1
|
Huang Y, Liu FY, Yang JT, Zhao Q, Zhu MQ, Wang J, Long SY, Tuo QH, Zhang CP, Lin LM, Liao DF. Curcumin nicotinate increases LDL cholesterol uptake in hepatocytes through IDOL/LDL-R pathway regulation. Eur J Pharmacol 2024; 966:176352. [PMID: 38290567 DOI: 10.1016/j.ejphar.2024.176352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Curcumin nicotinate (Curtn), derived from curcumin and niacin, reduces serum LDL-C levels, partly due to its influence on PCSK9. This study investigates IDOL's role in Curtn's lipid-lowering effects. OBJECTIVE To elucidate Curtn's regulation of the IDOL/LDLR pathway and potential molecular mechanisms in hepatocytes. METHODS Differential metabolites in Curtn-treated HepG2 cells were identified via LC-MS. Molecular docking assessed Curtn's affinity with IDOL. Cholesterol content and LDLR expression effects were studied in high-fat diet Wistar rats. In vitro evaluations determined Curtn's influence on IDOL overexpression's LDL-C uptake and LDLR expression in hepatocytes. RESULTS Lipids were the main differential metabolites in Curtn-treated HepG2 cells. Docking showed Curtn's higher affinity to IDOL's FERM domain compared to curcumin, suggesting potential competitive inhibition of IDOL's binding to LDLR. Curtn decreased liver cholesterol in Wistar rats and elevated LDLR expression. During in vitro experiments, Curtn significantly enhanced the effects of IDOL overexpression in HepG2 cells, leading to increased LDL-C uptake and elevated expression of LDL receptors. CONCLUSION Curtn modulates the IDOL/LDLR pathway, enhancing LDL cholesterol uptake in hepatocytes. Combined with its PCSK9 influence, Curtn emerges as a potential hyperlipidemia therapy.
Collapse
Affiliation(s)
- Ying Huang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Med-icine, Changsha, 410208, Hunan, China; Shenzhen Samii Medical Center, Shenzhen, 518118, Guangdong, China.
| | - Fang-Yuan Liu
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Jia-Tao Yang
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qian Zhao
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Mei-Qi Zhu
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Jing Wang
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Shi-Yin Long
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Med-icine, Changsha, 410208, Hunan, China.
| | - Cai-Ping Zhang
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Li-Mei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Med-icine, Changsha, 410208, Hunan, China.
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Med-icine, Changsha, 410208, Hunan, China.
| |
Collapse
|
2
|
Le HH, Hagen MW, Louey S, Tavori H, Thornburg KL, Giraud GD, Hinds MT, Barnes AP. Development of a novel Guinea Pig model producing transgenerational endothelial transcriptional changes driven by maternal food restriction and a second metabolic insult of high fat diet. Front Physiol 2023; 14:1266444. [PMID: 37942229 PMCID: PMC10628814 DOI: 10.3389/fphys.2023.1266444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
Developmental programming of chronic adverse cardiovascular health outcomes has been studied both using numerous human populations and an array of animal models. However, the mechanisms that produce transgenerational effects have been difficult to study due to a lack of developmentally relevant models. As such, how increased disease risk is carried to the second generation has been poorly studied. We hypothesized that the endothelium which mediates many acute and chronic vascular inflammatory responses is a key player in these effects, and epidemiological studies implicate transgenerational nutritional effects on endothelial health. To study the mutigenerational effects of maternal undernutrition on offspring endothelial health, we developed a model of transgenerational nutritional stress in guinea pigs, a translationally relevant precocial species with a relatively short lifespan. First- and second-generation offspring were subjected to a high fat diet in adolescence to exacerbate negative cardiovascular health. To assess transcriptional changes, we performed bulk RNA-sequencing in carotid artery endothelial cells, with groups stratified as prenatal control or food restricted, and postnatal control or high fat diet. We detected statistically significant gene alterations for each dietary permutation, some of which were unique to treatments and other transcriptional signatures shared by multiple or all conditions. These findings highlight a core group of genes altered by high fat diet that is shared by all cohorts and a divergence of transgenerational effects between the prenatal ad libitum and dietary restriction groups. This study establishes the groundwork for this model to be used to better understand the interplay of prenatal stress and genetic reprogramming.
Collapse
Affiliation(s)
- Hillary H. Le
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| | - Matthew W. Hagen
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| | - Samantha Louey
- Center for Developmental Health, Portland, OR, United States
- Knight Cardiovascular Institute, Portland, OR, United States
| | - Hagai Tavori
- Knight Cardiovascular Institute, Portland, OR, United States
| | - Kent L. Thornburg
- Center for Developmental Health, Portland, OR, United States
- Knight Cardiovascular Institute, Portland, OR, United States
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - George D. Giraud
- Center for Developmental Health, Portland, OR, United States
- Knight Cardiovascular Institute, Portland, OR, United States
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
- Center for Developmental Health, Portland, OR, United States
| | | |
Collapse
|
3
|
Pan-Lizcano R, Mariñas-Pardo L, Núñez L, Rebollal-Leal F, López-Vázquez D, Pereira A, Molina-Nieto A, Calviño R, Vázquez-Rodríguez JM, Hermida-Prieto M. Rare Variants in Genes of the Cholesterol Pathway Are Present in 60% of Patients with Acute Myocardial Infarction. Int J Mol Sci 2022; 23:ijms232416127. [PMID: 36555767 PMCID: PMC9786046 DOI: 10.3390/ijms232416127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Acute myocardial infarction (AMI) is a pandemic in which conventional risk factors are inadequate to detect who is at risk early in the asymptomatic stage. Although gene variants in genes related to cholesterol, which may increase the risk of AMI, have been identified, no studies have systematically screened the genes involved in this pathway. In this study, we included 105 patients diagnosed with AMI with an elevation of the ST segment (STEMI) and treated with primary percutaneous coronary intervention (PPCI). Using next-generation sequencing, we examined the presence of rare variants in 40 genes proposed to be involved in lipid metabolism and we found that 60% of AMI patients had a rare variant in the genes involved in the cholesterol pathway. Our data show the importance of considering the wide scope of the cholesterol pathway in order to assess the genetic risk related to AMI.
Collapse
Affiliation(s)
- Ricardo Pan-Lizcano
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Luis Mariñas-Pardo
- Facultad de Ciencias de la Salud, Universidad Internacional de Valencia (VIU), 46002 Valencia, Spain
| | - Lucía Núñez
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Departamento de Ciencias de la Salud, GRINCAR Research Group, Universidade da Coruña, 15403 A Coruña, Spain
- Correspondence: ; Tel.: +34-981-178-150
| | - Fernando Rebollal-Leal
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Domingo López-Vázquez
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Ana Pereira
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Aranzazu Molina-Nieto
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Ramón Calviño
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- CIBERCV (Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose Manuel Vázquez-Rodríguez
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- CIBERCV (Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Hermida-Prieto
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
| |
Collapse
|
4
|
Idol Depletion Protects against Spontaneous Atherosclerosis in a Hamster Model of Familial Hypercholesterolemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1889632. [PMID: 35656026 PMCID: PMC9155911 DOI: 10.1155/2022/1889632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
Inducible degrader of low-density lipoprotein (LDL) receptor (Idol) is an E3 ubiquitin ligase coded by Idol, the target gene of liver X receptor (LXR), which primarily mediates the ubiquitination and lysosomal degradation of low-density lipoprotein receptor (LDLR). Previous studies from independent groups have shown that plasma cholesterol regulation by the LXR-Idol-LDLR axis is tissue- and species-specific, indicating that the precise molecular mechanism by which Idol modulates lipid metabolism has not been completely understood and needs to be further validated in other species. Hamster, a small rodent animal model expressing endogenous cholesterol ester transfer protein (CETP), possesses many metabolic characteristics that are different from mouse but similar to human. In this study, an Idol knockout (Idol−/−) hamster model was developed using CRISPR/Cas9 gene editing system to investigate the effect of Idol depletion on plasma lipid metabolism and atherosclerosis. Our results showed that there were no significant differences in hepatic LDLR protein and plasma cholesterol levels in Idol−/− hamsters compared with wild-type (WT) controls, which was consistent with the observation that LXR agonist treatment increased the expression of Idol mRNA in the small intestine but not in the liver of WT hamsters. However, we found that plasma triglyceride (TG) levels were significantly reduced in Idol−/− hamsters due to an enhancement of TG clearance. In addition, the morphological data demonstrated that inactivation of Idol significantly lowered plasma total cholesterol and TG levels and protected against spontaneous atherosclerotic lesions in aged LDLR knockout hamsters on a chow diet but had no effect on diet-induced atherosclerosis in hamsters lacking one copy of the Ldlr gene. In conclusion, our findings suggest that Idol can regulate plasma lipid metabolism and atherosclerosis independent of LDLR function.
Collapse
|
5
|
Pharmacogenomics of statins: lipid response and other outcomes in Brazilian cohorts. Pharmacol Rep 2021; 74:47-66. [PMID: 34403130 DOI: 10.1007/s43440-021-00319-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 01/20/2023]
Abstract
Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in cholesterol biosynthesis, that are highly effective in reducing plasma low-density lipoprotein (LDL) cholesterol and decreasing the risk of cardiovascular events. In recent years, a multitude of variants in genes involved in pharmacokinetics (PK) and pharmacodynamics (PD) have been suggested to influence the cholesterol-lowering response. However, the vast majority of studies have analyzed the pharmacogenetic associations in populations in Europe and the USA, whereas data in other populations, including Brazil, are mostly lacking. This narrative review provides an update of clinical studies on statin pharmacogenomics in Brazilian cohorts exploring lipid-lowering response, adverse events and pleiotropic effects. We find that variants in drug transporter genes (SLCO1B1 and ABCB1) positively impacted atorvastatin and simvastatin response, whereas variants in genes of drug metabolizing enzymes (CYP3A5) decreased response. Furthermore, multiple associations of variants in PD genes (HMGCR, LDLR and APOB) with statin response were identified. Few studies have explored statin-related adverse events, and only ABCB1 but not SLCO1B1 variants were robustly associated with increased risk in Brazil. Statin-related pleiotropic effects were shown to be influenced by variants in PD (LDLR, NR1H2) and antioxidant enzyme (NOS3, SOD2, MTHFR, SELENOP) genes. The findings of these studies indicate that statin pharmacogenomic associations are distinctly different in Brazil compared to other populations. This review also discusses the clinical implications of pharmacogenetic studies and the rising importance of investigating rare variants to explore their association with statin response.
Collapse
|
6
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
7
|
Adi D, Abuzhalihan J, Tao J, Wu Y, Wang YH, Liu F, Yang YN, Ma X, Li XM, Xie X, Fu ZY, Ma YT. Genetic polymorphism of IDOL gene was associated with the susceptibility of coronary artery disease in Han population in Xinjiang, China. Hereditas 2021; 158:12. [PMID: 33845890 PMCID: PMC8042894 DOI: 10.1186/s41065-021-00178-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/04/2021] [Indexed: 12/17/2022] Open
Abstract
Background Coronary artery disease (CAD) is the leading cause of death worldwide. In this study, we aimed to explore whether some genetic variants of the human IDOL gene were associated with CAD among Chinese population in Xinjiang. Methods We designed two independent case–control studies. The first one included in the Han population (448 CAD patients and 343 controls), and the second one is the Uygur population (304 CAD patients and 318 controls). We genotyped three SNPs (rs2072783, rs2205796, and rs909562) of the IDOL gene. Results Our results revealed that, in the Han female subjects, for rs2205796, the distribution of alleles, dominant model (TT vs. GG + GT) and the additive model (GG + TT vs. GT) showed significant differences between CAD patients and the control subjects (P = 0.048, P = 0.014, and P = 0.032, respectively). Conclusions The rs2205796 polymorphism of the IDOL gene is associated with CAD in the Chinese Han female population in Xinjiang, China.
Collapse
Affiliation(s)
- Dilare Adi
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Jialin Abuzhalihan
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Jing Tao
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, P.R. China
| | - Yun Wu
- Department of General Practice, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China
| | - Ying-Hong Wang
- Health Checkup Department of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China.
| |
Collapse
|
8
|
Wang JQ, Lin ZC, Li LL, Zhang SF, Li WH, Liu W, Song BL, Luo J. SUMOylation of the ubiquitin ligase IDOL decreases LDL receptor levels and is reversed by SENP1. J Biol Chem 2020; 296:100032. [PMID: 33154164 PMCID: PMC7948399 DOI: 10.1074/jbc.ra120.015420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
Inducible degrader of the low-density lipoprotein receptor (IDOL) is an E3 ubiquitin ligase mediating degradation of low-density lipoprotein (LDL) receptor (LDLR). IDOL also controls its own stability through autoubiquitination, primarily at lysine 293. Whether IDOL may undergo other forms of posttranslational modification is unknown. In this study, we show that IDOL can be modified by small ubiquitin-like modifier 1 at the K293 residue at least. The SUMOylation of IDOL counteracts its ubiquitination and augments IDOL protein levels. SUMOylation and the associated increase of IDOL protein are effectively reversed by SUMO-specific peptidase 1 (SENP1) in an activity-dependent manner. We further demonstrate that SENP1 affects LDLR protein levels by modulating IDOL. Overexpression of SENP1 increases LDLR protein levels and enhances LDL uptake in cultured cells. On the contrary, loss of SENP1 lowers LDLR levels in an IDOL-dependent manner and reduces LDL endocytosis. Collectively, our results reveal SUMOylation as a new regulatory posttranslational modification of IDOL and suggest that SENP1 positively regulates the LDLR pathway via deSUMOylation of IDOL and may therefore be exploited for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ju-Qiong Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zi-Cun Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liang-Liang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shao-Fang Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei-Hui Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Adi D, Abuzhalihan J, Wang YH, Baituola G, Wu Y, Xie X, Fu ZY, Yang YN, Ma X, Li XM, Chen BD, Liu F, Ma YT. IDOL gene variant is associated with hyperlipidemia in Han population in Xinjiang, China. Sci Rep 2020; 10:14280. [PMID: 32868861 PMCID: PMC7459279 DOI: 10.1038/s41598-020-71241-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperlipidemia is one of the main risk factors that contributed to atherosclerosis and coronary artery disease (CAD). In the present study, our objective was to explore whether some genetic variants of human IDOL gene were associated with hyperlipidemia among Han population in Xinjiang, China. We designed a case–control study. A total of 1,172 subjects (588 diagnosed hyperlipidemia cases and 584 healthy controls) of Chinese Han were recruited. We genotyped three SNPs (rs9370867, rs909562, and rs2072783) of IDOL gene in all subjects by using the improved multiplex ligation detection reaction (iMLDR) method. Our study demonstrated that the distribution of the genotypes, the dominant model (AA vs GG + GA), and the overdominant model (AA + GG vs GA) of the rs9370867 SNP had significant differences between the case group and controls (all P < 0.001). For rs909562 and rs2072783, the distribution of the genotypes, the recessive model (AA + GA vs GG) showed significant differences between the case subjects and controls (P = 0.002, P = 0.007 and P = 0.045, P = 0.02, respectively). After multivariate adjustment for several confounders, the rs9370867 SNP is still an independent risk factor for hyperlipidemia [odds ratio (OR) = 1.380, 95% confidence interval (CI) = 1.201–1.586, P < 0.001]. The rs9370867 of human IDOL gene was associated with hyperlipidemia in Han population.
Collapse
Affiliation(s)
- Dilare Adi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Jialin Abuzhalihan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Ying-Hong Wang
- Health Checkup Department of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Gulinaer Baituola
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Yun Wu
- Department of General Practice, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Xiang Xie
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Zhen-Yan Fu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Yi-Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Xiang Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Xiao-Mei Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Bang-Dang Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Yi-Tong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China.
| |
Collapse
|
10
|
Identification of novel genetic variants associated with cardiorespiratory fitness. Prog Cardiovasc Dis 2020; 63:341-349. [DOI: 10.1016/j.pcad.2020.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/06/2023]
|
11
|
Card DC, Adams RH, Schield DR, Perry BW, Corbin AB, Pasquesi GIM, Row K, Van Kleeck MJ, Daza JM, Booth W, Montgomery CE, Boback SM, Castoe TA. Genomic Basis of Convergent Island Phenotypes in Boa Constrictors. Genome Biol Evol 2020; 11:3123-3143. [PMID: 31642474 PMCID: PMC6836717 DOI: 10.1093/gbe/evz226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Convergent evolution is often documented in organisms inhabiting isolated environments with distinct ecological conditions and similar selective regimes. Several Central America islands harbor dwarf Boa populations that are characterized by distinct differences in growth, mass, and craniofacial morphology, which are linked to the shared arboreal and feast-famine ecology of these island populations. Using high-density RADseq data, we inferred three dwarf island populations with independent origins and demonstrate that selection, along with genetic drift, has produced both divergent and convergent molecular evolution across island populations. Leveraging whole-genome resequencing data for 20 individuals and a newly annotated Boa genome, we identify four genes with evidence of phenotypically relevant protein-coding variation that differentiate island and mainland populations. The known roles of these genes involved in body growth (PTPRS, DMGDH, and ARSB), circulating fat and cholesterol levels (MYLIP), and craniofacial development (DMGDH and ARSB) in mammals link patterns of molecular evolution with the unique phenotypes of these island forms. Our results provide an important genome-wide example for quantifying expectations of selection and convergence in closely related populations. We also find evidence at several genomic loci that selection may be a prominent force of evolutionary change—even for small island populations for which drift is predicted to dominate. Overall, while phenotypically convergent island populations show relatively few loci under strong selection, infrequent patterns of molecular convergence are still apparent and implicate genes with strong connections to convergent phenotypes.
Collapse
Affiliation(s)
- Daren C Card
- Department of Biology, University of Texas Arlington.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts.,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts
| | | | | | - Blair W Perry
- Department of Biology, University of Texas Arlington
| | | | | | | | | | - Juan M Daza
- Grupo Herpetológico de Antioquia, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Warren Booth
- Department of Biological Science, University of Tulsa, Oklahoma
| | | | - Scott M Boback
- Department of Biology, Dickinson College, Carlisle, Pennsylvania
| | - Todd A Castoe
- Department of Biology, University of Texas Arlington
| |
Collapse
|
12
|
Adi D, Lu XY, Fu ZY, Wei J, Baituola G, Meng YJ, Zhou YX, Hu A, Wang JK, Lu XF, Wang Y, Song BL, Ma YT, Luo J. IDOL G51S Variant Is Associated With High Blood Cholesterol and Increases Low-Density Lipoprotein Receptor Degradation. Arterioscler Thromb Vasc Biol 2019; 39:2468-2479. [DOI: 10.1161/atvbaha.119.312589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective:
A high level of LDL-C (low-density lipoprotein cholesterol) is a major risk factor for cardiovascular disease. The E3 ubiquitin ligase named IDOL (inducible degrader of the LDLR [LDL receptor]; also known as MYLIP [myosin regulatory light chain interacting protein]) mediates degradation of LDLR through ubiquitinating its C-terminal tail. But the expression profile of IDOL differs greatly in the livers of mice and humans. Whether IDOL is able to regulate LDL-C levels in humans remains to be determined.
Approach and Results:
By using whole-exome sequencing, we identified a nonsynonymous variant rs149696224 in the
IDOL
gene that causes a G51S (Gly-to-Ser substitution at the amino acid site 51) from a Chinese Uygur family. Large cohort analysis revealed IDOL G51S carriers (+/G51S) displayed significantly higher LDL-C levels. Mechanistically, the G51S mutation stabilized IDOL protein by inhibiting its dimerization and preventing self-ubiquitination and subsequent proteasomal degradation. IDOL(G51S) exhibited a stronger ability to promote ubiquitination and degradation of LDLR. Adeno-associated virus-mediated expression of IDOL(G51S) in mouse liver decreased hepatic LDLR and increased serum levels of LDL-C, total cholesterol, and triglyceride.
Conclusions:
Our study demonstrates that IDOL(G51S) is a gain-of-function variant responsible for high LDL-C in both humans and mice. These results suggest that IDOL is a key player regulating cholesterol level in humans.
Collapse
Affiliation(s)
- Dilare Adi
- From the Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Xiao-Yi Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Zhen-Yan Fu
- From the Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
| | - Jian Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Gulinaer Baituola
- From the Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
| | - Ya-Jie Meng
- The People’s Hospital Nanchuan, Chongqing, China (Y.-J.M.)
| | - Yu-Xia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Ao Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Jin-Kai Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Xiang-Feng Lu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (X.-F.L.)
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Yi-Tong Ma
- From the Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| |
Collapse
|
13
|
Yang HX, Zhang M, Long SY, Tuo QH, Tian Y, Chen JX, Zhang CP, Liao DF. Cholesterol in LDL receptor recycling and degradation. Clin Chim Acta 2019; 500:81-86. [PMID: 31770510 DOI: 10.1016/j.cca.2019.09.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/26/2022]
Abstract
The SREBP2/LDLR pathway is sensitive to cholesterol content in the endoplasmic reticulum (ER), while membrane low-density lipoprotein receptor (LDLR) is influenced by sterol response element binding protein 2 (SREBP2), pro-protein convertase subtilisin/kexin type 9 (PCSK9) and inducible degrader of LDLR (IDOL). LDL-C, one of the risk factors in cardiovascular disease, is cleared through endocytosis recycling of LDLR. Therefore, we propose that a balance between LDLR endocytosis recycling and PCSK9-mediated and IDOL-mediated lysosomal LDLR degradation is responsible for cholesterol homeostasis in the ER. For statins that decrease serum LDL-C levels via cholesterol synthesis inhibition, the mechanism by which the statins increase the membrane LDLR may be regulated by cholesterol homeostasis in the ER.
Collapse
Affiliation(s)
- Hui-Xian Yang
- Institute of Cardiovascular Disease, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China; Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Min Zhang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Shi-Yin Long
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Qin-Hui Tuo
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, 300# Xueshi Rd., Hanpu Science & Education District, Changsha 410208, Hunan, China
| | - Ying Tian
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Jian-Xiong Chen
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, 300# Xueshi Rd., Hanpu Science & Education District, Changsha 410208, Hunan, China; Department Pharmacology & Toxicology, University of Mississippi Medical Center, USA
| | - Cai-Ping Zhang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China.
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, 300# Xueshi Rd., Hanpu Science & Education District, Changsha 410208, Hunan, China.
| |
Collapse
|
14
|
Lee SD, Priest C, Bjursell M, Gao J, Arneson DV, Ahn IS, Diamante G, van Veen JE, Massa MG, Calkin AC, Kim J, Andersén H, Rajbhandari P, Porritt M, Carreras A, Ahnmark A, Seeliger F, Maxvall I, Eliasson P, Althage M, Åkerblad P, Lindén D, Cole TA, Lee R, Boyd H, Bohlooly-Y M, Correa SM, Yang X, Tontonoz P, Hong C. IDOL regulates systemic energy balance through control of neuronal VLDLR expression. Nat Metab 2019; 1:1089-1100. [PMID: 32072135 PMCID: PMC7028310 DOI: 10.1038/s42255-019-0127-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver X receptors limit cellular lipid uptake by stimulating the transcription of Inducible Degrader of the LDL Receptor (IDOL), an E3 ubiquitin ligase that targets lipoprotein receptors for degradation. The function of IDOL in systemic metabolism is incompletely understood. Here we show that loss of IDOL in mice protects against the development of diet-induced obesity and metabolic dysfunction by altering food intake and thermogenesis. Unexpectedly, analysis of tissue-specific knockout mice revealed that IDOL affects energy balance, not through its actions in peripheral metabolic tissues (liver, adipose, endothelium, intestine, skeletal muscle), but by controlling lipoprotein receptor abundance in neurons. Single-cell RNA sequencing of the hypothalamus demonstrated that IDOL deletion altered gene expression linked to control of metabolism. Finally, we identify VLDLR rather than LDLR as the primary mediator of IDOL effects on energy balance. These studies identify a role for the neuronal IDOL-VLDLR pathway in metabolic homeostasis and diet-induced obesity.
Collapse
Affiliation(s)
- Stephen D Lee
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina Priest
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mikael Bjursell
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jie Gao
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas V Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Edward van Veen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna C Calkin
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason Kim
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harriet Andersén
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michelle Porritt
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alba Carreras
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrea Ahnmark
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Maxvall
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pernilla Eliasson
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Althage
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Åkerblad
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tracy A Cole
- Central Nervous System Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Richard Lee
- Central Nervous System Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Helen Boyd
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca; Cambridge Science Park, Cambridge, UK
| | | | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Blanco-Vaca F, Martin-Campos JM, Beteta-Vicente Á, Canyelles M, Martínez S, Roig R, Farré N, Julve J, Tondo M. Molecular analysis of APOB, SAR1B, ANGPTL3, and MTTP in patients with primary hypocholesterolemia in a clinical laboratory setting: Evidence supporting polygenicity in mutation-negative patients. Atherosclerosis 2019; 283:52-60. [PMID: 30782561 DOI: 10.1016/j.atherosclerosis.2019.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Primary hypobetalipoproteinemia is generally considered a heterogenic group of monogenic, inherited lipoprotein disorders characterized by low concentrations of LDL cholesterol and apolipoprotein B in plasma. Lipoprotein disorders include abetalipoproteinemia, familial hypobetalipoproteinemia, chylomicron retention disease, and familial combined hypolipidemia. Our aim was to review and analyze the results of the molecular analysis of hypolipidemic patients studied in our laboratory over the last 15 years. METHODS The study included 44 patients with clinical and biochemical data. Genomic studies were performed and genetic variants were characterized by bioinformatics analysis. A weighted LDL cholesterol gene score was calculated to evaluate common variants associated with impaired lipid concentrations and their distribution among patients. RESULTS Twenty-three patients were genetically confirmed as affected by primary hypobetalipoproteinemia. In this group of patients, the most prevalent mutated genes were APOB (in 17 patients, with eight novel mutations identified), SAR1B (in 3 patients, with one novel mutation identified), ANGPTL3 (in 2 patients), and MTTP (in 1 patient). The other 21 patients could not be genetically diagnosed with hypobetalipoproteinemia despite presenting suggestive clinical and biochemical features. In these patients, two APOB genetic variants associated with lower LDL cholesterol were more frequent than in controls. Moreover, the LDL cholesterol gene score, calculated with 11 SNPs, was significantly lower in mutation-negative patients. CONCLUSIONS Around half of the patients could be genetically diagnosed. The results suggest that, in at least some of the patients without an identified mutation, primary hypobetalipoproteinemia may have a polygenic origin.
Collapse
Affiliation(s)
- Francisco Blanco-Vaca
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica - IIB Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain.
| | - Jesús M Martin-Campos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau- IIB Sant Pau, Barcelona, Spain
| | - Ángel Beteta-Vicente
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica - IIB Sant Pau, Barcelona, Spain
| | - Marina Canyelles
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica - IIB Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain
| | - Susana Martínez
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica - IIB Sant Pau, Barcelona, Spain
| | - Rosa Roig
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica - IIB Sant Pau, Barcelona, Spain
| | - Núria Farré
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau- IIB Sant Pau, Barcelona, Spain
| | - Josep Julve
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau- IIB Sant Pau, Barcelona, Spain
| | - Mireia Tondo
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica - IIB Sant Pau, Barcelona, Spain.
| |
Collapse
|
16
|
Abstract
Liver X receptors α and β (LXRα and LXRβ) are nuclear receptors with pivotal roles in the transcriptional control of lipid metabolism. Transcriptional activity of LXRs is induced in response to elevated cellular levels of cholesterol. LXRs bind to and regulate the expression of genes that encode proteins involved in cholesterol absorption, transport, efflux, excretion and conversion to bile acids. The coordinated, tissue-specific actions of the LXR pathway maintain systemic cholesterol homeostasis and regulate immune and inflammatory responses. LXRs also regulate fatty acid metabolism by controlling the lipogenic transcription factor sterol regulatory element-binding protein 1c and regulate genes that encode proteins involved in fatty acid elongation and desaturation. LXRs exert important effects on the metabolism of phospholipids, which, along with cholesterol, are major constituents of cellular membranes. LXR activation preferentially drives the incorporation of polyunsaturated fatty acids into phospholipids by inducing transcription of the remodelling enzyme lysophosphatidylcholine acyltransferase 3. The ability of the LXR pathway to couple cellular sterol levels with the saturation of fatty acids in membrane phospholipids has implications for several physiological processes, including lipoprotein production, dietary lipid absorption and intestinal stem cell proliferation. Understanding how LXRs regulate membrane composition and function might provide new therapeutic insight into diseases associated with dysregulated lipid metabolism, including atherosclerosis, diabetes mellitus and cancer.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
van Loon NM, Ottenhoff R, Kooijman S, Moeton M, Scheij S, Roscam Abbing RL, Gijbels MJ, Levels JH, Sorrentino V, Berbée JF, Rensen PC, Zelcer N. Inactivation of the E3 Ubiquitin Ligase IDOL Attenuates Diet-Induced Obesity and Metabolic Dysfunction in Mice. Arterioscler Thromb Vasc Biol 2018; 38:1785-1795. [PMID: 29903737 PMCID: PMC6092113 DOI: 10.1161/atvbaha.118.311168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/31/2018] [Indexed: 12/26/2022]
Abstract
Objective- The E3 ubiquitin ligase IDOL (inducible degrader of the LDLR [LDL (low-density lipoprotein) receptor]) is a post-transcriptional regulator of LDLR abundance. Model systems and human genetics support a role for IDOL in regulating circulating LDL levels. Whether IDOL plays a broader metabolic role and affects development of metabolic syndrome-associated comorbidities is unknown. Approach and Results- We studied WT (wild type) and Idol(-/-) (Idol-KO) mice in 2 models: physiological aging and diet-induced obesity. In both models, deletion of Idol protected mice from metabolic dysfunction. On a Western-type diet, Idol loss resulted in decreased circulating levels of cholesterol, triglycerides, glucose, and insulin. This was accompanied by protection from weight gain in short- and long-term dietary challenges, which could be attributed to reduced hepatosteatosis and fat mass in Idol-KO mice. Although feeding and intestinal fat uptake were unchanged in Idol-KO mice, their brown adipose tissue was protected from lipid accumulation and had elevated expression of UCP1 (uncoupling protein 1) and TH (tyrosine hydroxylase). Indirect calorimetry indicated a marked increase in locomotion and suggested a trend toward increased cumulative energy expenditure and fat oxidation. An increase in in vivo clearance of reconstituted lipoprotein particles in Idol-KO mice may sustain this energetic demand. In the BXD mouse genetic reference population, hepatic Idol expression correlates with multiple metabolic parameters, thus providing support for findings in the Idol-KO mice. Conclusions- Our study uncovers an unrecognized role for Idol in regulation of whole body metabolism in physiological aging and on a Western-type diet. These findings support Idol inhibition as a therapeutic strategy to target multiple metabolic syndrome-associated comorbidities.
Collapse
Affiliation(s)
- Nienke M. van Loon
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| | - Roelof Ottenhoff
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| | - Sander Kooijman
- Academic Medical Center, University of Amsterdam, The Netherlands; Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, The Netherlands (S.K., J.F.P.B., P.C.N.R.)
| | - Martina Moeton
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| | - Saskia Scheij
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| | | | - Marion J.J. Gijbels
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
- Department of Molecular Genetics (M.J.J.G.)
| | | | - Vincenzo Sorrentino
- CARIM, Maastricht University, The Netherlands; and Laboratory for Integrative and Systems Physiology, EPFL, Lausanne, Switzerland (V.S.)
| | - Jimmy F.P. Berbée
- Academic Medical Center, University of Amsterdam, The Netherlands; Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, The Netherlands (S.K., J.F.P.B., P.C.N.R.)
| | - Patrick C.N. Rensen
- Academic Medical Center, University of Amsterdam, The Netherlands; Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, The Netherlands (S.K., J.F.P.B., P.C.N.R.)
| | - Noam Zelcer
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| |
Collapse
|
18
|
|
19
|
Plasma inducible degrader of the LDLR, soluble low-density lipoprotein receptor, and proprotein convertase subtilisin/kexin type 9 levels as potential biomarkers of familial hypercholesterolemia in children. J Clin Lipidol 2018; 12:211-218. [DOI: 10.1016/j.jacl.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/28/2017] [Accepted: 10/03/2017] [Indexed: 02/02/2023]
|
20
|
Nakamura K, Ohsawa I, Masuzawa R, Konno R, Watanabe A, Kawano F. Running training experience attenuates disuse atrophy in fast-twitch skeletal muscles of rats. J Appl Physiol (1985) 2017; 123:902-913. [PMID: 28775067 DOI: 10.1152/japplphysiol.00289.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/26/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
Responsiveness to physiological stimuli, such as exercise and muscular inactivation, differs in individuals. However, the mechanisms responsible for these individual differences remain poorly understood. We tested whether a prior experience of exercise training affects the responses of skeletal muscles to unloading. Young rats were assigned to perform daily running training with a treadmill for 8 wk. After an additional 8 wk of normal habitation, the rats were hindlimb unloaded by tail suspension for 1 wk. Fast-twitch plantaris, gastrocnemius, and tibialis anterior muscles did not atrophy after unloading in rats with training experience, although soleus muscle lost weight similar to sedentary rats. We also analyzed the transcriptome in plantaris muscle with RNA sequencing followed by hierarchical clustering analysis and found that a subset of genes that were generally upregulated in sedentary rats after unloading were less responsive in rats with training experience. The distribution of histone 3 was diminished at the loci of these genes during the training period. Although the deposition of histone 3 was restored after an additional period of normal habitation, the incorporation of H3.3 variant was promoted in rats with training experience. This remodeling of nucleosomes closely correlated to the conformational changes of chromatin and suppressed gene expression in response to unloading. These results suggest that exercise training stimulated the early turnover of histone components, which may alter the responsiveness of gene transcription to physiological stimuli.NEW & NOTEWORTHY The present study demonstrates that disuse atrophy was suppressed in fast-twitch skeletal muscles of rats with training experience in early life. We also found a subset of genes that were less responsive to unloading in the muscle of rats with training experience. It was further determined that exercise training caused an early turnover of nucleosome components, which may alter the responsiveness of genes to stimulus in later life.
Collapse
Affiliation(s)
- Keisuke Nakamura
- Department of Sports and Health Science, Faculty of Human Health Science, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Ikumi Ohsawa
- Department of Sports and Health Science, Faculty of Human Health Science, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Ryo Masuzawa
- Graduate School of Health Sciences, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Ryotaro Konno
- Department of Sports and Health Science, Faculty of Human Health Science, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Atsuya Watanabe
- Graduate School of Health Sciences, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| | - Fuminori Kawano
- Department of Sports and Health Science, Faculty of Human Health Science, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan; .,Graduate School of Health Sciences, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan
| |
Collapse
|
21
|
Zhao L, Zhao Y, He Y, Mao Y. miR-19b promotes breast cancer metastasis through targeting MYLIP and its related cell adhesion molecules. Oncotarget 2017; 8:64330-64343. [PMID: 28969074 PMCID: PMC5610006 DOI: 10.18632/oncotarget.19278] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/19/2017] [Indexed: 01/28/2023] Open
Abstract
miR-19b is a key molecule for cancer development, however its crucial roles in breast cancer metastasis are rarely studied right now. In this study, using several bioinformatics databases to predict the downstream targets for miR-19b, we verified that a novel target gene, myosin regulatory light chain interacting protein (MYLIP), could be directly down-regulated by miR-19b through its 3′-UTR region. MYLIP belongs to the cytoskeletal protein clusters and is involved in the regulation of cell movement and migration. We further explored that miR-19b was highly expressed and negatively correlated with MYLIP expression in breast cancer patient samples from the TCGA database. And the over-expression of miR-19b or inhibition of MYLIP facilitated the migration and metastasis of breast cancer cells, through conducting the wound healing assay and transwell invasion assay. Additionally, miR-19b could obviously promote breast tumor growth in mouse models and affect the expressions of cell adhesion molecules (including E-Cadherin, ICAM-1 and Integrin β1) by down-regulating E-Cadherin expression and up-regulating ICAM-1 and Integrin β1 expressions in vitro and in vivo. Meanwhile, miR-19b effectively activated the Integrin β downstream signaling pathways (such as the Ras-MAPK pathway and the PI3K-AKT pathway) and elevated the expression levels of essential genes in these two pathways. Taken together, these findings comprehensively illustrate the regulatory mechanisms ofmiR-19b in breast cancer metastasis, and provide us new insights for exploring MYLIP and its related cell adhesion molecules as promising therapeutic targets to interfere breast cancer development.
Collapse
Affiliation(s)
- Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yuelong Zhao
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yanong He
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
22
|
Hypercholesterolemia: The role of PCSK9. Arch Biochem Biophys 2017; 625-626:39-53. [DOI: 10.1016/j.abb.2017.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 01/06/2023]
|
23
|
Paththinige CS, Sirisena ND, Dissanayake V. Genetic determinants of inherited susceptibility to hypercholesterolemia - a comprehensive literature review. Lipids Health Dis 2017; 16:103. [PMID: 28577571 PMCID: PMC5457620 DOI: 10.1186/s12944-017-0488-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 02/08/2023] Open
Abstract
Hypercholesterolemia is a strong determinant of mortality and morbidity associated with cardiovascular diseases and a major contributor to the global disease burden. Mutations in four genes (LDLR, APOB, PCSK9 and LDLRAP1) account for the majority of cases with familial hypercholesterolemia. However, a substantial proportion of adults with hypercholesterolemia do not have a mutation in any of these four genes. This indicates the probability of having other genes with a causative or contributory role in the pathogenesis of hypercholesterolemia and suggests a polygenic inheritance of this condition. Here in, we review the recent evidence of association of the genetic variants with hypercholesterolemia and the three lipid traits; total cholesterol (TC), HDL-cholesterol (HDL-C) and LDL-cholesterol (LDL-C), their biological pathways and the associated pathogenetic mechanisms. Nearly 80 genes involved in lipid metabolism (encoding structural components of lipoproteins, lipoprotein receptors and related proteins, enzymes, lipid transporters, lipid transfer proteins, and activators or inhibitors of protein function and gene transcription) with single nucleotide variants (SNVs) that are recognized to be associated with hypercholesterolemia and serum lipid traits in genome-wide association studies and candidate gene studies were identified. In addition, genome-wide association studies in different populations have identified SNVs associated with TC, HDL-C and LDL-C in nearly 120 genes within or in the vicinity of the genes that are not known to be involved in lipid metabolism. Over 90% of the SNVs in both these groups are located outside the coding regions of the genes. These findings indicates that there might be a considerable number of unrecognized processes and mechanisms of lipid homeostasis, which when disrupted, would lead to hypercholesterolemia. Knowledge of these molecular pathways will enable the discovery of novel treatment and preventive methods as well as identify the biochemical and molecular markers for the risk prediction and early detection of this common, yet potentially debilitating condition.
Collapse
Affiliation(s)
- C S Paththinige
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka.
| | - N D Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| | - Vhw Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| |
Collapse
|
24
|
The Use of L-sIDOL Transgenic Mice as a Murine Model to Study Hypercholesterolemia and Atherosclerosis. Methods Mol Biol 2017. [PMID: 28205167 DOI: 10.1007/978-1-4939-6875-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
There are many advantages to the use of mice as a model to study the regulation of cholesterol metabolism. Common models of hypercholesterolemia include low-density lipoprotein receptor deficient (LDLR -/-) mice and apolipoprotein E deficient (ApoE) -/- mice. Herein, we describe the recently generated mouse model, L-sIDOL Tg mice, which express a dominant active form of Inducible Degrader Of the Low-density lipoprotein receptor (IDOL) in a liver-specific manner. This murine model offers significant advantages over previously established models for the study of hypercholesterolemia and atherosclerosis.
Collapse
|
25
|
Sofer T, Heller R, Bogomolov M, Avery CL, Graff M, North KE, Reiner AP, Thornton TA, Rice K, Benjamini Y, Laurie CC, Kerr KF. A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL. Genet Epidemiol 2017; 41:251-258. [PMID: 28090672 DOI: 10.1002/gepi.22029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/26/2016] [Accepted: 10/17/2016] [Indexed: 01/04/2023]
Abstract
In genome-wide association studies (GWAS), "generalization" is the replication of genotype-phenotype association in a population with different ancestry than the population in which it was first identified. Current practices for declaring generalizations rely on testing associations while controlling the family-wise error rate (FWER) in the discovery study, then separately controlling error measures in the follow-up study. This approach does not guarantee control over the FWER or false discovery rate (FDR) of the generalization null hypotheses. It also fails to leverage the two-stage design to increase power for detecting generalized associations. We provide a formal statistical framework for quantifying the evidence of generalization that accounts for the (in)consistency between the directions of associations in the discovery and follow-up studies. We develop the directional generalization FWER (FWERg ) and FDR (FDRg ) controlling r-values, which are used to declare associations as generalized. This framework extends to generalization testing when applied to a published list of Single Nucleotide Polymorphism-(SNP)-trait associations. Our methods control FWERg or FDRg under various SNP selection rules based on P-values in the discovery study. We find that it is often beneficial to use a more lenient P-value threshold than the genome-wide significance threshold. In a GWAS of total cholesterol in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), when testing all SNPs with P-values <5×10-8 (15 genomic regions) for generalization in a large GWAS of whites, we generalized SNPs from 15 regions. But when testing all SNPs with P-values <6.6×10-5 (89 regions), we generalized SNPs from 27 regions.
Collapse
Affiliation(s)
- Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ruth Heller
- Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Marina Bogomolov
- Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa, Israel
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Yoav Benjamini
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kathleen F Kerr
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Choi J, Gao J, Kim J, Hong C, Kim J, Tontonoz P. The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and Aβ amyloidosis. Sci Transl Med 2016; 7:314ra184. [PMID: 26582899 DOI: 10.1126/scitranslmed.aad1904] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Apolipoprotein E (ApoE) is an important modifier of Alzheimer's disease (AD) pathogenesis, and its abundance has been linked to the clearance of β-amyloid (Aβ) in the brain. The pathways that control the clearance of ApoE in the brain are incompletely understood. We report that Idol, an E3 ubiquitin ligase that targets the low-density lipoprotein receptor (LDLR) for degradation, is a critical determinant of brain ApoE metabolism and Aβ plaque biogenesis. Previous work has shown that Idol contributes minimally to the regulation of hepatic LDLR expression in mice. By contrast, we demonstrate that Idol is a primary physiological regulator of LDLR protein in the brain, controlling the clearance of both ApoE-containing high-density lipoprotein (HDL) particles and Aβ. We studied the consequences of loss of Idol expression in a transgenic mouse model of Aβ amyloidosis. Idol deficiency increased brain LDLR, decreased ApoE, decreased soluble and insoluble Aβ, reduced amyloid plaque burden, and ameliorated neuroinflammation. These findings identify Idol as a gatekeeper of LDLR-dependent ApoE and Aβ clearance in the brain and a potential enzyme target for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Jinkuk Choi
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jie Gao
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jaekwang Kim
- Department of Neuroscience, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - Cynthia Hong
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jungsu Kim
- Department of Neuroscience, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA.
| | - Peter Tontonoz
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Ibrahim S, Somanathan S, Billheimer J, Wilson JM, Rader DJ. Stable liver-specific expression of human IDOL in humanized mice raises plasma cholesterol. Cardiovasc Res 2016; 110:23-9. [PMID: 26786161 DOI: 10.1093/cvr/cvw010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/15/2015] [Indexed: 02/01/2023] Open
Abstract
AIMS IDOL (inducible degrader of the low-density lipoprotein receptor, LDLR) is an E3 ubiquitin ligase that promotes the ubiquitination and degradation of the LDLR. IDOL is a potential therapeutic target for the development of a novel class of low-density lipoprotein cholesterol (LDL-C)-lowering therapies. In an attempt to develop a mouse model for testing IDOL inhibitors, we examined the effects of adeno-associated virus (AAV)-mediated stable expression of human IDOL in the livers of mice 'humanized' with regard to lipoprotein metabolism. METHODS AND RESULTS Using a liver-specific AAV serotype 8 (AAV8)-mediated delivery, AAV-hIDOL produced a dose-dependent increase in LDL-C levels and a decrease in liver LDLR protein. Furthermore, we expressed hIDOL in a 'humanized' mouse model of heterozygous familial hypercholesterolaemia (LDLR(+/-)/Apobec1(-/-)/hApoB-Tg, LAhB). In this model, total cholesterol (TC) and LDL-C levels were increased by ∼60% starting from 1 week and were sustainable for at least 3 weeks post-injection. Finally, we demonstrate that the effects caused by hIDOL expression are LDLR- dependent given the unchanged plasma lipids in LAhB mice lacking LDLR. CONCLUSION In conclusion, our study demonstrates a dose-dependent physiological effect of human IDOL on LDL metabolism in mice. This provides a potential model for preclinical testing of IDOL inhibitors for reduction of LDL-C levels.
Collapse
Affiliation(s)
- Salam Ibrahim
- Department of Genetics, Division of Translational Medicine and Human Genetics of the Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Suryanarayan Somanathan
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeffrey Billheimer
- Department of Genetics, Division of Translational Medicine and Human Genetics of the Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - James M Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Division of Translational Medicine and Human Genetics of the Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
28
|
Ohta N, Hori M, Takahashi A, Ogura M, Makino H, Tamanaha T, Fujiyama H, Miyamoto Y, Harada-Shiba M. Proprotein convertase subtilisin/kexin 9 V4I variant with LDLR mutations modifies the phenotype of familial hypercholesterolemia. J Clin Lipidol 2016; 10:547-555.e5. [PMID: 27206942 DOI: 10.1016/j.jacl.2015.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/22/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is caused by mutations in the genes encoding low-density lipoprotein receptor (LDLR), apolipoprotein B, or proprotein convertase subtilisin/kexin 9 (PCSK9). However, FH shows variability of the clinical phenotype modified by other genetic variants or environmental factors. OBJECTIVE Our objective was to determine the distribution of PCSK9 variants in Japanese FH heterozygotes and to clarify whether those variants and the combination of those variants and LDLR mutations modify the clinical phenotypes. METHODS A direct sequence analysis was performed for all 18 exons of LDLR gene and 12 exons of PCSK9 gene in 269 clinically diagnosed FH heterozygotes. The serum lipid levels of the carriers of each variant were compared to those of noncarriers. We also assessed Achilles tendon xanthoma and the prevalence of coronary artery disease (CAD) in the patients aged ≥30 years. RESULTS Eleven PCSK9 variants were detected. There were 4 frequent PCSK9 variants: L21_22insL, A53 V, V4I, and E32 K. The PCSK9 L21_22insL and A53 V were in linkage disequilibrium with each other. There were no significant differences in serum lipids levels and the prevalence of CAD at the age of ≥ 30 years between PCSK9 V4I, L21_22insL/A53 V, or E32 K variant carriers and noncarriers without LDLR mutations. In the patients carrying LDLR mutations and aged ≥ 30 years, the additional PCSK9 V4I variant was linked to a significantly increased prevalence of CAD in accord with the elevation of the LDL-cholesterol level. CONCLUSIONS The addition of the PCSK9 V4I was suggested to modify the phenotype of patients carrying LDLR mutations by affecting their LDLR metabolism.
Collapse
Affiliation(s)
- Naotaka Ohta
- Laboratory of Clinical Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Mika Hori
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.
| | - Atsushi Takahashi
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Hisashi Makino
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tamiko Tamanaha
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiromi Fujiyama
- Laboratory of Clinical Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshihiro Miyamoto
- Laboratory of Clinical Genetics, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.
| |
Collapse
|
29
|
Brautbar A, Leary E, Rasmussen K, Wilson DP, Steiner RD, Virani S. Genetics of familial hypercholesterolemia. Curr Atheroscler Rep 2015; 17:491. [PMID: 25712136 DOI: 10.1007/s11883-015-0491-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol and premature cardiovascular disease, with a prevalence of approximately 1 in 200-500 for heterozygotes in North America and Europe. Monogenic FH is largely attributed to mutations in the LDLR, APOB, and PCSK9 genes. Differential diagnosis is critical to distinguish FH from conditions with phenotypically similar presentations to ensure appropriate therapeutic management and genetic counseling. Accurate diagnosis requires careful phenotyping based on clinical and biochemical presentation, validated by genetic testing. Recent investigations to discover additional genetic loci associated with extreme hypercholesterolemia using known FH families and population studies have met with limited success. Here, we provide a brief overview of the genetic determinants, differential diagnosis, genetic testing, and counseling of FH genetics.
Collapse
Affiliation(s)
- Ariel Brautbar
- Division of Genetics, Cook Children's Medical Center, Fort Worth, TX, USA,
| | | | | | | | | | | |
Collapse
|
30
|
IDOL, inducible degrader of low-density lipoprotein receptor, serves as a potential therapeutic target for dyslipidemia. Med Hypotheses 2015; 86:138-42. [PMID: 26601593 DOI: 10.1016/j.mehy.2015.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/19/2015] [Accepted: 11/08/2015] [Indexed: 11/24/2022]
Abstract
Low-density lipoprotein cholesterol (LDL-C) is the hall marker for the atherosclerotic cardiovascular disease (ASCVD). It has been shown that over 70% of circulating LDL-C is metabolized through binding and activation of hepatic LDL receptor (LDLR). Genetic LDLR mutations cause hypercholesterolemia in the patients. Therefore, elevation of LDLR levels is beneficial for the treatment of dyslipidemia. LDLR expression is regulated by the SREBP2/PCSK9 pathways. Targeting SREBP2/PCSK9 pathways by statins and human monoclonal PCSK9 antibody has been shown to reduce the progression of ASVCD. Recent studies identified that inducible degrader of LDLR (IDOL) is a novel regulator of LDLR. IDOL is an E3-ubiquitin ligase regulated via liver X receptors (LXRs) binding to the upstream of translation start site of IDOL. IDOL modulates LDLR distribution through ubiquitination and degradation of LDLR in lysosomes. Genome-wide association studies (GWAS) have revealed that the nonsynonymous substitution rs9370867 of IDOL probably contributes to the variability of circulating LDL levels. Recently studies also demonstrated that IDOL influences PCSK9 expression in a LDLR/SREBP2-dependent manner. Based upon these novel findings, we hypothesize that IDOL and PCSK9 would have a synergistic effect on LDLR distribution. Specifically, loss of IDOL increases LDLR distribution in the hepatic cell, and subsequently reduces serum LDL-C levels in dyslipidemic patients. IDOL might be a potential therapeutic target for the treatment of ASCVD.
Collapse
|
31
|
Lee SD, Tontonoz P. Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 2015; 242:29-36. [PMID: 26164157 PMCID: PMC4546914 DOI: 10.1016/j.atherosclerosis.2015.06.042] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen D Lee
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
32
|
The MYLIP p.N342S polymorphism is associated with response to lipid-lowering therapy in Brazilian patients with familial hypercholesterolemia. Pharmacogenet Genomics 2015; 24:548-55. [PMID: 25171759 PMCID: PMC4206345 DOI: 10.1097/fpc.0000000000000089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supplemental Digital Content is available in the text. Background A previous study reported that the myosin regulatory light chain interacting protein (MYLIP) might serve as a novel therapeutic class for treating dyslipidemia. It contributes to variations in the levels of circulating low-density lipoprotein cholesterol (LDL-C), promoting the degradation of LDL–LDLR, thus limiting absorption. The effect of genetic variation in the MYLIP gene in a disease scenario characterized by mutations in the LDLR gene has not been previously evaluated. Objective The aim of this study was to assess the effect of the p.N342S variant on the response to lipid-lowering therapy in Brazilian patients with heterozygous familial hypercholesterolemia (FH). Patients and methods A total of 156 patients with heterozygous FH were followed up for 12 months and received lipid-lowering therapy (different doses of atorvastatin with the addition of ezetimibe in over half the patients of each genotype group). Cholesterol data were assessed, and analysis of the MYLIP rs9370867 (p.N342S) genotypes was carried out by melting curve analysis. Results Baseline total cholesterol and baseline LDL-C levels were not different between genotypes. After 1 year of treatment, LDL-C responses (expressed as mg/dl and as %) were significantly different among genotypes (AA: −79±68 and −39±27, GA: −60±79 and −27±32, and GG: −30±83 and −15±38; P=0.02 and 0.005, respectively). In addition, FH patients carrying the AA genotype were more likely to achieve LDL-C levels of less than 130 mg/dl after 1 year of treatment (75.0%) compared with patients with the GG and GA genotypes (34.5 and 34.8%, respectively; P=0.001). Conclusion Our study indicates that MYLIP p.N342S might be a pharmacogenetic marker for lipid-lowering therapy in patients with FH.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW To summarize recent findings from genome-wide association studies (GWAS), whole-exome sequencing of patients with familial hypercholesterolemia and 'exome chip' studies pointing to novel genes in LDL metabolism. RECENT FINDINGS The genetic loci for ATP-binding cassette transporters G5 and G8, Niemann-Pick C1-Like protein 1, sortilin-1, ABO blood-group glycosyltransferases, myosin regulatory light chain-interacting protein and cholesterol 7α-hydroxylase have all consistently been associated with LDL cholesterol levels and/or coronary artery disease in GWAS. Whole-exome sequencing and 'exome chip' studies have additionally suggested several novel genes in LDL metabolism including insulin-induced gene 2, signal transducing adaptor family member 1, lysosomal acid lipase A, patatin-like phospholipase domain-containing protein 5 and transmembrane 6 superfamily member 2. Most of these findings still require independent replications and/or functional studies to confirm the exact role in LDL metabolism and the clinical implications for human health. SUMMARY GWAS, exome sequencing studies, and recently 'exome chip' studies have suggested several novel genes with effects on LDL cholesterol. Novel genes in LDL metabolism will improve our understanding of mechanisms in LDL metabolism, and may lead to the identification of new drug targets to reduce LDL cholesterol levels.
Collapse
Affiliation(s)
- Mette Christoffersen
- aDepartment of Clinical Biochemistry, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital bFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
34
|
IDOL N342S Variant, Atherosclerosis Progression and Cardiovascular Disorders in the Italian General Population. PLoS One 2015; 10:e0122414. [PMID: 25927920 PMCID: PMC4415795 DOI: 10.1371/journal.pone.0122414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022] Open
Abstract
Inducible degrader of the low density lipoprotein receptor (IDOL), is an E3 ubiquitin ligase that negatively modulates low density lipoprotein receptor (LDL-R) expression. Genome-wide association studies (GWAS) indicated that genetic variants in IDOL gene contributes to variation in LDL-C plasma levels and the detailed analysis of a specific locus resulted in the identification of the functional common single nucleotide polymorphism (SNP) rs9370867 (c.G1025A, p.N342S) associates with increased LDL-R degradation and increased LDL-C levels. These findings, however, were not confirmed in two other independent cohorts and no data about the impact of this variant on atherosclerosis progression and cardiovascular risk are available. Aim of this study was to investigate the association between a functional variant in IDOL and atherosclerosis progression in an Italian general population. 1384 subjects enrolled in the PLIC study (Progression of Lesions in the Intima of Carotid) were genotyped by Q-PCR allelic discrimination and the association with anthropometric parameters, plasma lipids and the carotid intima media thickness (cIMT) and the impact on cardiovascular disease (CVD) incidence were investigated. The N342S variant was not associated with changes of the plasma lipid profile among GG, AG or AA carriers, including total cholesterol (249±21, 249±19 and 248±21 mg/dl respectively), LDL-C (158±25, 161±22 and 160±23 mg/dL), cIMT (0.74±0.14, 0.75±0.17 and 0.77±0.15 mm) and CVD incidence. In agreement, the expression of LDLR and the uptake of LDL was similar in macrophages derived from GG and AA carriers. Taken together our findings indicate that the N342S variant does not impact plasma lipid profile and is not associated with atherosclerosis progression and CVD in the general population, suggesting that other variants in the IDOL gene might be functionally linked with cholesterol metabolism.
Collapse
|
35
|
|
36
|
Affiliation(s)
- Murray W Huff
- From the Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| | - Julia M Assini
- From the Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Robert A Hegele
- From the Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
37
|
Hong C, Marshall SM, McDaniel AL, Graham M, Layne JD, Cai L, Scotti E, Boyadjian R, Kim J, Chamberlain BT, Tangirala RK, Jung ME, Fong L, Lee R, Young SG, Temel RE, Tontonoz P. The LXR-Idol axis differentially regulates plasma LDL levels in primates and mice. Cell Metab 2014; 20:910-918. [PMID: 25440061 PMCID: PMC4261644 DOI: 10.1016/j.cmet.2014.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/22/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022]
Abstract
The LXR-regulated E3 ubiquitin ligase IDOL controls LDLR receptor stability independent of SREBP and PCSK9, but its relevance to plasma lipid levels is unknown. Here we demonstrate that the effects of the LXR-IDOL axis are both tissue and species specific. In mice, LXR agonist induces Idol transcript levels in peripheral tissues but not in liver, and does not change plasma LDL levels. Accordingly, Idol-deficient mice exhibit elevated LDLR protein levels in peripheral tissues, but not in the liver. By contrast, LXR activation in cynomolgus monkeys induces hepatic IDOL expression, reduces LDLR protein levels, and raises plasma LDL levels. Knockdown of IDOL in monkeys with an antisense oligonucleotide blunts the effect of LXR agonist on LDL levels. These results implicate IDOL as a modulator of plasma lipid levels in primates and support further investigation into IDOL inhibition as a potential strategy for LDL lowering in humans.
Collapse
Affiliation(s)
- Cynthia Hong
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie M Marshall
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Allison L McDaniel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mark Graham
- Cardiovascular Antisense Drug Discovery Group, Isis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Joseph D Layne
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Cai
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Elena Scotti
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rima Boyadjian
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Kim
- Division of Endocrinology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brian T Chamberlain
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajendra K Tangirala
- Division of Endocrinology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael E Jung
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Loren Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard Lee
- Cardiovascular Antisense Drug Discovery Group, Isis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan E Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Peter Tontonoz
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Calkin AC, Lee SD, Kim J, Van Stijn CMW, Wu XH, Lusis AJ, Hong C, Tangirala RI, Tontonoz P. Transgenic expression of dominant-active IDOL in liver causes diet-induced hypercholesterolemia and atherosclerosis in mice. Circ Res 2014; 115:442-9. [PMID: 24935961 DOI: 10.1161/circresaha.115.304440] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RATIONALE The E3 ubiquitin ligase inducible degrader of the low-density lipoprotein receptor (IDOL) triggers lysosomal degradation of the low-density lipoprotein receptor. The tissue-specific effects of the IDOL pathway on plasma cholesterol and atherosclerosis have not been examined. OBJECTIVE Given that the liver is the primary determinant of plasma cholesterol levels, we sought to examine the consequence of effect of chronic liver-specific expression of a dominant-active form of IDOL in mice. METHODS AND RESULTS We expressed a degradation-resistant, dominant-active form of IDOL (super IDOL [sIDOL]) in C57Bl/6J mice from the liver-specific albumin promoter (L-sIDOL transgenics). L-sIDOL mice were fed a Western diet for 20 or 30 weeks and then analyzed for plasma lipid levels and atherosclerotic lesion formation. L-sIDOL mice showed dramatic reductions in hepatic low-density lipoprotein receptor protein and increased plasma low-density lipoprotein cholesterol levels on both chow and Western diets. Moreover, L-sIDOL mice developed marked atherosclerotic lesions when fed a Western diet. Lesion formation in L-sIDOL mice was more robust than in apolipoprotein E*3 Leiden mice and did not require the addition of cholate to the diet. Western diet-fed L-sIDOL mice had elevated expression of liver X receptor target genes and proinflammatory genes in their aortas. CONCLUSIONS Liver-specific expression of dominant-active IDOL is associated with hypercholesterolemia and a marked elevation in atherosclerotic lesions. Our results show that increased activity of the IDOL pathway in the liver can override other low-density lipoprotein receptor regulatory pathways leading to cardiovascular disease. L-sIDOL mice are a robust, dominantly inherited, diet-inducible model for the study of atherosclerosis.
Collapse
Affiliation(s)
- Anna C Calkin
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Stephen D Lee
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Jason Kim
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Caroline M W Van Stijn
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Xiao-Hui Wu
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Aldons J Lusis
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Cynthia Hong
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Rajendra I Tangirala
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Peter Tontonoz
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.).
| |
Collapse
|
39
|
Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov 2014; 13:433-44. [DOI: 10.1038/nrd4280] [Citation(s) in RCA: 401] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Ganesh SK, Arnett DK, Assimes TL, Basson CT, Chakravarti A, Ellinor PT, Engler MB, Goldmuntz E, Herrington DM, Hershberger RE, Hong Y, Johnson JA, Kittner SJ, McDermott DA, Meschia JF, Mestroni L, O’Donnell CJ, Psaty BM, Vasan RS, Ruel M, Shen WK, Terzic A, Waldman SA. Genetics and Genomics for the Prevention and Treatment of Cardiovascular Disease: Update. Circulation 2013; 128:2813-51. [DOI: 10.1161/01.cir.0000437913.98912.1d] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Weissglas-Volkov D, Aguilar-Salinas CA, Nikkola E, Deere KA, Cruz-Bautista I, Arellano-Campos O, Muñoz-Hernandez LL, Gomez-Munguia L, Ordoñez-Sánchez ML, Reddy PMVL, Lusis AJ, Matikainen N, Taskinen MR, Riba L, Cantor RM, Sinsheimer JS, Tusie-Luna T, Pajukanta P. Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci. J Med Genet 2013; 50:298-308. [PMID: 23505323 DOI: 10.1136/jmedgenet-2012-101461] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The Mexican population and others with Amerindian heritage exhibit a substantial predisposition to dyslipidemias and coronary heart disease. Yet, these populations remain underinvestigated by genomic studies, and to date, no genome-wide association (GWA) studies have been reported for lipids in these rapidly expanding populations. METHODS AND FINDINGS We performed a two-stage GWA study for hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) in Mexicans (n=4361), and identified a novel Mexican-specific genome-wide significant locus for serum triglycerides (TGs) near the Niemann-Pick type C1 protein gene (p=2.43×10(-08)). Furthermore, three European loci for TGs (APOA5, GCKR and LPL), and four loci for HDL-C (ABCA1, CETP, LIPC and LOC55908) reached genome-wide significance in Mexicans. We used cross-ethnic mapping to narrow three European TG GWA loci, APOA5, MLXIPL, and CILP2 that were wide and contained multiple candidate variants in the European scan. At the APOA5 locus, this reduced the most likely susceptibility variants to one, rs964184. Importantly, our functional analysis demonstrated a direct link between rs964184 and postprandial serum apoAV protein levels, supporting rs964184 as the causative variant underlying the European and Mexican GWA signal. Overall, 52 of the 100 reported associations from European lipid GWA meta-analysis generalised to Mexicans. However, in 82 of the 100 European GWA loci, a different variant other than the European lead/best-proxy variant had the strongest regional evidence of association in Mexicans. CONCLUSIONS This first Mexican GWA study of lipids identified a novel GWA locus for high TG levels; used the interpopulation heterogeneity to significantly restrict three previously known European GWA signals, and surveyed whether the European lipid GWA SNPs extend to the Mexican population.
Collapse
Affiliation(s)
- Daphna Weissglas-Volkov
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Gonda Center, Room 6335B, 695 Charles E. Young Drive South, Los Angeles, CA 90095-7088, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sorrentino V, Fouchier SW, Motazacker MM, Nelson JK, Defesche JC, Dallinga-Thie GM, Kastelein JJP, Kees Hovingh G, Zelcer N. Identification of a loss-of-function inducible degrader of the low-density lipoprotein receptor variant in individuals with low circulating low-density lipoprotein. Eur Heart J 2013; 34:1292-7. [PMID: 23324548 DOI: 10.1093/eurheartj/ehs472] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIMS Recent genome-wide association studies suggest that IDOL (also known as MYLIP) contributes to variation in circulating levels of low-density lipoprotein cholesterol (LDL-C). IDOL, an E3-ubiquitin ligase, is a recently identified post-transcriptional regulator of LDLR abundance. Briefly, IDOL promotes degradation of the LDLR thereby limiting LDL uptake. Yet the exact role of IDOL in human lipoprotein metabolism is unclear. Therefore, this study aimed at identifying and functionally characterizing IDOL variants in the Dutch population and to assess their contribution to circulating levels of LDL-C. METHODS AND RESULTS We sequenced the IDOL coding region in 677 individuals with LDL-C above the 95th percentile adjusted for age and gender (high-LDL-C cohort) in which no mutations in the LDLR, APOB, and PCSK9 could be identified. In addition, IDOL was sequenced in 560 individuals with baseline LDL-C levels below the 20th percentile adjusted for age and gender (low-LDL-C cohort). We identified a total of 14 IDOL variants (5 synonymous, 8 non-synonymous, and 1 non-sense). Functional characterization of these variants demonstrated that the p.Arg266X variant represents a complete loss of IDOL function unable to promote ubiquitylation and subsequent degradation of the LDLR. Consistent with loss of IDOL function, this variant was identified in individuals with low circulating LDL-C. CONCLUSION Our results support the notion that IDOL contributes to variation in circulating levels of LDL-C. Strategies to inhibit IDOL activity may therefore provide a novel therapeutic venue to treating dyslipidaemia.
Collapse
Affiliation(s)
- Vincenzo Sorrentino
- Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam 1105AZ, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gamboa-Meléndez MA, Huerta-Chagoya A, Moreno-Macías H, Vázquez-Cárdenas P, Ordóñez-Sánchez ML, Rodríguez-Guillén R, Riba L, Rodríguez-Torres M, Guerra-García MT, Guillén-Pineda LE, Choudhry S, del Bosque-Plata L, Canizales-Quinteros S, Pérez-Ortiz G, Escobedo-Aguirre F, Parra A, Lerman-Garber I, Aguilar-Salinas CA, Tusié-Luna MT. Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population. Diabetes 2012; 61:3314-21. [PMID: 22923468 PMCID: PMC3501881 DOI: 10.2337/db11-0550] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several studies have identified nearly 40 different type 2 diabetes susceptibility loci, mainly in European populations, but few of them have been evaluated in the Mexican population. The aim of this study was to examine the extent to which 24 common genetic variants previously associated with type 2 diabetes are associated in Mexican Mestizos. Twenty-four single nucleotide polymorphisms (SNPs) in or near genes (KCNJ11, PPARG, TCF7L2, SLC30A8, HHEX, CDKN2A/2B, CDKAL1, IGF2BP2, ARHGEF11, JAZF1, CDC123/CAMK1D, FTO, TSPAN8/LGR5, KCNQ1, THADA, ADAMTS9, NOTCH2, NXPH1, RORA, UBQLNL, and RALGPS2) were genotyped in Mexican Mestizos. A case-control association study comprising 1,027 type 2 diabetic individuals and 990 control individuals was conducted. To account for population stratification, a panel of 104 ancestry-informative markers was analyzed. Association to type 2 diabetes was found for rs13266634 (SLC30A8), rs7923837 (HHEX), rs10811661 (CDKN2A/2B), rs4402960 (IGF2BP2), rs12779790 (CDC123/CAMK1D), and rs2237892 (KCNQ1). In addition, rs7754840 (CDKAL1) was associated in the nonobese type 2 diabetic subgroup, and for rs7903146 (TCF7L2), association was observed for early-onset type 2 diabetes. Lack of association for the rest of the variants may have resulted from insufficient power to detect smaller allele effects.
Collapse
Affiliation(s)
- Marco Alberto Gamboa-Meléndez
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alicia Huerta-Chagoya
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Hortensia Moreno-Macías
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- División de Ciencias Sociales y Humanidades, Departamento de Economía, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Paola Vázquez-Cárdenas
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Luisa Ordóñez-Sánchez
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rosario Rodríguez-Guillén
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Laura Riba
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Maribel Rodríguez-Torres
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Teresa Guerra-García
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luz Elizabeth Guillén-Pineda
- Departamento de Endocrinología y Metabolismo de Lípidos, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Shweta Choudhry
- Department of Urology and Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | | | - Samuel Canizales-Quinteros
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gustavo Pérez-Ortiz
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Fernando Escobedo-Aguirre
- Unidad Materno Fetal, Hospital 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Adalberto Parra
- Departamento de Endocrinología, Instituto Nacional de Perinatología Isidro Espinoza de los Reyes, Mexico City, Mexico
| | - Israel Lerman-Garber
- Departamento de Endocrinología y Metabolismo de Lípidos, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos Alberto Aguilar-Salinas
- Departamento de Endocrinología y Metabolismo de Lípidos, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Corresponding authors: María Teresa Tusié-Luna, , and Carlos Alberto Aguilar-Salinas,
| | - María Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Corresponding authors: María Teresa Tusié-Luna, , and Carlos Alberto Aguilar-Salinas,
| |
Collapse
|
44
|
Yan TT, Yin RX, Li Q, Huang P, Zeng XN, Huang KK, Wu DF, Aung LHH. Association of MYLIP rs3757354 SNP and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Lipids Health Dis 2012; 11:141. [PMID: 23107276 PMCID: PMC3496621 DOI: 10.1186/1476-511x-11-141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/27/2012] [Indexed: 11/10/2022] Open
Abstract
Background The association of rs3757354 single nucleotide polymorphism (SNP) in the E3 ubiquitin ligase myosin regulatory light chain-interacting protein (MYLIP, also known as IDOL) gene and serum lipid levels is not well known in the general population. The present study aimed to detect the association of rs3757354 SNP and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Method A total of 627 subjects of Bai Ku Yao minority and 614 participants of Han nationality were randomly selected from our stratified randomized cluster samples. Genotyping of the rs3757354 SNP was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Results The levels of serum total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein (Apo) AI and ApoB were lower in Bai Ku Yao than in Han (P < 0.05-0.001). The frequency of G allele was 49.92% in Bai Ku Yao and 56.27% in Han (P < 0.05). The frequencies of AA, GA and GG genotypes were 25.52%, 49.12% and 25.36% in Bai Ku Yao, and 19.87%, 47.72% and 32.41% in Han (P < 0.05); respectively. There were no significant differences in the genotypic and allelic frequencies between males and females in both ethnic groups. The levels of HDL-C in Bai Ku Yao were different among the genotypes (P < 0.05), the G allele carriers had higher serum HDL-C levels than the G allele noncarriers. The levels TC, HDL-C and ApoAI in Han were different among the genotypes (P < 0.05 for all), the participants with GA genotype had lower serum TC, HDL-C and ApoAI levels than the participants with AA genotype. These findings were found only in females but not in males. The levels of TG and HDL-C in Bai Ku Yao were correlated with the genotypes, whereas the levels of TC in Han, and TC, LDL-C in Han females were associated with the genotypes (P < 0.05 for all). Serum lipid parameters were also correlated with age, sex, alcohol consumption, cigarette smoking, blood pressure, and body mass index in both ethnic groups (P < 0.05-0.001). Conclusions The present study suggests that the MYLIP rs3757354 SNP is associated with serum TC, HDL-C and ApoAI levels in the Bai Ku Yao and Han populations. But the association is different between the two ethnic groups.
Collapse
Affiliation(s)
- Ting-Ting Yan
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang L, Reue K, Fong LG, Young SG, Tontonoz P. Feedback regulation of cholesterol uptake by the LXR-IDOL-LDLR axis. Arterioscler Thromb Vasc Biol 2012; 32:2541-6. [PMID: 22936343 DOI: 10.1161/atvbaha.112.250571] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inducible degrader of the low-density lipoprotein receptor (IDOL) is an E3 ubiquitin ligase that mediates the ubiquitination and degradation of the low-density lipoprotein receptor (LDLR). IDOL expression is controlled at the transcriptional level by the cholesterol-sensing nuclear receptor liver X receptor (LXR). In response to rising cellular sterol levels, activated LXR induces IDOL production, thereby limiting further uptake of exogenous cholesterol through the LDLR pathway. The LXR-IDOL-LDLR mechanism for feedback inhibition of cholesterol uptake is independent of and complementary to the sterol regulatory element-binding protein pathway. Since the initial description of the LXR-IDOL pathway, biochemical studies have helped to define the structural basis for both IDOL target recognition and LDLR ubiquitin transfer. Recent work has also suggested links between IDOL and human lipid metabolism.
Collapse
Affiliation(s)
- Li Zhang
- Howard Hughes Medical Institute, UCLA School of Medicine, Box 951662, Los Angeles, CA 90095-1662, USA
| | | | | | | | | |
Collapse
|
46
|
Santos PCJL, Oliveira TGM, Lemos PA, Mill JG, Krieger JE, Pereira AC. MYLIP p.N342S polymorphism is not associated with lipid profile in the Brazilian population. Lipids Health Dis 2012; 11:83. [PMID: 22741812 PMCID: PMC3439349 DOI: 10.1186/1476-511x-11-83] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/15/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND A recent study investigated the MYLIP region in the Mexican population in order to fine-map the actual susceptibility variants of this locus. The p.N342S polymorphism was identified as the underlying functional variant accounting for one of the previous signals of genome-wide association studies and the N342 allele was associated with higher cholesterol concentrations in Mexican dyslipidemic individuals. To date, there is no further evaluation on this genotype-phenotype association in the literature. In this scenario, and because of a possible pharmacotherapeutic target of dyslipidemia, the main aim of this study was to assess the influence of the MYLIP p.N342S polymorphism on lipid profile in Brazilian individuals. METHODS 1295 subjects of the general population and 1425 consecutive patients submitted to coronary angiography were selected. General characteristics, biochemical tests, blood pressures, pulse wave velocity, and coronary artery disease scores were analyzed. Genotypes for the MYLIP rs9370867 (p.N342S, c.G1025A) polymorphism were detected by high resolution melting analysis. RESULTS No association of the MYLIP rs9370867 genotypes with lipid profile, hemodynamic data, and coronary angiographic data was found. Analysis stratified by hyperlipidemia, gender, and ethnicity was also performed and the sub-groups presented similar results. In both general population and patient samples, the MYLIP rs9370867 polymorphism was differently distributed according to ethnicity. In the general population, subjects carrying GG genotypes had higher systolic blood pressure (BP), diastolic BP, and mean BP values (129.0 ± 23.3; 84.9 ± 14.6; 99.5 ± 16.8 mmHg) compared with subjects carrying AA genotypes (123.7 ± 19.5; 81.6 ± 11.8; 95.6 ± 13.6 mmHg) (p = 0.01; p = 0.02; p = 0.01, respectively), even after adjustment for covariates. However, in analysis stratified by ethnicity, this finding was not found and there is no evidence that the polymorphism influences BP. CONCLUSION Our findings indicate that association studies involving this MYLIP variant can present distinct results according to the studied population. In this moment, further studies are needed to reaffirm if the MYLIP p.N342S polymorphism is functional or not, and to identify other functional markers within this gene.
Collapse
Affiliation(s)
- Paulo C J L Santos
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Sorrentino V, Zelcer N. Post-transcriptional regulation of lipoprotein receptors by the E3-ubiquitin ligase inducible degrader of the low-density lipoprotein receptor. Curr Opin Lipidol 2012; 23:213-219. [PMID: 22510808 DOI: 10.1097/mol.0b013e3283532947] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The hepatic low-density lipoprotein receptor (LDLR) pathway is essential for clearing circulating LDL and is an important therapeutic target for treating cardiovascular disease. Abundance of the LDLR is subject to both transcriptional and nontranscriptional control. Here, we highlight a new post-transcriptional mechanism for controlling LDLR function via ubiquitination of the receptor by the E3-ubiquitin ligase inducible degrader of the LDLR (IDOL). RECENT FINDINGS IDOL is a recently identified transcriptional target of the liver X receptors. Acting as an E3-ubiquitin ligase IDOL promotes ubiquitination of the LDLR, thereby marking it for lysosomal degradation. The determinants required for degradation of the LDLR by IDOL have been largely identified. IDOL also targets two related lipoprotein receptors, the very low-density lipoprotein receptor and apolipoprotein E receptor 2. Despite several similarities, the IDOL, and PCSK9 pathways for controlling LDLR abundance seem independent of each other. Genome-wide association studies have recently identified IDOL as a locus influencing variability in circulating levels of LDL, thereby highlighting the possible role of IDOL in human lipoprotein metabolism. SUMMARY Transcriptional induction of IDOL by liver X receptor defines a new post-transcriptional pathway for controlling LDLR abundance and LDL uptake independent of sterol regulatory element binding proteins. Targeting IDOL activity may offer a novel therapeutic approach complementary to statins for treating cardiovascular disease.
Collapse
Affiliation(s)
- Vincenzo Sorrentino
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
48
|
FERM-dependent E3 ligase recognition is a conserved mechanism for targeted degradation of lipoprotein receptors. Proc Natl Acad Sci U S A 2011; 108:20107-12. [PMID: 22109552 DOI: 10.1073/pnas.1111589108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The E3 ubiquitin ligase IDOL (inducible degrader of the LDL receptor) regulates LDL receptor (LDLR)-dependent cholesterol uptake, but its mechanism of action, including the molecular basis for its stringent specificity, is poorly understood. Here we show that IDOL uses a singular strategy among E3 ligases for target recognition. The IDOL FERM domain binds directly to a recognition sequence in the cytoplasmic tails of lipoprotein receptors. This physical interaction is independent of IDOL's really interesting new gene (RING) domain E3 ligase activity and its capacity for autoubiquitination. Furthermore, IDOL controls its own stability through autoubiquitination of a unique FERM subdomain fold not present in other FERM proteins. Key residues defining the IDOL-LDLR interaction and IDOL autoubiquitination are functionally conserved in their insect homologs. Finally, we demonstrate that target recognition by IDOL involves a tripartite interaction between the FERM domain, membrane phospholipids, and the lipoprotein receptor tail. Our data identify the IDOL-LDLR interaction as an evolutionarily conserved mechanism for the regulation of lipid uptake and suggest that this interaction could potentially be exploited for the pharmacologic modulation of lipid metabolism.
Collapse
|