1
|
Iosim S, Henderson LA. Macrophage Activation Syndrome: Not Just for Rheumatologists Anymore. Hematol Oncol Clin North Am 2025; 39:597-615. [PMID: 40133144 DOI: 10.1016/j.hoc.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
SYNOPSIS Macrophage activation syndrome (MAS) is a term that was originally used to describe a hyperinflammatory syndrome that developed in some patients with rheumatologic diseases. It is now clear that MAS and hemophagocytic lymphohistiocytosis (HLH) are defined by the same core pattern of clinical symptoms and share an underlying pathophysiology of impaired cytolytic activity and IFNγ-driven cytokine storm. Given that these disorders are highly related, lessons learned from the management of MAS can provide insights into effective approaches for HLH, particularly the strategy to employ anti-cytokine therapies early in the disease course.
Collapse
Affiliation(s)
- Sonia Iosim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Malik S, Chandrakasan S. Breaking the cycle: PRMTs and secondary HLH relief. Blood Adv 2025; 9:2436-2437. [PMID: 40372747 DOI: 10.1182/bloodadvances.2025015863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Affiliation(s)
- Sakshi Malik
- Bone Marrow Transplantation Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Shanmuganathan Chandrakasan
- Bone Marrow Transplantation Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
3
|
Brown-Burke F, Saadey R, Mao HYC, Marra P, Brooks E, Wandtke A, Hout I, Leon S, Sharma A, Yasin A, Cash T, Ahmed EH, Baiocchi E, Finoti S, Zhang X, Bhagwat N, Vaddi K, Scherle P, Mozhenkova A, El-Ayachi I, Schenk AD, Sloan SL, Whitman K, Helmig-Mason J, Steyn S, Klimaszewski HL, Weist J, Weigel C, Koirala S, Alinari L, Snyder K, Ranganathan P, Chen CJ, Jordan MB, Baiocchi RA, Shindiapina P. PRMT5 inhibition reduces hyperinflammation in a murine model of secondary hemophagocytic lymphohistiocytosis. Blood Adv 2025; 9:2379-2392. [PMID: 39825858 DOI: 10.1182/bloodadvances.2024013651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025] Open
Abstract
ABSTRACT Hemophagocytic lymphohistiocytosis (HLH) is a rare but aggressive and potentially lethal hyperinflammatory syndrome characterized by pathologic immune activation and excessive production of proinflammatory cytokines leading to tissue damage and multisystem organ failure. There is an urgent need for the discovery of novel targets and development of therapeutic strategies to treat this rare but deadly syndrome. Protein arginine methyltransferase 5 (PRMT5) mediates T-cell-based inflammatory responses, making it a potential actionable target for the treatment of HLH. Using CPG-1826 and anti-interleukin-10R (IL-10R) antibody, we induced murine secondary HLH in vivo with a marked expansion of splenic myeloid cell subsets and concurrent reduction of T- and natural killer (NK)-cell populations. PRMT5 expression was significantly upregulated in splenic T and NK lymphocytes, monocytes, and dendritic cells in mice with HLH (P < .05). Treatment with PRT382, a potent and selective PRMT5 inhibitor, significantly reduced physical signs of secondary HLH, including splenomegaly, hepatomegaly, and anemia (P < .0001 in each case), when compared with untreated mice. Inflammatory cytokines known to drive hyperinflammation in HLH, including interferon-γ and IL-6 were reduced to healthy levels with PRT382 treatment (P > .999 for both). PRT382 treatment also reduced the expansion of myeloid cell populations (P < .0001) in mice with HLH, compared with untreated mice, while restoring T- and NK-cell numbers (P < .001 for both). These results identify PRMT5 as a promising target for the management of secondary HLH and justify further exploration in this and other models of hyperinflammation.
Collapse
Affiliation(s)
- Fiona Brown-Burke
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Rachel Saadey
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Hsiao-Yin Charlene Mao
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Paola Marra
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Eric Brooks
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Alexa Wandtke
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Ian Hout
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Sydney Leon
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Archisha Sharma
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Aneeq Yasin
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Taylor Cash
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Elshafa Hassan Ahmed
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Ethan Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Stephanie Finoti
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | | | | | | | - Anna Mozhenkova
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Ikbale El-Ayachi
- Division of Transplantation Surgery, The Ohio State University Wexner Medical, Columbus, OH
| | - Austin D Schenk
- Division of Transplantation Surgery, The Ohio State University Wexner Medical, Columbus, OH
| | - Shelby L Sloan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Kaylee Whitman
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - JoBeth Helmig-Mason
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Sheldon Steyn
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Haley L Klimaszewski
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Jessica Weist
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Christoph Weigel
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Shirsha Koirala
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Katiri Snyder
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Chia-Jo Chen
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Michael B Jordan
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Polina Shindiapina
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
4
|
De Visscher A, Vandeput M, Malengier-Devlies B, Bernaerts E, Mitera T, Berghmans N, Van den Steen PE, Wouters C, Matthys P. Upregulation of Fcγ Receptor IV on Activated Monocytes and Macrophages Causes Nonspecific Binding of the PK136 Anti-NK1.1 Antibody in Murine Models of Toll-Like Receptor-Induced Inflammation. Scand J Immunol 2025; 101:e70027. [PMID: 40275544 DOI: 10.1111/sji.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
Nonspecific binding of monoclonal antibodies to Fcγ receptors (FcγRs) is a well-known root cause of unreliable results in flow cytometry. Over the past decade, liver Group 1 innate lymphoid cells (ILCs), including conventional natural killer (cNK) cells and type 1 ILCs (ILC1s), have been extensively studied by flow cytometry in various inflammatory liver disorders. In our previous work, we specifically evaluated changes in liver ILC1 numbers in two murine models of Toll-like receptor (TLR)-induced macrophage activation syndrome, a hyperinflammatory disorder with liver inflammation that is classified as a secondary form of hemophagocytic lymphohistiocytosis. Here, we follow up on a cell population that significantly expands during TLR triggering and resembles ILC1s, as they express CD49a and NK1.1 but lack expression of CD49b, a marker for cNK cells. However, detailed analysis revealed that these are CD49a+ monocytes/macrophages instead of ILC1s. During TLR triggering, their expression of FcγRIV increases significantly, leading to nonspecific binding of the frequently used PK136 anti-NK1.1 antibody, which cannot be blocked by standard Fcγ receptor blocking protocols. Instead, preincubation with anti-FcγRIV antibody or additional rat or mouse serum during antibody staining is necessary to prevent nonspecific anti-NK1.1 binding. Although we observed nonspecific binding of the anti-NK1.1 antibody in ex vivo applications, we confirmed that in vivo anti-NK1.1 only depletes truly NK1.1+ populations. In conclusion, we emphasise that studying NK1.1+ ILCs during inflammation by flow cytometry requires additional FcγRIV blocking reagents and careful exclusion of myeloid cells.
Collapse
Affiliation(s)
- Amber De Visscher
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Marte Vandeput
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
- Currently at Centre for Reproductive Health and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Eline Bernaerts
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Carine Wouters
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Nigrovic PA. Macrophage Activation Syndrome. Arthritis Rheumatol 2025; 77:367-379. [PMID: 39491365 DOI: 10.1002/art.43052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Macrophage activation syndrome (MAS) is a state of immune hyperactivation that can result in life-threatening multisystem end-organ dysfunction. Often termed a "cytokine storm," MAS occurs among the rheumatic diseases most typically in Still's disease but also in systemic lupus erythematosus and Kawasaki disease. MAS can also accompany infection, malignancy, and inborn errors of immunity. This review provides a practical, evidence-based guide to the understanding, recognition, and management of MAS in children and adults, with a primary focus on MAS complicating Still's disease.
Collapse
Affiliation(s)
- Peter A Nigrovic
- Boston Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Lam MT, Jiang CL, Lee PY. T-ing up the storm: pathogenic cycling lymphocytes in the biology of macrophage activation syndrome. Pediatr Rheumatol Online J 2025; 23:29. [PMID: 40098189 PMCID: PMC11912701 DOI: 10.1186/s12969-025-01081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are potentially fatal cytokine storm syndromes with clinical features including fever, pancytopenia, hepatosplenomegaly, coagulopathy, and progressive multiorgan system dysfunction. Mechanistically, HLH / MAS are driven by persistent activation of lymphoid and myeloid cells, but our understanding of the pathogenic cell populations remains incomplete. MAIN BODY In this Perspectives article, we provide an overview of the biology of HLH / MAS and the critical role of interferon-g in disease pathogenesis. We discuss the recent discovery of cycling lymphocytes in HLH / MAS marked by expression of CD38 and HLA-DR, which are primary producers of IFN-γ. The expansion of cycling lymphocytes correlates with disease activity and helps to distinguish HLH / MAS from clinical mimics. We demonstrate an approach to quantify CD38+HLA-DR+ cycling lymphocytes and evaluate their utility as a diagnostic biomarker for HLH / MAS. Lastly, we discuss the treatment of MAS, including potential therapeutic options to target these pathogenic lymphocytes. CONCLUSION Understanding of biology of cycling lymphocytes in HLH / MAS will facilitate the development of novel therapeutic approaches to overcome these fatal hyperinflammatory disorders.
Collapse
Affiliation(s)
- Michael T Lam
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Connie L Jiang
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Boston Combined Residency Program, Boston Children's Hospital and Boston Medical Center, Boston, MA, USA
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Gallo PM, Elliott E, Ford GC, Biswas C, Wheaton JM, Kim J, Jiang CL, Chu N, Kreiger PA, Lambert MP, Behrens EM. The protective role of transcription factor Nrf2 in murine macrophage activation syndrome. J Leukoc Biol 2025; 117:qiae225. [PMID: 39390898 DOI: 10.1093/jleuko/qiae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
OBJECTIVE Macrophage activation syndrome (MAS) is characterized by multilineage cytopenias, hypercytokinemia, and tissue hemophagocytosis. Transcription factor Nrf2 is a master regulator of redox homeostasis. In this work, we aim to investigate the role of Nrf2 in murine hyperinflammation and the mechanisms by which Nrf2 activation by red blood cell products regulates proinflammatory cytokine production. METHODS We induced murine MAS in wild-type and Nrf2 knockout (Nrf2-/-) mice by repeat administration of TLR9-agonist CpG. Clinical and biochemical markers of disease were measured including complete blood counts, liver and spleen pathology, serum free heme, ferritin, and cytokine profiles. In vitro bone marrow-derived macrophages and dendritic cells were used to investigate regulation of CpG-induced cytokine expression by oxidized red blood cells and hemin. RESULTS Patients with hyperinflammatory disease had higher levels of Nrf2 gene expression. Mice with CpG-induced hyperinflammation had elevated systemic lipid peroxidation, which was exacerbated in Nrf2-/- mice. Compared with wild-type control mice, Nrf2-/- mice developed significantly worse organomegaly, organ pathology, and reticulocytosis. Nrf2-/- mice had exacerbated hypercytokinemia in cytokines central MAS physiology: interleukin (IL)-12, interferon γ, and IL-10. In vitro, we found that oxidized red blood cell lysates and hemin were able to suppress IL-12 transcription and protein production from bone marrow-derived dendritic cells in an Nrf2-dependent manner. CONCLUSION Together, our findings show that transcription factor Nrf2 is highly expressed in patients with hyperinflammatory disease and demonstrate a protective role for Nrf2 in a murine model of MAS in part due to Nrf2-mediated suppression of proinflammatory cytokine production.
Collapse
Affiliation(s)
- Paul M Gallo
- Division of Hematology, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Em Elliott
- Division of Rheumatology, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Grace C Ford
- Division of Rheumatology, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Chhanda Biswas
- Division of Rheumatology, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Jadyn M Wheaton
- Division of Rheumatology, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Jihwan Kim
- Division of Rheumatology, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Connie L Jiang
- Division of Rheumatology, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Niansheng Chu
- Division of Rheumatology, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Portia A Kreiger
- Division of Pathology, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Michele P Lambert
- Division of Hematology, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Edward M Behrens
- Division of Rheumatology, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, United States
| |
Collapse
|
8
|
Kessel C, Rossig C, Abken H. Weal and woe of interleukin-18 in the T cell therapy of cancer. J Immunother Cancer 2025; 13:e010545. [PMID: 39809514 PMCID: PMC11749219 DOI: 10.1136/jitc-2024-010545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy of solid cancer remains below expectations; adding cytokine help through IL-18 has shown remarkable efficacy in first clinical trials. As IL-18 is also a powerful driver of hyperinflammatory conditions, we discuss to what extent unleashing IL-18 is a double-edged sword in CAR T cell therapies.
Collapse
Affiliation(s)
- Christoph Kessel
- Translational Inflammation Research, Department of Pediatric Rheumatology & Immunology, University of Münster Faculty of Medicine, Munster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Munster, Germany
- Prinses Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hinrich Abken
- Division Genetic Immunotherapy, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Universitätsklinikum Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Huard A, Fauteux-Daniel S, Goldstein J, Martin P, Jarlborg M, Andries J, Caruso A, Díaz-Barreiro A, Rodriguez E, Vaillant L, Savvides SN, Gabay C. Development of anti-murine IL-18 binding protein antibodies to stimulate IL-18 bioactivity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:180-191. [PMID: 40018678 PMCID: PMC7617445 DOI: 10.1093/jimmun/vkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Interleukin (IL)-18 is an immunoregulatory cytokine that acts as a potent inducer of T helper 1 and cytotoxic responses. IL-18 activity is regulated by its decoy receptor IL-18 binding protein (IL-18BP) which forms a high affinity complex with IL-18 to block binding of the cognate receptors. A disbalance between IL-18 and IL-18BP associated with excessive IL-18 signaling can lead to systemic inflammation. Indeed, the severity of CpG-induced macrophage activation syndrome (MAS) is exacerbated in IL-18BP KO mice. On the contrary, targeting IL-18BP can have promising effects to enhance immune responses against pathogens and cancer. We generated monoclonal rabbit anti-mouse IL-18BP antibodies labeled from 441 to 450. All antibodies, except from antibody 443, captured mIL-18BP when used in a sandwich ELISA. Using an IL-18 bioassay, we showed that antibody 441 did not interfere with the regulatory effect of mIL-18BP, whereas all other antibodies displayed different levels of antagonism. Further experiments were performed using antibody 445 endowed with potent neutralizing activity and antibody 441. Despite binding to IL-18BP with the same affinity, antibody 445, but not antibody 441, was able to release IL-18 from preformed IL-18-IL-18BP complexes. Administration of antibody 445 significantly aggravated the severity of CpG-induced MAS as compared to antibody 441. Additional experiments using naïve WT, IL-18BP KO, and IL-18 KO mice confirmed the specificity of the neutralizing effect of antibody 445 towards IL-18BP. Our studies led to the development of a monoclonal anti-IL-18BP antibody with neutralizing activity that results in the promotion of IL-18 activities.
Collapse
Affiliation(s)
- Arnaud Huard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Sébastien Fauteux-Daniel
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Jérémie Goldstein
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Praxedis Martin
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Matthias Jarlborg
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Julie Andries
- Department of Biochemistry and Microbiology, Ghent University, 9052, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, 9052, Ghent, Belgium
| | - Assunta Caruso
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Alejandro Díaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Emiliana Rodriguez
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Laurie Vaillant
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Savvas N. Savvides
- Department of Biochemistry and Microbiology, Ghent University, 9052, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, 9052, Ghent, Belgium
| | - Cem Gabay
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| |
Collapse
|
10
|
Avrusin IS, Bregel LV, Efremova OS, Kostik MM. Development of Preliminary Criteria of Macrophage Activation Syndrome in Multisystem Inflammatory Syndrome Associated with COVID-19 in Children. Biomedicines 2024; 12:2868. [PMID: 39767774 PMCID: PMC11673122 DOI: 10.3390/biomedicines12122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Macrophage activation syndrome (MAS) can be regarded as a key factor determining the severity of multisystem inflammatory syndrome associated with COVID-19 in children (MIS-C), and often requires treatment in the intensive care unit (ICU) to avoid life-threatening complications. No reputable specific criteria for the diagnosis of MAS in MIS-C patients have yet been identified, and criteria currently used for the diagnosis of hemophagocytic syndromes, such as HLH-2004, MAS-2005, and MAS-2016, are not sufficient for MAS in MIS-C. Our goal in this study was to work out the criteria for the early diagnosis of MAS in MIS-C. Methods: One hundred and sixty-six (166) patients with MIS-C were assessed retrospectively. The two most experienced experts independently identified patients with MAS. The patients were divided into three cohorts: MAS (n = 19), without MAS (n = 78), and probable MAS (n = 67). The latter included patients diagnosed with MAS by only one expert, and it was excluded from the analysis. Results: The age of patients with MAS was much higher, and they more frequently had edematous syndrome, hypotension and/or shock, splenomegaly, and CNS involvement. In their blood tests, thrombocytopenia, hypoalbuminemia, and hypertriglyceridemia occurred more often. The level of biomarkers of inflammation, such as ferritin, CRP, troponin, AST, and ALT, was also higher in this group. Increased fibrinogen and D-dimer were also found, demonstrating hypercoagulation in the MAS-MIS-C group. We chose 21 continuous and categorical variables with statistical significance, out of which 2-ferritin > 469 μg/L or platelets < 114 × 109/L-allowed us to discriminate MAS patients. Conclusions: Ferritin > 469 μg/L or platelets < 114 × 109/L can be regarded as key signs to differentiate MAS in MIS-C patients with a sensitivity of 100% and specificity of 94.9%, and they can be used along with other diagnostic methods.
Collapse
Affiliation(s)
- Ilia S. Avrusin
- Hospital Pediatrics, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia;
| | - Liudmila V. Bregel
- Department of Pediatrics, Irkutsk State Medical Academy of Postgraduate Education, A Branch of the Russian Medical Academy of Continuous Professional Education, Irkutsk 664049, Russia;
- Department of Cardiology, Irkutsk Regional Children’s Clinical Hospital, Irkutsk 664022, Russia;
| | - Olesya S. Efremova
- Department of Cardiology, Irkutsk Regional Children’s Clinical Hospital, Irkutsk 664022, Russia;
| | - Mikhail M. Kostik
- Hospital Pediatrics, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia;
| |
Collapse
|
11
|
Hamerman JA, Barton GM. The path ahead for understanding Toll-like receptor-driven systemic autoimmunity. Curr Opin Immunol 2024; 91:102482. [PMID: 39353255 PMCID: PMC11863706 DOI: 10.1016/j.coi.2024.102482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Five mammalian Toll-like receptors (TLR 3, 7, 8, 9, and 13) recognize nucleic acids (NA) and induce signals that control the function of multiple immune cell types and initiate both innate and adaptive immune responses. While these receptors enable recognition of diverse microbial threats, in some instances, they respond inappropriately to self-NA released from host cells and drive the development of autoimmune diseases. Specifically, activation of TLR7 and TLR8 by self-RNA and TLR9 by self-DNA has been linked to development of a collection of systemic autoimmune or autoinflammatory disorders, including systemic lupus erythematosus, systemic juvenile idiopathic arthritis, and macrophage activation syndrome. Here, we discuss recent progress in understanding how these receptors contribute to such diverse clinical phenotypes. We highlight how comparative studies between mice and humans have not only been beneficial in identifying key pathways relevant for disease but also reveal gaps in our understanding of disease mechanisms. We identify several challenges that we hope the field will tackle in the years ahead.
Collapse
Affiliation(s)
- Jessica A Hamerman
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| | - Gregory M Barton
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
De Visscher A, Vandeput M, Vandenhaute J, Malengier-Devlies B, Bernaerts E, Ahmadzadeh K, Filtjens J, Mitera T, Berghmans N, Van den Steen PE, Friedrich C, Gasteiger G, Wouters C, Matthys P. Liver type 1 innate lymphoid cells undergo apoptosis in murine models of macrophage activation syndrome and are dispensable for disease. Eur J Immunol 2024; 54:e2451043. [PMID: 39348088 DOI: 10.1002/eji.202451043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Macrophage activation syndrome (MAS) exemplifies a severe cytokine storm disorder with liver inflammation. In the liver, classical natural killer (cNK) cells and liver-resident type 1 innate lymphoid cells (ILC1s) dominate the ILC population. Thus far, research has primarily focused on the corresponding role of cNK cells. Considering the liver inflammation and cytokine storm in MAS, liver-resident ILC1s represent an interesting population to explore due to their rapid cytokine production upon environmental triggers. By utilizing a Toll-like receptor (TLR)9- and TLR3:4-triggered MAS model, we showed that ILC1s highly produce IFN-γ and TNF-α. However, activated ILC1s undergo apoptosis and are strongly reduced in numbers, while cNK cells resist inflammation-induced apoptosis. Signs of mitochondrial stress suggest that this ILC1 apoptosis may be driven by inflammation-induced mitochondrial impairment. To study whether early induction of highly cytokine-producing ILC1s influences MAS development, we used Hobit KO mice due to their paucity of liver ILC1s but unaffected cNK cell numbers. Nevertheless, neither the severity of MAS features nor the total inflammatory cytokine levels were affected in these Hobit KO mice, indicating that ILC1s are dispensable for MAS pathogenesis. Collectively, our data demonstrate that ILC1s undergo apoptosis during TLR-triggering and are dispensable for MAS pathogenesis.
Collapse
Affiliation(s)
- Amber De Visscher
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Marte Vandeput
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jessica Vandenhaute
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
- Centre for Reproductive Health and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Eline Bernaerts
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jessica Filtjens
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Christin Friedrich
- Würzburg Institute and Max Planck Research Group for Systems Immunology, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute and Max Planck Research Group for Systems Immunology, Würzburg, Germany
| | - Carine Wouters
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Yu L, Li Y, Li W, Zhang Y, He W, Tang X, An Y, Zhao X. Case report: A cyclic neutropenia patient with ELANE mutation accompanied by hemophagocytic lymphohistiocytosis. Front Immunol 2024; 15:1474429. [PMID: 39676859 PMCID: PMC11638164 DOI: 10.3389/fimmu.2024.1474429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Many inborn errors of immunity may accompany secondary hemophagocytic lymphohistiocytosis (HLH), a condition typically characterized by impaired cytotoxic T and NK cell function. A considerable proportion of HLH cases also stem from chronic granulomatosis with phagocytic dysfunction. However, the development of secondary HLH in patients with severe congenital neutropenia (SCN) or cyclic neutropenia (CyN) with abnormal phagocytic cell counts has been less frequently reported. Herein, we present a case of a pediatric patient with ELANE mutation-associated CyN who developed HLH subsequent to severe bacterial, fungal, and viral infections. Notable observations included impaired NK cell degranulation function (CD107a). To the best of our knowledge, this represents the first documented instance of HLH in patients with CyN attributed to an ELANE mutation. Thus, our study establishes a link between ELANE-related CyN and HLH, underscoring the importance of considering HLH as a potential complication in these patients.
Collapse
Affiliation(s)
- Lang Yu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yulin Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Wenhui Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
| | - Yishi Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Wenli He
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Chen Y, Deng H, Zhou R, Jiang X, Wang H, Xin S, Mo W, Wang S, Liu Y. Comprehensive mapping of immune perturbations associated with secondary hemophagocytic lymphohistiocytosis. J Leukoc Biol 2024; 116:1109-1126. [PMID: 38973235 DOI: 10.1093/jleuko/qiae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/02/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024] Open
Abstract
Secondary hemophagocytic lymphohistiocytosis (sHLH) is a hyperinflammatory syndrome characterized by immune disorders. It is imperative to elucidate the immunophenotypic panorama and the interactions among these cells in patients. Human peripheral blood mononuclear cells were collected from healthy donors and sHLH patients and tested using multicolor flow cytometry. We used FlowSOM to explore and visualize the immunophenotypic characteristics of sHLH. By demonstrating the phenotypes of immune cells, we discovered that sHLH patients had significantly higher levels of CD56+ monocytes, higher levels of myeloid-derived suppressor cells, low-density neutrophil-to-T cell ratio, and higher heterogeneous T cell activation than healthy donors. However, natural killer cell cytotoxicity and function were impaired. We then assessed the correlations among 30 immune cell types and evaluated metabolic analysis. Our findings demonstrated polymorphonuclear myeloid-derived suppressor cells, CD56+ monocytes, and neutrophil-to-T cell ratio were elevated abnormally in sHLH patients, which may indicate an association with immune overactivation and inflammatory response. We are expected to confirm that they are involved in the occurrence of the disease through further in-depth research.
Collapse
Affiliation(s)
- Yinchun Chen
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou 510180, China
- Department of Hematology, Guangzhou First People's Hospital, No. 1 Panfu Road, Guangzhou 510180, China
| | - Haimei Deng
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628, Zhenyuan Road, Xinhuling Street, Shenzhen 518118, China
| | - Ruiqing Zhou
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou 510180, China
- Department of Hematology, Guangzhou First People's Hospital, No. 1 Panfu Road, Guangzhou 510180, China
| | - Xiaotao Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Guangzhou 510400, China
| | - Huijuan Wang
- Center for Medical Research on Innovation and Translation, Guangzhou First People's Hospital, No. 10 Huan Yu Second Road, Guangzhou 510180, China
| | - Songqing Xin
- Changan Hospital of Dongguan, No. 171 Changqing South Road, Dongguan 523850, China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People's Hospital, No. 1 Panfu Road, Guangzhou 510180, China
| | - Shunqing Wang
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou 510180, China
- Department of Hematology, Guangzhou First People's Hospital, No. 1 Panfu Road, Guangzhou 510180, China
| | - Yufeng Liu
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou 510180, China
- Department of Hematology, Guangzhou First People's Hospital, No. 1 Panfu Road, Guangzhou 510180, China
- Center for Medical Research on Innovation and Translation, Guangzhou First People's Hospital, No. 10 Huan Yu Second Road, Guangzhou 510180, China
| |
Collapse
|
15
|
Khanna K, Eul E, Yan H, Faccio R. Delayed macrophage targeting by clodronate liposomes worsens the progression of cytokine storm syndrome. Front Immunol 2024; 15:1477449. [PMID: 39530102 PMCID: PMC11550973 DOI: 10.3389/fimmu.2024.1477449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Excessive macrophage activation and production of pro-inflammatory cytokines are hallmarks of the Cytokine Storm Syndrome (CSS), a lethal condition triggered by sepsis, autoimmune disorders, and cancer immunotherapies. While depletion of macrophages at disease onset protects from lethality in an infection-induced CSS murine model, patients are rarely diagnosed early, hence the need to characterize macrophage populations during CSS progression and assess the therapeutic implications of macrophage targeting after disease onset. In this study, we identified MHCII+F4/80+Tim4- macrophages as the primary contributors to the pro-inflammatory environment in CSS, while CD206+F4/80+Tim4+ macrophages, with an anti-inflammatory profile, become outnumbered. Additionally, we observed an expansion of Tim4- macrophages coinciding with increased hematopoietic stem progenitor cells and reduction of committed myeloid progenitors in bone marrow and spleen. Critically, macrophage targeting with clodronate liposomes at disease onset prolonged survival, while their targeting in mice with established CSS exacerbated disease severity, leading to a more dramatic loss of Tim4+ macrophages and an imbalance in pro- versus anti-inflammatory Tim4- macrophage ratio. Our findings highlight the significance of timing in macrophage-targeted interventions for effective management of CSS and suggest potential therapeutic strategies for diseases characterized by uncontrolled inflammation, such as sepsis.
Collapse
Affiliation(s)
- Kunjan Khanna
- Department of Orthopedics, Washington University in St Louis, St Louis, MO, United States
| | - Emily Eul
- Department of Orthopedics, Washington University in St Louis, St Louis, MO, United States
| | - Hui Yan
- Department of Orthopedics, Washington University in St Louis, St Louis, MO, United States
| | - Roberta Faccio
- Department of Orthopedics, Washington University in St Louis, St Louis, MO, United States
- Shriners Hospital for Children, St Louis, MO, United States
| |
Collapse
|
16
|
Lian H, Cai H, Zhang H, Zhang Y, Wang X. Inflammation, immunity and biomarkers in procoagulant responses of critically ill patients. Am J Transl Res 2024; 16:5797-5812. [PMID: 39544782 PMCID: PMC11558399 DOI: 10.62347/edar9565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024]
Abstract
Understanding the pathobiology of critical illness is essential for patients' prognosis. Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. As part of the host response, procoagulant responses, one of the most primitive reactions in biology, start at the very beginning of diseases and can be monitored throughout the process. Currently, we can achieve near-complete monitoring of the coagulation process, and procoagulant responses serve as indicators of the severity of host response in critically ill patients. However, the rapid interpretation of the complex results of various biomarkers remains a challenge for many clinicians. The indicators commonly used for coagulation assessment are complex, typically divided into three categories for clarity: process index, functional index, and outcome index. Monitoring and understanding these indicators can help manage procoagulant responses. The intervention of procoagulant response should be part of the bundle therapy, alongside the treatment for primary disease, management for hemodynamics, and controlling for host response. Early intervention for procoagulant response mainly includes anti-inflammation, antiplatelet and anticoagulant therapy, as well as management of primary disease. In this review, we systemically introduce the onset, assessment and intervention of procoagulant response.
Collapse
Affiliation(s)
- Hui Lian
- Department of Health Care, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| | - Huacong Cai
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| | - Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| | - Yan Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| |
Collapse
|
17
|
Wang H, Fan C, Chen X, Zhou W, Guo L, Zhao F, Ye S, He S, Chen Y. Pyruvate Kinase M2 Nuclear Translocation Regulate Ferroptosis-Associated Acute Lung Injury in Cytokine Storm. Inflammation 2024; 47:1667-1684. [PMID: 38483700 PMCID: PMC11549213 DOI: 10.1007/s10753-024-02000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 11/09/2024]
Abstract
Cytokine storm (CS) is linked with macrophage dysfunction and acute lung injury (ALI), which can lead to patient mortality. Glycolysis is preferentially exploited by the pro-inflammatory macrophages, in which pyruvate kinase M2 (PKM2) is a critical enzyme. The mechanism underlying the link between CS and ALI involves cell death, with the recently discovered programmed cell death known as ferroptosis being involved. However, the relationship between the glycolysis and ferroptosis in the context of CS-related ALI remains unclear. CS-associated ALI induced by poly I:C (10 mg/kg, i.v) and LPS (5 mg/kg, i.p) (IC: LPS) exhibit significant ferroptosis. Ferrostatin-1 (ferroptosis inhibitor) treatment attenuated IC:LPS‑induced mortality and lung injury. Moreover, Alveolar macrophage (AM) from IC:LPS model exhibited enhanced glycolysis and PKM2 translocation. The administration of ML-265(PKM2 monomer/dimer inhibitor) resulted in the formation of a highly active tetrameric PKM2, leading to improved survival and attenuation of ALI. Furthermore, ML-265 treatment decreased ferroptosis and restored the balance between anaerobic glycolysis and oxidative phosphorylation. Notably, in patients with lung infection, intracellular expression level of PKM2 were correlated with circulating inflammation. Enhanced ferroptosis and PKM2 nuclear translocation was noticed in CD14+ blood monocytes of lung infection patients with CS. In conclusion, PKM2 is a key regulatory node integrating metabolic reprograming with intra-nuclear function for the regulation of ferroptosis. Targeting PKM2 could be explored as a potential means in the future to prevent or alleviate hyper-inflammatory state or cytokines storm syndrome with aberrant ferroptotic cell death.
Collapse
Affiliation(s)
- Haiting Wang
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyu Fan
- Department of Emergency and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuelian Chen
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Emergency and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Guo
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Zhao
- Department of Emergency and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Ye
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangjun He
- Department of Emergency and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yi Chen
- Department of Emergency and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Kang YF, Bai X, Wang KY, Wang T, Pan CL, Xie C, Liang B, Liao HL. Zhilong Huoxue Tongyu Capsule regulates the macrophage polarization and inflammatory response via the let-7i/TLR9/MyD88 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118208. [PMID: 38636581 DOI: 10.1016/j.jep.2024.118208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhilong Huoxue Tongyu Capsule (ZL) is clinically prescribed for acute ischemic stroke (AIS). However, only a few studies have addressed the mechanisms of ZL in treating AIS. AIM OF THE STUDY To explore the underlying mechanism of macrophage polarization and inflammation mediated by ZL, and to provide a reference for AIS treatment. MATERIALS AND METHODS Sixteen SD rats were fed with different dose of ZL (0, 0.4, 0.8, and 1.6 g/kg/d) for 4 days to prepare ZL serum. After 500 ng/mL lipopolysaccharide (LPS) stimulation, RAW264.7 cells were administrated with ZL serum. Then, experiments including ELISA, flow cytometry, real-time quantitative PCR and Western blot were performed to verify the effects of ZL on macrophage polarization and inflammation. Next, let-7i inhibitor was transfected in RAW264.7 cells when treated with LPS and ZL serum to verify the regulation of ZL on the let-7i/TLR9/MyD88 signaling pathway. Moreover, the interaction between let-7i and TLR9 was confirmed by the dual-luciferase assay. RESULTS ZL serum significantly decreased the expression of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), and increased the expression of IL-10 and transforming growth factor β1 (TGF-β1) of LPS stimulated-macrophages. Furthermore, ZL serum polarized macrophages toward M2, decreased the expressions of TLR9, MyD88, and iNOS, as well as increased the expressions of let-7i, CHIL3, and Arginase-1. It is worth mentioning that the effect of ZL serum is dose-dependent. However, let-7i inhibitor restored all the above effects in LPS stimulated-macrophages. In addition, TLR9 was the target of let-7i. CONCLUSIONS ZL targeted let-7i to inhibit TLR9 expression, thereby inhibiting the activation of the TLR9/MyD88 pathway, promoting the M2 polarization, and inhibiting the development of inflammation in AIS.
Collapse
Affiliation(s)
- Ya-Fei Kang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Department of Neurology, Bazhong Hospital of Traditional Chinese Medicine, Bazhong, China
| | - Xue Bai
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Kong-Yu Wang
- Department of Intensive Care Medicine, Bazhong Hospital of Traditional Chinese Medicine, Bazhong, China
| | - Tao Wang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Chuan-Ling Pan
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Cheng Xie
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Bo Liang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Hui-Ling Liao
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
19
|
Jang SH, Shim JS, Kim J, Shin EG, Yoon JH, Lee LE, Kwon HK, Song JJ. Mitochondria Activity and CXCR4 Collaboratively Promote the Differentiation of CD11c + B Cells Induced by TLR9 in Lupus. Immune Netw 2024; 24:e25. [PMID: 39246618 PMCID: PMC11377949 DOI: 10.4110/in.2024.24.e25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 09/10/2024] Open
Abstract
Lupus is characterized by the autoantibodies against nuclear Ags, underscoring the importance of identifying the B cell subsets driving autoimmunity. Our research focused on the mitochondrial activity and CXCR4 expression in CD11c+ B cells from lupus patients after ex vivo stimulation with a TLR9 agonist, CpG-oligodeoxyribonucleotide (ODN). We also evaluated the response of CD11c+ B cells in ODN-injected mice. Post-ex vivo ODN stimulation, we observed an increase in the proportion of CD11chi cells, with elevated mitochondrial activity and CXCR4 expression in CD11c+ B cells from lupus patients. In vivo experiments showed similar patterns, with TLR9 stimulation enhancing mitochondrial and CXCR4 activities in CD11chi B cells, leading to the generation of anti-dsDNA plasmablasts. The CXCR4 inhibitor AMD3100 and the mitochondrial complex I inhibitor IM156 significantly reduced the proportion of CD11c+ B cells and autoreactive plasmablasts. These results underscore the pivotal roles of mitochondria and CXCR4 in the production of autoreactive plasmablasts.
Collapse
Affiliation(s)
- Sung Hoon Jang
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joo Sung Shim
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jieun Kim
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eun Gyeol Shin
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Hwi Yoon
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Lucy Eunju Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ho-Keun Kwon
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
20
|
Gleeson TA, Kaiser C, Lawrence CB, Brough D, Allan SM, Green JP. The NLRP3 inflammasome is essential for IL-18 production in a murine model of macrophage activation syndrome. Dis Model Mech 2024; 17:dmm050762. [PMID: 38775430 PMCID: PMC11317095 DOI: 10.1242/dmm.050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Hyperinflammatory disease is associated with an aberrant immune response resulting in cytokine storm. One such instance of hyperinflammatory disease is known as macrophage activation syndrome (MAS). The pathology of MAS can be characterised by significantly elevated serum levels of interleukin-18 (IL-18) and interferon gamma (IFNγ). Given the role for IL-18 in MAS, we sought to establish the role of inflammasomes in the disease process. Using a murine model of CpG-oligonucleotide-induced MAS, we discovered that the expression of the NLRP3 inflammasome was increased and correlated with IL-18 production. Inhibition of the NLRP3 inflammasome or the downstream caspase-1 prevented MAS-mediated upregulation of IL-18 in the plasma but, interestingly, did not alleviate key features of hyperinflammatory disease including hyperferritinaemia and splenomegaly. Furthermore blockade of IL-1 receptor with its antagonist IL-1Ra did not prevent the development of CpG-induced MAS, despite being clinically effective in the treatment of MAS. These data demonstrate that, during the development of MAS, the NLRP3 inflammasome was essential for the elevation in plasma IL-18 - a key cytokine in clinical cases of MAS - but was not a driving factor in the pathogenesis of CpG-induced MAS.
Collapse
Affiliation(s)
- Tara A. Gleeson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | | | - Catherine B. Lawrence
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - Stuart M. Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - Jack P. Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
21
|
Keenan C, Albeituni S, Oak N, Stroh A, Tillman HS, Wang Y, Freeman BB, Alemán-Arteaga S, Meyer LK, Woods R, Verbist KC, Zhou Y, Cheng C, Nichols KE. Differential effects of itacitinib, fedratinib, and ruxolitinib in mouse models of hemophagocytic lymphohistiocytosis. Blood 2024; 143:2386-2400. [PMID: 38446698 PMCID: PMC11450374 DOI: 10.1182/blood.2023021046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Hemophagocytic lymphohistiocytosis (HLH) comprises a severe hyperinflammatory phenotype driven by the overproduction of cytokines, many of which signal via the JAK/STAT pathway. Indeed, the JAK1/2 inhibitor ruxolitinib has demonstrated efficacy in preclinical studies and early-phase clinical trials in HLH. Nevertheless, concerns remain for ruxolitinib-induced cytopenias, which are postulated to result from the blockade of JAK2-dependent hematopoietic growth factors. To explore the therapeutic effects of selective JAK inhibition in mouse models of HLH, we carried out studies incorporating the JAK1 inhibitor itacitinib, JAK2 inhibitor fedratinib, and JAK1/2 inhibitor ruxolitinib. All 3 drugs were well-tolerated and at the doses tested, they suppressed interferon-gamma (IFN-γ)-induced STAT1 phosphorylation in vitro and in vivo. Itacitinib, but not fedratinib, significantly improved survival and clinical scores in CpG-induced secondary HLH. Conversely, in primary HLH, in which perforin-deficient (Prf1-/-) mice are infected with lymphocytic choriomeningitis virus (LCMV), itacitinib, and fedratinib performed suboptimally. Ruxolitinib demonstrated excellent clinical efficacy in both HLH models. RNA-sequencing of splenocytes from LCMV-infected Prf1-/- mice revealed that itacitinib targeted inflammatory and metabolic pathway genes in CD8 T cells, whereas fedratinib targeted genes regulating cell proliferation and metabolism. In monocytes, neither drug conferred major transcriptional impacts. Consistent with its superior clinical effects, ruxolitinib exerted the greatest transcriptional changes in CD8 T cells and monocytes, targeting more genes across several biologic pathways, most notably JAK-dependent proinflammatory signaling. We conclude that JAK1 inhibition is sufficient to curtail CpG-induced disease, but combined inhibition of JAK1 and JAK2 is needed to best control LCMV-induced immunopathology.
Collapse
Affiliation(s)
- Camille Keenan
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sabrin Albeituni
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Alexa Stroh
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Heather S. Tillman
- Department of Comparative Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yingzhe Wang
- Preclinical PK Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN
| | - Burgess B. Freeman
- Preclinical PK Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN
| | - Silvia Alemán-Arteaga
- Experimental Therapeutics & Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - Lauren K. Meyer
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Rolanda Woods
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Yinmei Zhou
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
22
|
Dong Y, Wang T, Wu H. Heterogeneity of macrophage activation syndrome and treatment progression. Front Immunol 2024; 15:1389710. [PMID: 38736876 PMCID: PMC11082376 DOI: 10.3389/fimmu.2024.1389710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Macrophage activation syndrome (MAS) is a rare complication of autoimmune inflammatory rheumatic diseases (AIIRD) characterized by a progressive and life-threatening condition with features including cytokine storm and hemophagocytosis. Predisposing factors are typically associated with microbial infections, genetic factors (distinct from typical genetically related hemophagocytic lymphohistiocytosis (HLH)), and inappropriate immune system overactivation. Clinical features include unremitting fever, generalized rash, hepatosplenomegaly, lymphadenopathy, anemia, worsening liver function, and neurological involvement. MAS can occur in various AIIRDs, including but not limited to systemic juvenile idiopathic arthritis (sJIA), adult-onset Still's disease (AOSD), systemic lupus erythematosus (SLE), Kawasaki disease (KD), juvenile dermatomyositis (JDM), rheumatoid arthritis (RA), and Sjögren's syndrome (SS), etc. Although progress has been made in understanding the pathogenesis and treatment of MAS, it is important to recognize the differences between different diseases and the various treatment options available. This article summarizes the cell types and cytokines involved in MAS-related diseases, the heterogeneity, and treatment options, while also comparing it to genetically related HLH.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Wang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Deza Leon M, Otto WR, Danziger-Isakov L, Kumar A, Scaggs Huang F. Infectious Diseases Evaluation of the Child With Suspected Hemophagocytic Lymphohistiocytosis. J Pediatric Infect Dis Soc 2024; 13:220-227. [PMID: 38263470 DOI: 10.1093/jpids/piae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of excessive and maladaptive inflammation. In this review, we discuss how the clinical and laboratory features of HLH overlap with infection and propose a diagnostic and treatment strategy to identify patients with infections mimicking HLH.
Collapse
Affiliation(s)
- Maria Deza Leon
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - William R Otto
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lara Danziger-Isakov
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ashish Kumar
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Felicia Scaggs Huang
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
24
|
Varsha KK, Yang X, Cannon AS, Zhong Y, Nagarkatti M, Nagarkatti P. Identification of miRNAs that target Fcγ receptor-mediated phagocytosis during macrophage activation syndrome. Front Immunol 2024; 15:1355315. [PMID: 38558807 PMCID: PMC10981272 DOI: 10.3389/fimmu.2024.1355315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.
Collapse
Affiliation(s)
| | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
25
|
Kim Y, Lee S, Jon S. Liposomal Delivery of an Immunostimulatory CpG Induces Robust Antitumor Immunity and Long-Term Immune Memory by Reprogramming Tumor-Associated Macrophages. Adv Healthc Mater 2024; 13:e2300549. [PMID: 37931205 DOI: 10.1002/adhm.202300549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Tumor-associated macrophages (TAMs)-representative immune-suppressive cells in the tumor microenvironment (TME)-are known to promote tumor progression and metastasis, and thus are considered an attractive target for cancer therapy. However, current TAM-targeting strategies are insufficient to result in robust antitumor efficacy. Here, a small lipid nanoparticle encapsulating immunostimulatory CpG oligodeoxynucleotides (SLNP@CpG) is reported as a new immunotherapeutic modality that can reprogram TAMs and further bridge innate-to-adaptive immunity. It is found that SLNP@CpG treatment enhances macrophage-mediated phagocytosis of cancer cells and tumor antigen cross-presentation, and skews the polarization state of macrophages in vitro. Intratumoral injection of SLNP@CpG into an established murine E.G7-OVA tumor model significantly suppresses tumor growth and considerably prolongs survival, completely eradicating tumors in 83.3% of mice. Furthermore, tumor-free mice resist rechallenge with E.G7-OVA cancer cells through induction of immunological memory and long-term antitumor immunity. SLNP@CpG even exerts antitumor efficacy in an aggressive B16-F10 melanoma model by remodeling TME toward immune stimulation and tumor elimination. These findings suggest that, by modulating the function of TAMs and reshaping an immunosuppressive TME, the SLNP@CpG nanomedicine developed here may become a promising immunotherapeutic option applicable to a variety of tumors.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seojung Lee
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| |
Collapse
|
26
|
Nguyen TTT, Kim YT, Jeong G, Jin M. Immunopathology of and potential therapeutics for secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome: a translational perspective. Exp Mol Med 2024; 56:559-569. [PMID: 38448692 PMCID: PMC10984945 DOI: 10.1038/s12276-024-01182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 03/08/2024] Open
Abstract
Secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome (sHLH/MAS) is a life-threatening immune disorder triggered by rheumatic disease, infections, malignancies, or medications. Characterized by the presence of hemophagocytic macrophages and a fulminant cytokine storm, sHLH/MAS leads to hyperferritinemia and multiorgan failure and rapidly progresses to death. The high mortality rate and the lack of specific treatments necessitate the development of a new drug. However, the complex and largely unknown immunopathologic mechanisms of sHLH/MAS, which involve dysfunction of various immune cells, diverse etiologies, and different clinical contexts make this effort challenging. This review introduces the terminology, diagnosis, and clinical features of sHLH/MAS. From a translational perspective, this review focuses on the immunopathological mechanisms linked to various etiologies, emphasizing potential drug targets, including key molecules and signaling pathways. We also discuss immunomodulatory biologics, existing drugs under clinical evaluation, and novel therapies in clinical trials. This systematic review aims to provide insights and highlight opportunities for the development of novel sHLH/MAS therapeutics.
Collapse
Affiliation(s)
- Tram T T Nguyen
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Yoon Tae Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Geunyeol Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Mirim Jin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
27
|
Gleeson TA, Kaiser C, Lawrence CB, Brough D, Allan SM, Green JP. The NLRP3 inflammasome is essential for IL-18 production in a murine model of macrophage activation syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582284. [PMID: 38464243 PMCID: PMC10925192 DOI: 10.1101/2024.02.27.582284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hyperinflammatory disease is associated with an aberrant immune response resulting in cytokine storm. One such instance of hyperinflammatory disease is known as macrophage activation syndrome (MAS). The pathology of MAS can be characterised by significantly elevated serum levels of interleukin (IL)-18 and interferon (IFN)-γ. Given the role for IL-18 in MAS, we sought to establish the role of inflammasomes in the disease process. Using a murine model of CpG-DNA induced MAS, we discovered that the expression of the NLRP3 inflammasome was increased and correlated with IL-18 production. Inhibition of the NLRP3 inflammasome, or downstream caspase-1, prevented MAS-mediated upregulation of plasma IL-18 but interestingly did not alleviate key features of hyperinflammatory disease including hyperferritinaemia and splenomegaly. Furthermore IL-1 receptor blockade with IL-1Ra did not prevent the development of CpG-induced MAS, despite being clinically effective in the treatment of MAS. These data demonstrate that in the development of MAS, the NLRP3 inflammasome was essential for the elevation in plasma IL-18, a key cytokine in clinical cases of MAS, but was not a driving factor in the pathogenesis of CpG-induced MAS.
Collapse
Affiliation(s)
- Tara A Gleeson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | | | - Catherine B Lawrence
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Jack P Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
28
|
Canna SW, De Benedetti F. The 4 th NextGen therapies of SJIA and MAS, part 4: it is time for IL-18 based trials in systemic juvenile idiopathic arthritis? Pediatr Rheumatol Online J 2024; 21:79. [PMID: 38183056 PMCID: PMC10768079 DOI: 10.1186/s12969-023-00867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Since IL-18 has recently emerged as a biomarker associated with refractory disease course in SJIA, the focus of the discussion was the feasibility of the biomarker-driven drug development to SJIA. Overall, there was broad agreement on the conclusion that IL-18 is a uniquely specific biomarker for many of the subsets of SJIA most in need of new therapies, and it may define a class of diseases mediated by IL-18 excess. The consensus was that leveraging IL-18 remains our most promising "lead" for use in refractory SJIA as it may mechanistically explain the disease pathophysiology and lead to more targeted therapies.
Collapse
Affiliation(s)
- Scott W Canna
- Rheumatology & Immune Dysregulation, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | |
Collapse
|
29
|
Behrens EM, de Benedetti F. Anti-Interferon-γ Therapy for Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:573-582. [PMID: 39117840 DOI: 10.1007/978-3-031-59815-9_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A vast body of evidence provides support to a central role of exaggerated production of interferon-γ (IFN-γ) in causing hypercytokinemia and signs and symptoms of hemophagocytic lymphohistiocytosis (HLH). In this chapter, we will describe briefly the roles of IFN-γ in innate and adaptive immunity and in host defense, summarize results from animal models of primary HLH and secondary HLH with particular emphasis on targeted therapeutic approaches, review data on biomarkers associated with activation of the IFN-γ pathway, and discuss initial efficacy and safety results of IFN-γ neutralization in humans.
Collapse
Affiliation(s)
- Edward M Behrens
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
30
|
Sekine T, Galgano D, Casoni GP, Meeths M, Cron RQ, Bryceson YT. CD8 + T Cell Biology in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:129-144. [PMID: 39117812 DOI: 10.1007/978-3-031-59815-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.
Collapse
Affiliation(s)
- Takuya Sekine
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Donatella Galgano
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giovanna P Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Randy Q Cron
- Division of Pediatric Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
31
|
Silverman ED. The History of Macrophage Activation Syndrome in Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:21-31. [PMID: 39117805 DOI: 10.1007/978-3-031-59815-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
In 1979, it became recognized in the literature that what we call hemophagocytic lymphohistiocytosis (HLH) was a nonmalignant disease of histiocytes. Subsequently a familial form and a secondary form of HLH were differentiated. When HLH is secondary to an autoimmune disease, rheumatologists refer to this entity as macrophage activation syndrome (MAS) to differentiate it from HLH itself. Although the first cases of MAS likely appeared in the literature in the 1970s, it was not until 1985 that the term activated macrophages was used to describe patients with systemic juvenile idiopathic arthritis (sJIA) complicated by MAS and the term macrophage activation syndrome first appeared in the title of a paper in 1993.MAS is one of the many types of secondary HLH and should not be confused with primary HLH. Experience has taught that MAS secondary to different autoimmune diseases is not equal. In the 30 years since initial description in patients with sJIA, the clinical spectrum, diseases associated with MAS, therapy, and understanding the pathogenesis have all made significant gains. The diagnostic/classification criteria for MAS secondary to sJIA, SLE, RA, and KD differ based on the different laboratory abnormalities associated with each (Ahn et al., J Rheumatol 44:996-1003, 2017; Han et al., Ann Rheum Dis 75:e44, 2016; Ravelli et al., Ann Rheum Dis 75:481-489, 2016; Borgia et al., Arthritis Rheumatol 70:616-624, 2018). These examples include the thrombocytosis associated with sJIA, a chronic generalized activation of the immune system, leading to elevations of fibrinogen and sIL-2R, low platelet count associated with SLE, and more acute inflammation associated with KD. Therefore, individual diagnostic criteria are required, and they all differ from the diagnostic criteria for HLH, which are based on a previously non-activated immune system (Ahn et al., J Rheumatol 44:996-1003, 2017; Han et al., Ann Rheum Dis 75:e44, 2016; Ravelli et al., Ann Rheum Dis 75:481-489, 2016; Borgia et al., Arthritis Rheumatol 70:616-624, 2018; Henter et al., Pediatr Blood Cancer 48:124-131, 2007). This helps to explain why the HLH diagnostic criteria do not perform well in MAS.The initial treatment remains high-dose steroids and IVIG followed by the use of a calcineurin inhibitor for resistant cases. IVIG can be used if there is a concern about malignancy to wait for appropriate investigations or with steroids. Interluekin-1 inhibition is now the next therapy if there is a failure to respond to steroids and calcineurin inhibitors. Advances in understanding the mechanisms leading to MAS, which has been greatly aided by the use of mouse models of MAS and advances in genome sequencing, offer a bright future for more specific therapies. More recent therapies are directed to specific cytokines involved in the pathogenesis of MAS and can lead to decreases in the morbidity and mortality associated with MAS. These include therapies directed to inhibiting the JAK/STAT pathway and/or specific cytokines, interleukin-18 and gamma interferon, which are currently being studied in MAS. These more specific therapies may obviate the need for nonspecific immunosuppressive therapies including high-dose prolonged steroids, calcineurin inhibitors, and etoposide.
Collapse
Affiliation(s)
- Earl D Silverman
- Hospital for Sick Children (SickKids), University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
32
|
Brisse E, Verweyen EL, De Visscher A, Kessel C, Wouters CH, Matthys P. Murine Models of Secondary Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:497-522. [PMID: 39117836 DOI: 10.1007/978-3-031-59815-9_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) comprises a broad spectrum of life-threatening cytokine storm syndromes, classified into primary (genetic) or secondary (acquired) HLH. The latter occurs in a variety of medical conditions, including infections, malignancies, autoimmune and autoinflammatory diseases, acquired immunodeficiency, and metabolic disorders. Despite recent advances in the field, the pathogenesis of secondary HLH remains incompletely understood. Considering the heterogeneity of triggering factors and underlying diseases in secondary HLH, a large diversity of animal models has been developed to explore pivotal disease mechanisms. To date, over 20 animal models have been described that each recapitulates certain aspects of secondary HLH. This review provides a comprehensive overview of the existing models, highlighting relevant findings, discussing the involvement of different cell types and cytokines in disease development and progression, and considering points of interest toward future therapeutic strategies.
Collapse
Affiliation(s)
- Ellen Brisse
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Emely L Verweyen
- Translational Inflammation Research, Department of Pediatric Rheumatology & Immunology, WWU Medical Center (UKM), Muenster, Germany
| | - Amber De Visscher
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Christoph Kessel
- Translational Inflammation Research, Department of Pediatric Rheumatology & Immunology, WWU Medical Center (UKM), Muenster, Germany
| | - Carine H Wouters
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
- Pediatric Rheumatology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
33
|
French AR, Cron RQ, Cooper MA. Immunology of Cytokine Storm Syndromes: Natural Killer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:145-159. [PMID: 39117813 DOI: 10.1007/978-3-031-59815-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that rapidly produce cytokines upon activation and kill target cells. NK cells have been of particular interest in primary hemophagocytic lymphohistiocytosis (pHLH) since all of the genetic defects associated with this disorder cause diminished cytotoxic capacity of NK cells and T lymphocytes, and assays of NK cell killing are used clinically for the diagnosis of HLH. Herein, we review human NK cell biology and the significance of alterations in NK cell function in the diagnosis and pathogenesis of HLH.
Collapse
Affiliation(s)
- Anthony R French
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randy Q Cron
- Department of Pediatrics, Division of Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
34
|
Keenan C, Albeituni S, Nichols KE, Hines M. JAK Inhibitors in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:583-600. [PMID: 39117841 DOI: 10.1007/978-3-031-59815-9_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cytokine storm syndromes (CSSs) comprise a group of severe and often fatal hyperinflammatory conditions driven by the overproduction of pro-inflammatory cytokines by activated cells of the immune system. Many of the CSS-associated cytokines mediate their downstream effects by signaling through the Janus kinases (JAKs) and signal transducers and activators of transcription (STATs). In addition, several of these cytokines are produced downstream of JAK/STAT pathway activation. Therefore, targeting JAK/STAT signaling using small molecule JAK inhibitors has become an increasingly appealing therapeutic option to dampen hyperinflammation in patients with CSSs. Application of JAK inhibitors in preclinical CSS models has shown improvements in multiple sequelae of hyperinflammation, and there is growing clinical evidence supporting the efficacy of JAK inhibition in patients with these conditions. Although generally well tolerated, JAK inhibitor use is not without potential for toxicity, especially in settings like CSSs where end-organ dysfunction is common. More prospective clinical trials incorporating JAK inhibitors, alone or in combination with other immunomodulatory therapies, are necessary to determine the optimal dosing, schedule, efficacy, and tolerability of these agents for patients experiencing CSSs.
Collapse
Affiliation(s)
- Camille Keenan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sabrin Albeituni
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa Hines
- Department of Pediatric Medicine, Division of Critical Care Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
35
|
Behrens EM. Cytokines in Cytokine Storm Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:173-183. [PMID: 39117815 DOI: 10.1007/978-3-031-59815-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
As the eponymous mediators of the cytokine storm syndrome, cytokines are a pleomorphic and diverse set of soluble molecules that activate or suppress immune functions in a wide variety of ways. The relevant cytokines for each CSS are likely a result of differing combinations of environmental triggers and host susceptibilities. Because cytokines or their receptors may be specifically targeted by biologic therapeutics, understanding which cytokines are relevant for disease initiation and propagation for each unique CSS is of major clinical importance. This chapter will review what is known about the role of cytokines across the spectrum of CSS.
Collapse
Affiliation(s)
- Edward M Behrens
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Vastert SJ, Canny SP, Canna SW, Schneider R, Mellins ED. Cytokine Storm Syndrome Associated with Systemic Juvenile Idiopathic Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:323-353. [PMID: 39117825 DOI: 10.1007/978-3-031-59815-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cytokine storm syndrome (CSS) associated with systemic juvenile idiopathic arthritis (sJIA) has widely been referred to as macrophage activation syndrome (MAS). In this chapter, we use the term sJIA-associated CSS (sJIA-CSS) when referring to this syndrome and use the term MAS when referencing publications that specifically report on sJIA-associated MAS.
Collapse
Affiliation(s)
- Sebastiaan J Vastert
- Department of Paediatric Rheumatology & Immunology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Susan P Canny
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Scott W Canna
- Department of Pediatrics and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rayfel Schneider
- Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth D Mellins
- Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
37
|
Carcillo JA, Shakoory B. Cytokine Storm and Sepsis-Induced Multiple Organ Dysfunction Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:441-457. [PMID: 39117832 DOI: 10.1007/978-3-031-59815-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
There is extensive overlap of clinical features among familial or primary HLH (pHLH), reactive or secondary hemophagocytic lymphohistiocytosis (sHLH) [including macrophage activation syndrome (MAS) related to rheumatic diseases], and hyperferritinemic sepsis-induced multiple organ dysfunction syndrome (MODS); however, the distinctive pathobiology that causes hyperinflammatory process in each condition requires careful considerations for therapeutic decision-making. pHLH is defined by five or more of eight HLH-2004 criteria [1], where genetic impairment of natural killer (NK) cells or CD8+ cytolytic T cells results in interferon gamma (IFN-γ)-induced hyperinflammation regardless of triggering factors. Cytolytic treatments (e.g., etoposide) or anti-IFN-γ monoclonal antibody (emapalumab) has been effectively used to bridge the affected patients to hematopoietic stem cell transplant. Secondary forms of HLH also have normal NK cell number with decreased cytolytic function of varying degrees depending on the underlying and triggering factors. Although etoposide was uniformly used in sHLH/MAS in the past, the treatment strategy in different types of sHLH/MAS is increasingly streamlined to reflect the triggering/predisposing conditions, severity/progression, and comorbidities. Accordingly, in hyperferritinemic sepsis, the combination of hepatobiliary dysfunction (HBD) and disseminated intravascular coagulation (DIC) reflects reticuloendothelial system dysfunction and defines sepsis-associated MAS. It is demonstrated that as the innate immune response to infectious organism prolongs, it results in reduction in T cells and NK cells with subsequent lymphopenia even though normal cytolytic activity continues (Figs. 30.1, 30.2, 30.3, and 30.4). These changes allow free hemoglobin and pathogens to stimulate inflammasome activation in the absence of interferon-γ (IFN-γ) production that often responds to source control, intravenous immunoglobulin (IVIg), plasma exchange, and interleukin 1 receptor antagonist (IL-1Ra), similar to non-EBV, infection-induced HLH.
Collapse
Affiliation(s)
- Joseph A Carcillo
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Bita Shakoory
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Dulek D, Thomsen I. Infectious Triggers of Cytokine Storm Syndromes: Herpes Virus Family (Non-EBV). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:211-225. [PMID: 39117817 DOI: 10.1007/978-3-031-59815-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The herpesviruses are the most common infectious agents associated with both primary and secondary cytokine storm syndromes (CSS). While Epstein-Barr Virus (EBV) is most frequently reported in association with CSS, cytomegalovirus (CMV) and many other herpesviruses (e.g., herpes simplex virus, varicella zoster virus, and human herpesviruses 6 and 8) are clearly associated with CSS in children and adults. Immunocompromised hosts, whether due to primary immunodeficiency or secondary immune compromise (e.g., solid organ or stem cell transplantation), appear to be at particularly increased risk of herpesvirus-associated CSS. In this chapter, the association of the non-EBV herpesviruses with CSS will be discussed, including predisposing factors and treatment considerations.
Collapse
Affiliation(s)
- Daniel Dulek
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Isaac Thomsen
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
39
|
Tsoukas P, Yeung RSM. Kawasaki Disease-Associated Cytokine Storm Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:365-383. [PMID: 39117827 DOI: 10.1007/978-3-031-59815-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Kawasaki disease (KD) is a hyperinflammatory syndrome manifesting as an acute systemic vasculitis characterized by fever, nonsuppurative conjunctival injection, rash, oral mucositis, extremity changes, and cervical lymphadenopathy. KD predominantly affects young children and shares clinical features and immunobiology with other hyperinflammation syndromes including systemic juvenile idiopathic arthritis (sJIA) and multisystem inflammatory syndrome in children (MIS-C). Cytokine storm syndrome (CSS) is an acute complication in ~2% of KD patients; however, the incidence is likely underestimated as many clinical and laboratory features of both diseases overlap. CSS should be entertained when a child with KD is unresponsive to IVIG therapy with recalcitrant fever. Early recognition and prompt institution of immunomodulatory treatment can substantially reduce the mortality and morbidity of CSS in KD. Given the known pathogenetic role of IL-1β in both syndromes, the early use of IL-1 blockers in refractory KD with CSS deserves consideration.
Collapse
Affiliation(s)
- Paul Tsoukas
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rae S M Yeung
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Janka GE. History of Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:9-19. [PMID: 39117804 DOI: 10.1007/978-3-031-59815-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a severe cytokine storm syndrome (CSS), which until the turn of the century, was barely known but is now receiving increased attention. The history of HLH dates back to 1939 when it was first described in adults, to be followed in 1952 by the first description of its primary, familial form in children. Secondary forms of HLH are far more frequent and occur with infections, malignancies, metabolic diseases, iatrogenic immune suppression, and autoinflammatory/autoimmune diseases. Identification of the genetic defects leading to the defective function of natural killer (NK) cells and cytotoxic T cells as well as the corresponding mouse models have revolutionized our understanding of HLH and of immune function. Diagnosis relies on clinical and laboratory criteria; functional and genetic tests can help separate primary from secondary forms. Treatment with immunochemotherapy and hematopoietic stem cell transplantation has considerably improved survival in children with primary HLH, a formerly uniformly fatal disease.
Collapse
Affiliation(s)
- Gritta E Janka
- University Medical Center Hamburg, Department of Pediatric Hematology and Oncology, Hamburg, Germany.
| |
Collapse
|
41
|
Lee PY. Monocytic Phagocytes in the Immunopathogenesis of Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:161-171. [PMID: 39117814 DOI: 10.1007/978-3-031-59815-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cytokine storm syndromes (CSSs) are caused by a dysregulated host immune response to an inciting systemic inflammatory trigger. This maladaptive and harmful immune response culminates in collateral damage to host tissues resulting in life-threatening multisystem organ failure. Knowledge of the various immune cells that contribute to CSS pathogenesis has improved dramatically in the past decade. Monocytes, dendritic cells, and macrophages, collective known as monocytic phagocytes, are well-positioned within the immune system hierarchy to make key contributions to the initiation, propagation, and amplification of the hyperinflammatory response in CSS. The plasticity of monocytic phagocytes also makes them prime candidates for mediating immunoregulatory and tissue-healing functions in patients who recover from cytokine storm-mediated immunopathology. Therefore, approaches to manipulate the myriad functions of monocytic phagocytes may improve the clinical outcome of CSS.
Collapse
Affiliation(s)
- Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Landy E, Varghese J, Dang V, Szymczak-Workman A, Kane LP, Canna SW. Complementary HLH susceptibility factors converge on CD8 T-cell hyperactivation. Blood Adv 2023; 7:6949-6963. [PMID: 37738167 PMCID: PMC10690564 DOI: 10.1182/bloodadvances.2023010502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening hyperinflammatory syndromes. Familial HLH is caused by genetic impairment of granule-mediated cytotoxicity (eg, perforin deficiency). MAS is linked to excess activity of the inflammasome-activated cytokine interleukin-18 (IL-18). Though individually tolerated, mice with dual susceptibility (Prf1⁻/⁻Il18tg; DS) succumb to spontaneous, lethal hyperinflammation. We hypothesized that understanding how these susceptibility factors synergize would uncover key pathomechanisms in the activation, function, and persistence of hyperactivated CD8 T cells. In IL-18 transgenic (Il18tg) mice, IL-18 effects on CD8 T cells drove MAS after a viral (lymphocytic choriomeningitis virus), but not innate (toll like receptor 9), trigger. In vitro, CD8 T cells also required T-cell receptor (TCR) stimulation to fully respond to IL-18. IL-18 induced but perforin deficiency impaired immunoregulatory restimulation-induced cell death (RICD). Paralleling hyperinflammation, DS mice displayed massive postthymic oligoclonal CD8 T-cell hyperactivation in their spleens, livers, and bone marrow as early as 3 weeks. These cells increased proliferation and interferon gamma production, which contrasted with increased expression of receptors and transcription factors associated with exhaustion. Broad-spectrum antibiotics and antiretrovirals failed to ameliorate the disease. Attempting to genetically "fix" TCR antigen-specificity instead demonstrated the persistence of spontaneous HLH and hyperactivation, chiefly on T cells that had evaded TCR fixation. Thus, drivers of HLH may preferentially act on CD8 T cells: IL-18 amplifies activation and demand for RICD, whereas perforin supplies critical immunoregulation. Together, these factors promote a terminal CD8 T-cell activation state, combining features of exhaustion and effector function. Therefore, susceptibility to hyperinflammation may converge on a unique, unrelenting, and antigen-dependent state of CD8 T-cell hyperactivation.
Collapse
Affiliation(s)
- Emily Landy
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Jemy Varghese
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Vinh Dang
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Lawrence P. Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Scott W. Canna
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
43
|
Mizuta M, Inoue N, Shimizu M, Sakumura N, Yokoyama T, Kuroda R, Ikawa Y, Sugimoto N, Harada K, Yachie A, Wada T. Distinct roles of IL-18 and IL-1β in murine model of macrophage activation syndrome. J Allergy Clin Immunol 2023; 152:940-948.e6. [PMID: 37352976 DOI: 10.1016/j.jaci.2023.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND IL-18 and IL-1β play a central role in the pathogenesis of systemic juvenile idiopathic arthritis and its life-threatening complication, macrophage activation syndrome (MAS). OBJECTIVES This study aimed to clarify the role of IL-18 and IL-1β in the pathogenesis of MAS. METHODS We developed a mouse model to evaluate the role of each cytokine with Toll-like receptor 9 stimulation after continuous infusion with IL-18, IL-1β, and a combination of both for 7 days. The symptoms and laboratory findings were compared among the IL-18, IL-1β, and combination (IL-18+IL-1β) groups. RESULTS Body weight was significantly decreased in the IL-1β and combination groups. Splenomegaly was observed in all groups, whereas hepatomegaly was noted in the IL-18 group only. Decreased T-cell numbers, anemia, and thrombocytopenia were observed in the combination group. IFN-γ, CXCL9, and IL-12A mRNA levels were upregulated and IL-10 mRNA levels in the spleen were downregulated in the IL-18 group. Hepatomegaly and splenomegaly in the IL-18 group were observed in a dose-dependent manner. TNF-α, CXCL9, and IL-12A mRNA levels were upregulated only in those mice with extremely elevated plasma IL-18 levels. CONCLUSION IL-18 and IL-1β have distinct roles in the pathogenesis of MAS. Dual blockade of IL-18 and IL-1β might be necessary to treat MAS.
Collapse
Affiliation(s)
- Mao Mizuta
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Natsumi Inoue
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masaki Shimizu
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Naoto Sakumura
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tadafumi Yokoyama
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Rie Kuroda
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhiro Ikawa
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Naotoshi Sugimoto
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenichi Harada
- Department of Human Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akihiro Yachie
- Division of Patient Safety, Kanazawa University Hospital, Kanazawa, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
44
|
Wu J, Xiong X, Hu X. Electroacupuncture Alleviates Lung Injury in CpG1826-Challenged Mice via Modulating CD39-NLRP3 Pathway. J Inflamm Res 2023; 16:3245-3258. [PMID: 37555014 PMCID: PMC10406113 DOI: 10.2147/jir.s413892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE Cytokine storm secondary lung injury (CSSLI) is the leading death cause in COVID-19 virus infection, and CD39-dominated purinergic brake drives NLRP3 inflammasome activation and pyroptosis, which plays a crucial role in the pathogenesis of CSSLI. Though electroacupuncture (EA) can alleviate lung injury caused by a variety of inducers, its effect on CSSLI and the underlying mechanism needs further investigation. METHODS We established a widely recognized CSSLI mice model with CpG1826 (CpG), a TLR-9 agonist agent. Luminex liquid chip was employed to detect serum levels of 12 cytokines/chemokines to evaluate cytokine storm formation. H+E staining and transmission electron microscope were applied to examine pulmonary pathological injury and alveolar macrophage structure, respectively. IL-1β, IL-18, IL-1α, and HMGB-1 in BAL fluid were determined by ELISA kits. mRNA and protein levels of lung CD39 and NLRP3 were assessed by qRT-PCR and Western blotting. An in vitro model was also established by incubating PMA-differentiated THP-1 cells with serum samples obtained from relevant group of mice. RESULTS Repeated CpG induced CSSLI together with the elevation of 11 cytokines/chemokines including GM-CSF, IL-16, IL-1α, MCP-1, IL-2, IL-10, CCL3, IL-1β, TNF-α, IL-6, and IL-17A, though not IFN-γ, which was reduced by EA pretreatment to a different extent. EA also alleviated lung injury and recovered lung macrophage structure. Moreover, CpG enhanced IL-1β and IL-18 level in BAL fluid, promoted NLRP3, while suppressing CD39 expression in lung, all of which were reversed by EA pretreatment. Of note, EA failed to further decrease BAL fluid IL-1β, IL-18, IL-1α, and HMGB-1 levels when A438079, a selective inhibitor of P2X7, was administered. However, both CD39 and NLRP3 are dispensable for EA decreasing multi-cytokine secretion in serum-incubated and CpG-stimulated THP-1 cells. Taken together, EA alleviated CSSLI in CpG-challenged mice by regulating the CD39-NLRP3 pathway in a P2X7-dependent way. CONCLUSION EA demonstrated potential to be applied in COVID-19 treatment.
Collapse
Affiliation(s)
- Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Xin Xiong
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Xiumin Hu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
45
|
Diamond T, Lau M, Morrissette J, Chu N, Behrens EM. CXCL9 inhibition does not ameliorate disease in murine models of both primary and secondary hemophagocytic lymphohistiocytosis. Sci Rep 2023; 13:12298. [PMID: 37516815 PMCID: PMC10387083 DOI: 10.1038/s41598-023-39601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023] Open
Abstract
Hemophagocytic Lymphohistiocytosis (HLH) is a group of disorders culminating in systemic inflammation and multi-organ failure with high incidence of hepatic dysfunction. Overproduction of IFN-γ is the main immunopathological driver in this disorder. Monokine induced by IFN-γ (CXCL9) serves as a biomarker for disease activity and response to treatment in this disorder. However, very little is understood about the actual functional role of CXCL9 in pathogenesis in HLH. In the current study, we sought to determine the role of CXCL9 in pathogenesis in murine models of both Familial HLH (prf1-/-) and Toll Like Receptor (TLR) 9 repeated stimulation induced Macrophage Activation Syndrome (MAS), a form of secondary HLH. FHL and MAS were induced in both CXCL9 genetically deficient mice (cxcl9-/-) and controls as well as using AMG487, a pharmacological antagonist of the CXCL9 receptor, CXCR3. Results showed that CXCL9 genetic deficiency did not improve disease parameters or hepatitis in both models. Consistent with genetic ablation of CXCL9, inhibition of its receptor, CXCR3, by AMG487 did not show any significant effects in the FHL model. Taken together, inhibition of CXCL9-CXCR3 interaction does not ameliorate HLH physiology in general, or hepatitis as a classical target organ of disease.
Collapse
Affiliation(s)
- Tamir Diamond
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Michelle Lau
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeremy Morrissette
- Department of Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Niansheng Chu
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edward M Behrens
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
46
|
Xu J, Kong L, Oliver BA, Li B, Creasey EA, Guzman G, Schenone M, Carey KL, Carr SA, Graham DB, Deguine J, Xavier RJ. Constitutively active autophagy in macrophages dampens inflammation through metabolic and post-transcriptional regulation of cytokine production. Cell Rep 2023; 42:112708. [PMID: 37392388 PMCID: PMC10503440 DOI: 10.1016/j.celrep.2023.112708] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/24/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
Autophagy is an essential cellular process that is deeply integrated with innate immune signaling; however, studies that examine the impact of autophagic modulation in the context of inflammatory conditions are lacking. Here, using mice with a constitutively active variant of the autophagy gene Beclin1, we show that increased autophagy dampens cytokine production during a model of macrophage activation syndrome and in adherent-invasive Escherichia coli (AIEC) infection. Moreover, loss of functional autophagy through conditional deletion of Beclin1 in myeloid cells significantly enhances innate immunity in these contexts. We further analyzed primary macrophages from these animals with a combination of transcriptomics and proteomics to identify mechanistic targets downstream of autophagy. Our study reveals glutamine/glutathione metabolism and the RNF128/TBK1 axis as independent regulators of inflammation. Altogether, our work highlights increased autophagic flux as a potential approach to reduce inflammation and defines independent mechanistic cascades involved in this control.
Collapse
Affiliation(s)
- Jinjin Xu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lingjia Kong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Blayne A Oliver
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bihua Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Elizabeth A Creasey
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gaelen Guzman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Monica Schenone
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacques Deguine
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
47
|
Abstract
Maintaining the correct number of healthy red blood cells (RBCs) is critical for proper oxygenation of tissues throughout the body. Therefore, RBC homeostasis is a tightly controlled balance between RBC production and RBC clearance, through the processes of erythropoiesis and macrophage hemophagocytosis, respectively. However, during the inflammation associated with infectious, autoimmune, or inflammatory diseases this homeostatic process is often dysregulated, leading to acute or chronic anemia. In each disease setting, multiple mechanisms typically contribute to the development of inflammatory anemia, impinging on both sides of the RBC production and RBC clearance equation. These mechanisms include both direct and indirect effects of inflammatory cytokines and innate sensing. Here, we focus on common innate and adaptive immune mechanisms that contribute to inflammatory anemias using examples from several diseases, including hemophagocytic lymphohistiocytosis/macrophage activation syndrome, severe malarial anemia during Plasmodium infection, and systemic lupus erythematosus, among others.
Collapse
Affiliation(s)
- Susan P Canny
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Susana L Orozco
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
| | - Natalie K Thulin
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jessica A Hamerman
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
48
|
Lee PY, Cron RQ. The Multifaceted Immunology of Cytokine Storm Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1015-1024. [PMID: 37011407 PMCID: PMC10071410 DOI: 10.4049/jimmunol.2200808] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 04/05/2023]
Abstract
Cytokine storm syndromes (CSSs) are potentially fatal hyperinflammatory states that share the underpinnings of persistent immune cell activation and uninhibited cytokine production. CSSs can be genetically determined by inborn errors of immunity (i.e., familial hemophagocytic lymphohistiocytosis) or develop as a complication of infections, chronic inflammatory diseases (e.g., Still disease), or malignancies (e.g., T cell lymphoma). Therapeutic interventions that activate the immune system such as chimeric Ag receptor T cell therapy and immune checkpoint inhibition can also trigger CSSs in the setting of cancer treatment. In this review, the biology of different types of CSSs is explored, and the current knowledge on the involvement of immune pathways and the contribution of host genetics is discussed. The use of animal models to study CSSs is reviewed, and their relevance for human diseases is discussed. Lastly, treatment approaches for CSSs are discussed with a focus on interventions that target immune cells and cytokines.
Collapse
Affiliation(s)
- Pui Y. Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Randy Q. Cron
- Division of Pediatric Rheumatology, Children’s of Alabama, University of Alabama Heersink School of Medicine, Birmingham, AL
- Department of Pediatrics, University of Alabama Heersink School of Medicine, Birmingham, AL
| |
Collapse
|
49
|
Inoue N, Schulert GS. Mouse models of systemic juvenile idiopathic arthritis and macrophage activation syndrome. Arthritis Res Ther 2023; 25:48. [PMID: 36964620 PMCID: PMC10039518 DOI: 10.1186/s13075-023-03032-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/16/2023] [Indexed: 03/26/2023] Open
Abstract
Macrophage activation syndrome (MAS) is a life-threatening complication of pediatric rheumatic diseases, occurring most commonly in children with systemic juvenile idiopathic arthritis (SJIA). Despite several classes of currently available treatment options for SJIA, including biologic agents targeting IL-1 or IL-6, there remain severe cases suffering from refractory disease and recurrent MAS. The phenotype of MAS is similar to hemophagocytic lymphohistiocytosis (HLH), but the underlying pathophysiology of MAS complicating SJIA or other disorders has not been fully clarified. These facts make it challenging to develop and utilize animal models to study MAS. To date, there is no "perfect" model replicating MAS, but several models do demonstrate aspects of SJIA and/or MAS. In this review, we examine the proposed animal models of SJIA and MAS, focusing on how they reflect these disorders, what we have learned from the models, and potential future research questions. As we better understand the key features of each, animal models can be powerful tools to further define the pathophysiology of SJIA and MAS, and develop new treatment targets and strategies.
Collapse
Affiliation(s)
- Natsumi Inoue
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, MLC 4010, USA.
| |
Collapse
|
50
|
Dillemans L, De Somer L, Neerinckx B, Proost P. A review of the pleiotropic actions of the IFN-inducible CXC chemokine receptor 3 ligands in the synovial microenvironment. Cell Mol Life Sci 2023; 80:78. [PMID: 36862204 PMCID: PMC11071919 DOI: 10.1007/s00018-023-04715-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood circulation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon (IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinating directional trafficking of CD4+ TH1 cells, CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selective depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and infiltrated and resident cells present in the inflamed joints.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|