochemical data were retrieved and statistically analyzed using IBM SPSS Statistics for Windows, Version 25 (Released 2017; IBM Corp., Armonk, New York, United States). Results The results revealed that 48 patients (81.4%) had 15 pathogenic mutations of primary HLH whereas 8 (13.6%) patients had no genetic mutation. The most common variant mutation identified was c.1430C>T of the STXBP2 gene (42.4% of total patients), followed by c.1122G>A of the PRF1 gene (10.2% of patients), which demonstrated a distinctive geographic and tribal association. Patients with RAB27A mutation tend to present at an older age than the others with a median age of presentation of 5.5 months vs 2 months for patients with PRF1 mutations. No significant differences in clinical features were observed among the various groups. Conclusion This study highlights the incidence of genetic mutations among the Saudi population with HLH. The STXBP2 is the most common mutation followed by PRF1 mutations, many mutation variants are associated with a distinctive tribal and geographic association.
Collapse
Affiliation(s)
- Sami I Alradhi
- Pediatric Hematology and Oncology, Maternity and Children Hospital, Dammam, SAU
| | | | - Fahad Alamr
- College of Medicine, Al-Baha University, Al-Baha, SAU
| | | | | | | |
Collapse
|
6
|
Sekine T, Galgano D, Casoni GP, Meeths M, Cron RQ, Bryceson YT. CD8 + T Cell Biology in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:129-144. [PMID: 39117812 DOI: 10.1007/978-3-031-59815-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.
Collapse
Affiliation(s)
- Takuya Sekine
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Donatella Galgano
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giovanna P Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Randy Q Cron
- Division of Pediatric Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
French AR, Cron RQ, Cooper MA. Immunology of Cytokine Storm Syndromes: Natural Killer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:145-159. [PMID: 39117813 DOI: 10.1007/978-3-031-59815-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that rapidly produce cytokines upon activation and kill target cells. NK cells have been of particular interest in primary hemophagocytic lymphohistiocytosis (pHLH) since all of the genetic defects associated with this disorder cause diminished cytotoxic capacity of NK cells and T lymphocytes, and assays of NK cell killing are used clinically for the diagnosis of HLH. Herein, we review human NK cell biology and the significance of alterations in NK cell function in the diagnosis and pathogenesis of HLH.
Collapse
Affiliation(s)
- Anthony R French
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randy Q Cron
- Department of Pediatrics, Division of Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Reid W, Romberg N. Inborn Errors of Immunity and Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:185-207. [PMID: 39117816 DOI: 10.1007/978-3-031-59815-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Inborn errors of immunity (IEI) are a diverse and growing category of more than 430 chronic disorders that share susceptibilities to infections. Whether the result of a genetic lesion that causes defective granule-dependent cytotoxicity, excessive lymphoproliferation, or an overwhelming infection represents a unique antigenic challenge, IEIs can display a proclivity for cytokine storm syndrome (CSS) development. This chapter provides an overview of CSS pathophysiology as it relates to IEIs. For each IEI, the immunologic defect and how it promotes or discourages CSS phenomena are reviewed. The IEI-associated molecular defects in pathways that are postulated to be critical to CSS physiology (i.e., toll-like receptors, T regulatory cells, the IL-12/IFNγ axis, IL-6) and, whenever possible, review strategies for treating CSS in IEI patients with molecularly directed therapies are highlighted.
Collapse
Affiliation(s)
- Whitney Reid
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Romberg
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Karageorgos S, Platt AS, Bassiri H. Genetics of Primary Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:75-101. [PMID: 39117809 DOI: 10.1007/978-3-031-59815-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) constitutes a rare, potentially life-threatening hyperinflammatory immune dysregulation syndrome that can present with a variety of clinical signs and symptoms, including fever, hepatosplenomegaly, and abnormal laboratory and immunological findings such as cytopenias, hyperferritinemia, hypofibrinogenemia, hypertriglyceridemia, elevated blood levels of soluble CD25 (interleukin (IL)-2 receptor α-chain), or diminished natural killer (NK)-cell cytotoxicity (reviewed in detail in Chapter 11 of this book). While HLH can be triggered by an inciting event (e.g., infections), certain monogenic causes have been associated with a significantly elevated risk of development of HLH, or recurrence of HLH in patients who have recovered from their disease episode. These monogenic predisposition syndromes are variably referred to as "familial" (FHL) or "primary" HLH (henceforth referred to as "pHLH") and are the focus of this chapter. Conversely, secondary HLH (sHLH) often occurs in the absence of monogenic etiologies that are commonly associated with pHLH and can be triggered by infections, malignancies, or rheumatological diseases; these triggers and the genetics associated with sHLH are discussed in more detail in other chapters in this book.
Collapse
Affiliation(s)
- Spyridon Karageorgos
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna S Platt
- Roberts Individualized Medical Genetics Center and Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hamid Bassiri
- Immune Dysregulation Program and Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Vastert SJ, Canny SP, Canna SW, Schneider R, Mellins ED. Cytokine Storm Syndrome Associated with Systemic Juvenile Idiopathic Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:323-353. [PMID: 39117825 DOI: 10.1007/978-3-031-59815-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cytokine storm syndrome (CSS) associated with systemic juvenile idiopathic arthritis (sJIA) has widely been referred to as macrophage activation syndrome (MAS). In this chapter, we use the term sJIA-associated CSS (sJIA-CSS) when referring to this syndrome and use the term MAS when referencing publications that specifically report on sJIA-associated MAS.
Collapse
Affiliation(s)
- Sebastiaan J Vastert
- Department of Paediatric Rheumatology & Immunology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Susan P Canny
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Scott W Canna
- Department of Pediatrics and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rayfel Schneider
- Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth D Mellins
- Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Henter JI, von Bahr Greenwood T. Etoposide Therapy of Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:525-551. [PMID: 39117837 DOI: 10.1007/978-3-031-59815-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Etoposide has revolutionized the treatment of primary as well as secondary hemophagocytic lymphohistiocytosis (HLH), and it is, together with corticosteroids, the most widely used therapy for HLH. In the early 1980s, long-term survival in primary HLH was <5% but with the etoposide-/dexamethasone-based protocols HLH-94 and HLH-2004, in combination with stem cell transplantation, 5-year survival increased dramatically to around 60% in primary HLH, and based on analyses from the HLH-2004 study, there is likely room for further improvement. Biologically, etoposide administration results in potent selective deletion of activated T cells as well as efficient suppression of inflammatory cytokine production. Moreover, etoposide has also been reported to promote programmed cell death (apoptosis) rather than proinflammatory lytic cell death (pyroptosis), conceivably ameliorating subsequent systemic inflammation, i.e., a treatment very suitable for cytokine storm syndromes (CSS). The combination of etoposide and corticosteroids may also be beneficial in cases of severe or refractory secondary HLH (sHLH) with imminent organ failure, such as infection-associated HLH caused by Epstein-Barr virus (EBV) or malignancy-triggered HLH. In CSS associated with rheumatic diseases (macrophage activation syndrome, MAS or MAS-HLH), etoposide is currently used as second- or third-line therapy. Recent studies suggest that etoposide perhaps should be part of an aggressive therapeutic intervention for patients with severe refractory or relapsing MAS, in particular if there is CNS involvement. Importantly, awareness of sHLH must be further increased since treatment of sHLH is often delayed, thereby missing the window of opportunity for a timely, effective, and potentially life-saving HLH-directed treatment.
Collapse
Affiliation(s)
- Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Astrid Lindgren Children's Hospital, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Tatiana von Bahr Greenwood
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Astrid Lindgren Children's Hospital, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
12
|
Janka GE. History of Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:9-19. [PMID: 39117804 DOI: 10.1007/978-3-031-59815-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a severe cytokine storm syndrome (CSS), which until the turn of the century, was barely known but is now receiving increased attention. The history of HLH dates back to 1939 when it was first described in adults, to be followed in 1952 by the first description of its primary, familial form in children. Secondary forms of HLH are far more frequent and occur with infections, malignancies, metabolic diseases, iatrogenic immune suppression, and autoinflammatory/autoimmune diseases. Identification of the genetic defects leading to the defective function of natural killer (NK) cells and cytotoxic T cells as well as the corresponding mouse models have revolutionized our understanding of HLH and of immune function. Diagnosis relies on clinical and laboratory criteria; functional and genetic tests can help separate primary from secondary forms. Treatment with immunochemotherapy and hematopoietic stem cell transplantation has considerably improved survival in children with primary HLH, a formerly uniformly fatal disease.
Collapse
Affiliation(s)
- Gritta E Janka
- University Medical Center Hamburg, Department of Pediatric Hematology and Oncology, Hamburg, Germany.
| |
Collapse
|
13
|
Mansour R, El-Hassan R, El-Orfali Y, Saidu A, Al-Kalamouni H, Chen Q, Benamar M, Dbaibo G, Hanna-Wakim R, Chatila TA, Massaad MJ. The opposing effects of two gene defects in STX11 and SLP76 on the disease in a patient with an inborn error of immunity. J Allergy Clin Immunol 2023; 152:1597-1606. [PMID: 37595757 DOI: 10.1016/j.jaci.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Inborn errors of immunity are mostly monogenic. However, disease phenotype and outcome may be modified by the coexistence of a second gene defect. OBJECTIVE We sought to identify the genetic basis of the disease in a patient who experienced bleeding episodes, pancytopenia, hepatosplenomegaly, and recurrent pneumonia that resulted in death. METHODS Genetic analysis was done using next-generation sequencing. Protein expression and phosphorylation were determined by immunoblotting. T-cell proliferation and F-actin levels were studied by flow cytometry. RESULTS The patient harbored 2 homozygous deletions in STX11 (c.369_370del, c.374_376del; p.V124fs60∗) previously associated with familial hemophagocytic lymphohistiocytosis and a novel homozygous missense variant in SLP76 (c.767C>T; p.T256I) that resulted in an approximately 85% decrease in SLP76 levels and absent T-cell proliferation. The patient's heterozygous family members showed an approximately 50% decrease in SLP76 levels but normal immune function. SLP76-deficient J14 Jurkat cells did not express SLP76 and had decreased extracellular signal-regulated kinase signaling, basal F-actin levels, and polymerization following T-cell receptor stimulation. Reconstitution of J14 cells with T256I mutant SLP76 resulted in low protein expression and abnormal extracellular signal-regulated kinase phosphorylation and F-actin polymerization after T-cell receptor activation compared with normal expression and J14 function when wild-type SLP76 was introduced. CONCLUSIONS The hypomorphic mutation in SLP76 tones down the hyperinflammation due to STX11 deletion, resulting in a combined immunodeficiency that overshadows the hemophagocytic lymphohistiocytosis phenotype. To our knowledge, this study represents the first report of the opposing effects of 2 gene defects on the disease in a patient with an inborn error of immunity.
Collapse
Affiliation(s)
- Rana Mansour
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rana El-Hassan
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Youmna El-Orfali
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Adam Saidu
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Habib Al-Kalamouni
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Ghassan Dbaibo
- Department of Biochemistry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon; Research Center of Excellence in Immunity and Infections, American University of Beirut, Beirut, Lebanon
| | - Rima Hanna-Wakim
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon; Research Center of Excellence in Immunity and Infections, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
14
|
Xin X, Wang N, Zhang Y. Hemophagocytic lymphohistiocytosis with a hemizygous PRF1 c.674G>A mutation. Am J Med Sci 2023; 366:387-394. [PMID: 37467895 DOI: 10.1016/j.amjms.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Hemophagocytic lymphohistiocytosis(HLH) is a rare highly-fatal disease presenting with fever, hepatosplenomegaly, and pancytopenia and has a poor prognosis. Homozygous or semi-zygous or complex heterozygous variants can cause familial HLH and heterozygous carriers are frequently seen in secondary HLH. A 42-year-old male patient was admitted to the hospital for persistent fever, fatigue, and splenomegaly. Investigations revealed hypertriglyceridemia, hyperlactatemia dehydrogenaseemia, hyperferritinemia, and elevated levels of soluble cluster of differentiation 25. We found a heterozygous mutation of PRF1: c.674G>A (p.R225Q) through next-generation sequencing technology of hemophagocytic-lymphohistiocytosis-related genes. After a brief remission with dexamethasone and etoposide-based therapy, the disease relapsed quickly, and an allogeneic hematopoietic stem cell transplant was performed to achieve complete remission. To date, the patient's condition was in complete remission. Our study detected a rare missense mutation in the PRF1 gene in a patient with HLH disease and the c.674G>A mutation may be rated as a possible pathogenic variant.
Collapse
Affiliation(s)
- Xiangke Xin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
15
|
sCD25 as an independent adverse prognostic factor in adult patients with HLH: results of a multicenter retrospective study. Blood Adv 2023; 7:832-844. [PMID: 35973195 PMCID: PMC9986715 DOI: 10.1182/bloodadvances.2022007953] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare but often fatal hyperinflammatory syndrome caused by an inborn or acquired error of immunity. In adults, the underlying immunodeficiency generally arises alongside severe infections, malignancies, autoimmune diseases, and immunosuppressive treatment. To analyze risk factors and outcome in adults, we conducted a multicenter retrospective study. A total of 62 adult (age ≥18 years) patients met at least one of the following inclusion criteria: (1) ≥5 of 8 HLH-2004 criteria, (2) HScore ≥ 200 plus 4 HLH-2004 criteria, or (3) mutation compatible with an HLH diagnosis. Most patients (65%) were male, and the median age at diagnosis was 53.5 years (range, 19-81 years). All patients were assigned to 4 etiologic subgroups based on their most likely HLH trigger. The survival probability of the 4 etiologic subgroups differed significantly (P = .004, log-rank test), with patients with an underlying malignancy having the worst clinical outcome (1-year survival probability of 21%). The parameters older age, malignant trigger, elevated serum levels of aspartate transferase, creatinine, international normalized ratio, lactate dehydrogenase, sCD25, and a low albumin level and platelet count at treatment initiation were significantly (P < .1) associated with worse overall survival in the univariate Cox regression model. In multivariate analysis, sCD25 remained the only significant prognostic factor (P = .005). Our results suggest that sCD25 could be a useful marker for the prognosis of patients with HLH that might help to stratify therapeutic interventions.
Collapse
|
16
|
Granulomatous inflammation and hypogammaglobulinemia: Clinical conundrum of familial hemophagocytic lymphohistiocytosis type 5. Immunobiology 2023; 228:152318. [PMID: 36623408 DOI: 10.1016/j.imbio.2022.152318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Familial hemophagocytic lymphohistiocytosis (HLH) is an inherited disorder characterized by systemic hyperinflammation caused by an uncontrolled immune response mediated by T-lymphocytes, natural killer (NK) cells, and macrophages. Most children with familial HLH present within first 2 years of life and can have fatal disease unless hematopoietic stem cell transplant (HSCT) is performed (1). However, few patients may have late presentation and prolonged survival. With increasing awareness and facilities to identify HLH these disorders are being identified beyond infancy (2-4). Clinical and laboratory features are often similar to other primary immune deficiency diseases and pose diagnostic challenges (4-6). We report two patients who presented beyond the first decade of life with HLH, granulomatous inflammation, hypogammaglobulinemia, reduced B cells and were diagnosed to have familial HLH type 5 due to defect in STXBP2 gene.
Collapse
|
17
|
Li W, Xing Y, Wang Y, Xu T, Song E, Feng W. A non-canonical target-binding site in Munc18-1 domain 3b for assembling the Mint1-Munc18-1-syntaxin-1 complex. Structure 2023; 31:68-77.e5. [PMID: 36608665 DOI: 10.1016/j.str.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 01/07/2023]
Abstract
As the prototype of Sec1/Munc18 (SM) family proteins, Munc18-1 can manipulate the distinct conformations of syntaxin-1 for controlling intracellular membrane fusion. The Munc18-1-interacting domain of Mint1 (Mint1-MID) binds to Munc18-1 together with syntaxin-1 to form a Mint1-Munc18-1-syntaxin-1 complex, but the mechanism underlying the complex assembly remains unclear. Here, we determine the structure of the Mint1-MID-Munc18-1-syntaxin-1 complex. Unexpectedly, Munc18-1 recognizes Mint1-MID and syntaxin-1 simultaneously via two opposite sites. The canonical central cavity between domains 1 and 3a of Munc18-1 embraces closed syntaxin-1, whereas the non-canonical basic pocket in domain 3b captures the acidic Mint1-MID helix. The domain 3b-mediated recognition of an acidic-helical motif is distinct from other target-recognition modes of Munc18-1. Mutations in the interface between domain 3b and Mint1-MID disrupt the assembly of the Mint1-Munc18-1-syntaxin-1 complex. This work reveals a non-canonical target-binding site in Munc18-1 domain 3b for assembling the Mint1-Munc18-1-syntaxin-1 complex.
Collapse
Affiliation(s)
- Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Ying Xing
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Fujikawa H, Shimizu H, Nambu R, Takeuchi I, Matsui T, Sakamoto K, Gocho Y, Miyamoto T, Yasumi T, Yoshioka T, Arai K. Monogenic inflammatory bowel disease with STXBP2 mutations is not resolved by hematopoietic stem cell transplantation but can be alleviated via immunosuppressive drug therapy. Clin Immunol 2023; 246:109203. [PMID: 36503158 DOI: 10.1016/j.clim.2022.109203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
STXBP2, encoding syntaxin-binding protein 2, is involved in intracellular organelle trafficking and is associated with familial hemophagocytic lymphohistiocytosis type 5. Although STXBP2 mutations reportedly cause monogenic inflammatory bowel disease, the clinical course and underlying pathogenic mechanisms remain unclear. We identified a novel mutation in STXBP2 [c.1197delC, p.Ala400fs] in a boy with congenital intractable diarrhea and hemophagocytic lymphohistiocytosis (HLH). HLH was treated with intravenous prednisolone, cyclosporine, and dexamethasone palmitate. Hematopoietic stem cell transplantation (HSCT) along with prophylaxis for graft-versus-host-disease was performed at 5 months of age. Additionally, colonoscopies done before and after HSCT showed mild colitis with cryptitis. The patient showed elevated fecal calprotectin levels and persistent diarrhea even after HSCT and required partial parenteral nutrition. While anti-inflammatory treatment reduced diarrhea, it was not completely normalized even after HSCT, suggesting that the pathogenesis of inflammatory bowel disease associated with STXBP2 mutations involves both hyperinflammation and functional epithelial barrier defects.
Collapse
Affiliation(s)
- Hiroki Fujikawa
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Hirotaka Shimizu
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Ryusuke Nambu
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, 1-2 Shintoshin, Chuou-ku, Saitama-city, Saitama 330-0877, Japan.
| | - Ichiro Takeuchi
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Toshihiro Matsui
- Children's Cancer Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Kenichi Sakamoto
- Children's Cancer Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Yoshihiro Gocho
- Children's Cancer Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Takayuki Miyamoto
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Katsuhiro Arai
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| |
Collapse
|
19
|
Ouahed JD. Understanding inborn errors of immunity: A lens into the pathophysiology of monogenic inflammatory bowel disease. Front Immunol 2022; 13:1026511. [PMID: 36248828 PMCID: PMC9556666 DOI: 10.3389/fimmu.2022.1026511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract, including Crohn’s disease, ulcerative colitis and inflammatory bowel disease-undefined (IBD-U). IBD are understood to be multifactorial, involving genetic, immune, microbial and environmental factors. Advances in next generation sequencing facilitated the growing identification of over 80 monogenic causes of IBD, many of which overlap with Inborn errors of immunity (IEI); Approximately a third of currently identified IEI result in gastrointestinal manifestations, many of which are inflammatory in nature, such as IBD. Indeed, the gastrointestinal tract represents an opportune system to study IEI as it consists of the largest mass of lymphoid tissue in the body and employs a thin layer of intestinal epithelial cells as the critical barrier between the intestinal lumen and the host. In this mini-review, a selection of pertinent IEI resulting in monogenic IBD is described involving disorders in the intestinal epithelial barrier, phagocytosis, T and B cell defects, as well as those impairing central and peripheral tolerance. The contribution of disrupted gut-microbiota-host interactions in disturbing intestinal homeostasis among patients with intestinal disease is also discussed. The molecular mechanisms driving pathogenesis are reviewed along with the personalized therapeutic interventions and investigational avenues this growing knowledge has enabled.
Collapse
|
20
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
21
|
Juarez I, Su S, Herbert ZT, Teijaro JR, Moulton VR. Splicing factor SRSF1 is essential for CD8 T cell function and host antigen-specific viral immunity. Front Immunol 2022; 13:906355. [PMID: 36189299 PMCID: PMC9523749 DOI: 10.3389/fimmu.2022.906355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cytotoxic CD8 T cells are crucial for the host antigen-specific immune response to viral pathogens. Here we report the identification of an essential role for the serine/arginine-rich splicing factor (SRSF) 1 in CD8 T cell homeostasis and function. Specifically, SRSF1 is necessary for the maintenance of normal CD8 T lymphocyte numbers in the lymphoid compartment, and for the proliferative capacity and cytotoxic function of CD8 T cells. Furthermore, SRSF1 is required for antigen-specific IFN-γ cytokine responses in a viral infection challenge in mice. Transcriptomics analyses of Srsf1-deficient T cells reveal that SRSF1 controls proliferation, MAP kinase signaling and IFN signaling pathways. Mechanistically, SRSF1 controls the expression and activity of the Mnk2/p38-MAPK axis at the molecular level. Our findings reveal previously unrecognized roles for SRSF1 in the physiology and function of cytotoxic CD8 T lymphocytes and a potential molecular mechanism in viral immunopathogenesis.
Collapse
Affiliation(s)
- Ignacio Juarez
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Immunology, Ophthalmology and ENT, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Shi Su
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Zachary T. Herbert
- Molecular Biology Core Facilities at Dana-Farber Cancer Institute, Boston, MA, United States
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Vaishali R. Moulton
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Stepien KP, Xu J, Zhang X, Bai XC, Rizo J. SNARE assembly enlightened by cryo-EM structures of a synaptobrevin-Munc18-1-syntaxin-1 complex. SCIENCE ADVANCES 2022; 8:eabo5272. [PMID: 35731863 PMCID: PMC9216511 DOI: 10.1126/sciadv.abo5272] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/18/2022] [Indexed: 05/16/2023]
Abstract
Munc18-1 forms a template to organize assembly of the neuronal SNARE complex that triggers neurotransmitter release, binding first to a closed conformation of syntaxin-1 where its amino-terminal region interacts with the SNARE motif, and later binding to synaptobrevin. However, the mechanism of SNARE complex assembly remains unclear. Here, we report two cryo-EM structures of Munc18-1 bound to cross-linked syntaxin-1 and synaptobrevin. The structures allow visualization of how syntaxin-1 opens and reveal how part of the syntaxin-1 amino-terminal region can help nucleate interactions between the amino termini of the syntaxin-1 and synaptobrevin SNARE motifs, while their carboxyl termini bind to distal sites of Munc18-1. These observations, together with mutagenesis, SNARE complex assembly experiments, and fusion assays with reconstituted proteoliposomes, support a model whereby these interactions are critical to initiate SNARE complex assembly and multiple energy barriers enable diverse mechanisms for exquisite regulation of neurotransmitter release.
Collapse
Affiliation(s)
- Karolina P. Stepien
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
23
|
Syntaxin binding protein 2 in sertoli cells regulates spermatogonial stem cell maintenance through directly interacting with connexin 43 in the testes of neonatal mice. Mol Biol Rep 2022; 49:7557-7566. [DOI: 10.1007/s11033-022-07564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022]
|
24
|
Ham H, Medlyn M, Billadeau DD. Locked and Loaded: Mechanisms Regulating Natural Killer Cell Lytic Granule Biogenesis and Release. Front Immunol 2022; 13:871106. [PMID: 35558071 PMCID: PMC9088006 DOI: 10.3389/fimmu.2022.871106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
NK cell-mediated cytotoxicity is a critical element of our immune system required for protection from microbial infections and cancer. NK cells bind to and eliminate infected or cancerous cells via direct secretion of cytotoxic molecules toward the bound target cells. In this review, we summarize the current understanding of the molecular regulations of NK cell cytotoxicity, focusing on lytic granule development and degranulation processes. NK cells synthesize apoptosis-inducing proteins and package them into specialized organelles known as lytic granules (LGs). Upon activation of NK cells, LGs converge with the microtubule organizing center through dynein-dependent movement along microtubules, ultimately polarizing to the cytotoxic synapse where they subsequently fuse with the NK plasma membrane. From LGs biogenesis to degranulation, NK cells utilize several strategies to protect themselves from their own cytotoxic molecules. Additionally, molecular pathways that enable NK cells to perform serial killing are beginning to be elucidated. These advances in the understanding of the molecular pathways behind NK cell cytotoxicity will be important to not only improve current NK cell-based anti-cancer therapies but also to support the discovery of additional therapeutic opportunities.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Michael Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Billadeau
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States.,Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
25
|
Harel M, Fauteux-Daniel S, Girard-Guyonvarc'h C, Gabay C. Balance between Interleukin-18 and Interleukin-18 binding protein in auto-inflammatory diseases. Cytokine 2022; 150:155781. [DOI: 10.1016/j.cyto.2021.155781] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023]
|
26
|
A Rare STXBP2 Mutation in Severe COVID-19 and Secondary Cytokine Storm Syndrome. Life (Basel) 2022; 12:life12020149. [PMID: 35207437 PMCID: PMC8877603 DOI: 10.3390/life12020149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Primary (familial) hemophagocytic lymphohistiocytosis (pHLH) is a potentially lethal syndrome of infancy, caused by genetic defects in natural killer (NK) cell and CD8 T cell cytotoxicity, leading to hyperinflammation, elevated cytokine levels, and a disorganized immune response resulting in multi-organ system failure and frequently death. Secondary HLH (sHLH) can be triggered in the setting of malignances, diseases of chronic immune system activation, or by infectious etiologies. While pHLH is usually a result of homozygous gene mutations, monoallelic hypomorphic and dominant-negative mutations in pHLH genes have been implicated in sHLH. Coronavirus disease 2019 (COVID-19) has been an omnipresent viral infection since its arrival, and severe cases can present with cytokine storm and have clinical features and laboratory findings consistent with sHLH. Herein, we report an adolescent with severe COVID-19, decreased NK cell function, and features of sHLH. Her genetic evaluation identified a monoallelic missense mutation in the pHLH gene STXBP2, and NK cell assays of her blood showed decreased cytolysis and degranulation ex vivo. Methods: Patient data was extracted through an electronic medical record review. Using a lentiviral approach, the patient’s STXBP2 mutation and wild-type (WT) STXBP2 were separately transduced into the NK-92 human NK cell line. The WT and mutant STXBP2 transduced NK-92 cells were stimulated with NK-sensitive K562 erythroleukemia target cells in vitro, and NK cell degranulation and cytolysis were measured via CD107a expression and Live/Dead near-IR dye, respectively. Results: Compared to WT STXBP2, the patient’s STXBP2 mutation caused significantly decreased NK cell cytolysis and associated degranulation in vitro. Conclusion: These findings add weight to the hypothesis that some severe cases of COVID-19 may be accompanied by sHLH and hyperinflammation, especially in the setting of heterozygous pHLH genetic mutations. This has implications both diagnostically and therapeutically for severe COVID-19.
Collapse
|
27
|
Wu Y, Cao F, Zhou D, Chen S, Qi H, Huang T, Tan H, Shen L, Fan W. Cryoablation reshapes the immune microenvironment in the distal tumor and enhances the anti-tumor immunity. Front Immunol 2022; 13:930461. [PMID: 36119081 PMCID: PMC9470839 DOI: 10.3389/fimmu.2022.930461] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
As one of the local treatments, cryoablation plays an increasingly important role in the comprehensive treatment of malignant tumors with its advantages of less trauma, high reproducibility, and minimally invasive. Activation of anti-tumor immunity, another characteristic of cryoablation, has attracted more and more attention with the extensive application of immunotherapy. Unfortunately, the mechanism by which cryoablation enhances anti-tumor immunity is still unclear. In this study, we applied a multi-omics approach to investigate the effects of local cryoablation in the distal tumor microenvironment. The results revealed that large amounts of tumor antigens were released post-cryoablation, leading to a sterile inflammatory response in distant tumors. During this period, activated lysosome-related pathways result in over-expression of SNAP23 (Synaptosome associated protein 23) and STXBP2 (Syntaxin binding protein 2), activation of immune effector cells, suppression of the release of immunosuppressive factors, and finally enhancement of anti-tumor immunity, which shows a broad prospect in combined immunotherapy.
Collapse
Affiliation(s)
- Ying Wu
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Interventional Therapy, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fei Cao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Danyang Zhou
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuanggang Chen
- Department of Oncology, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Han Qi
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tao Huang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongtong Tan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lujun Shen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Weijun Fan, ; Lujun Shen,
| | - Weijun Fan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Weijun Fan, ; Lujun Shen,
| |
Collapse
|
28
|
Harnchoowong S, Soponkanaporn S, Vilaiyuk S, Lerkvaleekul B, Pakakasama S. Central nervous system involvement and thrombocytopenia as predictors of mortality in children with hemophagocytic lymphohistiocytosis. Front Pediatr 2022; 10:941318. [PMID: 36147804 PMCID: PMC9485874 DOI: 10.3389/fped.2022.941318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/18/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Hemophagocytic lymphohistiocytosis (HLH) is a potentially life-threatening condition. This study aimed to evaluate treatment outcomes and identify prognostic-related factors in Thai children with HLH. MATERIALS AND METHODS We retrospectively reviewed the medical records of 76 pediatric patients with HLH who were treated at Ramathibodi Hospital between January 2004 and December 2019. Treatment outcomes were defined as early mortality (death within 30 days after diagnosis) and early treatment response (resolution of all clinical features and normalization of at least one HLH-related laboratory parameter within 4 weeks). RESULTS The overall mortality rate was 38% (29/76), with an early mortality rate of 45% (13/29). Malignancy-associated HLH had the highest mortality rate (88%), followed by primary HLH (56%). The predictors of early mortality were central nervous system (CNS) involvement [OR 13 (95%CI 2-83), p = 0.007] and platelet counts <44 × 106/mm3 [OR 8 (95%CI 1.3-49), p = 0.024]. The predictors of early treatment response were no CNS involvement [OR 6.6 (95%CI 1.5-28.8), p = 0.011], platelet counts more than 44 × 106/mm3 [OR 8 (95%CI 2.1-30.9), p = 0.003], and total bilirubin levels <1.8 mg/dL [OR 4 (95%CI 1.1-14.8), p = 0.036]. In the mixed-model analysis, platelet counts in non-survivors increased significantly less than those in survivors, with a mean difference in platelet changes between the two groups of 94.6 × 106/mm3 (p = 0.003). CONCLUSION The independent predictors of early mortality in children with HLH were CNS involvement and low baseline platelet counts. A slow rate of platelet increases during the first week after diagnosis was also associated with mortality.
Collapse
Affiliation(s)
- Saralee Harnchoowong
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sirisucha Soponkanaporn
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Soamarat Vilaiyuk
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Butsabong Lerkvaleekul
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Samart Pakakasama
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
29
|
Steen EA, Hermiston ML, Nichols KE, Meyer LK. Digenic Inheritance: Evidence and Gaps in Hemophagocytic Lymphohistiocytosis. Front Immunol 2021; 12:777851. [PMID: 34868048 PMCID: PMC8635482 DOI: 10.3389/fimmu.2021.777851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disorder characterized by the inability to properly terminate an immune response. Familial HLH (FHLH) and related immune dysregulation syndromes are associated with mutations in the genes PRF1, UNC13D, STX11, STXBP2, LYST, AP3B1, and RAB27A, all of which are required for the assembly, exocytosis, and function of cytotoxic granules within CD8+ T cells and natural killer (NK) cells. Loss-of-function mutations in these genes render the cytotoxicity pathway ineffective, thereby failing to eradicate immune stimuli, such as infectious pathogens or malignant cells. The resulting persistent immune system stimulation drives hypercytokinemia, ultimately leading to severe tissue inflammation and end-organ damage. Traditionally, a diagnosis of FHLH requires the identification of biallelic loss-of-function mutations in one of these degranulation pathway genes. However, this narrow definition fails to encompass patients with other genetic mechanisms underlying degranulation pathway dysfunction. In particular, mounting clinical evidence supports a potential digenic mode of inheritance of FHLH in which single loss-of-function mutations in two different degranulation pathway genes cooperate to impair pathway activity. Here, we review the functions of the FHLH-associated genes within the degranulation pathway and summarize clinical evidence supporting a model in which cumulative defects along this mechanistic pathway may underlie HLH.
Collapse
Affiliation(s)
- Erica A Steen
- University of California, San Diego, San Diego, CA, United States
| | - Michelle L Hermiston
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Lauren K Meyer
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
30
|
Escaron C, Ralph E, Bibi S, Visser J, Aricò M, Rao K, Veys P, Gilmour K. Diagnosis of HLH: two siblings, two distinct genetic causes. Clin Exp Immunol 2021; 207:205-207. [PMID: 35020838 PMCID: PMC8982960 DOI: 10.1093/cei/uxab019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 02/03/2023] Open
Abstract
This report highlights case of two siblings who developed haemophagocytic lymphohystiocytosis due to distinct genetic abnormalities. Though their presentation was clinically similar, the cases demonstrate that a shared genetic diagnosis among siblings cannot be assumed.
Collapse
Affiliation(s)
- Claire Escaron
- Immunology Laboratory, Great Ormond Street Hospital, London, UK
| | - Elizabeth Ralph
- Immunology Laboratory, Great Ormond Street Hospital, London, UK,Correspondence: Elizabeth Ralph, Immunology Laboratory, Great Ormond Street Hospital, London, UK.
| | - Shahnaz Bibi
- Genetics Laboratory, Great Ormond Street Hospital, London, UK
| | - Johannes Visser
- Department of Paediatric Oncology, Addenbrookes Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Maurizio Aricò
- Azienda Ospedaliero-Universitaria Consorziale Policlinico Bari, Children Hospital 13 Giovanni XXIII, Bari, Italy
| | - Kanchan Rao
- Department of Bone Marrow Transplant, Great Ormond Street Hospital for Children, London, UK
| | - Paul Veys
- Department of Bone Marrow Transplant, Great Ormond Street Hospital for Children, London, UK
| | | |
Collapse
|
31
|
Meeths M, Bryceson YT. Genetics and pathophysiology of haemophagocytic lymphohistiocytosis. Acta Paediatr 2021; 110:2903-2911. [PMID: 34192386 DOI: 10.1111/apa.16013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Haemophagocytic lymphohistiocytosis (HLH) represents a life-threatening hyperinflammatory syndrome. Familial studies have established autosomal and X-linked recessive causes of HLH, highlighting a pivotal role for lymphocyte cytotoxicity in the control of certain virus infections and immunoregulation. Recently, a more complex etiological framework has emerged, linking HLH predisposition to variants in genes required for metabolism or immunity to intracellular pathogens. We review genetic predisposition to HLH and discuss how molecular insights have provided fundamental knowledge of the immune system as well as detailed pathophysiological understanding of hyperinflammatory diseases, highlighting new treatment strategies.
Collapse
Affiliation(s)
- Marie Meeths
- Childhood Cancer Research Unit Department of Women’s and Children’s Health Karolinska Institutet Stockholm Sweden
- Theme of Children’s Health Karolinska University Hospital Stockholm Sweden
| | - Yenan T. Bryceson
- Centre for Hematology and Regenerative Medicine Department of Medicine Karolinska Institute Stockholm Sweden
- Division of Clinical Immunology and Transfusion Medicine Karolinska University Hospital Stockholm Sweden
- Broegelmann Research Laboratory Department of Clinical Sciences University of Bergen Bergen Norway
| |
Collapse
|
32
|
Bąbol-Pokora K, Wołowiec M, Popko K, Jaworowska A, Bryceson YT, Tesi B, Henter JI, Młynarski W, Badowska W, Balwierz W, Drabko K, Kałwak K, Maciejka-Kembłowska L, Pieczonka A, Sobol-Milejska G, Kołtan S, Malinowska I. Molecular Genetics Diversity of Primary Hemophagocytic Lymphohistiocytosis among Polish Pediatric Patients. Arch Immunol Ther Exp (Warsz) 2021; 69:31. [PMID: 34677667 PMCID: PMC8536594 DOI: 10.1007/s00005-021-00635-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/10/2021] [Indexed: 06/12/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a clinical syndrome of life-threatening inflammation caused by an excessive, prolonged and ineffective immune response. An increasing number of HLH cases is recognized in Poland, but the genetic causes of familial HLH (FHL) have not been reported. We investigated the molecular genetics and associated outcomes of pediatric patients who met HLH criteria. We studied 54 patients with HLH, 36 of whom received genetic studies. Twenty-five patients were subjected to direct sequencing of the PRF1, UNC13D, STX11, XIAP and SH2D1A genes. Additionally, 11 patients were subjected to targeted next-generation sequencing. In our study group, 17 patients (31%) were diagnosed with primary HLH, with bi-allelic FHL variants identified in 13 (36%) patients whereas hemizygous changes were identified in 4 patients with X-linked lymphoproliferative diseases. In addition, one patient was diagnosed with X-linked immunodeficiency with magnesium defect, Epstein–Barr virus infection and neoplasia due to a hemizygous MAGT1 variant; another newborn was diagnosed with auto-inflammatory syndrome caused by MVK variants. The majority (65%) of FHL patients carried UNC13D pathogenic variants, whereas PRF1 variants occurred in two patients. Novel variants in UNC13D, PRF1 and XIAP were detected. Epstein–Barr virus was the most common trigger noted in 23 (65%) of the patients with secondary HLH. In three patients with secondary HLH, heterozygous variants of FHL genes were found. Overall survival for the entire study group was 74% with a median of 3.6 years of follow-up. Our results highlight the diversity of molecular causes of primary HLH in Poland.
Collapse
Affiliation(s)
- Katarzyna Bąbol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Magdalena Wołowiec
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Żwirki i Wigury 63A, 02-091, Warsaw, Poland
| | - Katarzyna Popko
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Jaworowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Yenan T Bryceson
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bianca Tesi
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jan-Inge Henter
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wanda Badowska
- Division of Pediatric Hematology and Oncology, Children Hospital, Olsztyn, Poland
| | - Walentyna Balwierz
- Department of Pediatrics Oncology and Hematology, University Children's Hospital, Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Kałwak
- Department of Pediatric Stem Cell Transplantation, Hematology and Oncology, Medical University, Wroclaw, Poland
| | | | - Anna Pieczonka
- Department of Pediatric Oncology, Hematology and Transplantology, University of Medical Sciences, Poznan, Poland
| | - Grażyna Sobol-Milejska
- Department of Pediatrics, Hematology and Oncology, Medical University of Silesia, Silesia, Poland
| | - Sylwia Kołtan
- Department of Pediatrics, Hematology and Oncology, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Iwona Malinowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Żwirki i Wigury 63A, 02-091, Warsaw, Poland.
| | | |
Collapse
|
33
|
McClain KL, Bigenwald C, Collin M, Haroche J, Marsh RA, Merad M, Picarsic J, Ribeiro KB, Allen CE. Histiocytic disorders. Nat Rev Dis Primers 2021; 7:73. [PMID: 34620874 PMCID: PMC10031765 DOI: 10.1038/s41572-021-00307-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
The historic term 'histiocytosis' meaning 'tissue cell' is used as a unifying concept for diseases characterized by pathogenic myeloid cells that share histological features with macrophages or dendritic cells. These cells may arise from the embryonic yolk sac, fetal liver or postnatal bone marrow. Prior classification schemes align disease designation with terminal phenotype: for example, Langerhans cell histiocytosis (LCH) shares CD207+ antigen with physiological epidermal Langerhans cells. LCH, Erdheim-Chester disease (ECD), juvenile xanthogranuloma (JXG) and Rosai-Dorfman disease (RDD) are all characterized by pathological ERK activation driven by activating somatic mutations in MAPK pathway genes. The title of this Primer (Histiocytic disorders) was chosen to differentiate the above diseases from Langerhans cell sarcoma and malignant histiocytosis, which are hyperproliferative lesions typical of cancer. By comparison LCH, ECD, RDD and JXG share some features of malignant cells including activating MAPK pathway mutations, but are not hyperproliferative. 'Inflammatory myeloproliferative neoplasm' may be a more precise nomenclature. By contrast, haemophagocytic lymphohistiocytosis is associated with macrophage activation and extreme inflammation, and represents a syndrome of immune dysregulation. These diseases affect children and adults in varying proportions depending on which of the entities is involved.
Collapse
Affiliation(s)
- Kenneth L McClain
- Texas Children's Cancer Center, Department of Paediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Camille Bigenwald
- Department of Oncological Sciences and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Collin
- Human Dendritic Cell Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Julien Haroche
- Department of Internal Medicine, Institut E3M French Reference Centre for Histiocytosis, Pitié-Salpȇtrière Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, and University of Cincinnati, Cincinnati, OH, USA
| | - Miriam Merad
- Department of Oncological Sciences and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Picarsic
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Karina B Ribeiro
- Faculdade de Ciȇncias Médicas da Santa Casa de São Paulo, Department of Collective Health, São Paulo, Brazil
| | - Carl E Allen
- Texas Children's Cancer Center, Department of Paediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
34
|
Greental Ness Y, Kuperman AA, Stein J, Yacobovich J, Even-Or E, Zaidman I, Gefen A, Nevo N, Oberman B, Toren A, Stepensky P, Bielorai B, Jacoby E. Improved transplant outcomes with myeloablative conditioning for hemophagocytic lymphohistiocytosis in HLA-matched and mismatched donors: a national multicenter retrospective study. Bone Marrow Transplant 2021; 56:2088-2096. [PMID: 33846559 DOI: 10.1038/s41409-021-01290-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023]
Abstract
We report the results of national retrospective study of 45 children with hemophagocytic lymphohistiocytosis (HLH) who underwent allogeneic hematopoietic stem-cell transplantation (HSCT) in Israel between the years 2000-2018. Donors were either HLA-matched (n = 26), partially mismatched (n = 7), haploidentical (n = 8), or cord-blood (n = 4). Myeloablative conditioning (MAC) was used in 20 procedures, and reduced-intensity conditioning (RIC) in 25. Forty-two patients engrafted, two had primary graft failure (one successfully retransplanted), one died prior to engraftment, and two developed secondary graft failure. Of the eight patients who had mixed donor chimerism at day 30 (5-95%), five achieved stable mixed or full donor chimerism. The 5-year probabilities of overall survival and event-free survival (EFS) were 86% and 82%, respectively. Five-year EFS was lower for patients receiving RIC compared to MAC (72% vs. 100%, p = 0.018) and following alternative-donor transplant (68% vs. 92% for HLA-matched donors, p = 0.034), mostly due to increased transplant-related mortality (TRM). Thus, both HLA-matched and alternative donor transplant procedures may benefit form a myeloablative conditioning regimen.
Collapse
Affiliation(s)
| | - Amir A Kuperman
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.,Blood Coagulation Service and Pediatric Hematology Clinic, Galilee Medical Center, Nahariya, Israel
| | - Jerry Stein
- Hematology-Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joanne Yacobovich
- Hematology-Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Even-Or
- Faculty of Medicine, Hebrew University of Jerusalem, Israel, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Irina Zaidman
- Faculty of Medicine, Hebrew University of Jerusalem, Israel, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Aharon Gefen
- Division of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Neta Nevo
- Division of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Bernice Oberman
- Biostatistics & Biomathematics, The Gertner Institute for Epidemiology and Health Policy Research, Tel Aviv, Israel
| | - Amos Toren
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Pediatric Hematology, Oncology and BMT, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Polina Stepensky
- Faculty of Medicine, Hebrew University of Jerusalem, Israel, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Bella Bielorai
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Pediatric Hematology, Oncology and BMT, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Elad Jacoby
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Division of Pediatric Hematology, Oncology and BMT, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.
| |
Collapse
|
35
|
Intestinal immunoregulation: lessons from human mendelian diseases. Mucosal Immunol 2021; 14:1017-1037. [PMID: 33859369 DOI: 10.1038/s41385-021-00398-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/04/2023]
Abstract
The mechanisms that maintain intestinal homeostasis despite constant exposure of the gut surface to multiple environmental antigens and to billions of microbes have been scrutinized over the past 20 years with the goals to gain basic knowledge, but also to elucidate the pathogenesis of inflammatory bowel diseases (IBD) and to identify therapeutic targets for these severe diseases. Considerable insight has been obtained from studies based on gene inactivation in mice as well as from genome wide screens for genetic variants predisposing to human IBD. These studies are, however, not sufficient to delineate which pathways play key nonredundant role in the human intestinal barrier and to hierarchize their respective contribution. Here, we intend to illustrate how such insight can be derived from the study of human Mendelian diseases, in which severe intestinal pathology results from single gene defects that impair epithelial and or hematopoietic immune cell functions. We suggest that these diseases offer the unique opportunity to study in depth the pathogenic mechanisms leading to perturbation of intestinal homeostasis in humans. Furthermore, molecular dissection of monogenic intestinal diseases highlights key pathways that might be druggable and therapeutically targeted in common forms of IBD.
Collapse
|
36
|
Ponnatt TS, Lilley CM, Mirza KM. Hemophagocytic Lymphohistiocytosis. Arch Pathol Lab Med 2021; 146:507-519. [PMID: 34347856 DOI: 10.5858/arpa.2020-0802-ra] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening disorder of immune regulation that can eventually result in end-organ damage and death. HLH is characterized by uncontrolled activation of cytotoxic T lymphocytes, natural killer cells, and macrophages that can lead to a cytokine storm. The diagnosis of HLH is often challenging due to the diverse clinical manifestations and the presence of several diagnostic mimics. The prognosis is generally poor, warranting rapid diagnosis and aggressive management. OBJECTIVE.— To provide a comprehensive review of the pathogenesis, clinical features, diagnosis, and management of HLH. DATA SOURCES.— Peer-reviewed literature. CONCLUSIONS.— HLH is a condition where a complete understanding of the pathogenesis, early diagnosis, and proper management has an important role in determining patient outcome. Genetic mutations causing impairment in the function of cytotoxic T lymphocytes and natural killer cells have been identified as the root cause of familial HLH; however, the specific pathogenesis of acquired HLH is unclear. The HLH-2004 protocol used in the diagnosis of HLH was originally developed for the pediatric population. The HLH-2004 protocol still forms the basis of the diagnosis of HLH in adults, although its use in adults has not been formally validated yet. Treatment of HLH is primarily based on the HLH-94 protocol, which involves suppressing the inflammatory response, but the treatment needs to be modified in adults depending on the underlying cause and comorbidities.
Collapse
Affiliation(s)
- Tanya Sajan Ponnatt
- From the Department of Pathology, Loyola University Chicago, Health Sciences Campus, Maywood, Illinois
| | - Cullen M Lilley
- From the Department of Pathology, Loyola University Chicago, Health Sciences Campus, Maywood, Illinois
| | - Kamran M Mirza
- From the Department of Pathology, Loyola University Chicago, Health Sciences Campus, Maywood, Illinois
| |
Collapse
|
37
|
Minson A, Voskoboinik I, Grigg A. Dilemmas in the diagnosis and pathogenesis of atypical late-onset familial haemophagocytic lymphohistiocytosis. Clin Transl Immunology 2021; 10:e1320. [PMID: 34336208 PMCID: PMC8312240 DOI: 10.1002/cti2.1320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/05/2021] [Accepted: 07/07/2021] [Indexed: 11/09/2022] Open
Abstract
Objectives A congenital loss of cytotoxic lymphocyte activity leads to a potentially fatal immune dysregulation, familial haemophagocytic lymphohistiocytosis. Until recently, this disease was uniformly associated with infants or very young children, but it appears now that the onset may be delayed for decades. As a result, some adults are being mis‐ or under‐diagnosed because of their ‘atypical’ symptoms that are not recognised as immunodeficiency. The clinical picture and histopathology can overlap with those of haematologic malignancy, further complicating the diagnostic thought process. The spectrum of atypical symptoms is poorly defined, and therefore, it is important to describe these cases and the attendant immunological and cellular changes associated with familial haemophagocytic lymphohistiocytosis, in order to improve diagnosis and prevent unintended consequences of symptomatic therapies. Methods A 45‐year‐old patient presented with suspected T‐cell lymphoma and was treated with combination chemotherapy (cyclophosphamide, doxorubicin, vincristine, prednisolone) supplemented with granulocyte‐colony stimulating factor (G‐CSF). To mobilise stem cells for autologous transplantation, the patient was then treated with high‐dose G‐CSF and rapidly developed haemophagocytic lymphohistiocytosis. Symptoms resolved temporarily with intensive immunosuppression with alemtuzumab and durably with a subsequent allograft. Results The patient was found to be a carrier of bi‐allelic mutations in the STXBP2 protein that is essential for cytotoxic lymphocyte function, and the initial diagnosis has been revised as familial haemophagocytic lymphohistiocytosis. Conclusion This case highlights the difficulty in distinguishing atypical/late‐onset familial haemophagocytic lymphohistiocytosis from a malignant process as well as a possible exacerbation of the disease with G‐CSF therapy.
Collapse
Affiliation(s)
- Adrian Minson
- Department of Clinical Haematology Austin Hospital Melbourne VIC Australia.,Peter MacCallum Cancer Centre Melbourne VIC Australia
| | | | - Andrew Grigg
- Department of Clinical Haematology Austin Hospital Melbourne VIC Australia
| |
Collapse
|
38
|
Puntman DC, Arora S, Farina M, Toonen RF, Verhage M. Munc18-1 Is Essential for Neuropeptide Secretion in Neurons. J Neurosci 2021; 41:5980-5993. [PMID: 34103363 PMCID: PMC8276746 DOI: 10.1523/jneurosci.3150-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide secretion from dense-core vesicles (DCVs) controls many brain functions. Several components of the DCV exocytosis machinery have recently been identified, but the participation of a SEC1/MUNC18 (SM) protein has remained elusive. Here, we tested the ability of the three exocytic SM proteins expressed in the mammalian brain, MUNC18-1/2/3, to support neuropeptide secretion. We quantified DCV exocytosis at a single vesicle resolution on action potential (AP) train-stimulation in mouse CNS neurons (of unknown sex) using pHluorin-tagged and/or mCherry-tagged neuropeptide Y (NPY) or brain-derived neurotrophic factor (BDNF). Conditional inactivation of Munc18-1 abolished all DCV exocytosis. Expression of MUNC18-1, but not MUNC18-2 or MUNC18-3, supported DCV exocytosis in Munc18-1 null neurons. Heterozygous (HZ) inactivation of Munc18-1, as a model for reduced MUNC18-1 expression, impaired DCV exocytosis, especially during the initial phase of train-stimulation, when the release was maximal. These data show that neurons critically and selectively depend on MUNC18-1 for neuropeptide secretion. Impaired neuropeptide secretion may explain aspects of the behavioral and neurodevelopmental phenotypes that were observed in Munc18-1 HZ mice.SIGNIFICANCE STATEMENT Neuropeptide secretion from dense-core vesicles (DCVs) modulates synaptic transmission, sleep, appetite, cognition and mood. However, the mechanisms of DCV exocytosis are poorly characterized. Here, we identify MUNC18-1 as an essential component for neuropeptide secretion from DCVs. Paralogs MUNC18-2 or MUNC18-3 cannot compensate for MUNC18-1. MUNC18-1 is the first protein identified to be essential for both neuropeptide secretion and synaptic transmission. In heterozygous (HZ) Munc18-1 neurons, that have a 50% reduced MUNC18-1expression and model the human STXBP1 syndrome, DCV exocytosis is impaired, especially during the initial phase of train-stimulation, when the release is maximal. These data show that MUNC18-1 is essential for neuropeptide secretion and that impaired neuropeptide secretion on reduced MUNC18-1expression may contribute to the symptoms of STXBP1 syndrome.
Collapse
Affiliation(s)
- Daniël C Puntman
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
| | - Swati Arora
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Margherita Farina
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Matthijs Verhage
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| |
Collapse
|
39
|
Abstract
SNARE proteins and Sec1/Munc18 (SM) proteins constitute the core molecular engine that drives nearly all intracellular membrane fusion and exocytosis. While SNAREs are known to couple their folding and assembly to membrane fusion, the physiological pathways of SNARE assembly and the mechanistic roles of SM proteins have long been enigmatic. Here, we review recent advances in understanding the SNARE-SM fusion machinery with an emphasis on biochemical and biophysical studies of proteins that mediate synaptic vesicle fusion. We begin by discussing the energetics, pathways, and kinetics of SNARE folding and assembly in vitro. Then, we describe diverse interactions between SM and SNARE proteins and their potential impact on SNARE assembly in vivo. Recent work provides strong support for the idea that SM proteins function as chaperones, their essential role being to enable fast, accurate SNARE assembly. Finally, we review the evidence that SM proteins collaborate with other SNARE chaperones, especially Munc13-1, and briefly discuss some roles of SNARE and SM protein deficiencies in human disease.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Frederick M Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
40
|
Ahmari AA, Alsmadi O, Sheereen A, Elamin T, Jabr A, El-Baik L, Alhissi S, Saud BA, Al-Awwami M, Fawaz IA, Ayas M, Siddiqui K, Hawwari A. Genetic and clinical characteristics of pediatric patients with familial hemophagocytic lymphohistiocytosis. Blood Res 2021; 56:86-101. [PMID: 34083498 PMCID: PMC8246041 DOI: 10.5045/br.2021.2020308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Background Our study was designed to investigate the frequencies and distributions of familial hemophagocytic lymphohistiocytosis (FHL) associated genes in Saudi patients. Methods FHL associated gene screening was performed on 87 Saudi patients who were diagnosed with hemophagocytic lymphohistiocytosis (HLH) between 1995 and 2014. The clinical and biochemical profiles were also retrospectively captured and analyzed. Results Homozygous mutations and mono-allelic variants were identified in 66 (75.9%) and 3 (3.5%) of the study participants, respectively. STXBP2 was the most frequently mutated gene (36% of patients) and mutations in STXBP2 and STX11 accounted for 58% of all FHL cases and demonstrated a specific geographical pattern. Patients in the FHL group presented at a significantly younger age than those belonging to the unknown-genetics group (median, 3.9 vs. 9.4 mo; P=0.005). The presenting clinical features were similar among the various genetic groups and the 5-year overall survival (OS) was 55.4% with a 5.6 year median follow-up. Patients with PRF1 mutations had a significantly poorer 5-year OS (21.4%, P=0.008) and patients undergoing hematopoietic stem cell transplant (72.4%) had a significantly better 5-year OS (66.5% vs. 0%, P=0.001). Conclusion Our study revealed the predominance of the STXBP2 mutations in Saudi patients with FHL. A genetic diagnosis was possible in 80% of the cohort and our data showed improved survival in FHL patients who underwent hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Ali Al Ahmari
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Center, Saudi Arabia.,College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
| | - Osama Alsmadi
- Section of Immunogenetics, Department of Genetics, Research Center, King Faisal Specialist Hospital and Research Center, Saudi Arabia.,Cell Therapy, Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Atia Sheereen
- Section of Immunogenetics, Department of Genetics, Research Center, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Tanziel Elamin
- Section of Immunogenetics, Department of Genetics, Research Center, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Amal Jabr
- Section of Immunogenetics, Department of Genetics, Research Center, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Lina El-Baik
- Section of Immunogenetics, Department of Genetics, Research Center, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Safa Alhissi
- Section of Immunogenetics, Department of Genetics, Research Center, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Bandar Al Saud
- Department of Pediatric Allergy/Immunology, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Moheeb Al-Awwami
- Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Ibrahim Al Fawaz
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Center, Saudi Arabia.,College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
| | - Mouhab Ayas
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Center, Saudi Arabia.,College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
| | - Khawar Siddiqui
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Abbas Hawwari
- Section of Immunogenetics, Department of Genetics, Research Center, King Faisal Specialist Hospital and Research Center, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City Hospital, Al-Ahsa, Saudi Arabia
| |
Collapse
|
41
|
Guan YQ, Shen KF, Yang L, Cai HD, Zhang ML, Wang JC, Long XL, Xiong J, Gu J, Zhang PL, Xiao M, Zhang W, Zhou JF. Inherited Genetic Susceptibility to Nonimmunosuppressed Epstein-Barr Virus-associated T/NK-cell Lymphoproliferative Diseases in Chinese Patients. Curr Med Sci 2021; 41:482-490. [PMID: 34170459 DOI: 10.1007/s11596-021-2375-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Epstein-Barr virus (EBV) T/NK-cell lymphoproliferative diseases are characterized by clonal expansion of EBV-infected T or NK cells, including chronic active EBV infection of T/NK-cell type (CAEBV+T/NK), EBV-associated hemophagocytic lymphohistiocytosis (EBV+HLH), extranodal NK/T-cell lymphoma of nasal type (ENKTL), and aggressive NK-cell leukemia (ANKL). However, the role of inherited genetic variants to EBV+T/NK-LPDs susceptibility is still unknown. A total of 171 nonimmunosuppressed patients with EBV+T/NK-LPDs and 104 healthy donors were retrospectively collected and a targeted sequencing study covering 15 genes associated with lymphocyte cytotoxicity was performed. The 94 gene variants, mostly located in UNC13D, LYST, ITK, and PRF1 genes were detected, and mutations covered 28/50 (56.00%) of CAEBV-T/NK, 31/51 (60.78%) of EBV+HLH, 13/28 (46.42%) of ENKTL, and 13/48 (27.09%) of ANKL. Most mutations represented monoallelic and missense. Three-year overall survival rate of patients with CAEBV-T/NK and EBV+HLH was significantly lower in patients with germline mutations than in those without germline mutations (P=0.0284, P=0.0137). Our study provided novel insights into understanding a spectrum of nonimmunosuppressed EBV+T/NK-LPDs with respect to genetic defects associated with lymphocyte cytotoxicity and reminded us that the gene sequencing may be an auxiliary test for diagnosis and risk stratification of EBV+T/NK-LPDs.
Collapse
Affiliation(s)
- Yu-Qi Guan
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke-Feng Shen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao-Dong Cai
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mei-Lan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Chen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Lu Long
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Xiong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Gu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei-Ling Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Feng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
42
|
Verron Q, Forslund E, Brandt L, Leino M, Frisk TW, Olofsson PE, Önfelt B. NK cells integrate signals over large areas when building immune synapses but require local stimuli for degranulation. Sci Signal 2021; 14:14/684/eabe2740. [PMID: 34035142 DOI: 10.1126/scisignal.abe2740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immune synapses are large-scale, transient molecular assemblies that serve as platforms for antigen presentation to B and T cells and for target recognition by cytotoxic T cells and natural killer (NK) cells. The formation of an immune synapse is a tightly regulated, stepwise process in which the cytoskeleton, cell surface receptors, and intracellular signaling proteins rearrange into supramolecular activation clusters (SMACs). We generated artificial immune synapses (AIS) consisting of synthetic and natural ligands for the NK cell-activating receptors LFA-1 and CD16 by microcontact printing the ligands into circular-shaped SMAC structures. Live-cell imaging and analysis of fixed human NK cells in this reductionist system showed that the spatial distribution of activating ligands influenced the formation, stability, and outcome of NK cell synapses. Whereas engagement of LFA-1 alone promoted synapse initiation, combined engagement of LFA-1 and CD16 was required for the formation of mature synapses and degranulation. Organizing LFA-1 and CD16 ligands into donut-shaped AIS resulted in fewer long-lasting, symmetrical synapses compared to dot-shaped AIS. NK cells spreading evenly over either AIS shape exhibited similar arrangements of the lytic machinery. However, degranulation only occurred in regions containing ligands that therefore induced local signaling, suggesting the existence of a late checkpoint for degranulation. Our results demonstrate that the spatial organization of ligands in the synapse can affect its outcome, which could be exploited by target cells as an escape mechanism.
Collapse
Affiliation(s)
- Quentin Verron
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elin Forslund
- Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ludwig Brandt
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mattias Leino
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Thomas W Frisk
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Per E Olofsson
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Önfelt
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden. .,Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Stem cell transplantation for children with hemophagocytic lymphohistiocytosis: results from the HLH-2004 study. Blood Adv 2021; 4:3754-3766. [PMID: 32780845 DOI: 10.1182/bloodadvances.2020002101] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022] Open
Abstract
We report the largest prospective study thus far on hematopoietic stem cell transplantation (HSCT) in hemophagocytic lymphohistiocytosis (HLH), a life-threatening hyperinflammatory syndrome comprising familial/genetic HLH (FHL) and secondary HLH. Although all patients with HLH typically need intensive anti-inflammatory therapy, patients with FHL also need HSCT to be cured. In the international HLH-2004 study, 187 children aged <18 years fulfilling the study inclusion criteria (5 of 8 diagnostic criteria, affected sibling, or molecular diagnosis in FHL-causative genes) underwent 209 transplants (2004-2012), defined as indicated in patients with familial/genetic, relapsing, or severe/persistent disease. Five-year overall survival (OS) post-HSCT was 66% (95% confidence interval [CI], 59-72); event-free survival (EFS) was 60% (95% CI, 52-67). Five-year OS was 81% (95% CI, 65-90) for children with a complete response and 59% (95% CI, 48-69) for those with a partial response (hazard ratio [HR], 2.12; 95% CI, 1.06-4.27; P = .035). For children with verified FHL (family history/genetically verified, n = 134), 5-year OS was 71% (95% CI, 62-78) and EFS was 62% (95% CI, 54-70); 5-year OS for children without verified FHL (n = 53) was significantly lower (52%; 95% CI, 38-65) (P = .040; HR, 1.69; 95% CI, 1.03-2.77); they were also significantly older. Notably, 20 (38%) of 53 patients without verified FHL had natural killer cell activity reported as normal at diagnosis, after 2 months, or at HSCT, suggestive of secondary HLH; and in addition 14 (26%) of these 53 children had no evidence of biallelic mutations despite having 3 or 4 FHL genes analyzed (natural killer cell activity not analyzed after 2 months or at HSCT). We conclude that post-HSCT survival in FHL remains suboptimal, and that the FHL diagnosis should be carefully investigated before HSCT. Pretransplant complete remission is beneficial but not mandatory to achieve post-HSCT survival. This trial was registered at www.clinicaltrials.gov as #NCT00426101.
Collapse
|
44
|
RhoG deficiency abrogates cytotoxicity of human lymphocytes and causes hemophagocytic lymphohistiocytosis. Blood 2021; 137:2033-2045. [PMID: 33513601 DOI: 10.1182/blood.2020008738] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
Exocytosis of cytotoxic granules (CG) by lymphocytes is required for the elimination of infected and malignant cells. Impairments in this process underly a group of diseases with dramatic hyperferritinemic inflammation termed hemophagocytic lymphohistiocytosis (HLH). Although genetic and functional studies of HLH have identified proteins controlling distinct steps of CG exocytosis, the molecular mechanisms that spatiotemporally coordinate CG release remain partially elusive. We studied a patient exhibiting characteristic clinical features of HLH associated with markedly impaired cytotoxic T lymphocyte (CTL) and natural killer (NK) cell exocytosis functions, who beared biallelic deleterious mutations in the gene encoding the small GTPase RhoG. Experimental ablation of RHOG in a model cell line and primary CTLs from healthy individuals uncovered a hitherto unappreciated role of RhoG in retaining CGs in the vicinity of the plasma membrane (PM), a fundamental prerequisite for CG exocytotic release. We discovered that RhoG engages in a protein-protein interaction with Munc13-4, an exocytosis protein essential for CG fusion with the PM. We show that this interaction is critical for docking of Munc13-4+ CGs to the PM and subsequent membrane fusion and release of CG content. Thus, our study illuminates RhoG as a novel essential regulator of human lymphocyte cytotoxicity and provides the molecular pathomechanism behind the identified here and previously unreported genetically determined form of HLH.
Collapse
|
45
|
LeBlanc RE, Lansigan F. Unraveling subcutaneous panniculitis-like T-cell lymphoma: An association between subcutaneous panniculitis-like T-cell lymphoma, autoimmune lymphoproliferative syndrome, and familial hemophagocytic lymphohistiocytosis. J Cutan Pathol 2021; 48:572-577. [PMID: 32894575 DOI: 10.1111/cup.13863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 01/01/2023]
Abstract
Germline HAVCR2 mutations, recently identified in a large subset of patients with subcutaneous panniculitis-like T-cell lymphoma (SPTCL), are associated with an increased risk of hemophagocytic lymphohistiocytosis (HLH). Discovery of this heritable HLH/SPTCL diathesis has expanded our understanding of a rare and molecularly heterogeneous lymphoma. Furthermore, patients with SPTCL have excellent survival unless they develop HLH. Therefore, through compiling data on SPTCL-related conditions that predispose patients to HLH, we are better able to predict which patients with SPTCL have the greatest risk of mortality. We present the first case of SPTCL with concomitant HLH and autoimmune lymphoproliferative syndrome (ALPS) in a patient who was subsequently diagnosed with familial HLH (F-HLH) attributable to a germline STXBP2 splice-site mutation. She had wild-type HAVCR2. Reports including ours show how SPTCL can evolve in the setting of an exaggerated host inflammatory response attributable to a variety of unusual underlying etiologies.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents, Hormonal/administration & dosage
- Antineoplastic Agents, Hormonal/therapeutic use
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/therapeutic use
- Autoimmune Lymphoproliferative Syndrome/complications
- Autoimmune Lymphoproliferative Syndrome/diagnosis
- Autoimmune Lymphoproliferative Syndrome/genetics
- Autoimmune Lymphoproliferative Syndrome/pathology
- Biopsy
- Bone Marrow/pathology
- Bone Marrow Transplantation
- CD8-Positive T-Lymphocytes/pathology
- Combined Modality Therapy
- Dexamethasone/administration & dosage
- Dexamethasone/therapeutic use
- Etoposide/administration & dosage
- Etoposide/therapeutic use
- Female
- Hepatitis A Virus Cellular Receptor 2/genetics
- Humans
- Lymphadenopathy/pathology
- Lymphohistiocytosis, Hemophagocytic/complications
- Lymphohistiocytosis, Hemophagocytic/diagnosis
- Lymphohistiocytosis, Hemophagocytic/genetics
- Lymphohistiocytosis, Hemophagocytic/pathology
- Lymphoma, T-Cell/complications
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/pathology
- Munc18 Proteins/genetics
- Mutation
- Panniculitis/complications
- Panniculitis/diagnosis
- Panniculitis/genetics
- Panniculitis/pathology
- Transplantation, Homologous/methods
- Treatment Outcome
Collapse
Affiliation(s)
- Robert E LeBlanc
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Frederick Lansigan
- Department of Hematology Oncology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
46
|
Ménasché G, Longé C, Bratti M, Blank U. Cytoskeletal Transport, Reorganization, and Fusion Regulation in Mast Cell-Stimulus Secretion Coupling. Front Cell Dev Biol 2021; 9:652077. [PMID: 33796537 PMCID: PMC8007931 DOI: 10.3389/fcell.2021.652077] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Mast cells are well known for their role in allergies and many chronic inflammatory diseases. They release upon stimulation, e.g., via the IgE receptor, numerous bioactive compounds from cytoplasmic secretory granules. The regulation of granule secretion and its interaction with the cytoskeleton and transport mechanisms has only recently begun to be understood. These studies have provided new insight into the interaction between the secretory machinery and cytoskeletal elements in the regulation of the degranulation process. They suggest a tight coupling of these two systems, implying a series of specific signaling effectors and adaptor molecules. Here we review recent knowledge describing the signaling events regulating cytoskeletal reorganization and secretory granule transport machinery in conjunction with the membrane fusion machinery that occur during mast cell degranulation. The new insight into MC biology offers novel strategies to treat human allergic and inflammatory diseases targeting the late steps that affect harmful release from granular stores leaving regulatory cytokine secretion intact.
Collapse
Affiliation(s)
- Gaël Ménasché
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Cyril Longé
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
47
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
48
|
Abramov D, Guiberson NGL, Daab A, Na Y, Petsko GA, Sharma M, Burré J. Targeted stabilization of Munc18-1 function via pharmacological chaperones. EMBO Mol Med 2021; 13:e12354. [PMID: 33332765 PMCID: PMC7799358 DOI: 10.15252/emmm.202012354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Heterozygous de novo mutations in the neuronal protein Munc18-1 cause syndromic neurological symptoms, including severe epilepsy, intellectual disability, developmental delay, ataxia, and tremor. No disease-modifying therapy exists to treat these disorders, and while chemical chaperones have been shown to alleviate neuronal dysfunction caused by missense mutations in Munc18-1, their required high concentrations and potential toxicity necessitate a Munc18-1-targeted therapy. Munc18-1 is essential for neurotransmitter release, and mutations in Munc18-1 have been shown to cause neuronal dysfunction via aggregation and co-aggregation of the wild-type protein, reducing functional Munc18-1 levels well below hemizygous levels. Here, we identify two pharmacological chaperones via structure-based drug design, that bind to wild-type and mutant Munc18-1, and revert Munc18-1 aggregation and neuronal dysfunction in vitro and in vivo, providing the first targeted treatment strategy for these severe pediatric encephalopathies.
Collapse
Affiliation(s)
- Debra Abramov
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Noah Guy Lewis Guiberson
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Andrew Daab
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
- Present address:
University of BathBathUK
| | - Yoonmi Na
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Gregory A Petsko
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
- Present address:
Ann Romney Center for Neurologic DiseasesDepartment of NeurologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA, USA
| | - Manu Sharma
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Jacqueline Burré
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
49
|
Dantas VM, Valle CT, de Oliveira RP, Bezerra MTAL, do Amaral CT, Brandão RAS, Cerqueira Maia JM, Petta TB. Germline Compound Heterozygous Variants Identified in the STXBP2 Gene Leading to a Familial Hemophagocytic Lymphohistiocytosis Type 5: A Case Report. Front Pediatr 2021; 9:633996. [PMID: 34249802 PMCID: PMC8264126 DOI: 10.3389/fped.2021.633996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Familial hemophagocytic lymphohistiocytosis (FHL) is a rare, potentially fatal autosomal-recessive immunodeficiency, and STXBP2 mutations have been associated with FHL type 5 (FHL-5). Here, we report a case of a 2-year-old boy who presented with recurrent fever, hepatosplenomegaly, pancytopenia, hyperferritinemia, and hypofibrinogenemia since 4 months of age. His genetic analysis revealed a compound heterozygosity of the STXBP2 gene with a described pathogenic mutation, c.1247-1G>C (splicing acceptor site), harbored by his father and a likely pathogenic variant of uncertain significance (VUS), c.704G>A (p.Arg235Gln), harbored by his mother. He was diagnosed as compound heterozygous for FHL-5 and was treated with the HLH-2004 protocol. Since treatment, this patient has been in remission, and he is being evaluated for a hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Vera Maria Dantas
- Department of Pediatrics, Pediatric Immunology Division of Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Cassandra Teixeira Valle
- Pediatric Hematology Division of Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Roberta Piccin de Oliveira
- Pediatric Allergy-Immunology Division, Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mylena Taíse Azevedo L Bezerra
- Pediatric Infectiology Division, Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Cleia Teixeira do Amaral
- Pediatric Pneumology Division, Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raissa Anielle S Brandão
- Pediatric Pneumology Division, Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jussara M Cerqueira Maia
- Department of Pediatrics, Pediatric Gastroenterology Division of Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Tirzah Braz Petta
- Department of Cellular Biology and Genetics, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
50
|
Merli P, Algeri M, Gaspari S, Locatelli F. Novel Therapeutic Approaches to Familial HLH (Emapalumab in FHL). Front Immunol 2020; 11:608492. [PMID: 33424859 PMCID: PMC7793976 DOI: 10.3389/fimmu.2020.608492] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Primary Hemophagocytic lymphohistiocytosis (pHLH) is a rare, life-threatening, hyperinflammatory disorder, characterized by uncontrolled activation of the immune system. Mutations affecting several genes coding for proteins involved in the cytotoxicity machinery of both natural killer (NK) and T cells have been found to be responsible for the development of pHLH. So far, front-line treatment, established on the results of large international trials, is based on the use of glucocorticoids, etoposide ± cyclosporine, followed by allogeneic hematopoietic stem cell transplantation (HSCT), the sole curative treatment for the genetic forms of the disease. However, despite major efforts to improve the outcome of pHLH, many patients still experience unfavorable outcomes, as well as severe toxicities; moreover, treatment-refractory or relapsing disease is a major challenge for pediatricians/hematologists. In this article, we review the epidemiology, etiology and pathophysiology of pHLH, with a particular focus on different cytokines at the origin of the disease. The central role of interferon-γ (IFNγ) in the development and maintenance of hyperinflammation is analyzed. The value of emapalumab, a novel IFNγ-neutralizing monoclonal antibody is discussed. Available data support the use of emapalumab for treatment of pHLH patients with refractory, recurrent or progressive disease, or intolerance to conventional therapy, recently, leading to FDA approval of the drug for these indications. Additional data are needed to define the role of emapalumab in front-line treatment or in combination with other drugs.
Collapse
Affiliation(s)
- Pietro Merli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefania Gaspari
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Maternal, Infantile, and Urological Sciences, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|