1
|
Mora-Bitria L, Asquith B. Germline natural killer cell receptors modulating the T cell response. Front Immunol 2024; 15:1477991. [PMID: 39559364 PMCID: PMC11570266 DOI: 10.3389/fimmu.2024.1477991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
In addition to their central role during innate responses, NK cells regulate adaptive immunity through various mechanisms. A wide array of innate receptors has been involved in the NK cell regulatory function. However, the clinical implications of these regulatory pathways are poorly understood. Here, we review the experimental evidence on the effects of NK cells on T cells and their positive and negative consequences for disease outcome during T cell responses in humans.
Collapse
Affiliation(s)
| | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College
London, London, United Kingdom
| |
Collapse
|
2
|
Waggoner S, Cox A, Canaday L, Katko A, Feldman H, Warrick K, Tselikova A, Seelamneni H, Roskin K. KLF2 determines the susceptibility of T cells to immunoregulatory NK cells. RESEARCH SQUARE 2024:rs.3.rs-4921081. [PMID: 39257976 PMCID: PMC11384801 DOI: 10.21203/rs.3.rs-4921081/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Natural killer (NK) cells suppress cellular and humoral immune responses via killing of T cells, resulting in diminished vaccine responses in mice and humans. Efforts to overcome this roadblock and achieve optimal immunity require an improved understanding of the molecular mediators facilitating NK cell-targeting of discrete subsets of CD4 T cells. We employed single-cell forensic victimology and CRISPR-Cas9 editing to delineate a transcriptional program uniquely responsible for the susceptibility of a subpopulation of CD4 T cells to perforin-dependent immunoregulation by NK cells. The unique vulnerability of these CD4 T cells relative to other subsets of CD4 T cells was not associated with a pattern of NK-cell-receptor ligand expression that would favor activation of NK cells. Instead, susceptible CD4 T cells were skewed toward follicular helper T cell (Tfh) differentiation and exhibited intermediate expression of Klf2 and a related suite of KLF2-target genes (e.g. S1pr1) involved in cell migration and spatial positioning. NK-cell dependent suppression of the subset of Tfh exhibiting intermediate expression of KLF2 and S1PR1 was confirmed with single-cell proteomics. CRISPR targeting of KLF2 in CD4 T cells prevented suppression by NK cells. Thus, KLF2 regulation of spatial positioning of T cells is a key determinant of NK-cell immunoregulatory function and a possible target for strategies to enhance vaccine efficacy.
Collapse
Affiliation(s)
| | - Andrew Cox
- Cincinnati Children's Hospital Medical Center
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Hamdan TA. The Multifaceted Roles of NK Cells in the Context of Murine Cytomegalovirus and Lymphocytic Choriomeningitis Virus Infections. Immune Netw 2024; 24:e29. [PMID: 39246620 PMCID: PMC11377952 DOI: 10.4110/in.2024.24.e29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 09/10/2024] Open
Abstract
NK cells belong to innate lymphoid cells and able to eliminate infected cells and tumor cells. NK cells play a valuable role in controlling viral infections. Also, they have the potential to shape the adaptive immunity via a unique crosstalk with the different immune cells. Murine models are important tools for delineating the immunological phenomena in viral infection. To decipher the immunological virus-host interactions, two major infection models are being investigated in mice regarding NK cell-mediated recognition: murine cytomegalovirus (MCMV) and lymphocytic choriomeningitis virus (LCMV). In this review, we recapitulate recent findings regarding the multifaceted role of NK cells in controlling LCMV and MCMV infections and outline the exquisite interplay between NK cells and other immune cells in these two settings. Considering that, infections with MCMV and LCMV recapitulates many physiopathological characteristics of human cytomegalovirus infection and chronic virus infections respectively, this study will extend our understanding of NK cells biology in interactions between the virus and its natural host.
Collapse
Affiliation(s)
- Thamer A Hamdan
- Department of Basic Dental Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
4
|
Chung DC, Garcia-Batres CR, Millar DG, Wong SWY, Elford AR, Mathews JA, Wang BX, Nguyen LT, Shaw PA, Clarke BA, Bernardini MQ, Sacher AG, Crome SQ, Ohashi PS. Generation of an Inhibitory NK Cell Subset by TGF-β1/IL-15 Polarization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1904-1912. [PMID: 38668728 PMCID: PMC11149900 DOI: 10.4049/jimmunol.2300834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 06/05/2024]
Abstract
NK cells have been shown to exhibit inflammatory and immunoregulatory functions in a variety of healthy and diseased settings. In the context of chronic viral infection and cancer, distinct NK cell populations that inhibit adaptive immune responses have been observed. To understand how these cells arise and further characterize their immunosuppressive role, we examined in vitro conditions that could polarize human NK cells into an inhibitory subset. TGF-β1 has been shown to induce regulatory T cells in vitro and in vivo; we therefore investigated if TGF-β1 could also induce immunosuppressive NK-like cells. First, we found that TGF-β1/IL-15, but not IL-15 alone, induced CD103+CD49a+ NK-like cells from peripheral blood NK cells, which expressed markers previously associated with inhibitory CD56+ innate lymphoid cells, including high expression of GITR and CD101. Moreover, supernatant from ascites collected from patients with ovarian carcinoma also induced CD103+CD49a+ NK-like cells in vitro in a TGF-β-dependent manner. Interestingly, TGF-β1/IL-15-induced CD103+CD56+ NK-like cells suppressed autologous CD4+ T cells in vitro by reducing absolute number, proliferation, and expression of activation marker CD25. Collectively, these findings provide new insight into how NK cells may acquire an inhibitory phenotype in TGF-β1-rich environments.
Collapse
Affiliation(s)
- Douglas C. Chung
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Carlos R. Garcia-Batres
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Douglas G. Millar
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stephanie W. Y. Wong
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alisha R. Elford
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jessica A. Mathews
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Ben X. Wang
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Linh T. Nguyen
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Patricia A. Shaw
- Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Blaise A. Clarke
- Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Marcus Q. Bernardini
- Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Adrian G. Sacher
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Pamela S. Ohashi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
5
|
Kilian M, Friedrich MJ, Lu KHN, Vonhören D, Jansky S, Michel J, Keib A, Stange S, Hackert N, Kehl N, Hahn M, Habel A, Jung S, Jähne K, Sahm F, Betge J, Cerwenka A, Westermann F, Dreger P, Raab MS, Meindl-Beinker NM, Ebert M, Bunse L, Müller-Tidow C, Schmitt M, Platten M. The immunoglobulin superfamily ligand B7H6 subjects T cell responses to NK cell surveillance. Sci Immunol 2024; 9:eadj7970. [PMID: 38701193 DOI: 10.1126/sciimmunol.adj7970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/15/2024] [Indexed: 05/05/2024]
Abstract
Understanding the mechanisms that regulate T cell immunity is critical for the development of effective therapies for diseases associated with T cell dysfunction, including autoimmune diseases, chronic infections, and cancer. Co-inhibitory "checkpoint molecules," such as programmed cell death protein-1, balance excessive or prolonged immune activation by T cell-intrinsic signaling. Here, by screening for mediators of natural killer (NK) cell recognition on T cells, we identified the immunoglobulin superfamily ligand B7H6 to be highly expressed by activated T cells, including patient-infused CD19-targeting chimeric antigen receptor (CAR) T cells. Unlike other checkpoint molecules, B7H6 mediated NKp30-dependent recognition and subsequent cytolysis of activated T cells by NK cells. B7H6+ T cells were prevalent in the tissue and blood of several diseases, and their abundance in tumor tissue positively correlated with clinical response in a cohort of patients with immune checkpoint inhibitor-treated esophageal cancer. In humanized mouse models, NK cell surveillance via B7H6 limited the persistence and antitumor activity of CAR T cells, and its genetic deletion enhanced T cell proliferation and persistence. Together, we provide evidence of B7H6 protein expression by activated T cells and suggest the B7H6-NKp30 axis as a therapeutically actionable NK cell-dependent immune checkpoint that regulates human T cell function.
Collapse
Affiliation(s)
- Michael Kilian
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mirco J Friedrich
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kevin Hai-Ning Lu
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Pediatric Hematology and Oncology, Clinic of Pediatrics III, University Hospital Essen, Essen, Germany
| | - David Vonhören
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Selina Jansky
- Department of Pediatric Hematology and Oncology, Clinic of Pediatrics III, University Hospital Essen, Essen, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Julius Michel
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna Keib
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Saskia Stange
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicolaj Hackert
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Niklas Kehl
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Hahn
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antje Habel
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefanie Jung
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kristine Jähne
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Betge
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine II, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Adelheid Cerwenka
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Dreger
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc S Raab
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadja M Meindl-Beinker
- Department of Medicine II, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
| | - Matthias Ebert
- Department of Medicine II, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
| | - Lukas Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Schmitt
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
6
|
Padoan B, Casar C, Krause J, Schultheiss C, Baumdick ME, Niehrs A, Zecher BF, Pujantell M, Yuki Y, Martin M, Remmerswaal EBM, Dekker T, van der Bom-Baylon ND, Noble JA, Carrington M, Bemelman FJ, van Lier RAW, Binder M, Gagliani N, Bunders MJ, Altfeld M. NKp44/HLA-DP-dependent regulation of CD8 effector T cells by NK cells. Cell Rep 2024; 43:114089. [PMID: 38615318 PMCID: PMC11416720 DOI: 10.1016/j.celrep.2024.114089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Although natural killer (NK) cells are recognized for their modulation of immune responses, the mechanisms by which human NK cells mediate immune regulation are unclear. Here, we report that expression of human leukocyte antigen (HLA)-DP, a ligand for the activating NK cell receptor NKp44, is significantly upregulated on CD8+ effector T cells, in particular in human cytomegalovirus (HCMV)+ individuals. HLA-DP+ CD8+ T cells expressing NKp44-binding HLA-DP antigens activate NKp44+ NK cells, while HLA-DP+ CD8+ T cells not expressing NKp44-binding HLA-DP antigens do not. In line with this, frequencies of HLA-DP+ CD8+ T cells are increased in individuals not encoding for NKp44-binding HLA-DP haplotypes, and contain hyper-expanded CD8+ T cell clones, compared to individuals expressing NKp44-binding HLA-DP molecules. These findings identify a molecular interaction facilitating the HLA-DP haplotype-specific editing of HLA-DP+ CD8+ T cell effector populations by NKp44+ NK cells and preventing the generation of hyper-expanded T cell clones, which have been suggested to have increased potential for autoimmunity.
Collapse
Affiliation(s)
- Benedetta Padoan
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Christian Casar
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jenny Krause
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Christoph Schultheiss
- Division of Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, 4031 Basel, Switzerland
| | - Martin E Baumdick
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Annika Niehrs
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Britta F Zecher
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pujantell
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tamara Dekker
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nelly D van der Bom-Baylon
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Janelle A Noble
- Department of Pediatrics UCSF, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Frederike J Bemelman
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, 4031 Basel, Switzerland
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Madeleine J Bunders
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany.
| |
Collapse
|
7
|
Mishra AK, Schmidt TM, Martell EB, Chen AS, Dogru RE, Hematti P, Callander NS. PD1 +TIGIT +2B4 +KLRG1 + Cells Might Underlie T Cell Dysfunction in Patients Treated with BCMA-Directed Chimeric Antigen Receptor T Cell Therapy. Transplant Cell Ther 2024; 30:191-202. [PMID: 37967650 DOI: 10.1016/j.jtct.2023.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/07/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has shown rapid, frequent, and deep responses in patients with relapsed/refractory multiple myeloma (RRMM). However, relapse frequently occurs following CAR-T therapy, and the cause of this resistance is not well defined. Among the potential mechanisms of resistance, T cell intrinsic factors may be an important source of failure. Here we used spectral flow cytometry to identify the changes in T cell phenotypes in bone marrow aspirates at different stages of multiple myeloma progression, including cases that relapsed after anti-BCMA CAR-T therapy. We identified completely different T cell phenotypes in RRMM and post CAR-T relapse cases compared to healthy donors and earlier stages of multiple myeloma, novel double-negative CD3+ T cells in RRMM and CAR-T relapsed cases, and differences in CD8 T cell phenotype at the baseline between peripheral blood and bone marrow from healthy donors. We found that the majority of T cells in RRMM patients and significant T cell subsets in post-CAR-T relapsed patients expressed multiple coinhibitory markers, including PD1, TIGIT, 2B4, and KLRG1.
Collapse
Affiliation(s)
- Ameet K Mishra
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.
| | - Timothy M Schmidt
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Ella B Martell
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Alex S Chen
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Reyna E Dogru
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Peiman Hematti
- Department of Medicine, Froedtert Hospital and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Natalie S Callander
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
8
|
Volkmer B, Marchetti T, Aichele P, Schmid JP. Murine Models of Familial Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:481-496. [PMID: 39117835 DOI: 10.1007/978-3-031-59815-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disease caused by mutations in effectors and regulators of cytotoxicity in cytotoxic T cells (CTL) and natural killer (NK) cells. The complexity of the immune system means that in vivo models are needed to efficiently study diseases like HLH. Mice with defects in the genes known to cause primary HLH (pHLH) are available. However, these mice only develop the characteristic features of HLH after the induction of an immune response (typically through infection with lymphocytic choriomeningitis virus). Nevertheless, murine models have been invaluable for understanding the mechanisms that lead to HLH. For example, the cytotoxic machinery (e.g., the transport of cytotoxic vesicles and the release of granzymes and perforin after membrane fusion) was first characterized in the mouse. Experiments in murine models of pHLH have emphasized the importance of cytotoxic cells, antigen-presenting cells (APC), and cytokines in hyperinflammatory positive feedback loops (e.g., cytokine storms). This knowledge has facilitated the development of treatments for human HLH, some of which are now being tested in the clinic.
Collapse
Affiliation(s)
- Benjamin Volkmer
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Tommaso Marchetti
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Peter Aichele
- Department of Immunology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Jiang H, Jiang J. Balancing act: the complex role of NK cells in immune regulation. Front Immunol 2023; 14:1275028. [PMID: 38022497 PMCID: PMC10652757 DOI: 10.3389/fimmu.2023.1275028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Natural killer (NK) cells, as fundamental components of innate immunity, can quickly react to abnormalities within the body. In-depth research has revealed that NK cells possess regulatory functions not only in innate immunity but also in adaptive immunity under various conditions. Multiple aspects of the adaptive immune process are regulated through NK cells. In our review, we have integrated multiple studies to illuminate the regulatory function of NK cells in regulating B cell and T cell responses during adaptive immune processes, focusing on aspects including viral infections and the tumor microenvironment (TME). These insights provide us with many new understandings on how NK cells regulate different phases of the adaptive immune response.
Collapse
Affiliation(s)
- Hongwei Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
10
|
Kim HW, Wang S, Davies AJ, Oh SB. The therapeutic potential of natural killer cells in neuropathic pain. Trends Neurosci 2023:S0166-2236(23)00133-9. [PMID: 37385878 DOI: 10.1016/j.tins.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
Novel disease-modifying treatments for neuropathic pain are urgently required. The cellular immune response to nerve injury represents a promising target for therapeutic development. Recently, the role of natural killer (NK) cells in both CNS and PNS disease has been the subject of growing interest. In this opinion article, we set out the case for NK cell-based intervention as a promising avenue for development in the management of neuropathic pain. We explore the potential cellular and molecular targets of NK cells in the PNS by contrasting with their reported functional roles in CNS diseases, and we suggest strategies for using the beneficial functions of NK cells and immune-based therapeutics in the context of neuropathic pain.
Collapse
Affiliation(s)
- Hyoung Woo Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Shuaiwei Wang
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexander J Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Labrosse R, Boufaied I, Bourdin B, Gona S, Randolph HE, Logan BR, Bourbonnais S, Berthe C, Chan W, Buckley RH, Parrott RE, Cuvelier GDE, Kapoor N, Chandra S, Dávila Saldaña BJ, Eissa H, Goldman FD, Heimall J, O'Reilly R, Chaudhury S, Kolb EA, Shenoy S, Griffith LM, Pulsipher M, Kohn DB, Notarangelo LD, Pai SY, Cowan MJ, Dvorak CC, Haddad É, Puck JM, Barreiro LB, Decaluwe H. Aberrant T-cell exhaustion in severe combined immunodeficiency survivors with poor T-cell reconstitution after transplantation. J Allergy Clin Immunol 2023; 151:260-271. [PMID: 35987350 PMCID: PMC9924130 DOI: 10.1016/j.jaci.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) comprises rare inherited disorders of immunity that require definitive treatment through hematopoietic cell transplantation (HCT) or gene therapy for survival. Despite successes of allogeneic HCT, many SCID patients experience incomplete immune reconstitution, persistent T-cell lymphopenia, and poor long-term outcomes. OBJECTIVE We hypothesized that CD4+ T-cell lymphopenia could be associated with a state of T-cell exhaustion in previously transplanted SCID patients. METHODS We analyzed markers of exhaustion in blood samples from 61 SCID patients at a median of 10.4 years after HCT. RESULTS Compared to post-HCT SCID patients with normal CD4+ T-cell counts, those with poor T-cell reconstitution showed lower frequency of naive CD45RA+/CCR7+ T cells, recent thymic emigrants, and TCR excision circles. They also had a restricted TCR repertoire, increased expression of inhibitory receptors (PD-1, 2B4, CD160, BTLA, CTLA-4), and increased activation markers (HLA-DR, perforin) on their total and naive CD8+ T cells, suggesting T-cell exhaustion and aberrant activation, respectively. The exhaustion score of CD8+ T cells was inversely correlated with CD4+ T-cell count, recent thymic emigrants, TCR excision circles, and TCR diversity. Exhaustion scores were higher among recipients of unconditioned HCT, especially when further in time from HCT. Patients with fewer CD4+ T cells showed a transcriptional signature of exhaustion. CONCLUSIONS Recipients of unconditioned HCT for SCID may develop late post-HCT T-cell exhaustion as a result of diminished production of T-lineage cells. Elevated expression of inhibitory receptors on their T cells may be a biomarker of poor long-term T-cell reconstitution.
Collapse
Affiliation(s)
- Roxane Labrosse
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Ines Boufaied
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Benoîte Bourdin
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Saideep Gona
- Genetics, Genomics, and Systems Biology, Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Ill
| | - Haley E Randolph
- Genetics, Genomics, and Systems Biology, Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Ill
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wis
| | - Sara Bourbonnais
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Chloé Berthe
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Wendy Chan
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | | | | | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Neena Kapoor
- Blood and Marrow Transplant Program, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Blachy J Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Hesham Eissa
- Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, Colo
| | - Fred D Goldman
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Ala
| | - Jennifer Heimall
- Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Richard O'Reilly
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sonali Chaudhury
- Division of Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Edward A Kolb
- Nemours Children's Health, Center for Cancer and Blood Disorders, Wilmington, Del
| | - Shalini Shenoy
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Linda M Griffith
- Division of Allergy, Immunology, and Transplantation, National Institutes of Health, Bethesda, Md
| | - Michael Pulsipher
- Blood and Marrow Transplant Program, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Donald B Kohn
- Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Calif
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Md
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Morton J Cowan
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Christopher C Dvorak
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Élie Haddad
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Jennifer M Puck
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Luis B Barreiro
- Genetics, Genomics, and Systems Biology, Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Ill
| | - Hélène Decaluwe
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada; Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Rickassel C, Gnirck AC, Shaikh N, Adamiak V, Waterhölter A, Tanriver Y, Neumann K, Huber TB, Gasteiger G, Panzer U, Turner JE. Conventional NK Cells and Type 1 Innate Lymphoid Cells Do Not Influence Pathogenesis of Experimental Glomerulonephritis. THE JOURNAL OF IMMUNOLOGY 2022; 208:1585-1594. [DOI: 10.4049/jimmunol.2101012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/23/2022] [Indexed: 04/09/2023]
Abstract
Abstract
Innate lymphoid cells (ILCs) that express NK cell receptors (NCRs) and the transcription factor T-bet populate nonlymphoid tissues and are crucial in immune responses against viral infections and malignancies. Recent studies highlighted the heterogeneity of this ILC population and extended their functional spectrum to include important roles in tissue homeostasis and autoimmunity. In this article, we provide detailed profiling of NCR+T-bet+ ILC populations in the murine kidney, identifying conventional NK (cNK) cells and type 1 ILCs (ILC1s) as the two major subsets. Induction of renal inflammation in a mouse model of glomerulonephritis did not substantially influence abundance or phenotype of cNK cells or ILC1s in the kidney. For functional analyses in this model, widely used depletion strategies for total NCR+ ILCs (anti-NK1.1 Ab application) and cNK cells (anti-asialoGM1 serum application) were unreliable tools, because they were accompanied by significant off-target depletion of kidney NKT cells and CD8+ T cells, respectively. However, neither depletion of cNK cells and ILC1s in NKT cell–deficient mice nor specific genetic deletion of cNK cells in Ncr1Cre/wt × Eomesfl/fl mice altered the clinical course of experimental glomerulonephritis. In summary, we show in this article that cNK cells and ILC1s are dispensable for initiation and progression of immune-mediated glomerular disease and advise caution in the use of standard Ab depletion methods to study NCR+ ILC function in mouse models.
Collapse
Affiliation(s)
- Constantin Rickassel
- *III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- †Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Christin Gnirck
- *III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- †Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikhat Shaikh
- *III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- †Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Virginia Adamiak
- *III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- †Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alex Waterhölter
- *III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- †Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yakup Tanriver
- ‡Department of Internal Medicine IV, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Katrin Neumann
- §Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- *III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- †Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Gasteiger
- ¶Würzburg Institute of Systems Immunology, Julius-Maximilians-University Würzburg, Würzburg, Germany; and
| | - Ulf Panzer
- *III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- †Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- ‖Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- *III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- †Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
14
|
Fumagalli V, Venzin V, Di Lucia P, Moalli F, Ficht X, Ambrosi G, Giustini L, Andreata F, Grillo M, Magini D, Ravà M, Friedrich C, Fontenot JD, Bousso P, Gilmore SA, Khan S, Baca M, Vivier E, Gasteiger G, Kuka M, Guidotti LG, Iannacone M. Group 1 ILCs regulate T cell-mediated liver immunopathology by controlling local IL-2 availability. Sci Immunol 2022; 7:eabi6112. [PMID: 35213210 DOI: 10.1126/sciimmunol.abi6112] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Group 1 innate lymphoid cells (ILCs), which comprise both natural killer (NK) cells and ILC1s, are important innate effectors that can also positively and negatively influence adaptive immune responses. The latter function is generally ascribed to the ability of NK cells to recognize and kill activated T cells. Here, we used multiphoton intravital microscopy in mouse models of hepatitis B to study the intrahepatic behavior of group 1 ILCs and their cross-talk with hepatitis B virus (HBV)-specific CD8+ T cells. We found that hepatocellular antigen recognition by effector CD8+ T cells triggered a prominent increase in the number of hepatic NK cells and ILC1s. Group 1 ILCs colocalized and engaged in prolonged interactions with effector CD8+ T cells undergoing hepatocellular antigen recognition; however, they did not induce T cell apoptosis. Rather, group 1 ILCs constrained CD8+ T cell proliferation by controlling local interleukin-2 (IL-2) availability. Accordingly, group 1 ILC depletion, or genetic removal of their IL-2 receptor a chain, considerably increased the number of intrahepatic HBV-specific effector CD8+ T cells and the attendant immunopathology. Together, these results reveal a role for group 1 ILCs in controlling T cell-mediated liver immunopathology by limiting local IL-2 concentration and have implications for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valentina Venzin
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Moalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gioia Ambrosi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marta Grillo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diletta Magini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Christin Friedrich
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximiliams-Universität Würzburg, Würzburg, Germany
| | | | - Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, 75015 Paris, France
| | | | | | | | - Eric Vivier
- Aix Marseille University, CNRS, INSERM, CIML, Marseille 13288, France.,Innate Pharma Research Laboratories, Innate Pharma, Marseille 13276, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille 13005, France
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximiliams-Universität Würzburg, Würzburg, Germany
| | - Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy.,Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
15
|
Jegatheeswaran S, Mathews JA, Crome SQ. Searching for the Elusive Regulatory Innate Lymphoid Cell. THE JOURNAL OF IMMUNOLOGY 2021; 207:1949-1957. [PMID: 34607908 DOI: 10.4049/jimmunol.2100661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
The complex nature of the innate lymphoid cell (ILC) family and wide range of ILC effector functions has been the focus of intense research. In addition to important roles in host defense, ILCs have central roles in maintaining tissue homeostasis and can promote immune tolerance. Alterations within the microenvironment can impart new functions on ILCs, and can even induce conversion to a distinct ILC family member. Complicating current definitions of ILCs are recent findings of distinct regulatory ILC populations that limit inflammatory responses or recruit other immunosuppressive cells such as regulatory T cells. Whether these populations are distinct ILC family members or rather canonical ILCs that exhibit immunoregulatory functions due to microenvironment signals has been the subject of much debate. In this review, we highlight studies identifying regulatory populations of ILCs that span regulatory NK-like cells, regulatory ILCs, and IL-10-producing ILC2s.
Collapse
Affiliation(s)
- Sinthuja Jegatheeswaran
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and.,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica A Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and .,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Sierra JM, Secchiari F, Nuñez SY, Iraolagoitia XLR, Ziblat A, Friedrich AD, Regge MV, Santilli MC, Torres NI, Gantov M, Trotta A, Ameri C, Vitagliano G, Pita HR, Rico L, Rovegno A, Richards N, Domaica CI, Zwirner NW, Fuertes MB. Tumor-Experienced Human NK Cells Express High Levels of PD-L1 and Inhibit CD8 + T Cell Proliferation. Front Immunol 2021; 12:745939. [PMID: 34616407 PMCID: PMC8488336 DOI: 10.3389/fimmu.2021.745939] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Natural Killer (NK) cells play a key role in cancer immunosurveillance. However, NK cells from cancer patients display an altered phenotype and impaired effector functions. In addition, evidence of a regulatory role for NK cells is emerging in diverse models of viral infection, transplantation, and autoimmunity. Here, we analyzed clear cell renal cell carcinoma (ccRCC) datasets from The Cancer Genome Atlas (TCGA) and observed that a higher expression of NK cell signature genes is associated with reduced survival. Analysis of fresh tumor samples from ccRCC patients unraveled the presence of a high frequency of tumor-infiltrating PD-L1+ NK cells, suggesting that these NK cells might exhibit immunoregulatory functions. In vitro, PD-L1 expression was induced on NK cells from healthy donors (HD) upon direct tumor cell recognition through NKG2D and was further up-regulated by monocyte-derived IL-18. Moreover, in vitro generated PD-L1hi NK cells displayed an activated phenotype and enhanced effector functions compared to PD-L1- NK cells, but simultaneously, they directly inhibited CD8+ T cell proliferation in a PD-L1-dependent manner. Our results suggest that tumors might drive the development of PD-L1-expressing NK cells that acquire immunoregulatory functions in humans. Hence, rational manipulation of these regulatory cells emerges as a possibility that may lead to improved anti-tumor immunity in cancer patients.
Collapse
Affiliation(s)
- Jessica M Sierra
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florencia Secchiari
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sol Y Nuñez
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ximena L Raffo Iraolagoitia
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Ziblat
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Adrián D Friedrich
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina
| | - María V Regge
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M Cecilia Santilli
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolás I Torres
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Gantov
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Aldana Trotta
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | | | | - Luis Rico
- Hospital Alemán, Buenos Aires, Argentina
| | - Agustín Rovegno
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Buenos Aires, Argentina
| | - Nicolás Richards
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Buenos Aires, Argentina
| | - Carolina I Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Norberto W Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes B Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
Kumar V. Innate Lymphoid Cells and Adaptive Immune Cells Cross-Talk: A Secret Talk Revealed in Immune Homeostasis and Different Inflammatory Conditions. Int Rev Immunol 2021; 40:217-251. [PMID: 33733998 DOI: 10.1080/08830185.2021.1895145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The inflammatory immune response has evolved to protect the host from different pathogens, allergens, and endogenous death or damage-associated molecular patterns. Both innate and adaptive immune components are crucial in inducing an inflammatory immune response depending on the stimulus type and its duration of exposure or the activation of the primary innate immune response. As the source of inflammation is removed, the aggravated immune response comes to its homeostatic level. However, the failure of the inflammatory immune response to subside to its normal level generates chronic inflammatory conditions, including autoimmune diseases and cancer. Innate lymphoid cells (ILCs) are newly discovered innate immune cells, which are present in abundance at mucosal surfaces, including lungs, gastrointestinal tract, and reproductive tract. Also, they are present in peripheral blood circulation, skin, and lymph nodes. They play a crucial role in generating the pro-inflammatory immune response during diverse conditions. On the other hand, adaptive immune cells, including different types of T and B cells are major players in the pathogenesis of autoimmune diseases (type 1 diabetes mellitus, rheumatoid arthritis, psoriasis, and systemic lupus erythematosus, etc.) and cancers. Thus the article is designed to discuss the immunological role of different ILCs and their interaction with adaptive immune cells in maintaining the immune homeostasis, and during inflammatory autoimmune diseases along with other inflammatory conditions (excluding pathogen-induced inflammation), including cancer, graft-versus-host diseases, and human pregnancy.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St Lucia, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Huang Z, Kang SG, Li Y, Zak J, Shaabani N, Deng K, Shepherd J, Bhargava R, Teijaro JR, Xiao C. IFNAR1 signaling in NK cells promotes persistent virus infection. SCIENCE ADVANCES 2021; 7:7/13/eabb8087. [PMID: 33771858 PMCID: PMC7997497 DOI: 10.1126/sciadv.abb8087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Inhibition of type 1 interferon (IFN-I) signaling promotes the control of persistent virus infection, but the underlying mechanisms remain poorly understood. Here, we report that genetic ablation of Ifnar1 specifically in natural killer (NK) cells led to elevated numbers of T follicular helper cells, germinal center B cells, and plasma cells and improved antiviral T cell function, resulting in hastened virus clearance that was comparable to IFNAR1 neutralizing antibody treatment. Antigen-specific B cells and antiviral antibodies were essential for the accelerated control of LCMV Cl13 infection following IFNAR1 blockade. IFNAR1 signaling in NK cells promoted NK cell function and general killing of antigen-specific CD4 and CD8 T cells. Therefore, inhibition of IFN-I signaling in NK cells enhances CD4 and CD8 T cell responses, promotes humoral immune responses, and thereby facilitates the control of persistent virus infection.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Seung Goo Kang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Bioscience/Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Yunqiao Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jaroslav Zak
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kaiyuan Deng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- School of Medicine, Nankai University, Tianjin 30071, China
| | - Jovan Shepherd
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raag Bhargava
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Changchun Xiao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
19
|
Rojas JM, Pascual E, Wattegedera SR, Avia M, Santiago C, Martín V, Entrican G, Sevilla N. Hemagglutinin protein of Peste des Petits Ruminants virus (PPRV) activates the innate immune response via Toll-like receptor 2 signaling. Virulence 2021; 12:690-703. [PMID: 33522421 PMCID: PMC7889028 DOI: 10.1080/21505594.2021.1882246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The toll-like receptor (TLR) family comprises both cell-surface and intracellular receptors that recognize different types of pathogen-associated molecular patterns (PAMPs) leading to the production of pro-inflammatory cytokines and subsequent development of adaptive immunity. TLR2 is a cell-surface receptor initially thought to act as a bacterial sentinel but also shown to recognize a number of viral glycoproteins. In this study, we sought to characterize the role of TLR2 in the activation of the immune response by peste des petits ruminants virus (PPRV), a morbillivirus of the Paramixoviridae family that causes an acute, highly contagious disease in goats and sheep. Using human embryonic kidney (HEK) 293 cells stably expressing human (h)TLR2 but lacking any other TLR, we found that PPRV induces IL-8 production in a dose-dependent manner. That activation is only observed in cells expressing hTLR2 and is greatly reduced when the receptor is blocked by pretreatment with specific antibody. We identified hemagglutinin (H) as the viral protein responsible of TLR2 activation by performing the same assays with purified recombinant mammalian-expressed H protein. Exogenous addition of recombinant H protein to cell culture induces high levels of interleukin (IL)-8 only in TLR2-expressing cells. Moreover, H engagement on TLR2 in the monocytic cell line THP-1 activates extracellular-signal-regulated kinase (ERK) signaling. Stimulation of primary ovine dendritic cells with either inactivated PPRV or purified recombinant H protein results in transcription of pro-inflammatory cytokines and the secretion of the Th1-polarizing cytokine IL-12. The role of these host immune mechanisms in the control of PPR is discussed.
Collapse
Affiliation(s)
- José M Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación Agraria y Alimentaria , Madrid, Spain
| | - Elena Pascual
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación Agraria y Alimentaria , Madrid, Spain
| | | | - Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación Agraria y Alimentaria , Madrid, Spain
| | | | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación Agraria y Alimentaria , Madrid, Spain
| | - Gary Entrican
- College of Medicine and Veterinary Medicine, University of Edinburgh , Edinburgh, Scotland, UK
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación Agraria y Alimentaria , Madrid, Spain
| |
Collapse
|
20
|
Zwirner NW, Domaica CI, Fuertes MB. Regulatory functions of NK cells during infections and cancer. J Leukoc Biol 2020; 109:185-194. [PMID: 33095941 DOI: 10.1002/jlb.3mr0820-685r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/16/2020] [Accepted: 09/24/2020] [Indexed: 01/02/2023] Open
Abstract
After recognition, NK cells can kill susceptible target cells through perforin-dependent mechanisms or by inducing death receptor-mediated apoptosis, and they can also secrete cytokines that are pivotal for immunomodulation. Despite the critical role as effector cells against tumors and virus-infected cells, NK cells have been implicated in the regulation of T cell-mediated responses in different models of autoimmunity, transplantation, and viral infections. Here, we review the mechanisms described for NK cell-mediated inhibition of adaptive immune responses, with spotlight on the emerging evidence of their regulatory role that shapes antitumor immune responses.
Collapse
Affiliation(s)
- Norberto W Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina I Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mercedes B Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
21
|
Woyciechowski S, Weißert K, Ammann S, Aichele P, Pircher H. NK1.1 + innate lymphoid cells in salivary glands inhibit establishment of tissue-resident memory CD8 + T cells in mice. Eur J Immunol 2020; 50:1952-1958. [PMID: 32734619 DOI: 10.1002/eji.202048741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
Abstract
NK1.1+ cells found in salivary glands (SG) represent a unique cell population of innate lymphoid cells (ILC) with characteristics of both conventional NK cells and ILC1. Here, we demonstrate that these NK1.1+ cells limit the accumulation and differentiation of virus-specific tissue-resident memory CD8+ T cells (TRM cells) in SG of mice infected with lymphocytic choriomeningitis virus (LCMV). The negative regulation of LCMV-specific CD8+ TRM cells by NK1.1+ cells in SG is independent of NKG2D, NKp46, TRAIL, and perforin. Moreover, analysis of NKp46iCre+ Eomesfl/fl mice revealed that Eomes-dependent conventional NK cells are dispensable for negative regulation. Since the SG are prone to autoimmune reactions, regulation of TRM cells by tissue-resident ILC may be particularly important to prevent immunopathology in this organ.
Collapse
Affiliation(s)
- Sandra Woyciechowski
- Institute for Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kristoffer Weißert
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Sandra Ammann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Aichele
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
22
|
Klöß S, Dehmel S, Braun A, Parnham MJ, Köhl U, Schiffmann S. From Cancer to Immune-Mediated Diseases and Tolerance Induction: Lessons Learned From Immune Oncology and Classical Anti-cancer Treatment. Front Immunol 2020; 11:1423. [PMID: 32733473 PMCID: PMC7360838 DOI: 10.3389/fimmu.2020.01423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022] Open
Abstract
Success in cancer treatment over the last four decades has ranged from improvements in classical drug therapy to immune oncology. Anti-cancer drugs have also often proven beneficial for the treatment of inflammatory and autoimmune diseases. In this review, we report on challenging examples that bridge between treatment of cancer and immune-mediated diseases, addressing mechanisms and experimental models as well as clinical investigations. Patient-derived tumor xenograft (PDX) (humanized) mouse models represent useful tools for preclinical evaluation of new therapies and biomarker identification. However, new developments using human ex vivo approaches modeling cancer, for example in microfluidic human organs-on-chips, promise to identify key molecular, cellular and immunological features of human cancer progression in a fully human setting. Classical drugs which bridge the gap, for instance, include cytotoxic drugs, proteasome inhibitors, PI3K/mTOR inhibitors and metabolic inhibitors. Biologicals developed for cancer therapy have also shown efficacy in the treatment of autoimmune diseases. In immune oncology, redirected chimeric antigen receptor (CAR) T cells have achieved spectacular remissions in refractory B cell leukemia and lymphoma and are currently under development for tolerance induction using cell-based therapies such as CAR Tregs or NK cells. Finally, a brief outline will be given of the lessons learned from bridging cancer and autoimmune diseases as well as tolerance induction.
Collapse
Affiliation(s)
- Stephan Klöß
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Susanne Schiffmann
- Institute of Clinical Pharmacology, University Hospital Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Translational Medicine and Pharmacology (TMP), Frankfurt, Germany
| |
Collapse
|
23
|
Kumar V. Innate lymphoid cell and adaptive immune cell cross-talk: A talk meant not to forget. J Leukoc Biol 2020; 108:397-417. [PMID: 32557732 DOI: 10.1002/jlb.4mir0420-500rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a relatively new class of innate immune cells with phenotypical characters of lymphocytes but genotypically or functionally behave as typical innate immune cells. They have been classically divided into 3 groups (group 1 ILCs or ILC1s, group 2 ILCs or ILC2s, and group 3 ILCs or ILC3s). They serve as the first line of defense against invading pathogens and allergens at mucosal surfaces. The adaptive immune response works effectively in association with innate immunity as innate immune cells serve as APCs to directly stimulate the adaptive immune cells (various sets of T and B cells). Additionally, innate immune cells also secrete various effector molecules, including cytokines or chemokines impacting the function, differentiation, proliferation, and reprogramming among adaptive immune cells to maintain immune homeostasis. Only superantigens do not require their processing by innate immune cells as they are recognized directly by T cells and B cells. Thus, a major emphasis of the current article is to describe the cross-talk between different ILCs and adaptive immune cells during different conditions varying from normal physiological situations to different infectious diseases to allergic asthma.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Ebihara T. Dichotomous Regulation of Acquired Immunity by Innate Lymphoid Cells. Cells 2020; 9:cells9051193. [PMID: 32403291 PMCID: PMC7290502 DOI: 10.3390/cells9051193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
The concept of innate lymphoid cells (ILCs) includes both conventional natural killer (NK) cells and helper ILCs, which resemble CD8+ killer T cells and CD4+ helper T cells in acquired immunity, respectively. Conventional NK cells are migratory cytotoxic cells that find tumor cells or cells infected with microbes. Helper ILCs are localized at peripheral tissue and are responsible for innate helper-cytokine production. Helper ILCs are classified into three subpopulations: TH1-like ILC1s, TH2-like ILC2s, and TH17/TH22-like ILC3s. Because of the functional similarities between ILCs and T cells, ILCs can serve as an innate component that augments each corresponding type of acquired immunity. However, the physiological functions of ILCs are more plastic and complicated than expected and are affected by environmental cues and types of inflammation. Here, we review recent advances in understanding the interaction between ILCs and acquired immunity, including T- and B-cell responses at various conditions. Immune suppressive activities by ILCs in particular are discussed in comparison to their immune stimulatory effects to gain precise knowledge of ILC biology and the physiological relevance of ILCs in human diseases.
Collapse
Affiliation(s)
- Takashi Ebihara
- Department of Medical Biology, Akita University Graduate School of Medicine Affiliation, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
25
|
Raynor J, Lin A, Hummel SA, Lampe K, Jordan M, Hoebe K, Hildeman DA. The Variable Genomic NK Cell Receptor Locus Is a Key Determinant of CD4+ T Cell Responses During Viral Infection. Front Immunol 2020; 11:197. [PMID: 32153566 PMCID: PMC7044186 DOI: 10.3389/fimmu.2020.00197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence points to a key role for NK cells in controlling adaptive immune responses. In studies examining the role of CD1d on CD4+ T cell responses, we found that a line of CD1d-deficient mice on the C57BL/6J background had a homozygous 129 locus on chromosome 6 containing the entire NK cell gene cluster. Mice possessing this locus (C57BL/6.NKC129) displayed a >10-fold reduction in antigen-specific CD4+ T cell responses after intracranial infection with lymphocytic choriomeningitis virus (LCMV). Neither parental strain displayed defects in viral-specific CD4+ T cell responses. Interestingly, following infection, increased numbers of NK cells accumulated in the lymph nodes of C57BL/6.NKC129 mice and displayed enhanced in vivo functionality. Moreover, depletion of NK cells with anti-asialo-GM-1 antibody in C57BL/6.NKC129 mice resulted in a >20-fold increase in viral-specific CD4+ T cell responses. Mechanistically, we found that dendritic cell antigen presentation and early type I IFN production were significantly decreased in C57BL/6.NKC129 mice, but were restored in perforin-deficient C57BL/6.NKC129 mice or following NK depletion. Together, these data reveal that the variable genomic regions containing the activating/inhibitory NK cell receptors are key determinants of antigen-specific CD4+ T cell responses, controlling type I IFN production and the antigen-presenting capacity of dendritic cells.
Collapse
Affiliation(s)
- Jana Raynor
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Adora Lin
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sarah A Hummel
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kristin Lampe
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael Jordan
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kasper Hoebe
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David A Hildeman
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
26
|
Lang PA, Crome SQ, Xu HC, Lang KS, Chapatte L, Deenick EK, Grusdat M, Pandyra AA, Pozdeev VI, Wang R, Holderried TAW, Cantor H, Diefenbach A, Elford AR, McIlwain DR, Recher M, Häussinger D, Mak TW, Ohashi PS. NK Cells Regulate CD8 + T Cell Mediated Autoimmunity. Front Cell Infect Microbiol 2020; 10:36. [PMID: 32117809 PMCID: PMC7031256 DOI: 10.3389/fcimb.2020.00036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/20/2020] [Indexed: 01/17/2023] Open
Abstract
Elucidating key factors that regulate immune-mediated pathology in vivo is critical for developing improved strategies to treat autoimmune disease and cancer. NK cells can exhibit regulatory functions against CD8+ T cells following viral infection. Here we show that while low doses of lymphocytic choriomeningitis virus (LCMV-WE) can readily induce strong CD8+ T cell responses and diabetes in mice expressing the LCMV glycoprotein on β-islet cells (RIP-GP mice), hyperglycemia does not occur after infection with higher doses of LCMV. High-dose LCMV infection induced an impaired CD8+ T cell response, which coincided with increased NK cell activity during early time points following infection. Notably, we observed increased NKp46 expression on NK cells during infection with higher doses, which resulted in an NK cell dependent suppression of T cells. Accordingly, depletion with antibodies specific for NK1.1 as well as NKp46 deficiency (Ncr1gfp/gfp mice) could restore CD8+ T cell immunity and permitted the induction of diabetes even following infection of RIP-GP mice with high-dose LCMV. Therefore, we identify conditions where innate lymphoid cells can play a regulatory role and interfere with CD8+ T cell mediated tissue specific pathology using an NKp46 dependent mechanism.
Collapse
Affiliation(s)
- Philipp A Lang
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Q Crome
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute and UHN Transplant, University Health Network, Toronto, ON, Canada
| | - Haifeng C Xu
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl S Lang
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Laurence Chapatte
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Melanie Grusdat
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Vitaly I Pozdeev
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Ruifeng Wang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias A W Holderried
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany.,Department of Hematology, Oncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Alisha R Elford
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada
| | - David R McIlwain
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Mike Recher
- Medical Outpatient Clinic and Immunodeficiency Lab, University Hospital Basel, Basel, Switzerland
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Tak W Mak
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
The Traditional Chinese Medicine Fufang Shatai Heji (STHJ) Enhances Immune Function in Cyclophosphamide-Treated Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3849847. [PMID: 32063984 PMCID: PMC6998758 DOI: 10.1155/2020/3849847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022]
Abstract
Fufang Shatai Heji (STHJ) is a mixture of traditional Chinese medicines, such as Radix Adenophorae, Radix Pseudostellariae, and Radix Astragali. STHJ is commonly used to treat diseases caused by low immune function, for example, Sjögren's syndrome (SS). The primary objective of this study was to assess the immunopotentiating effect of STHJ using an immunosuppressive mouse model receiving cyclophosphamide (CTX). Following CTX treatment, STHJ was administered by oral gavage for 30 consecutive days. The percentage of specific lymphocyte subpopulations in the spleen was measured by flow cytometry. Levels of inflammatory factors in serum were detected by enzyme-linked immunosorbent assays (ELISAs). The administration of STHJ significantly elevated thymus and spleen indices, increased B cell and natural killer (NK) cell activities, and decreased CD8+ T, CD8+CD122+ T, NKT, and γδT cell activities in the CTX-treated mice. In addition, STHJ upregulated the expression of interleukin- (IL-) 2, IL-6, and tumor necrosis factor-α (TNF-α) and downregulated IL-10 expression in CTX-treated mice. In conclusion, STHJ effectively remitted CTX-induced immunosuppression by modulating the balance of lymphocyte subsets and cytokines. Our results suggest STHJ treatment could be used as an effective therapeutic approach to improve immune function in patients with low immunity.
Collapse
|
28
|
Cardoso Alves L, Berger MD, Koutsandreas T, Kirschke N, Lauer C, Spörri R, Chatziioannou A, Corazza N, Krebs P. Non-apoptotic TRAIL function modulates NK cell activity during viral infection. EMBO Rep 2020; 21:e48789. [PMID: 31742873 PMCID: PMC6945065 DOI: 10.15252/embr.201948789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022] Open
Abstract
The role of death receptor signaling for pathogen control and infection-associated pathogenesis is multifaceted and controversial. Here, we show that during viral infection, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) modulates NK cell activity independently of its pro-apoptotic function. In mice infected with lymphocytic choriomeningitis virus (LCMV), Trail deficiency led to improved specific CD8+ T-cell responses, resulting in faster pathogen clearance and reduced liver pathology. Depletion experiments indicated that this effect was mediated by NK cells. Mechanistically, TRAIL expressed by immune cells positively and dose-dependently modulates IL-15 signaling-induced granzyme B production in NK cells, leading to enhanced NK cell-mediated T cell killing. TRAIL also regulates the signaling downstream of IL-15 receptor in human NK cells. In addition, TRAIL restricts NK1.1-triggered IFNγ production by NK cells. Our study reveals a hitherto unappreciated immunoregulatory role of TRAIL signaling on NK cells for the granzyme B-dependent elimination of antiviral T cells.
Collapse
Affiliation(s)
- Ludmila Cardoso Alves
- Institute of PathologyUniversity of BernBernSwitzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of BernBernSwitzerland
| | | | - Thodoris Koutsandreas
- Institute of Biology, Medicinal Chemistry & BiotechnologyNHRFAthensGreece
- e‐NIOS PCKallithea‐AthensGreece
| | - Nick Kirschke
- Institute of PathologyUniversity of BernBernSwitzerland
| | | | - Roman Spörri
- Institute of MicrobiologyETH ZurichZurichSwitzerland
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry & BiotechnologyNHRFAthensGreece
- e‐NIOS PCKallithea‐AthensGreece
| | - Nadia Corazza
- Institute of PathologyUniversity of BernBernSwitzerland
| | | |
Collapse
|
29
|
Yang CL, Zhang P, Liu RT, Zhang N, Zhang M, Li H, Du T, Li XL, Dou YC, Duan RS. CXCR5-negative natural killer cells ameliorate experimental autoimmune myasthenia gravis by suppressing follicular helper T cells. J Neuroinflammation 2019; 16:282. [PMID: 31884963 PMCID: PMC6935501 DOI: 10.1186/s12974-019-1687-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023] Open
Abstract
Background Recent studies have demonstrated that natural killer (NK) cells can modulate other immune components and are involved in the development or progression of several autoimmune diseases. However, the roles and mechanisms of NK cells in regulating experimental autoimmune myasthenia gravis (EAMG) remained to be illustrated. Methods To address the function of NK cells in experimental autoimmune myasthenia gravis in vivo, EAMG rats were adoptively transferred with splenic NK cells. The serum antibodies, and splenic follicular helper T (Tfh) cells and germinal center B cells were determined by ELISA and flow cytometry. The roles of NK cells in regulating Tfh cells were further verified in vitro by co-culturing splenocytes or isolated T cells with NK cells. Moreover, the phenotype, localization, and function differences between different NK cell subtypes were determined by flow cytometry, immunofluorescence, and ex vivo co-culturation. Results In this study, we found that adoptive transfer of NK cells ameliorated EAMG symptoms by suppressing Tfh cells and germinal center B cells. Ex vivo studies indicated NK cells inhibited CD4+ T cells and Tfh cells by inducing the apoptosis of T cells. More importantly, NK cells could be divided into CXCR5- and CXCR5+ NK subtypes according to the expression of CXCR5 molecular. Compared with CXCR5- NK cells, which were mainly localized outside B cell zone, CXCR5+ NK were concentrated in the B cell zone and exhibited higher expression levels of IL-17 and ICOS, and lower expression level of CD27. Ex vivo studies indicated it was CXCR5- NK cells not CXCR5+ NK cells that suppressed CD4+ T cells and Tfh cells. Further analysis revealed that, compared with CXCR5- NK cells, CXCR5+ NK cells enhanced the ICOS expression of Tfh cells. Conclusions These findings highlight the different roles of CXCR5- NK cells and CXCR5+ NK cells. It was CXCR5- NK cells but not CXCR5+ NK cells that suppressed Tfh cells and inhibited the autoimmune response in EAMG models.
Collapse
Affiliation(s)
- Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China
| | - Ru-Tao Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China
| | - Min Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China
| | - Tong Du
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China. .,Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
30
|
Davenport B, Eberlein J, Nguyen TT, Victorino F, Jhun K, Abuirqeba H, van der Heide V, Heeger P, Homann D. Aging boosts antiviral CD8+T cell memory through improved engagement of diversified recall response determinants. PLoS Pathog 2019; 15:e1008144. [PMID: 31697793 PMCID: PMC6863560 DOI: 10.1371/journal.ppat.1008144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/19/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
The determinants of protective CD8+ memory T cell (CD8+TM) immunity remain incompletely defined and may in fact constitute an evolving agency as aging CD8+TM progressively acquire enhanced rather than impaired recall capacities. Here, we show that old as compared to young antiviral CD8+TM more effectively harness disparate molecular processes (cytokine signaling, trafficking, effector functions, and co-stimulation/inhibition) that in concert confer greater secondary reactivity. The relative reliance on these pathways is contingent on the nature of the secondary challenge (greater for chronic than acute viral infections) and over time, aging CD8+TM re-establish a dependence on the same accessory signals required for effective priming of naïve CD8+T cells in the first place. Thus, our findings reveal a temporal regulation of complementary recall response determinants that is consistent with the recently proposed "rebound model" according to which aging CD8+TM properties are gradually aligned with those of naïve CD8+T cells; our identification of a broadly diversified collection of immunomodulatory targets may further provide a foundation for the potential therapeutic "tuning" of CD8+TM immunity.
Collapse
Affiliation(s)
- Bennett Davenport
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado, United States of America
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jens Eberlein
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Tom T. Nguyen
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Francisco Victorino
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado, United States of America
| | - Kevin Jhun
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Haedar Abuirqeba
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Verena van der Heide
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Peter Heeger
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Dirk Homann
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado, United States of America
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
Daniels KA, O'Donnell CL, Castonguay C, Strutt TM, McKinstry KK, Swain SL, Welsh RM. Virus-induced natural killer cell lysis of T cell subsets. Virology 2019; 539:26-37. [PMID: 31670188 DOI: 10.1016/j.virol.2019.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
Abstract
In addition to direct anti-viral activity, NK cells regulate viral pathogenesis by virtue of their cytolytic attack on activated CD4 and CD8 T cells. To gain insight into which differentiated T cell subsets are preferred NK targets, transgenic T cells were differentiated in vitro into Th0, Th1, Th2, Th17, Treg, Tc1, and Tc2 effector cells and then tested for lysis by enriched populations of lymphocytic choriomeningitis virus (LCMV)-induced activated NK cells. There was a distinct hierarchy of cytotoxicity in vitro and in vivo, with Treg, Th17, and Th2 cells being more sensitive and Th0 and Th1 cells more resistant. Some distinctions between in vitro vs in vivo generated T cells were explainable by type 1 interferon induction of class 1 histocompatibility antigens on the effector T cell subsets. NK receptor (NKR)-deficient mice and anti-NKR antibody studies identified no one essential NKR for killing, though there could be redundancies.
Collapse
Affiliation(s)
- Keith A Daniels
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Carey L O'Donnell
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Catherine Castonguay
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Tara M Strutt
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - K Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Raymond M Welsh
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
32
|
Fisicaro P, Rossi M, Vecchi A, Acerbi G, Barili V, Laccabue D, Montali I, Zecca A, Penna A, Missale G, Ferrari C, Boni C. The Good and the Bad of Natural Killer Cells in Virus Control: Perspective for Anti-HBV Therapy. Int J Mol Sci 2019; 20:ijms20205080. [PMID: 31614928 PMCID: PMC6834135 DOI: 10.3390/ijms20205080] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Immune modulatory therapies are widely believed to represent potential therapeutic strategies for chronic hepatitis B infection (CHB). Among the cellular targets for immune interventions, Natural Killer (NK) cells represent possible candidates because they have a key role in anti-viral control by producing cytokines and by exerting cytotoxic functions against virus-infected cells. However, in patients with chronic hepatitis B, NK cells have been described to be more pathogenic than protective with preserved cytolytic activity but with a poor capacity to produce anti-viral cytokines. In addition, NK cells can exert a regulatory activity and possibly suppress adaptive immune responses in the setting of persistent viral infections. Consequently, a potential drawback of NK-cell targeted modulatory interventions is that they can potentiate the suppressive NK cell effect on virus-specific T cells, which further causes impairment of exhausted anti-viral T cell functions. Thus, clinically useful NK-cell modulatory strategies should be not only suited to improve positive anti-viral NK cell functions but also to abrogate T cell suppression by NK cell-mediated T cell killing. This review outlines the main NK cell features with a particular focus on CHB infection. It describes different mechanisms involved in NK-T cell interplay as well as how NK cells can have positive anti-viral effector functions and negative suppressive effects on T cells activity. This review discusses how modulation of their balance can have potential therapeutic implications.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| |
Collapse
|
33
|
Niemann J, Woller N, Brooks J, Fleischmann-Mundt B, Martin NT, Kloos A, Knocke S, Ernst AM, Manns MP, Kubicka S, Wirth TC, Gerardy-Schahn R, Kühnel F. Molecular retargeting of antibodies converts immune defense against oncolytic viruses into cancer immunotherapy. Nat Commun 2019; 10:3236. [PMID: 31324774 PMCID: PMC6642145 DOI: 10.1038/s41467-019-11137-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/18/2019] [Indexed: 01/06/2023] Open
Abstract
Virus-neutralizing antibodies are a severe obstacle in oncolytic virotherapy. Here, we present a strategy to convert this unfavorable immune response into an anticancer immunotherapy via molecular retargeting. Application of a bifunctional adapter harboring a tumor-specific ligand and the adenovirus hexon domain DE1 for engaging antiadenoviral antibodies, attenuates tumor growth and prolongs survival in adenovirus-immunized mice. The therapeutic benefit achieved by tumor retargeting of antiviral antibodies is largely due to NK cell-mediated triggering of tumor-directed CD8 T-cells. We further demonstrate that antibody-retargeting (Ab-retargeting) is a feasible method to sensitize tumors to PD-1 immune checkpoint blockade. In therapeutic settings, Ab-retargeting greatly improves the outcome of intratumor application of an oncolytic adenovirus and facilitates long-term survival in treated animals when combined with PD-1 checkpoint inhibition. Tumor-directed retargeting of preexisting or virotherapy-induced antiviral antibodies therefore represents a promising strategy to fully exploit the immunotherapeutic potential of oncolytic virotherapy and checkpoint inhibition.
Collapse
Affiliation(s)
- Julia Niemann
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Jennifer Brooks
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Bettina Fleischmann-Mundt
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Nikolas T Martin
- Institute for Clinical Biochemistry, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, Canada
| | - Arnold Kloos
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
- Department of Experimental Hemato-Oncology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Sarah Knocke
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Amanda M Ernst
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Stefan Kubicka
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
- Cancer Center Reutlingen, District Hospital, Reutlingen, Germany
| | - Thomas C Wirth
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Rita Gerardy-Schahn
- Institute for Clinical Biochemistry, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
34
|
Cynomolgus macaque IL37 polymorphism and control of SIV infection. Sci Rep 2019; 9:7981. [PMID: 31138840 PMCID: PMC6538695 DOI: 10.1038/s41598-019-44235-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/27/2019] [Indexed: 01/17/2023] Open
Abstract
The association between gene polymorphisms and plasma virus load at the set point (SP-PVL) was investigated in Mauritian macaques inoculated with SIV. Among 44 macaques inoculated with 50 AID50, six individuals were selected: three with SP-PVL among the highest and three with SP-PVL among the lowest. The exons of 390 candidate genes of these six animals were sequenced. Twelve non-synonymous single nucleotide polymorphisms (NS-SNPs) lying in nine genes potentially associated with PVL were genotyped in 23 animals. Three NS-SNPs with probabilities of association with PVL less than 0.05 were genotyped in a total of 44 animals. One NS-SNP lying in exon 1 of the IL37 gene displayed a significant association (p = 3.33 × 10−4) and a strong odds ratio (19.52). Multiple linear regression modeling revealed three significant predictors of SP-PVL, including the IL37 exon 1 NS-SNP (p = 0.0004) and the MHC Class IB haplotypes M2 (p = 0.0007) and M6 (p = 0.0013). These three factors in conjunction explained 48% of the PVL variance (p = 4.8 × 10−6). The potential role of IL37 in the control of SIV infection is discussed.
Collapse
|
35
|
Liver-Resident NK Cells Control Antiviral Activity of Hepatic T Cells via the PD-1-PD-L1 Axis. Immunity 2019; 50:403-417.e4. [DOI: 10.1016/j.immuni.2018.12.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/25/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
|
36
|
Xie J, Crepeau RL, Chen CW, Zhang W, Otani S, Coopersmith CM, Ford ML. Sepsis erodes CD8 + memory T cell-protective immunity against an EBV homolog in a 2B4-dependent manner. J Leukoc Biol 2019; 105:565-575. [PMID: 30624806 DOI: 10.1002/jlb.4a0718-292r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) reactivation commonly occurs following sepsis, but the mechanisms underlying this are unknown. We utilized a murine EBV homolog (gHV) and the cecal ligation and puncture model of polymicrobial sepsis to study the impact of sepsis on gHV reactivation and CD8+ T cell immune surveillance following a septic insult. We observed a significant increase in the frequency of gHV-infected germinal center B cells on day 7 following sepsis. This increase in viral load was associated with a concomitant significant decrease in the frequencies of gHV-specific CD8+ T cells, as measured by class I MHC tetramers corresponding to the immunodominant viral epitopes. Phenotypic analysis revealed an increased frequency of gHV-specific CD8+ T cells expressing the 2B4 coinhibitory receptor in septic animals compared with sham controls. We sought to interrogate the role of 2B4 in modulating the gHV-specific CD8+ T cell response during sepsis. Results indicated that in the absence of 2B4, gHV-specific CD8+ T cell populations were maintained during sepsis, and gHV viral load was unchanged in 2B4-/- septic animals relative to 2B4-/- sham controls. WT CD8+ T cells upregulated PD-1 during sepsis, whereas 2B4-/- CD8+ T cells did not. Finally, adoptive transfer studies revealed a T cell-intrinsic effect of 2B4 coinhibition on virus-specific CD8+ T cells and gHV viral load during sepsis. These data demonstrate that sepsis-induced immune dysregulation erodes antigen-specific CD8+ responses against a latent viral infection and suggest that blockade of 2B4 may better maintain protective immunity against EBV in the context of sepsis.
Collapse
Affiliation(s)
- Jianfeng Xie
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rebecca L Crepeau
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ching-Wen Chen
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wenxiao Zhang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shunsuke Otani
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
37
|
SLAM family receptors in natural killer cells - Mediators of adhesion, activation and inhibition via cis and trans interactions. Clin Immunol 2018; 204:37-42. [PMID: 30359773 DOI: 10.1016/j.clim.2018.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023]
Abstract
SLAM family receptors are important for the fine-tuning of immune reactions. Their expression is restricted to cells of hematopoietic origin and most SLAM family receptors are their own ligand. Here we review how these receptors are involved in regulating the functions of Natural Killer (NK) cells. We discuss that promoting cellular adhesion may be a main function of SLAM family receptors in NK cells. The homophilic interactions of SLAM family receptors can not only occur in trans between different cells, but also in cis on the surface of the same cell. This cis interaction additionally modulates the function of the receptors and subsequently affects the activities of NK cells. Finally, SLAM-family receptors can also mediate inhibitory signals under certain conditions. These inhibitory signals can contribute to the functional maturation of NK cells during NK cell education. Therefore, SLAM family receptors are critically involved in many aspects of NK cell functionality.
Collapse
|
38
|
Malaer JD, Marrufo AM, Mathew PA. 2B4 (CD244, SLAMF4) and CS1 (CD319, SLAMF7) in systemic lupus erythematosus and cancer. Clin Immunol 2018; 204:50-56. [PMID: 30347240 DOI: 10.1016/j.clim.2018.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/08/2023]
Abstract
Signaling Lymphocyte Activation Molecule (SLAM) family receptors are expressed on different types of hematopoietic cells and play important role in immune regulation in health and disease. 2B4 (CD244, SLAMF4) and CS1 (CD319, CRACC, SLAMF7) were originally identified as NK cell receptors regulating NK cell cytolytic activity. 2B4 is expressed on all NK cells, a subpopulation of T cells, monocytes and basophils. Unlike other activating and inhibitory receptors, 2B4 (CD244) interaction with its ligand CD48 has been shown to mediate both activating and inhibitory functions. Defective signaling via 2B4 due to mutations in signaling adaptor SAP contributes to X-linked lymphoproliferative Disease (XLP). Expression of 2B4 and CS1 are altered in systemic lupus erythematosus (SLE). CS1 is overexpressed in multiple myeloma (MM) and anti-CS1 mab (Elotuzumab/Empliciti) has been approved by FDA as a breakthrough drug for treatment for MM patients. CAR -T cells or CAR- NK cells containing full length CS1 or the signaling domain of 2B4 with TCR-ζ have shown promising results to treat cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Joseph D Malaer
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Armando M Marrufo
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Porunelloor A Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
39
|
Straub T, Freudenberg MA, Schleicher U, Bogdan C, Gasteiger G, Pircher H. Bacterial coinfection restrains antiviral CD8 T-cell response via LPS-induced inhibitory NK cells. Nat Commun 2018; 9:4117. [PMID: 30297690 PMCID: PMC6175863 DOI: 10.1038/s41467-018-06609-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/12/2018] [Indexed: 12/30/2022] Open
Abstract
Infection of specific pathogen-free mice with lymphocytic choriomeningitis virus (LCMV) is a widely used model to study antiviral T-cell immunity. Infections in the real world, however, are often accompanied by coinfections with unrelated pathogens. Here we show that in mice, systemic coinfection with E. coli suppresses the LCMV-specific cytotoxic T-lymphocyte (CTL) response and virus elimination in a NK cell- and TLR2/4-dependent manner. Soluble TLR4 ligand LPS also induces NK cell-mediated negative CTL regulation during LCMV infection. NK cells in LPS-treated mice suppress clonal expansion of LCMV-specific CTLs by a NKG2D- or NCR1-independent but perforin-dependent mechanism. These results suggest a TLR4-mediated immunoregulatory role of NK cells during viral-bacterial coinfections.
Collapse
Affiliation(s)
- Tobias Straub
- Institute for Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Marina A Freudenberg
- Institute for Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Department of Pneumology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Georg Gasteiger
- Institute of Systems Immunology, University of Wuerzburg, 97078 Wuerzburg, Germany
- Institute for Medical Microbiology and Hygiene, University of Freiburg Medical Center, 79104 Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
40
|
Rodriguez-Barbosa JI, Ferreras MC, Buhler L, Jones ND, Schneider P, Perez-Simon JA, Del Rio ML. Therapeutic implications of NK cell regulation of allogeneic CD8 T cell-mediated immune responses stimulated through the direct pathway of antigen presentation in transplantation. MAbs 2018; 10:1030-1044. [PMID: 30036156 PMCID: PMC6204794 DOI: 10.1080/19420862.2018.1502127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Natural killer (NK) cells are a population of innate type I lymphoid cells essential for early anti-viral responses and are known to modulate the course of humoral and cellular-mediated T cell responses. We assessed the role of NK cells in allogeneic CD8 T cell-mediated responses in an immunocompetent mouse model across an MHC class I histocompatibility barrier to determine its impact in therapeutic clinical interventions with polyclonal or monoclonal antibodies (mAbs) targeting lymphoid cells in transplantation. The administration of an NK cell depleting antibody to either CD8 T cell replete or CD8 T cell-depleted naïve C57BL/6 immunocompetent mice accelerated graft rejection. This accelerated rejection response was associated with an in vivo increased cytotoxic activity of CD8 T cells against bm1 allogeneic hematopoietic cells and bm1 skin allografts. These findings show that NK cells were implicated in the control host anti-donor cytotoxic responses, likely by competing for common cell growth factors in both CD8 T cell replete and CD8 T cell-depleted mice, the latter reconstituting in response to lymphopenia. Our data calls for precaution in solid organ transplantation under tolerogenic protocols involving extensive depletion of lymphocytes. These pharmacological biologics with depleting properties over NK cells may accelerate graft rejection and promote aggressive CD8 T cell cytotoxic alloresponses refractory to current immunosuppression.
Collapse
Affiliation(s)
- J I Rodriguez-Barbosa
- a Transplantation Immunobiology Section , University of León , Leon , Spain.,h Acción Estratégica en Salud , Consorcio CIBER-ONC, Seville, Spain
| | - M C Ferreras
- b Department of Animal Health, Mountain Livestock Institute (CSIC), School of Veterinary Sciences , University of Leon , Leon , Spain
| | - L Buhler
- c Visceral and Transplantation Surgery, Department of Surgery , University Hospitals of Geneva and Faculty of Medicine , Geneva , Switzerland
| | - N D Jones
- d MRC Centre of Immune Regulation, School of Immunity and Infection, Medical School , University of Birmingham , Birmingham , United Kingdom
| | - P Schneider
- e Department of Biochemistry , University of Lausanne , Epalinges , Switzerland
| | - J A Perez-Simon
- f Department of Hematology , University Hospital Virgen del Rocio/Institute of Biomedicine (IBIS/CSIC) , Sevilla , Spain.,h Acción Estratégica en Salud , Consorcio CIBER-ONC, Seville, Spain
| | - M L Del Rio
- a Transplantation Immunobiology Section , University of León , Leon , Spain.,g Leon Regional Transplantation Coordination Center , Leon University Hospital , Leon , Spain.,h Acción Estratégica en Salud , Consorcio CIBER-ONC, Seville, Spain
| |
Collapse
|
41
|
Lymphocytes Negatively Regulate NK Cell Activity via Qa-1b following Viral Infection. Cell Rep 2018; 21:2528-2540. [PMID: 29186689 DOI: 10.1016/j.celrep.2017.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/02/2017] [Accepted: 10/30/2017] [Indexed: 01/26/2023] Open
Abstract
NK cells can reduce anti-viral T cell immunity during chronic viral infections, including infection with the lymphocytic choriomeningitis virus (LCMV). However, regulating factors that maintain the equilibrium between productive T cell and NK cell immunity are poorly understood. Here, we show that a large viral load resulted in inhibition of NK cell activation, which correlated with increased expression of Qa-1b, a ligand for inhibitory NK cell receptors. Qa-1b was predominantly upregulated on B cells following LCMV infection, and this upregulation was dependent on type I interferons. Absence of Qa-1b resulted in increased NK cell-mediated regulation of anti-viral T cells following viral infection. Consequently, anti-viral T cell immunity was reduced in Qa-1b- and NKG2A-deficient mice, resulting in increased viral replication and immunopathology. NK cell depletion restored anti-viral immunity and virus control in the absence of Qa-1b. Taken together, our findings indicate that lymphocytes limit NK cell activity during viral infection in order to promote anti-viral T cell immunity.
Collapse
|
42
|
Adenovirus Vector Vaccination Impacts NK Cell Rheostat Function following Lymphocytic Choriomeningitis Virus Infection. J Virol 2018. [PMID: 29514912 PMCID: PMC5952142 DOI: 10.1128/jvi.02103-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells respond rapidly as a first line of defense against infectious pathogens. In addition, NK cells may provide a "rheostat" function and have been shown to reduce the magnitude of antigen-specific T cell responses following infection to avoid immunopathology. However, it remains unknown whether NK cells similarly modulate vaccine-elicited T cell responses following virus challenge. We used the lymphocytic choriomeningitis virus (LCMV) clone 13 infection model to address whether NK cells regulate T cell responses in adenovirus vector-vaccinated mice following challenge. As expected, NK cell depletion in unvaccinated mice resulted in increased virus-specific CD4+ and CD8+ T cell responses and immunopathology following LCMV challenge. In contrast, NK cell depletion had minimal to no impact on antigen-specific T cell responses in mice that were vaccinated with an adenovirus serotype 5 (Ad5)-GP vector prior to LCMV challenge. Moreover, NK cell depletion in vaccinated mice prior to challenge did not result in immunopathology and did not compromise protective efficacy. These data suggest that adenovirus vaccine-elicited T cells may be less sensitive to NK cell rheostat regulation than T cells primed by LCMV infection.IMPORTANCE Recent data have shown that NK cell depletion leads to enhanced virus-elicited T cell responses that can result in severe immunopathology following LCMV infection in mice. In this study, we observed that NK cells exerted minimal to no impact on vaccine-elicited T cells following LCMV challenge, suggesting that adenovirus vaccine-elicited T cells may be less subject to NK cell regulation. These data contribute to our understanding of NK cell regulatory functions and T cell-based vaccines.
Collapse
|
43
|
Weak vaccinia virus-induced NK cell regulation of CD4 T cells is associated with reduced NK cell differentiation and cytolytic activity. Virology 2018; 519:131-144. [PMID: 29715623 DOI: 10.1016/j.virol.2018.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/31/2018] [Accepted: 04/16/2018] [Indexed: 11/20/2022]
Abstract
Natural killer (NK) cells control antiviral adaptive immune responses in mice during some virus infections, but the universality of this phenomenon remains unknown. Lymphocytic choriomeningitis virus (LCMV) infection of mice triggered potent cytotoxic activity of NK cells (NKLCMV) against activated CD4 T cells, tumor cells, and allogeneic lymphocytes. In contrast, NK cells activated by vaccinia virus (VACV) infection (NKVACV) exhibited weaker cytolytic activity against each of these target cells. Relative to NKLCMV cells, NKVACV cells exhibited a more immature (CD11b-CD27+) phenotype, and lower expression levels of the activation marker CD69, cytotoxic effector molecules (perforin, granzyme B), and the transcription factor IRF4. NKVACV cells expressed higher levels of the inhibitory molecule NKG2A than NKLCMV cells. Consistent with this apparent lethargy, NKVACV cells only weakly constrained VACV-specific CD4 T-cell responses. This suggests that NK cell regulation of adaptive immunity, while universal, may be limited with viruses that poorly activate NK cells.
Collapse
|
44
|
Zheng M, Sun H, Tian Z. Natural killer cells in liver diseases. Front Med 2018; 12:269-279. [PMID: 29675689 DOI: 10.1007/s11684-018-0621-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 12/06/2017] [Indexed: 12/12/2022]
Abstract
The liver has been characterized as a frontline lymphoid organ with complex immunological features such as liver immunity and liver tolerance. Liver tolerance plays an important role in liver diseases including acute inflammation, chronic infection, autoimmune disease, and tumors. The liver contains a large proportion of natural killer (NK) cells, which exhibit heterogeneity in phenotypic and functional characteristics. NK cell activation, well known for its role in the immune surveillance against tumor and pathogen-infected cells, depends on the balance between numerous activating and inhibitory signals. In addition to the innate direct "killer" functions, NK cell activity contributes to regulate innate and adaptive immunity (helper or regulator). Under the setting of liver diseases, NK cells are of great importance for stimulating or inhibiting immune responses, leading to either immune activation or immune tolerance. Here, we focus on the relationship between NK cell biology, such as their phenotypic features and functional diversity, and liver diseases.
Collapse
Affiliation(s)
- Meijuan Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Haoyu Sun
- Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China
| | - Zhigang Tian
- Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
45
|
Zahaf A, Badia A, Morel J, Dellis O. [Gal-9 promotes viral persistence of hepatitis virus in the liver]. Med Sci (Paris) 2017; 33:947-949. [PMID: 29200391 DOI: 10.1051/medsci/20173311010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Amina Zahaf
- M1 Biologie-Santé, Université Paris-Saclay, 91405 Orsay, France
| | - Aurore Badia
- M1 Biologie-Santé, Université Paris-Saclay, 91405 Orsay, France
| | - Jessica Morel
- M1 Biologie-Santé, Université Paris-Saclay, 91405 Orsay, France
| | - Olivier Dellis
- Inserm UMR-S 1174, équipe signalisation calcique, bâtiment 443, rue des Adèles, 91405 Orsay, France
| |
Collapse
|
46
|
López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of Metastasis by NK Cells. Cancer Cell 2017; 32:135-154. [PMID: 28810142 DOI: 10.1016/j.ccell.2017.06.009] [Citation(s) in RCA: 516] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/21/2017] [Accepted: 06/22/2017] [Indexed: 12/24/2022]
Abstract
The metastatic spread of malignant cells to distant anatomical locations is a prominent cause of cancer-related death. Metastasis is governed by cancer-cell-intrinsic mechanisms that enable neoplastic cells to invade the local microenvironment, reach the circulation, and colonize distant sites, including the so-called epithelial-to-mesenchymal transition. Moreover, metastasis is regulated by microenvironmental and systemic processes, such as immunosurveillance. Here, we outline the cancer-cell-intrinsic and -extrinsic factors that regulate metastasis, discuss the key role of natural killer (NK) cells in the control of metastatic dissemination, and present potential therapeutic approaches to prevent or target metastatic disease by harnessing NK cells.
Collapse
Affiliation(s)
- Alejandro López-Soto
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Asturias, Spain.
| | - Segundo Gonzalez
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Asturias, Spain
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA; Université Paris Descartes/Paris V, 75006 Paris, France.
| |
Collapse
|
47
|
Ahmad F, Shankar EM, Yong YK, Tan HY, Ahrenstorf G, Jacobs R, Larsson M, Schmidt RE, Kamarulzaman A, Ansari AW. Negative Checkpoint Regulatory Molecule 2B4 (CD244) Upregulation Is Associated with Invariant Natural Killer T Cell Alterations and Human Immunodeficiency Virus Disease Progression. Front Immunol 2017; 8:338. [PMID: 28396665 PMCID: PMC5366318 DOI: 10.3389/fimmu.2017.00338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/09/2017] [Indexed: 12/22/2022] Open
Abstract
The CD1d-restricted invariant natural killer T (iNKT) cells are implicated in innate immune responses against human immunodeficiency virus (HIV). However, the determinants of cellular dysfunction across the iNKT cells subsets are seldom defined in HIV disease. Herein, we provide evidence for the involvement of the negative checkpoint regulator (NCR) 2B4 in iNKT cell alteration in a well-defined cohort of HIV-seropositive anti-retroviral therapy (ART) naïve, ART-treated, and elite controllers (ECs). We report on exaggerated 2B4 expression on iNKT cells of HIV-infected treatment-naïve individuals. In sharp contrast to CD4−iNKT cells, 2B4 expression was significantly higher on CD4+ iNKT cell subset. Notably, an increased level of 2B4 on iNKT cells was strongly correlated with parameters associated with HIV disease progression. Further, iNKT cells from ART-naïve individuals were defective in their ability to produce intracellular IFN-γ. Together, our results suggest that the levels of 2B4 expression and the downstream co-inhibitory signaling events may contribute to impaired iNKT cell responses.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Clinical Immunology and Rheumatology, Hannover Medical School , Hannover , Germany
| | - Esaki M Shankar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia; Division of Infection Biology, Department of Life Sciences, School of Basic & Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, India
| | - Yean K Yong
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya , Kuala Lumpur , Malaysia
| | - Hong Y Tan
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya , Kuala Lumpur , Malaysia
| | - Gerrit Ahrenstorf
- Department of Clinical Immunology and Rheumatology, Hannover Medical School , Hannover , Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School , Hannover , Germany
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linkoping University , Linkoping , Sweden
| | - Reinhold E Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School , Hannover , Germany
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia; Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Abdul W Ansari
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia; Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Crome SQ, Nguyen LT, Lopez-Verges S, Yang SYC, Martin B, Yam JY, Johnson DJ, Nie J, Pniak M, Yen PH, Milea A, Sowamber R, Katz SR, Bernardini MQ, Clarke BA, Shaw PA, Lang PA, Berman HK, Pugh TJ, Lanier LL, Ohashi PS. A distinct innate lymphoid cell population regulates tumor-associated T cells. Nat Med 2017; 23:368-375. [PMID: 28165478 PMCID: PMC5497996 DOI: 10.1038/nm.4278] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Antitumor T cells are subject to multiple mechanisms of negative regulation. Recent findings that innate lymphoid cells (ILCs) regulate adaptive T cell responses led us to examine the regulatory potential of ILCs in the context of cancer. We identified a unique ILC population that inhibits tumor-infiltrating lymphocytes (TILs) from high-grade serous tumors, defined their suppressive capacity in vitro, and performed a comprehensive analysis of their phenotype. Notably, the presence of this CD56+CD3- population in TIL cultures was associated with reduced T cell numbers, and further functional studies demonstrated that this population suppressed TIL expansion and altered TIL cytokine production. Transcriptome analysis and phenotypic characterization determined that regulatory CD56+CD3- cells exhibit low cytotoxic activity, produce IL-22, and have an expression profile that overlaps with those of natural killer (NK) cells and other ILCs. NKp46 was highly expressed by these cells, and addition of anti-NKp46 antibodies to TIL cultures abrogated the ability of these regulatory ILCs to suppress T cell expansion. Notably, the presence of these regulatory ILCs in TIL cultures corresponded with a striking reduction in the time to disease recurrence. These studies demonstrate that a previously uncharacterized ILC population regulates the activity and expansion of tumor-associated T cells.
Collapse
Affiliation(s)
- Sarah Q Crome
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Linh T Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sandra Lopez-Verges
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, California, USA
- Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - S Y Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Bernard Martin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jennifer Y Yam
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dylan J Johnson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Nie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Pniak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pei Hua Yen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anca Milea
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ramlogan Sowamber
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah Rachel Katz
- Division of Gynecologic Oncology, University Health Network, Toronto, Ontario, Canada
| | - Marcus Q Bernardini
- Division of Gynecologic Oncology, University Health Network, Toronto, Ontario, Canada
| | - Blaise A Clarke
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Patricia A Shaw
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Philipp A Lang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Hal K Berman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Lewis L Lanier
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, California, USA
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Nishio A, Tatsumi T, Nawa T, Suda T, Yoshioka T, Onishi Y, Aono S, Shigekawa M, Hikita H, Sakamori R, Okuzaki D, Fukuhara T, Matsuura Y, Hiramatsu N, Takehara T. CD14 + monocyte-derived galectin-9 induces natural killer cell cytotoxicity in chronic hepatitis C. Hepatology 2017; 65:18-31. [PMID: 27640362 DOI: 10.1002/hep.28847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Natural killer (NK) cell activation is associated with both liver injury and persistent infection in chronic hepatitis C (CHC); however, the detailed mechanism of this activation has not yet been fully elucidated. Because galectin-9 (Gal-9) has been reported to be increased in the serum and liver tissue of CHC patients, we investigated the function of Gal-9 in NK cell activation in CHC. First, we evaluated the function of Gal-9 on NK cytotoxicity in vitro. Gal-9 treatment resulted in increased cytotoxicity of naïve NK cells, and the Gal-9-activated NK cells demonstrated cytotoxicity toward hepatoma cells and T cells. Additionally, coculturing peripheral blood mononuclear cells (PBMCs) with JFH-1/Huh7.5.1 cells increased both Gal-9 production and NK cell cytotoxicity. Next, we investigated the source of Gal-9 and the mechanism of Gal-9 production. Deletion of CD14+ monocytes from PBMCs resulted in reduced Gal-9 production in the coculture with JFH-1/Huh7.5.1 cells. Gal-9 production was driven by coculturing of PBMCs with apoptotic hepatocytes. Blocking integrin αv β3 , a receptor for phosphatidylserine expressed on apoptotic cells, also resulted in decreased Gal-9 production. Finally, we found that serum Gal-9 levels were significantly higher in CHC patients than in healthy donors and patients who achieved sustained virologic response. Among CHC patients, serum Gal-9 levels were significantly higher in patients with elevated alanine aminotransferase (ALT) than in those with normal ALT. CONCLUSION These results demonstrate that CD14+ monocyte-derived Gal-9 increases NK cell cytotoxicity in HCV infection, which might be associated with liver injury and persistent infection. (Hepatology 2017;65:18-31).
Collapse
Affiliation(s)
- Akira Nishio
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takatoshi Nawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahiro Suda
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Teppei Yoshioka
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Onishi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Aono
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Okuzaki
- Department of DNA-Chip Developmental Center for Infectious Diseases, Osaka University, Suita, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Naoki Hiramatsu
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
50
|
Huang WC, Easom NJ, Tang XZ, Gill US, Singh H, Robertson F, Chang C, Trowsdale J, Davidson BR, Rosenberg WM, Fusai G, Toubert A, Kennedy PT, Peppa D, Maini MK. T Cells Infiltrating Diseased Liver Express Ligands for the NKG2D Stress Surveillance System. THE JOURNAL OF IMMUNOLOGY 2016; 198:1172-1182. [PMID: 28031333 PMCID: PMC5253436 DOI: 10.4049/jimmunol.1601313] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/22/2016] [Indexed: 12/23/2022]
Abstract
NK cells, which are highly enriched in the liver, are potent regulators of antiviral T cells and immunopathology in persistent viral infection. We investigated the role of the NKG2D axis in T cell/NK cell interactions in hepatitis B. Activated and hepatitis B virus (HBV)-specific T cells, particularly the CD4 fraction, expressed NKG2D ligands (NKG2DL), which were not found on T cells from healthy controls (p < 0.001). NKG2DL-expressing T cells were strikingly enriched within HBV-infected livers compared with the periphery or to healthy livers (p < 0.001). NKG2D+NK cells were also increased and preferentially activated in the HBV-infected liver (p < 0.001), in direct proportion to the percentage of MICA/B-expressing CD4 T cells colocated within freshly isolated liver tissue (p < 0.001). This suggests that NKG2DL induced on T cells within a diseased organ can calibrate NKG2D-dependent activation of local NK cells; furthermore, NKG2D blockade could rescue HBV-specific and MICA/B-expressing T cells from HBV-infected livers. To our knowledge, this is the first ex vivo demonstration that non-virally infected human T cells can express NKG2DL, with implications for stress surveillance by the large number of NKG2D-expressing NK cells sequestered in the liver.
Collapse
Affiliation(s)
- Wei-Chen Huang
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom.,Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Nicholas J Easom
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom
| | - Xin-Zi Tang
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom
| | - Upkar S Gill
- Centre for Immunobiology, Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Harsimran Singh
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom.,Institute for Liver and Digestive Health, University College London, London NW3 2PF, United Kingdom
| | - Francis Robertson
- Department of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| | - Chiwen Chang
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - Brian R Davidson
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, United Kingdom.,Department of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| | - William M Rosenberg
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, United Kingdom
| | - Giuseppe Fusai
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, United Kingdom.,Department of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| | - Antoine Toubert
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMRS 1160, AP-HP, Hôpital Saint-Louis, Paris 75013, France
| | - Patrick T Kennedy
- Centre for Immunobiology, Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom;
| |
Collapse
|